
A new approach to predicting reliable project
runtimes via probabilistic model checking

Ulrich Vogl� and Markus Siegle�

Universität der Bundeswehr München, 85577 Neubiberg, Germany,
{ulrich.vogl|markus.siegle}@unibw.de

Abstract. For more than five decades, efforts of calculating exact prob-
abilistic quantiles for generally distributed project runtimes have not
been successful due to the tremendous computation requirements, paired
with hard restrictions on the available computation power. The methods
established today are PERT (Program Evaluation and Review Tech-
nique) and CCPM (Critical Chain Project Management). They make
simplifying assumptions by focusing on the critical path (PERT) or es-
timating appropriate buffers (CCPM). In view of this, and since today’s
machines offer an increased computation power, we have developed a
new approach: For the calculation of more exact quantiles or – reversely
– of the resulting buffer sizes, we combine the capabilities of classical re-
duction techniques for series-parallel structures with the capabilities of
probabilistic model checking. In order to avoid the state space explosion
problem, we propose a heuristic algorithm.

Keywords: project planning, stochastic graph model, series-parallel re-
duction, probabilistic model checking, PERT, CCPM

1 Introduction
In project planning, predicting the total runtime of activity chains and/or con-
current project activities, is an important task. In most situations, due to the
influence of many unpredictable factors, probabilistic methods are more appro-
priate than deterministic ones. Two well-known representatives, PERT (Program
Evaluation and Review Technique [13, p. 303-365]) and CCPM (Critical Chain
Project Management [4]), mostly only yield inaccurate results, due to methodical
simplifications (taken in order to make them computable).

PERT is limited in principle by focussing on the critical path. Sub-critical
paths are completely neglected – even if they appear in a high number or with a
significant variance influencing the total runtime distribution. (A more detailed
analysis of PERT networks, albeit under Markovian assumptions, has been de-
scribed in [7].) CCPM works in a more differentiated (but also non-preemptive)
way: Using this method, all non-critical paths are augmented by feeding buffers
in order to lower the influence of the critical path. For determining the size of the
buffer, the so-called Cut & Paste Method and the Root Square Error Method
have been suggested. But these methods for buffer sizing handle the variance
of the side-paths only in an indirect, usually inaccurate manner, and thus their

effectiveness is hard to quantify. This motivated us to take a review on this
topic, seeking for a new, better approach. In particular, since the introduction of
both methods in 1958 resp. 1996 the available computation power has increased
significantly, and new calculation methods such as probabilistic model checking
(pMC) [8], together with efficient tools like PRISM [12], have become available.

We propose a method for complete and accurate calculation of a project’s
total runtime distribution, where our key ideas are as follows:

– The nodes of a stochastic graph model (SGM), i.e. a directed acyclic graph
(DAG), represent the activities of a project. Each node is equipped with a
continuous probability distribution, representing its individual runtime.

– The nodes of the graph are reduced in a step-by-step manner, ultimately
leading to only a single node, with a related result distribution which repre-
sents the project’s total runtime.

– We seek to find subgraphs which can be reduced to a single node by serial
or parallel reduction, as explained below in Sec. 2.

– When no further series-parallel reduction is possible, we identify the starting
and end points of a so-called complex cluster (a generally structured sub-
graph). We use the concept of syncpoints (see Sec. 3 below) for defining such
clusters. The cluster is then reduced by a complex reduction to a single node,
for which step pMC is employed. In order to avoid state space explosion, it
is essential to limit the size of the graph to be fed into pMC. Therefore the
clusters analysed by pMC should be as small as possible.

– One faces the challenge of finding an appropriate (heuristic) fitting for the
given source distributions, because pMC tools usually only accept exponen-
tial distributions. ”Fitting” in this context means the approximate mod-
elling of a given distribution by some phase type distribution, for instance
by matching the first moments.

– It is an interesting side effect that already one complex reduction step can
often eliminate a local complexity hotspot and thereby enable further series-
parallel reduction steps.

