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Abstract. Whenever a process algebra uses weights for specifying prob-
abilities, it is desirable that the rescaling of a submodel’s weights by a
constant factor does not affect the resulting overall model. A classical
weighted approach, which is independent of rescaling weights in sub-
models, is the WSCCS approach by Tofts. The stochastic process algebra
CASPA also uses weights, but the results are in general not independent
of rescaling the submodels’ weights. This paper develops necessary and
sufficient criteria for CASPA models to be independent of rescalings.
In addition to the general notion of scale-freeness, weaker notions that
do not regard vanishing states or target on certain measures are also
considered.
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1 Introduction

Stochastic Process Algebra (SPA) is a popular formalism used for performance
and dependability modelling and evaluation. In most classical SPAs, all actions
are associated with an exponentially distributed delay. However, similar to the
area of GSPNs [1], immediate actions which do not consume any time can be
a very useful feature, for instance for synchronising processes or for modelling
probabilistic decisions.

This paper focuses on SPAs that offer both Markovian and immediate ac-
tions. Markovian actions are specified by their name and their rate, while im-
mediate actions are specified by their name and weight. Weights are eventually
transformed into probabilities in the following way: When the overall model has
been constructed (in a compositional way) from subprocesses, no further syn-
chronisation is necessary. At that point we say that the model is closed. On the
closed model, weights are then normalised to probabilities.

In order to motivate the problem statement we use an example from [2],
written in CASPA SPA (cf. [14, 17]). Suppose there are two processes:

A:=(*s,1*);A1+(*t,1*);A2

B:=(*s,2*);B1+(*s,3*);B2
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(for details of the syntax and semantics cf. Sec. 2). Synchronising A and B over
action s results in a closed model whose behaviour is shown in Fig. 1. The
normalised transition probabilities in this case are (from left to right) 1

3 , 1
2 , 1

6 .
Rescaling the weights of submodel B by factor 2 to B:=(*s,4*);B1+(*s,6*);B2

would lead to transition probabilities 4
11 , 6

11 , 1
11 , which is clearly a different dis-

tribution. Such an effect is undesirable, since the local rescaling of a submodel’s
weights should not produce any effect on the overall model! In particular, this
would be problematic when different modellers work on different parts of the
same overall model.
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A1|[s]|B1 A1|[s]|B2 A2|[s]|B

Fig. 1: An example that does not allow rescaling of submodel B’s weights

The problem of normalising weights to probabilities in SPA is not new, as
the following glance at related work shows: A classical approach, which is inde-
pendent of rescaling weights in submodels is the WSCCS approach by Tofts [21],
where time is discrete and processes proceed in lock-step. However, the present
paper is concerned with the continuous-time scenario, where processes evolve in
parallel, with the possibility of synchronising on certain events. [7] described such
an approach in the context of semi-Markov PEPA, where weights are employed to
determine the likelihood of occurrence of certain general distributions. The paper
[11] introduces iPEPA, which is PEPA extended by weighted immediate actions.
Weights are transformed into probabilities before any parallel composition takes
place, and those probabilities are then recomputed at each level of composition.
Both approaches just mentioned, however, are not scale-free. EMPA [5] and some
versions of TIPP [16] were actually the first Markovian process algebras to offer
(weighted) immediate actions, but there the scaling problem did not occur since
only local normalisation was required. As investigated in [8], the problem of nor-
malisation is also present in PTPA and some probabilistic variants of LOTOS. In
these SPAs there may be competing synchronous and asynchronous transitions,
and the possibly nondeterministic choices between them are converted by the
semantics to a probabilistic execution fragment in the sense of [19].

