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Abstract

We describe a method for constructing compact representations of labelled continuous-
time Markov chains which are derived from high-level model descriptions, such as
stochastic Petri nets, stochastic process algebras, etc.. Our approach extends ex-
isting techniques in that symbolic (i.e. BDD-based) representations are constructed
for non-modular, flat model descriptions. It is well suited for performance evalu-
ation tools such as Möbius, where the high-level description is mapped onto the
corresponding state graph in a monolithic manner. The symbolic representation of
the overall model is obtained by merging symbolic activity-local representations of
transitions. Such a scheme will not only yield a compact symbolic representation,
it also has the advantage that the state space of the overall model may only need
to be explored partially.

1 Introduction

In this note, we address the problem of generating the state graph underly-
ing the high-level description of a performability model, specified by means of
stochastic Petri nets, stochastic process algebra, etc.. The goal is to explore
huge state spaces in a time-efficient manner, and store the associated labelled
continuous-time Markov chain in a compact way. We use binary decision
diagrams (BDD) and extensions thereof for representing the state graph sym-
bolically. It is known that extremely compact symbolic representations can be
constructed if the compositional structure of the high-level model at hand is
taken into consideration [9,5,16,17]. Our approach extends existing techniques
in that symbolic representations are constructed for non-modular, flat model
descriptions. In the approach described here, the symbolic representation of
the overall model is obtained by merging symbolic activity-local representa-
tions of transitions. Such a scheme of activity-local state graph generation
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Fig. 1. A simple producer-consumer system described as a monolithic SAN

does not require the high-level description to be hierarchically structured in
order to obtain a compact symbolic representation of the underlying state
graph. Therefore the here illustrated approach is highly suited for perfor-
mance evaluation tools such as Möbius [3], where the high-level description
is mapped onto the corresponding state graph in a monolithic manner. The
scheme described here will not only yield a compact symbolic representation,
it also offers the advantage that the state space of the overall model may only
need to be explored partially. By applying this scheme one can thus expect
both runtime and memory savings.

The paper is organised as follows: In Sec. 2, we briefly introduce BDDs and
MTBDDs and the general idea of symbolic state graph representation. In
Sec. 3, the new scheme of activity-local state graph generation is described,
and Sec. 4 concludes the paper.

2 Preliminaries

BDDs [2] are the most popular data structure for symbolic state space rep-
resentation. Many extensions of BDDs have been developed in order to em-
ploy them successfully in the context of hardware verification. In the context
of stochastic modelling, the most prominent BDD-based data structures are
multi-terminal BDDs (MTBDDS), multi-valued decision diagrams (MDD) and
matrix diagrams (MD) (the interested reader may find a detailed survey in
[14]). In the following subsections we briefly recapitulate the basic notion of
MTBDD-based state space encoding.

2.1 State spaces and their encoding

During state space exploration, a state of the overall system is represented by a
state descriptor which is a vector ~s consisting of n elements, i.e. ~s = (s1, . . . , sn)
where si ∈ {0, . . . , Ki} for all 1 ≤ i ≤ n. The vector elements are called state
variables (SVs). A SV si normally refers to a specific place pi in case a Petri
net based modeling method is employed, or to a specific process or process
parameter in case of a process algebraic model.
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Fig. 2. State graph of the running example

The state space can be explored in a monolithic fashion by executing each
enabled activity, one at a time, and determining the value of each SV si. As
an example we consider the SAN 2 model given in Fig. 1 which will be used
as a running example. Here, each state (marking of the SAN) is described by
a 3-dimensional state descriptor, where each element si indicates the number
of tokens contained in the corresponding place pi. As shown in Fig. 1, the
initial state is given by assigning ~s = (0, 1, 0). The whole state graph is given
in Fig. 2 (the capacity of place Queue is bounded by 2).

One may encode each SV si by applying an injective encoding function E :
{0, . . . , Ki} 7→ B

nsi , where we may choose nsi
≥ ⌈log2(Ki + 1)⌉. In our

running example, where each state is described by a 3-dimensional vector ~s,
the encoding of the initial state is given by the Boolean vector ~b = (00, 1, 0).
One may also encode the activity labels in a similar way: If there are KAct

different activities, we can define a function I : Act 7→ {0, . . . , KAct − 1}
which returns an index for each activity. We can then encode the index of
each activity by applying an encoding function E on the set of activity indices.

For encoding the state graph, Boolean vector ~b encodes the values of the SVs
before (source state) and ~b ′ (target state) after an activity’s execution, and
the activity label is encoded by the Boolean vector ~a. The execution of an
activity l is thus encoded by the following scheme:

(
(s1, . . . , sn)

l
→ (s′1, . . . , s

′

n)
)
≡ (~a,~b,~b ′)

Note that, for simplicity, we concentrate on tangible states only, i.e. we assume
that vanishing states are eliminated “on-the-fly”. The interested reader may
refer to [10], the approach described there will work in our context as well.