1.1 Related Work

Melchiors and Kolisch [10, 11] have presented a heuristic approach for estab-
lishing and assessing scheduling policies for dynamically arriving, concurring
project activities competing for limited resources. In contrast to our approach
which works on the operational planning level, their work is targeted at the
“tactical” planning level (aka “Macro Process Planning”). It uses aggregated
work packages as well as global estimates of runtime and precedence relation-
ships. It assumes high variability project environments, allowing for dynamically
emerging activities as well as dynamically changing dependencies between ac-
tivities. Several heuristics (based on CTMCs and MDPs) are combined, to gain
a computable model state space (including a preemptive modelling approach).
The final valuation and performance assessment of the priority policy methods
is done via simulation.

Kapici [5] presented an approach where complex projects are mapped to a
newly developed stochastic model. He then derives statements on the adherance
of deadlines, costs or other results. His approach is fully simulation-based.

There are further approaches, most of them based on simulation and/or
complexity-reducing heuristics. The destinctive feature of our work, however,
is the accurate consideration of the individual project activities and their prece-
dence relations, combined with the power of a probabilistic model checker.

1.2 Paper structure

The rest of this paper is structured as follows: Sec. 2 provides background in-
formation on PERT, CCPM and the analysis of stochastic graph models. The
shortcomings of these classical methods motivated us to develop an innovative
approach, which is presented in detail in Sec. 3. To illustrate our method, Sec. 4
presents some non-trivial examples. Finally, Sec. 5 summarizes the results and
describes some ideas for continuing work.

2 State of the art

2.1 Stochastic Graph Models

Stochastic Graph Models are a simple and intuitive formalism for modelling the
structure of projects, parallel programs, collections of interdependent tasks, etc..
They have been described in detail, e.g., in [6].

Definition 1. A Stochastic Graph Model (SGM) is a directed acyclic graph G =
(V,E, exec) with the following properties:

1. V is a finite set of vertices (aka nodes), and E ⊆ V ×V is the set of directed
edges. G is connected and has a single source and a single sink node.

2. exec : V 7→ Distr is a function which assigns to each vertex its associated
continuous nonnegative runtime distribution. The runtime distributions of
all vertices are mutually independent.

3. A tuple p = (e1, e2, . . . , ek) ∈ Ek of edges is called a directed path, if and
only if ∀1<i≤k : start(ei) = end(ei−1), where start(e)/end(e) denotes the
start/end node of edge e. The set of all possible paths in G (induced by E)
is denoted by paths(E) .

A vertex of a SGM starts its execution as soon as all its predecessor vertices
have completed. The goal of SGM analysis is to determine the total runtime
distribution, i.e. the elapsed time between the start of the source node and the
finishing of the sink node.

Definition 2. En edge e ∈ E is called redundant iff there is a path p =
(e1, e2, . . . , ek) of edges with e /∈ p, start(e) = start(e1) and end(e) = end(ek).

For the rest of this paper, without any loss of information, we assume the SGM to
be free of redundant edges (if a particular SGM is not so, they can be discovered
and removed easily).

There is a class of SGMs, featuring a series-parallel structure, which is
amenable to efficient analysis. This class is characterised by the following defi-
nition and theorem.

Definition 3. Two vertices ni and nj of a SGM are said to be serially connected
iff nj is the only successor of ni and ni is the only predecessor of nj (or vice
versa). A set of vertices P ⊆ V with |P | ≥ 2 is called parallelly connected iff all
vertices n ∈ P have the same set of predecessors and the same set of successors.

Theorem 1. (from [6, p. 184]) Two serially connected vertices n1 and n2 may
be serially reduced to a single vertex n12 as follows:
pred(n12) = pred(n1), succ(n12) = succ(n2), exec(n12) = exec(n1)∗exec(n2),
where pred(n)/succ(n) denotes the set of predecessor/successor nodes of n, and
∗ denotes the convolution operator on continuous distributions. Two or more
parallelly connected vertices n1, n2, . . . , nk may be parallelly reduced to a single
vertex n1...k as follows:
pred(n1...k) = pred(n1), succ(n1...k) = succ(n1),
exec(n1...k) = max(exec(n1), . . . , exec(nk)),
where max denotes the maximum operator on continuous distributions.

Definition 4. A SGM G is called series-parallel reducible if it can be reduced
to a single node by successive serial and parallel reduction steps.