Everything is fine as long as the modeller is aware of situations where poten-
tial nondeterminism could arise. However, if the modeller misses a potentially
nondeterministic situation, the analysis results could be misleading, as they de-
pend on the scaling of certain weights, i.e. their ratios, as the example in Fig. 1
has shown. Therefore it is very important to develop precise criteria for auto-
matically deciding whether a given model is scale-free or not, and this is exactly
the topic of this paper. The paper will give a necessary and sufficient criterion
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for CASPA models to be scale-free, and in addition a sufficient criterion which
is considerably easier to prove. The results in this paper are for the stochastic
process algebra CASPA [14, 17], but the same ideas apply to other SPAs that

1. have both Markovian and immediate actions,
2. use weights to specify probabilities of immediate actions, and
3. use the product of weights for the weight of a synchronised immediate action.

The remainder of the paper is organised as follows: Sec. 2 sketches the CASPA
syntax by means of a small example and provides the semantic rules. Sec. 3 de-
fines different notions of scale-freeness and establishes the relationships between
them. Sec. 4 proves the main lemmata to characterise scale-freeness in the strong
and weak sense, and Sec. 5 concludes the paper.

2 CASPA language

The CASPA language is a stochastic process algebra, notated in the form of a
guarded command language, that is used to specify Weighted Stochastic Labelled
Transition Systems:

Definition 1. A Weighted Stochastic Labelled Transition System (WSLTS) is
a tuple (S, LM , LI ,→, 99K, s0) where S is a finite set of states, s0 ∈ S is the
initial state. Two sets of action labels are present: LM (Markovian labels) and
LI (immediate labels), LM ∩LI = ∅. Let Act = LM ∪LI. A special label τ ∈ LI

will be used for the internal tau transition. The transition relations are given as
→⊆ S×LM ×R

>0×S and 99K⊆ S×LI ×R
>0×S. An element (s1, a, λ, s2) ∈→

is called a Markovian transition from s1 to s2 with the action label a and the
rate λ (describing a negative exponentially distributed random variable). Alter-

natively we write s1
a,λ
→ s2. An element (s1, b, w, s2) ∈99K is called an immediate

transition from s1 to s2 with the action label b and the weight w. Alternatively

we write s1
b,w
99K s2. A state with at least one outgoing immediate transition is

called vanishing, otherwise it is called tangible.

Remark 1. In some modelling frameworks, immediate transitions are given with-
out any weight or probability. This leads to nondeterministic behaviour, as e.g.
in the case of Interactive Markov Chains (IMCs) [12]. In our setup we use weights
to generate transition probabilities. Both for immediate and for exponentially
distributed transitions it is assumed that no “parallel” transitions with the
same action label exist. They are grouped together by summing up the par-

allel weights/rates, i.e. s1
b,w1
99K s2 and s1

b,w2
99K s2 will be grouped to s1

b,w1+w2
99K s2.

The basic building blocks of the CASPA language are Markovian actions
(a, λ) (here action a with rate λ) and immediate actions (∗b, w∗) (here action b

with weight w). Sequential processes are defined by means of the prefix operator
; and the choice operator +. The synchronised parallel composition operator is
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written as |[S]| for a synchronisation set S ⊆ LI
1. Finally, the hiding operator

hide turns a set of immediate labels into the internal label τ . The complete
syntax can be found in [18].

The CASPA semantics in condensed form is given in Tab. 1 (notated in the
style of [15]). In the table, P , P ′, Q and Q′ are valid expressions in the language,
and λ, µ, ω, σ are positive real numbers. By applying these semantic rules, for
every CASPA model C a multi-transition system, and from this by standard
flattening [13] a unique WSLTS W is generated. We denote by Ccl the set of
closed CASPA models, i.e. models which will not be used in further parallel
composition. In a closed model

– all immediate action labels can safely be ignored
– time can only evolve in tangible states, (maximal progress assumption [12])
– weights can be normalised to probabilities
– a tangible initial state is required

A CASPA state measure characterises a subset of states. It can be used in con-
nection with transient or steady-state analysis. For a more detailed explanation
cf. [2].