2 Stochastic Activity Network [15]
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2.2 MTBDD-based state graph representation

MTBDDs [8,1] are an extension of BDDs for the graph-based representation
of pseudo-Boolean functions. I.e. an MTBDD M is a canonical representation
of a function of type fM : B

n 7→ D, where D is a finite set. An MTBDD is a
collapsed binary decision tree whose isomorphic subtrees have been merged
and whose don’t-care vertices are skipped. We consider ordered MTBDDs
where on every path from the root to a terminal vertex the variable labeling
of the nonterminal vertices obeys a fixed ordering. In the sequel we assume
that the MTBDD variables have the following ordering, denoted by ≺: At
the first nA levels from the root are the variables ai, encoding the activity
labels. On the remaining levels we have 2ns := 2

∑n

i=1 nsi
variables, encoding

the source and target values of the n SVs. In order to obtain small MTBDD
sizes, the variables bi and b

′
i are ordered in an interleaved fashion, yielding the

following overall variable ordering 3 :

a1 ≺ . . . anA
≺ b1 ≺ b

′

1 ≺ . . . ≺ bns
≺ b

′

ns

Given two MTBDDs M1 and M2 and an arithmetic operator ⋆ ∈ {+,−, ∗, . . .},
we simply write M := M1 ⋆ M2 to obtain the MTBDD which represents fM1

⋆

fM2
. These standard arithmetic (and Boolean) operators can be implemented

efficiently on the MTBDD data structure with the help of the so-called APPLY
algorithm [8].
The table in Fig. 3 (A) shows the binary encoding of the state graph of Fig. 2,
and part (B) shows its symbolic representation by means of an MTBDD. In the
MTBDD, a dashed (solid) line indicates the value 0 (1) of the corresponding
Boolean variable.

3 Symbolic activity-local state graph generation

The main idea of the approach presented here is the conventional generation
of the state graph, where each transition is encoded symbolically and inserted
into an MTBDD associated with the current activity. Afterwards, the sym-
bolic representation of the overall state graph can be obtained by merging the
sets of activity-local transitions.

3.1 Partitioning of the state descriptor

In the style of Petri net based modeling methods, we can now record that the
execution of an activity l depends on a set of SVs, denoted as pre-set (•Sl),
and that the execution itself will change a set of SVs, denoted as post-set (Sl•).
The union of these sets yields the set of dependent SVs, Sdl

:= •Sl ∪ Sl•, and

3 This interleaved ordering is the commonly accepted heuristics for obtaining small
MTBDD sizes, see for instance [7,8,16].
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Fig. 3. Binary encodings of an SLTS and corresponding MTBDD

its complement is denoted as Scl
. The elements of Scl

are those SVs which are
neither affected by l’s execution, nor do they influence its enabling condition.

This concept of dependent and independent SVs yields the following encoding
scheme for a transition induced by an activity l:(

(Sdl
, Scl

)
l
→ (S ′

dl
, Scl

)
)
≡ (l, Sdl

, S ′
dl

),

where Sdl
refers to the SV before and S ′

dl
after l’s execution. Scl

can be omit-
ted, since its elements are immaterial for l’s execution. The possible values of
Scl

and S ′
cl

will be inserted later during the stage of symbolic completion and
composition.

We can apply the concept of pre- and post-set directly to the Boolean vectors
which encode the state variables. For our running example, the activity-
dependent binary encodings as well as the activity-dependent sets of Boolean
vectors Sdl

and Scl
are given in Table 1. For example, the execution of activity

arrive yields the following encoding scheme:(
(Q, I, S)

arrive

−→ (Q′, I, S)
)
≡ (00, b1b2, b

′

1b
′

2)

3.2 Generation of the symbolic state graph representation

The idea behind activity-local state graph generation is as follows: At the first
stage, KAct MTBDDs Ml are constructed. These encode the set of dependent
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activity j ~a Sdl
:= •Sl ∪ Sl• Scl

:= S \ Sdl

arrive 0 00 b1, b2 b3, b4

dequeue 1 01 b1, b2, b3, b4 ∅

service 2 10 b3, b4 b1, b2

Table 1

Activities, their encoding and their sets Sdl
and Scl

SVs (Sdl
) before and after a specific execution of activity l. Once all transitions

are generated, each of these activity-local MTBDDs Ml needs to be supple-
mented (completed) by its set of symbolically encoded not-dependent SVs Scl

,
yielding the symbolic representation of the set of potential transitions induced
by activity l. Finally the KAct supplemented MTBDDs, denoted M̃l, must be
merged in order to encode the transition relation of the overall model. A sym-
bolic reachability analysis needs to be carried out then, in order to restrict the
potential transition relation to the actually reachable states.