In short, serial reduction means that two serially connected nodes are reduced
to a single node whose distribution is the convolution of the two operand dis-
tributions (the convolution yields the distribution of the sum of the execution
times). Parallel reduction means that two or more “parallel” nodes are reduced
to a single node which is distributed according to the maximum of the operand
runtimes. Series-parallel reduction is a very efficient method for analysing SGMs.
However, while many graph structures are series-parallel reducible, in practice
many SGMs are not of this class, see e.g. the graph shown in Fig. 1, which is no
longer series-parallel reducible if the traverse edge A-D is inserted.

2.2 A simple SGM

Fig. 1. Example – the traversal edge A-D is initially neglected

We consider a simple SGM consisting of four significant nodes {A,B,C,D},
enclosed by the source node S and the sink node E (shown in Fig. 1). It is assumed
that nodes S and E have negligible runtime, i.e. their runtime is deterministic
with value zero. The runtimes of the four significant nodes all follow an Erlang-
distribution with n phases and basic rate λ (having mean µ = n

λ and variance

σ2 = n
λ2): For A and B with λ = 1, n = 10, for C with λ = 0.2, n = 2, and for D

with λ = 0.201, n = 2. The resulting µ and σ2 values are given in Fig. 1.
For the sake of simplicity, we first neglect the traverse edge from A to D,

such that the SGM is series-parallel reducible. Its overall runtime distribution is
thus

exec(ABCD) = max(exec(A) ∗ exec(B), exec(C) ∗ exec(D))

This density is depicted in Fig. 2 as curve (3) (green).

2.3 PERT

PERT focusses only on the critical path, thereby taking only the mean execution
times into account. For the SGM from Fig. 1 (without traversal edge A-D), this
results in the critical path (S-A-B-E) (orange coloured nodes), which has a mean
value of 20 time units and a variance of 20 (standard deviation 4.47 time units).
We calculated exact distributions for two variants and depicted the associated
densities in Fig. 2:

(1) only the critical path (S-A-B-E) (curve (1), blue)
(2) only the sub-critical side-path (S-C-D-E) (curve (2), red)

Fig. 2. Comparison of the densities; 50%- and 90%-quantiles

Curves (1) and (2), representing the competing paths, possess indeed similar
means (20 resp. 19.95 time units), but quite different variances (20 resp. 99.5
time units squared). The crucial conclusion is gained by comparing curves (1)
and curve (3). The former represents the (seeming) PERT view, whereas the
latter equals the precise overall distribution. The PERT-caused error becomes
most apparent if we focus on the 90% quantiles:

– PERT (curve (1)) suggests, that a runtime of about 25.9 time units would
be sufficient to finish the project at a confidence level of 90%.

– The accurate calculation (curve (3)) clarifies, that this confidence level in
reality is reached only at about 34 time units.

Fig. 2 also shows that for this particular SGM, the 90%-quantile of the sub-
critical path (curve (2), red) – by chance – is almost exact, but its distribution
is far from the exact distribution.

2.4 CCPM

Now one will rightly point out that the weaknesses of the PERT method in its
almost 60 years of history are sufficiently known. But what about the example,
fed into a more modern planning method like CCPM?

The deciding feature of the CCPM method consists of planning all paths at
a 50%-quantile level and equipping the critical path as well as all sub-critical
side-paths with appropriate buffers. In the literature, two methods for buffer
calculation are described: The Cut & Paste method (C&PM), introduced
by CCPM inventor E.M. Goldratt [4], proposes for each path to sum up its
50%-quantiles, then take that result as the path’s base runtime and add to it an
additional buffer of 50% of that. Alternatively, some authors [3] recommend the
Root Square Error Method (RSEM), which takes as buffer the square root
of the sum of squared differences between the 50%- and the 90% quantiles.

Table 1. CCPM – total runtime (+ buffer) & associated quantiles

C&PM RSEM

path A-B [time units] 19.34 (+9.67) 19.34 (+6.42)
path C-D [time units] 16.75 (+8.38) 16.75 (+15.60)
total/maximum [time units] 29.01 32.35
relating exact quantile 80.46% 88.01%

Table 1 shows the results of these two variants of the CCPM method applied to
the SGM from Fig. 1 (without traversal edge A-D). Looking only at the medians,
again path (S-A-B-E) with value 19.34 dominates path (S-C-D-E) which has
value 16.75 (these values differ from the medians of Fig. 2 because they are simple
sums of the single activity medians and not of the convoluted distributions).
But taking into account the buffers, the RSEM method identifies (S-C-D-E) as
the critical chain. If we compare the relating exact quantiles of the calculated
finishing times to the desired 90% quantile of the accurate model evaluation (at
33.65 time units), we can conclude:

– C&PM yields an ”in time”-completion probability of only around 80.5%,
– with RSEM the problematic sub-critical side path (C-D) gains more impor-

tance by its dominating feeding buffer. That indeed increases the completion
probability to around 88% (which is still below the desired 90% level).