a ∈ LM

(a, λ); P
(a,λ)
−→ P

b ∈ LI

(∗b, ω∗); P
(b,ω)
99K P

P
(a,λ)
−→ P ′

a ∈ LM

P + Q
(a,λ)
−→ P ′

Q
(a,λ)
−→ Q′

a ∈ LM

P + Q
(a,λ)
−→ Q′

P
(b,ω)
99K P ′

b ∈ LI

P + Q
(b,ω)
99K P ′

Q
(b,ω)
99K Q′

b ∈ LI

P + Q
(b,ω)
99K Q′

P
(a,λ)
−→ P ′

a ∈ LM

P |[S]|Q
(a,λ)
−→ P ′|[S]|Q

Q
(a,λ)
−→ Q′

a ∈ LM

P |[S]|Q
(a,λ)
−→ P |[S]|Q′

P
(b,ω)
99K P ′

b /∈ S

P |[S]|Q
(b,ω)
99K P ′|[S]|Q

Q
(b,ω)
99K Q′

b /∈ S

P |[S]|Q
(b,ω)
99K P |[S]|Q′

P
(sb,ω)
99K P ′ Q

(sb,σ)
99K Q′

sb ∈ S ⊆ LI

P |[S]|Q
(sb,ω·σ)

99K P ′|[S]|Q′

P
(sb,ω)
99K P ′

sb ∈ S

hide S in P
(τ,ω)
99K hide S in P ′

P
(sb,ω)
99K P ′

sb /∈ S

hide S in P
(sb,ω)
99K hide S in P ′

P
(a,λ)
−→ P ′

a ∈ LM

hide S in P
(a,λ)
−→ hide S in P ′

Table 1: CASPA language semantics

1 Other versions of CASPA also allow the synchronisation over Markovian labels, but
since this is irrelevant for the considerations of this paper we decided to omit this
feature.
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2.1 A small running example

Consider a production system with two machines – represented by their input
buffers – that are loaded by a shared robot (an extremely simplified version of
the model in [20]). The CASPA model of the system is given in Fig. 2. Lines 1-4
describe one input buffer (X is to be substituted by 1 or 2), the robot that loads
the buffers is described in lines 5-7 and the system definition is given in lines 8-10
(synchronisations over start_enqueue, stop_enqueue). The state measures of
interest are defined in lines 11-13.

The possibly nondeterministic choice which buffer should be loaded next is
resolved by CASPA semantics to a probabilistic execution fragment (cf. [19])
according to the ratios of weights. Suppose that all weights of immediate actions
in Buffer2 are changed by the same constant factor α2. From a subprocess-
perspective, this should lead to the same resulting probabilities. But this is not
the case in this example, as we shall see later.

(1) BufferX(state [2]) :=

(2) [state = IDLE] -> (*start_enqueue,1*); BufferX(WORKING)
(3) [state = WORKING] -> (enqueue,5); BufferX(FINISHED)

(4) [state = FINISHED] -> (*stop_enqueue,1*); BufferX(IDLE)

(5) Robot(state [1]) :=

(6) [state = IDLE] -> (*start_enqueue,1*); Robot(BUSY)
(7) [state = BUSY] -> (*stop_enqueue,1*); Robot(IDLE)

(8) Sys := ( Buffer1(WORKING)|[]|Buffer2(IDLE) )
(9) |[start_enqueue, stop_enqueue]|

(10) Robot(BUSY)

(11) statemeasure buf1working Buffer1(state=WORKING)
(12) statemeasure buf2working Buffer2(state=WORKING)

(13) statemeasure any_working Buffer1(state=WORKING) | Buffer2(state=WORKING)

Fig. 2: CASPA model and measure definitions

3 Scale-freeness

The example from the previous section shows that it is natural to ask for CASPA
models that lead to the same results for certain measures, even if weights of im-
mediate transitions are rescaled for any submodel. To make this statement more
precise, we will generalise CASPA models to accept also variables (in addition
to constants) for their weights. Before doing this, we introduce a powerful tool
from algebra, the quotient field.