2.5 Non-series-parallel SGMs

We now return to the SGM in Fig. 1, but this time we include the traversal edge
A-D into the calculations. This is remarkable, since exactly that edge destroys the
series-parallel reducibility of the graph. Therefore, in order to obtain the precise

runtime distribution, we can no longer rely on the convolution and maximum
operators, but we need indeed a more powerful computation method. We chose to
employ pMC, in particular we use the probabilistic model checker PRISM [12],
which under the hood performs a state space analysis (transient analysis by
means of uniformization). Since PRISM provides no explicit calculation feature
for discrete densities, we use it as follows:

1. First we choose an appropriate discretization step width, e.g. 1% of the
smallest occuring mean or standard deviation, as well as an estimation of
the upper interval limit, which – for instance – can be gained by a pathwise
consideration, thereby taking each single distribution’s upper limit.

2. Then for each discrete time value ti we perform a PRISM call of the form
P (T < ti) =?, which delivers the cumulative distribution value for time ti.

3. PRISM provides a feature to chain such calculations for entire intervals by
only one call (given start time, end time and step width); this obviously
leads to a tremendous decrease of the calculation effort (granting PRISM
the reuse of prior results).

4. The desired density values are eventually gained by a simple numerical differ-
entiation, taking the difference of each two neighbouring distribution values.

5. The calculation time can be further reduced by splitting the PRISM call
intervals and distributing them onto several CPU threads.

Fig. 3. Comparison of the densities: without (3) resp. with (4) the traverse A-D

Fig. 3 depicts the influence of the traversal edge by comparing the overall den-
sities with / without it. Note that curves (1) (blue) and (3) (green) equal those
of Fig. 2. The exact overall density for the SGM with traversal edge, shown as
curve (4) (magenta), deviates slightly from curve (3) (without traversal): Now
the 90% quantile is reached at 35.01 time units (previously: 33.65). For the sake
of comparison, the PERT based density (1), gained by concentrating on the crit-
ical path only, is displayed once again (after insertion of the traverse edge, the
critical path is still the same!). The 90% quantile of the PERT view lies (at 25.9
time units) more than a quarter below the actual value.

In summary, it can be stated that an accurate calculation of the density
offers significant advantages over the established methods PERT and CCPM. In
principle, state-space-based methods such as implemented by PRISM are able
to produce such accurate distributions, but they are limited to small or medium-
sized models because of the arising state space explosion problem. Admittedly,
the SGM considered in this section was an extremely simple case – the reality
is usually much more complex. Therefore, in the following section, we develop a
new method which combines series-parallel reduction and pMC, thereby making
it applicable to larger SGMs of realistic size.

3 A new reduction method for analysing project runtimes
Calculating the exact overall runtime density for arbitrarily structured graphs,
equipped with general runtime distributions, is in general not feasible for the
following reasons:

(a) Series-parallel reduction by use of the convolution and maximum operators
quickly leads to very complicated mathematical expressions, if carried out
symbolically. Those are difficult to handle, even with advanced tools such as
Mathematica [14] or Maple [9].

(b) If the SGM at hand is not series-parallel reducible, purely analytic ap-
proaches fail if activity runtimes have general distributions, since state space
analysis relies on the memoryless property of the exponential distribution.

(c) Even if all node execution times are exponentially or PH-type distributed,
such that state space analysis would be possible in principle, one quickly
reaches the limits of computability because of state space explosion.