Definition 2. For a CASPA model C with N sequential submodels we define

1. a generalised weight as an element of the polynomial ring R[α1, . . . , αN ]
(note that this is a unique factorisation domain (UFD) [10]),

2. the quotient field R(α1, . . . , αN ) := Quot(R[α1, . . . , αN ]) is called the field of
rational functions in N variables,
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3. two quotients p
q , r

s are equivalent in R(α1, . . . , αN ), i.e. p
q = r

s , if and only

if ps = rq. We say that a fraction p
q “is in R” or “constant” if p

q = r
1 for

some r ∈ R.

For generalised weights wi, i ∈ {1, . . . , m} we have wi
P

m
j=1 wj

∈ R(α1, . . . , αn).

So we see that normalising a WSLTS (including generalised weights) leads in
general to probabilities in the field of rational functions. In some lucky cases the
probabilities are constant. We define:

Definition 3. For a CASPA model C consisting of sequential submodels Si,
i ∈ {1, . . . , N} we define its relaxation C̃ as the model where every weight in a
submodel Si is multiplied by variable αi > 0 (i ∈ {1, . . . , N}). A CASPA model
is called scale-free if after applying the maximal progress assumption all proba-
bilities in the reachable part of the normalised WSLTS corresponding to C̃ do not
change regardless which actual values for αi are chosen, i.e. the corresponding
probabilities are constant in R(α1, . . . , αN ).

The next definition introduces balancedness that – while on first glance a
very different approach – will prove to be equivalent to the scale-free property.

Definition 4. A CASPA model consisting of sequential submodels Si, i ∈ {1, . . . , N},
is called balanced if, after applying the maximal progress assumption, for every
reachable state s there is a set syn(s) ⊆ {S1, . . . ,SN} such that for every tran-
sition emanating from s the set of participating submodels is equal to syn(s).

Lemma 1. For a CASPA model C it holds that: C scale-free ⇔ C balanced .

Proof. Let Si, i ∈ {1, . . . , N} be the sequential submodels of C. Assume without
loss of generality that the maximal progress assumption has been applied and the
set of transitions has been restricted to the reachable subset. A general transition

in the WSLTS of C̃ emanating from s has the form s
aI ,cI ·αI

99K s′ where I is to be
understood as the multi-index (i1, . . . , iM ), ∀k ∈ {1, . . . , M} : ik ∈ {1, . . . , N}
(M denotes the number of synchronising submodels). Furthermore, we have

aI ∈ Act, cI =
∏M

k=1 cik
∈ R and αI := αi1 · . . . · αiM

. Now the normalisation
leads to the following fraction for the corresponding probability: cI ·αI

cI ·αI+...+cK ·αK
.

We see that the α product can only be cancelled out if and only if the multi-
indices are the same for every summand in the denominator.

Remark 2. The idea of balanced models is quite classic. Without calling it this
way, [21] uses a semantics that implies balancedness of all weighted decisions for
the resulting models. There, only discrete time steps are considered.

For an even stronger formulation we use

Definition 5. A transition is called synchronised if more than one submodel
participate in it, otherwise it is called unsynchronised. A CASPA model is called
simple if after maximal progress and reachability for every state s it holds that
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1. there is at most one synchronised transition emanating from s and no un-
synchronised transition, or

2. the transitions emanating from s are all are unsynchronised and belong to
the same submodel.

Lemma 2. For a CASPA model C it holds that: C simple ⇒ C balanced .

Proof. Clear by definition.

Sometimes this definition of scale-freeness is too restrictive. Note that – sim-
ilar to the elimination of vanishing states in Generalised Stochastic Petri Nets
(GSPNs) – all vanishing states in a CASPA model may be eliminated in the
case that no timeless trap is present2 (cf. [18, 4]). We denote this process by el(.)
(note that this is well-defined up to bisimilarity [18]).

Definition 6. A CASPA model C is called quasi scale-free, if in el(C̃) all prob-
abilities and rates are constant.