Our proposed method, presented in this paper, overcomes these problems in
the following way: Problem (a) is dealt with by representing general distribu-
tions not symbolically, but numerically. That means a general distribution is
discretized and represented as a step function, and the convolution and max-
imum operators are performed on the basis of such numerical representations.
A similar numerical approach had previously been described in [6]. Concerning
problem (b), we enable state space analysis of SGMs (or subgraphs thereof)
with non-exponential execution times by replacing those general distributions
with fitted phase-type distributions (see, e.g. [2]). Finally, with regard to prob-
lem (c), our scheme avoids performing state space analysis on the overall model.
Instead, it combines series-parallel reduction steps with state space analysis of
small subgraphs in an iterative manner.

3.1 The iterative reduction algorithm

Fig. 4 illustrates our iterative reduction algorithm to calculate the overall run-
time distribution. In each round, the algorithm searches for candidates for serial
or parallel reduction and performs the respective reductions, as long as possi-
ble. If no further serial or parallel reduction is possible, the algorithm identifies
a so-called “complex cluster”, which is a generally structured subgraph whose
runtime distribution will be analysed with the help of pMC. Since the vertices of
the given SGM are associated with generally distributed execution times, which

Fig. 4. Flow diagram of the iterative reduction algorithm

cannot be fed immediately into probabilistic model checkers such as PRISM, we
need a suitable fitting method to approximate general distributions by exponen-
tial phases. This is explained in Sec. 3.3. There remains the problem of how to
identify an appropriate cluster? We solve this problem by introducing so-called
“syncpoints”, as elaborated on in the following subsection.

3.2 An efficient algorithm using syncpoints
When performing the stepwise reduction, our algorithm needs to be able to
identify appropriate starting points and end points of clusters to be reduced
(either serially or parallelly or by complex reduction). This search can be directed
by focusing on particular edge subsets which we call syncpoints:

Definition 5. Given a SGM G = (V,E, exec). A set E ⊆ E of edges is called
a full syncpoint (FSP), if and only if for the node set P consisting of all the
starting points of E and for the node set S consisting of all the end points of E
the following three conditions hold:

1. Each edge from P to S is in E.
2. All nodes in P have the same set of successor nodes, namely S.
3. All nodes in S have the same set of predecessor nodes, namely P.

If |P| = |S| = 1, we call E a 1-to-1-SP (11SP), a special subclass of FSPs. If only
conditions (1) and (2) with |P| > 1 resp. conditions (1) and (3) with |S| > 1
hold, we call E a backward or forward halfsyncpoint (BHSP or FHSP). We
denote P as the entrance side and S as the exit side of any syncpoint type.

Fig. 5 illustrates the concept of full syncpoints and halfsyncpoints. During SGM
reduction, we make use of the syncpoint definition as follows:

Fig. 5. FSPs (magenta), FHSP (blue), BHSP (green); node labels for later use

– For each 11SP, we can combine its predecessor and its successor node to a
single node by serial reduction, convolving the associated densities.

– If a FSP or a FHSP has got exit-sided node set M , which coincides with the
entrance-sided node set of another FSP or BHSP, then there is a parallel
reduction opportunity for all nodes of M , i.e. the associated densities can be
combined by calculating their maximum.

– If all paths emerging from a FSP or FHSP lead to another FSP or BHSP and
– vice versa – all paths reaching the latter come from the former one, then
the set C of all nodes included in-between forms a cluster. Such a cluster
can then be reduced by a complex reduction step using pMC.

Definition 6. A FHSP resp. BHSP E is called a subsyncpoint (FSSP resp.
BSSP), if and only if there is another set E ′ with E (E ′ and E ′ is either a FSP
or a FHSP resp. BHSP.

It is clear by definition, that the class of FHSPs decomposes in two subclasses,
namely the FSSPs and the so-called real FHSPs, not beeing a subset of any
superordinated syncpoint E ′; the same applies to BHSPs / BSSPs.

Each FSP with n entrance- resp. m exit-sided nodes implicitly defines
(
n
k

)
BSSPs of cardinality k at its entrance side, resp.

(
m
l

)
FSSPs of cardinality l at

its exit side, with k, l the number of nodes attached at the respective side. Thus
a FSP covers in sum 2n − n − 2 BSSPs and 2m − m − 2 FSSPs (n,m > 1).
From a hierarchical point of view, each FSP or HSP with cardinality k (k > 2)
immediately covers k SSPs of cardinality k− 1 (at the entrance resp. exit side).