Example 1. Let C be the example presented in Fig. 2. We see in Fig. 3a the
corresponding WLSTS of the relaxation. It can immediately be seen that it is
not balanced (syn((IDLE,IDLE,IDLE)), or equivalently multi-index αI , is not
constant) and therefore, by Lemma 1 not scale-free. The same can be seen in
Fig. 3b as in the fractions emanating from (IDLE,IDLE,IDLE) only α3 cancelled
out, but nothing more. Fig. 3c shows the that the model is not even quasi scale-
free, as the rates of the CTMC depend on α1 and α2.

Sometimes even not quasi scale-free models can be useful – if the measure
that is to be computed does not depend on the weights chosen.

Definition 7. Let M be a set of CASPA state measures. A CASPA model C

without timeless traps is called scale-free with respect to M, if the analysis
results of el(C̃) for every measure in M are constant in R(α1, . . . , αN ) (i.e. they
do not depend on the scaling parameters αi, i ∈ {1, . . . , N}).

Example 2. Let C be the model given in Fig. 2. Doing CTMC analysis on el(C̃)
we see that the results are buf1working= α1

α1+α2
, buf2working= α2

α1+α2
and

any_working= α1+α2

α1+α2
= 1. So the model is only scale-free with respect to the

trivial measure any_working.

Lemma 3. The following implications hold

1. “scale-free” ⇒ “quasi scale-free”
2. “quasi scale-free” without timeless trap ⇒ “scale-free with respect to all state

measures”

2 In the case that timeless traps are present, we leave vanishing states with timeless
self-loops with loop-probability 1 unchanged.



8

(a) WSLTS

(b) WSLTS after normalisation

(c) CTMC

Fig. 3: State graphs for the example

“scale-free” ks Lemma 1 +3

Lemma 3

��

“balanced” “simple”
Lemma 2ks

“quasi scale-free”

no timeless trapLemma 3

��
“scale-free w.r.t. M”

Fig. 4: Different notions of scale-freeness and their relations
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Proof. The first part is clear by definition: If the normalised WSLTS does not
depend on rescaling, also the result after elimination does not. Second part: If
no timeless trap is present, all vanishing states can be eliminated (cf. [18, 4])
and so the result is a CTMC. If a CTMC does not depend on rescaling, also the
analysis results will not.

Fig. 4 includes the implications and corresponding lemmata that we have
shown.

4 Detecting different types of CASPA models

In this section we present methods to detect the different types of CASPA models
defined in Sec. 3.

4.1 Detecting simple CASPA models

In general it can be demanding to verify that a CASPA model is indeed scale-
free. It cannot be shown using only the syntax of the model, but we have to
examine the state graph. The following notations will be useful:

Definition 8 (Local and global transitions). A CASPA model C is called
locally/globally annotated, if every immediate action label a ∈ Act \ {τ} has the
suffix _loc for local transitions, i.e. transitions that only affect the local submodel
or _glob, i.e. the transition is used for synchronisation with other components.
The internal action τ is always local (τ can always be read as τ_loc). We define
Actloc ( Actglob) as the set of local (global) immediate actions defined in C — with
suffix _loc (_glob) omitted. Immediate transitions that perform local (global)
actions are called local ( global) transitions.

The local/global annotation can be used to check condition 1 of Definition
5. For condition 2 more information is needed. In order to distinguish local
transitions according to the submodels they belong to, we define:

Definition 9. A locally/globally annotated CASPA model is called partitioned,
if every local action has an additional suffix that determines the submodel a local
action acts in.

Example 3. The partitioned transition system from the example in Fig. 1 is
shown in Fig. 5. Clearly the model is not simple as there are two concurring
global transitions and a local transition concurring with global transitions.

Example 4. We give also an annotated version of our running example in Fig. 6.
The annotated version reveals that there are only global actions in the model.
But now the simple condition is violated as state (IDLE,IDLE,IDLE) has two
outgoing global transitions.