The idea now is: The set of all syncpoints / halfsyncpoints in the given SGM
induces a new, in general less complex DAG (regarding a kind of precedence to
be defined), such that all described reduction steps can be performed on that
structure, with a potentially tremendous reduction of calculation effort. In order
to be able to identify and manage this, we need some more definitions:

Definition 7. A set of edges E ⊆ E is called Z-connected, if and only if for
each two edges a, b ∈ E there exist k ≥ 0 and edges e1, e2, . . . , ek ∈ E such that
for (a, e1, e2, . . . , ek, b) each two neighboring edges have either the same start

Fig. 6. TLM examples: only (e) is a FSP; (a). . . (d) contain HSPs (green).

node or the same end node. E is called max-Z-connected if there is no other
Z-connected set E ′ ⊆ E with E (E ′.

Definition 8. Reusing the notation of Def. 5, a set of edges E ⊆ E is called a
top-level manager(TLM), if and only if

1. E is max-Z-connected.
2. E contains at least one (full or half) syncpoint.

Examples of TLMs are shown in Fig. 6. Remarks:

– Condition 2 of Def. 8 is for operational reasons, since TLMs without any
contained syncpoint would not be useful.

– Since the SGM is acyclic, each FSP is also a TLM. In Fig. 5, for instance:
FSP (567 <> 8) or FSP (0 <> 12).

– In Fig. 5, FHSP (1 < 34) is neither a FSP nor a SSP, hence a real FHSP.

The next definition is needed, since it is possible to construct an acylic DAG
without redundant edges where two max-Z-connected sets can be traversed in
any order.

Definition 9. Using the notation of Def. 5, we call a SGM max-Z-acyclic if

1. ∀E ⊆ E max-Z-connected and ∀p = (e1, . . . , ek) ∈ paths(E) holds: |E∩p| ≤ 1.
2. ∀E ,F ⊆ E max-Z-connected, ∀p1, p2 ∈ paths(E) : If both p1 and p2 intersect

with both E and F , then they pass through E and F in the same order.

Definition 10. A TLM E ⊆ E is called a predecessor of another TLM F ⊆ E
with E 6= F if and only if there are edges a ∈ E , b ∈ F and a directed path
(a, e1, . . . , ek, b) ∈ paths(E). In this case F is called a successor of E.

Theorem 2. For each max-Z-acyclic SGM there is a set of TLMs, fulfilling:

1. The TLMs are mutually disjoint and the set of TLMs is unique.
2. Def. 10 induces a well defined DAG on the TLMs, the TLM-DAG.
3. Each FSP resp. real HSP of the given SGM is covered by exactly one TLM.

Proof (sketch): In a first step we use the max-Z-connected property of the TLMs
to show that they are mutually disjoint and there is only one unique representa-
tion of them (independent of the discovering algorithm). Using the properties of
Def. 9, we can show the precedence relationship on TLMs to be well defined. As
remarked, each FSP is automatically a TLM; on the other hand each real HSP
E is Z-connected and thus can be expanded to a max-Z-connected E ′, a TLM.

The following pseudocode sketches a recursive algorithm for identifying the
TLMs and building the TLM-DAG:

top -level call:
recFindTLMDAG(<SGM source node >, <emptyMap >, null)

recursion method definition:
@param curRecNode the current recursion subject node
@param visitedNodeMap map of visited nodes -> already found following TLMs
@param latestTLMOnStack the latest discovered TLM on recursion stack
@returns the TLMGraph
TLMGraph recFindTLMDAG(curRecNode ,visitedNodeMap ,latestTLMOnStack)

if (visitedNodeMap.contains(curRecNode)) # curRecNode already visited?
if (visitedNodeMap.get(curRecNode).size ()>0) # already found follow. TLMs?

update the result by adding edge(s):
connect latest TLM on stack to already found TLMs beneath curRecNode

else:
run recursion call for all successors of curRecNode

else:
determine all Z-connected "children" (S) and "brothers" (P)
by alternating fw/bw expansion , until there are no more new nodes.
group S and P by mutual dependencies in both directions:
a) group P by common successors
b) group S by common predecessors
if (zBrotherGroupMap.size ()==1 & zChildrenGroupMap.size ()==1) # it’s a FSP?