We already saw in Example 1 that our running example is not scale-free. But
there – even if it was easy to see – we used the fact that one start_enqueue

transition has participants Robot and Buffer1, while the other has participants
Robot and Buffer2, which is hard to detect automatically. We will formalise the
detection in the next section.
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Fig. 5: Partitioned version of example from the introduction

Fig. 6: annotated WSLTS

4.2 Dectecting balanced CASPA models

For detecting balanced CASPA models, we introduce an additional signature
parameter for every transition that can be derived directly from the syntax of a
CASPA model. We need the following notation

Definition 10. Let N be fixed and B(N) := ∪N
i=1B

i the set of boolean strings
of length up to N . There is a canonical outer product B

i × B
j → B

i+j ,

((a1, . . . , ai), (b1, . . . , bj)) 7→ (a1, . . . , ai).(b1, . . . , bj) := (a1, . . . , ai, b1, . . . , bj).

The set B(N) will be called the set of patterns for CASPA models with N

submodels. For any CASPA process Q we define |Q| as the number of sequential
submodels contained in Q.

The transition relation for a CASPA model with N submodels will be altered
to 99K⊆ S × LI × R

>0 × B(N) × S, where B(N) describes the submodels that
participate at a transition. Every participating submodel will be denoted by 1,
while every non-participating submodel is set to 0. We will use 0n to denote the
boolean string (0, . . . , 0)︸ ︷︷ ︸

n times

.

We change the semantics according to Tab. 2 (only the modified semantic
rules are depicted, P1, P2 and P denote patterns). With this semantics at hand,
it remains to check the closed model (after maximal progress and reachability)
whether every vanishing state has its unique pattern of outgoing transitions.
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b ∈ LI

(∗b, ω∗); P
(b,ω,(1))

99K P

P
(b,ω,P)

99K P ′

b ∈ LI

P + Q
(b,ω,P)

99K P ′

Q
(b,ω,P)

99K Q′

b ∈ LI

P + Q
(b,ω,P)

99K Q′

P
(b,ω,P)

99K P ′

b /∈ S

P |[S]|Q
(b,ω,P.0|Q|)

99K P ′|[S]|Q

Q
(b,ω,P)

99K Q′

b /∈ S

P |[S]|Q
(b,ω,0|P |.P)

99K P |[S]|Q′

P
(sb,ω,P1)

99K P ′ Q
(sb,σ,P2)

99K Q′

sb ∈ S

P |[S]|Q
(sb,ω·σ,P1.P2)

99K P ′|[S]|Q′

P
(sb,ω,P)

99K P ′

sb ∈ S

hide S in P
(τ,ω,P)

99K hide S in P ′

P
(b,ω,P)

99K P ′

b /∈ S

hide S in P
(b,ω,P)

99K hide S in P ′

Table 2: Changes to CASPA semantics for using patterns

Example 5. In our running example from Fig. 2 after maximal progress assump-
tion there are two patterns for the reachable state (IDLE,IDLE,IDLE), namely
(1, 0, 1) and (0, 1, 1), so it is clear that it is not balanced.

Remark 3. In the pattern-based setting we can also characterise simple models
quite easily if we define | | : B(N) → {1, . . . , N}, (a1, . . . , aj) 7→

∑j
i=1 ai (1 ≤

j ≤ N). We consider the reachable part of the state graph after maximal progress
assumption (S being the set of reachable states). A model is simple if

– there exists a mapping P : S → B(N) (i.e. for every state s there is a unique
pattern P(s) such that all transitions emanating from s have this pattern),
and

– for every state s with |P(s)| > 1 there is only one transition emanating from
s.

4.3 The quasi scale-free case

So far we have concentrated on the strong form of scale-freeness. For the quasi
scale-free case we present two approaches: The first one, which is straight-
forward, is to carry out the elimination process with generalised probabilities cal-
culated from generalised weights in R(α1, . . . , αn) (again after maximal progress
and reachability analysis). If after the elimination process all remaining rates
and probabilities are constant, the model is quasi scale-free by definition.

The second approach uses the patterns introduced in Sec. 4.2. The idea
is to find equivalent models under some appropriate equivalence relation that
only have emanating transitions with one single pattern per state. We will
now construct Markov Automata (MA, cf. [9]) that reflect the problem of un-
balancedness by introducing nondeterminism. Informally, an MA is a 5-tuple
(S, Act, , , s0) with state space S, action set Act and inital state s0. MAs
can express both, nondeterminism between action (immediate) transitions ( ),
and races between Markovian (delay) transitions ( ).
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Remember from Sec. 2 that for closed CASPA models all immediate action
labels can safely be ignored. So we would like to stress that the assumption in
the following definition poses no restriction for closed CASPA models. For the
rest of this section we assume that whenever C ∈ Ccl then

1. all immediate action labels are equal to τ
2. the maximal progress assumption has been applied.

Definition 11. Let C ∈ Ccl be a CASPA model (with N submodels) and S be its
set of reachable states, s0 ∈ S the initial state, → the set of Markovian transitions
and 99K the set of immediate transitions (annotated by patterns). Let P(s) ⊆
B(N) be the set of patterns emanating from s (remember that for balanced models
|P(s)| = 1 for every s). Then a corresponding MA can be generated in the
following way:

1. For every P ∈ P(s) we calculate P (s,P , s′) :=
P

(s,τ,ω,P,s′)∈99K
ω

P

∃t:(s,τ,ω,P,t)∈99K
ω

2. := {(s, τ, µ)|s ∈ S,P ∈ P(s), µ = P (s,P , .)}
3. := {(s, λ, s′)|∃a ∈ Act : (s, a, λ, s′) ∈→}

The corresponding MA MA(C) is then defined as (S, {τ}, , , s0).

Note that the sum in the numerator of item 1 has either one or zero elements.
The combined effect of item 1 and item 2 is a pattern-wise normalisation of
weights. This construction has interesting properties, as the following lemmata
show.

Lemma 4. For a CASPA model C the MA MA(C) is always scale-free in the
sense that it does not change when submodels are rescaled.

Proof. This is clear by definition: Only transitions with the same pattern are
merged into a distribution.

Lemma 5. When Markovian action labels are ignored, the standard seman-
tics of a CASPA model C ∈ Ccl describes a probabilistic execution fragment
of MA(C) in the sense of [19].

Proof. We construct a probabilistic scheduler that yields the desired behaviour.
We have to show that for every state s every distribution on successor states of s

can be realised by some convex combination of the transitions in emanating

from s. Suppose s has the outgoing transitions s
(τ,ωi,Pi)

99K si, i ∈ {1, . . . , I(s)},
then the probability distribution on the successor states si is given as P (si) :=

ωi
PI(s)

j=1 ωj

by standard semantics. Assume without loss of generality (otherwise

reorder) that |P(s)| = K and that transitions with index in {km, . . . , km+1 − 1}
belong to pattern Pm, k1 = 1, kK+1 = I(s) + 1, kh < kj for h < j. Now
the probabilities – in MA(C) – when using the m-th pattern are P (s,Pm, si) =

ωi
Pkm+1−1

j=km
ωj

, so it is easy to see that the coefficients cm for the convex combination

have to be chosen as
Pkm+1−1

j=km
ωj

PI(s)
j=1 ωj

to get the distribution that is determined by

standard CASPA semantics.
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One could now reduce MA(C) modulo weak bisimulation (a relation on
distributions) and check whether there is a deterministic representative in the
equivalence class modulo weak MA bisimilarity, because this would mean that in
a nondeterministic choice it does not matter which action is taken. The problem
is that this is not the whole story. Looking at our running example, a possible
result would be an MA with just one state with a Markovian loop with rate
5, which is clearly deterministic. But we saw earlier that our example is not
scale-free!