create new FSP and add it and the new connecting edge
(from latestTLMOnStack) to the result
remember all brothers (P) as visited , mapping to the found FSP
run recursion call for all children (S)

else: # it is not a FSP!
if there are HSP(s) between P and S, create a TLM to cover them:
each a)-group with at least 2 p, sharing same common successors
each b)-group with at least 2 s, sharing same common predecessors
induces such a HSP , to be kept by the TLM.
remember brothers (P) as visited: wrt. without a found following TLM
run recursion call for all children (S)

endMethod

Having constructed the TLM-DAG (including all FSPs), the next question is the
integration of the halfsyncpoints, especially the subsyncpoints. At this so-called
micro level, each TLM has to manage three issues:

(2) its subordinated HSPs, ideally in a hierarchical manner,
(2a) the relation between the entrance-/exit-sided nodes and the affecting HSPs,
(2b) the reachability (over paths) between its exit sided nodes and the entrance-

sided nodes of the succeeding TLMs.

A solution for this is illustrated in Fig. 7, where the development of the micro
linkage is shown based on the two rightmost examples of Fig. 6, assuming that
TLM (d) is an immediate predecessor of TLM (e). Fig. 8 illustrates the stepwise
reduction of the example from Fig. 5 by relying on the corresponding syncpoint
TLM-DAG and its underlying micro structure. The transitions within the figure
are reached by (P)arallel, (S)erial and (C)omplex reduction steps.

3.3 Numerical reduction and fitting of general distributions

Whenever a serial or parallel reduction step is performed, our algorithm works
on numerical representations of the operand densities. This avoids having to deal
with complicated mathematical expressions (they arise very quickly after a cou-
ple of such operations have been performed) which could no longer be handled

Fig. 7. Micro linkage of Fig. 6 (d,e): each TLM manages its HSPs (2), their usage of
entrance-/exit-sided nodes (2a) and the mutual reachability by these nodes (2b).

Fig. 8. Reduction steps along the syncpoint DAG: full SPs (orange) and half SPs (blue)

by formula manipulation packages. The precision of the numerical representation
increases with increasing number of interpolation points, whereas the calcula-
tion effort for these numerical operations grows quadratically with the number
of interpolation points. A similar numerical implementation of series-parallel
reductions had been described in [6].

For each complex reduction, i.e. before a complex cluster can be analysed
by means of pMC, an appropriate PRISM-Model needs to be generated. For
this purpose, each single activity’s runtime distribution is fitted by a phase-type
distribution. At the moment, we advocate a fitting by two convolved Erlang
distributions Erl(λ1, n) and Erl(λ2,m). Their parameters can be chosen in such
a way that the first two moments match exactly to the original distribution and
the error at the third moment is minimized. This fitting provides good results,
as long as the coefficient of variation of the original distribution is at most 1,
i.e. as long as σ2/µ2 ≤ 1. As a concluding remark on the issue of fitting, note
that our algorithm presented in Sec. 3.1 is independent of the particular fitting
method used, i.e. other fitting approaches (e.g. [1]) can easily be incorporated.

4 Complex examples

Let us look once again at the example in Fig. 5 and assume that an Erlang dis-
tribution is chosen for all activity runtimes (find λ and n values printed directly

Fig. 9. Densities for the SGM from Fig. 5: PERT (red) vs. exact (blue) and our algo-
rithm (green)

on the nodes). Fig. 9 displays the densities of the critical path (0-1-4-7-8), of
the exact distribution (obtained by PRISM) and of the result by our algorithm.
While our algorithm works quite accurately (submitting a real 89.57% confidence
level as ”90%”), PERT presents an actual level of about 50% as ”90%”!

But what about CCPM? Table 2 considers the possible paths, assigned with
their relating buffer. It is interesting that the more reliable quantile with 84.68%
(at 72.53 time units) now comes from the C&PM. But there is still a considerable
deviation to the wanted exact 90%-quantile (at 77.04 time units). RSEM now
leads – with 79.96% (at 69.65 time units) – to an even worse result.

Table 2. Pathwise CCPM end times (+buffer) and corresponding quantiles

path 0258 0158 01478 01468 01378 01368 overall quantile

C&PM 44.31 45.63 48.35 47.03 47.03 45.71 72.53 84.68%
+22.16 +22.81 +24.18 +23.52 +23.52 +22.86

RSEM 44.31 45.63 48.35 47.03 47.03 45.71 69.65 79.96%
+25.34 +23.26 +10.15 +14.27 +14.27 +17.44

For the prototypical calculation in our approach (on an I7-2600K CPU with
4 cores / 8 threads) we chose a stepwidth of 1h ·µmin = 0.01 time units (where
µmin is the smallest mean of the node distributions), which resulted in a total
machine time of 15.6 s. Another example (SGM with 19 nodes, 3 complex clusters
to be analyzed by pMC, µ ∈ [5 . . . 10], σ = bµ2 c) finished within 35.5 s under
the same conditions. Increasing the number of nodes (each one now having a
normal N(10,4) distribution, with a 1% · µmin stepwidth) showed, as expected,
that the runtime grows strongly with the complexity of the contained clusters:
For instance, a randomly generated SGM with 137 nodes (73 caught in clusters,
max. cluster size: 5) was finished within 182 s. Another example with 133 nodes
(77 caught in clusters, max. cluster size: 16) required 2,269 s to complete.

5 Summary and future work

The presented method offers a remarkable chance to improve the accuracy of
established project planning methods by the combined use of exact calculations
and heuristic approximations, using pMC. Estimates of the overall runtime dis-
tribution – even for complex graph structures – can be calculated more accu-
rately and also – compared to the customary simulation-based approaches –
with feasable computation effort. For instance, one of the leading management
methods, CCPM, can be enhanced in several ways: For a given project schedule,
one obtains a handy calculus of the time-to-finish distribution. Furthermore –
reversely – for a given project finalization confidence level (e.g. a 90% quantile)
we can determine all buffer sizes (on the critical path and all side paths) in an
analytical manner.

This holds even if the scheduling complexity of the CCPM is increased by
an additional calculus regarding the resource- or skill-dependencies (an exten-
sion already envisaged in our work plan). In that context, we will also use the
presented method to solve resource conflicts of the “bad multitasking” type [4]
by taking or hedging a founded decision for a particular prioritization. In addi-
tion, it might become necessary to use bounding methods (e.g. by inserting or
removing edges) in order to make larger SGMs tractable.

References

1. Bobbio, A. et al. (2005). Matching Three Moments with Minimal Acyclic Phase
Type Distrbutions. Stochastic Models 21(2-3), p. 303-326.

2. O’Cinneide, C.A. (1990). Characterization of phase-type distributions. Communi-
cations in Statistics: Stochastic Models 6(1), p. 1-57.

3. Dilmaghani, F. (2008). Critical chain project management (CCPM) at Bosch Se-
curity Systems (CCTV) Eindhoven. Masters Thesis, University of Twente

4. Goldratt, E.M. (1997). Critical Chain. The North River Press Publishing Corpo-
ration, Great Barrington.

5. Kapici, S. (2005). A stochastic risk model for complex projects (Dissertation) Otto-
von-Guericke-Universität, Magdeburg

6. Klar, R. et al. (1995). Messung und Modellierung paralleler und verteilter Rechen-
systeme. B.G. Teubner, Stuttgart

7. Kulkarni, V.G and Adlakha, V.G. (1986). Markov and Markov-regenerative
PERT networks. Operations Research 34(5), p. 769-781.

8. Kwiatkowska, M. et al. (2007). Stochastic Model-Checking. Vol. 4486 of LNCS:
Formal Methods for Performance Evaluation, p. 220-270. Springer, Heidelberg

9. Maplesoft (2017). Maple, a symbolic and numeric computing environment.
https://www.maplesoft.com/products/maple/

10. Melchiors, P. and Kolisch, R. (2007). Scheduling of Multiple R&D Projects in
a Dynamic and Stochastic Environment. In B. Fleischmann et al. (Eds), Operations
Research Proceedings 2008. pp 135–140. Springer, Heidelberg

11. Melchiors, P. (2015). Dynamic and Stochastic Multi-Project Planning. Vol. 673
of Lecture Notes in Economics and Mathematical Systems. Springer, Heidelberg

12. The PRISM Model-Checker website. http://www.prismmodelchecker.org
13. Shtub, A. et al. (2014). Project Management: Processes, Methodologies and Eco-
nomics (2nd edition). Pearson Education Limited, Essex.

14. Wolfram Mathematica. https://www.wolfram.com/mathematica/