The solution is that for getting results on the state measures (which only
can be specified for stable states) we are not allowed to lump together different
stable states (which would be done to get the Markovian loop above). This
can be realised by a sort of AP (atomic proposition) bisimulation in the spirit
of F-bisimulation [3] or Markov-AP bisimulation [6]: If all stable states have
different APs, they can never be grouped together! We recall from [9] that weak
MA bisimulation ≈ induces an equivalence relation ≈∆ on states by defining
x ≈∆ y :⇔ ∆x ≈ ∆y (where ∆x denotes the Dirac distribution at state x).
Therefore, with an appropriate extension of ≈∆ to an AP bisimulation ≈AP

∆ we
can conclude that if our MA is weakly AP bisimilar to a deterministic MA, the
corresponding CASPA model is quasi scale-free, i.e. this is a sufficient criterion.
Note that weak AP bisimulation also generalises the elimination of vanishing
states (cf. Sec. V in [9]). The drawback of this approach is that no weak MA
bisimulation algorithm has been published so far, but at least we can state:

Lemma 6. If for a CASPA model C ∈ Ccl the resulting MA MA(C) = (S, {τ},
, , s0) is weakly AP bisimilar to a deterministic MA M ′ = (S, {τ}, ′,

, s0), where ′⊆ , then C is quasi scale-free.

Proof. Assume that all stable states in S are equipped with different atomic
propositions. Weak MA AP bisimilarity ensures that every nondeterministic
choice in MA(C) is equivalent to a deterministic one in M ′. So each decision
“does not matter” with respect to our equivalence relation. Especially it is not
important which probabilistic execution fragment of MA(C) is chosen by the
probabilistic scheduler induced by CASPA semantics according to Lemma 5. As
by Lemma 4 the distributions in MA(C) do not depend on rescaling, also the
distributions in M ′ cannot depend on rescaling of weights of submodels.

We use the diagram in Fig. 7 to prove the claim. Firstly we show that com-
mutativity of the diagram implies our claim. Secondly we prove the commu-
tativity. The diagram is explained as follows: el(.) denotes the elimination of
vanishing states (this is also defined for deterministic MA, cf. Sec. V in [9]),
det(.) denotes the mapping to a weakly AP bisimilar deterministic representa-
tive M ′. The canonical mapping from CASPA models to MA by transforming
the reachable state graph to MA (disregarding labels of Markovian actions) is de-
noted by canon(.). Now we observe that quasi scale-freeness can be identified as
canon ◦ el(C) having constant rates and probabilities – no matter, which rescal-
ing factors for submodels are chosen. But the mapping el ◦ det ◦ MA(C) surely
produces constant rates and probabilities. Commutativity of the diagram follows
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from the above observation that the actual probabilistic execution fragment of
MA(C) does not play any role and by Theorem 7 in [9].

CASPA
MA(.)

//

el(.)

��

MA
∃det(.)

≈
AP
∆

// MA

el(.)≈
AP
∆

��

CASPA
canon(.)

// MA/≈AP
∆

Fig. 7: Elimination and weak AP bisimulation

4.4 Scale-freeness with respect to some measure

The MA-based approach sketched in Sec. 4.3 can also be adapted to the “with
respect to some measure” case. Using different state labels (characterising some
given measures) for the AP bisimulation, one can use this machinery to check
for the weaker case of scale-freeness with respect to some measure M. The basic
difference between the two settings is that in the quasi scale-free case all stable
states get different labels, while in the weaker setting some stable states might
share the same label.

5 Conclusion

We have shown necessary and sufficient criteria for scale-free CASPA models
and related different kinds of scale-freeness. Patterns have been introduced to
easily recognise participating submodels. From the state graph annotated with
patterns one can check scale-freeness. Patterns have also been used to transform
the problem to the domain of Markov Automata in order to check the quasi
scale-free case.
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