3.2.1 Layout of the state graph generation procedure

For gaining as much flexibility as possible, we propose to break the major task
of conventional state space exploration and symbolic encoding into two parts:

(i) A conventional state space exploration algorithm finds all transitions be-
tween reachable states, by successively firing all enabled transitions, one
at a time, for each detected state descriptor. As a consequence the algo-
rithm needs to operate on two data structures:
(a) A state buffer, containing the already detected but yet not explored

states.
(b) A transition buffer, holding detected transitions of the form (~s, l, λ, ~s ′)

which are to be entered into the activity-local MTBDD Ml, where ~s

and ~s ′ are the state descriptors before and after the execution of
activity l, and where λ is the rate of the activity.

(ii) This conventional exploration part is complemented by an administra-
tion part. This administration module collects and encodes the detected
transitions from the transition buffer and inserts them into the activity-
local MTBDDs. Furthermore, it must decide whether a state needs to
be entered into the state buffer or not, i.e. the symbolic encoding module
may prevent the exploration part from doing redundant work. Since the
state space should be only visited partially, in order to save time, the
conditions of inserting a state into the state buffer need to be considered
carefully.

177



Lampka, Siegle

10 λ

f

01

(  2  , 1, 0); ( 1, 1, 0)  ;

SSp Generator
Output  destined for 

= 10= 01

Input obtained from
SSp Generator

Detected transitions

D
etected but not yet explored states

λarrive,

1
b

1
b’

2
b’

2
b

1
b

2

b’
2

λ

2

λλ

2
b’

b
1

b’

b’

1
b

1

b

λarrive, ; (2, 1, 0)

StateBuffer

(1, 1, 0);
StateBuffer

TransBuffer

(2, 1, 0)

Marrive

before insertion after insertion
Marrive

Fig. 4. Symbolic encoding of transitions

The individual tasks of generating and merging symbolic state graph repre-
sentations will be discussed in greater detail now.

3.2.2 Generating the symbolic activity-local state graphs

The procedure of generating activity-local MTBDDs takes a transition (~s, l, λ, ~s ′)
from the transition buffer. It encodes the dependent SVs Sdl

in binary form
and inserts the respective path into the MTBDD Ml, where the rate λ is
stored in a terminal node. In terms of our running example the procedure is
illustrated in Fig. 4, where l = arrive, ~s := (1, 1, 0) and ~s ′ := (2, 1, 0). We
propose to employ temporarily unreduced MTBDDs at this stage, in order
to minimize the runtime of the insertion procedure [4]. This makes sense,
since at this stage of state space generation the waste of memory space, due
to redundant substructures within the MTBDDs, is acceptable. The state
space explosion will manifest itself only in the later step of constructing a
model’s potential transition relation, where the MTBDDs will be reduced by
applying the common reduction rules during completion and merging of the
activity-local MTBDDs. The algorithm for inserting the MTBDD-based rep-
resentation of an activity-local transition into Ml can be sketched as follows:
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Fig. 5. Representation of BDD Stabservice

(1) SymbolicEnc(Ml, ~sdl
, l, λ, ~sdl

′ )

(2) NewTrans :=M(~b; E(~sdl
)) ∧M(~b ′; E(~sdl

′ ))

(3) NewTrans := NewTrans · λ

(4) Ml := Ml + NewTrans

(5) return Ml

Hereby Ml := 0 before the first insertion. The vectors ~sdl
and ~sdl

′ encode the
values of the dependent SVs before and after the execution of l. Parameter λ

is the rate between these two states, which will be stored in a terminal ver-
tex of Ml. M is the minterm function which constructs the conjunction of n

literals given as first argument (e.g. ~b) according to the value given as second
argument (e.g. E(~sdl

)).

3.2.3 Merging of activity-local MTBDDs

After the activity-local MTBDDs have been generated, the overall state graph
can be generated by merging the activity-local MTBDDs. Before the actual
merging, the symbolic encoding of the set Scl

(complements of the set of
dependent SVs) must be inserted into each MTBDD Ml. For the variables

from Scl
the condition ~b = ~b′ must hold, because under activity l the SVs

si ∈ Scl
do not change their value, they stay stable. This condition is achieved

by the BDD Stabl defined as follows:

fStabl
(~b,~b ′) :=

∧

∀bi∈Scl

(bi = b
′
i)

It is interesting to note that the interleaved ordering of the variables minimises
the number of vertices of Stabl [2,7,16]. For our running example, the BDD
Stabservice (which encodes stability of SV Queue) is illustrated in Fig. 5.

In order to enable the calculation of impulse rewards, we insert the encoding
of the activity labels (represented by BDD M(~a, E(I(l))) into Ml. Then we
can sum the KAct activity-local MTBDDs. The whole process of completion
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and merging is thus given by:

M :=
∑

l∈Act

M(~a, E(I(l)) · M̃l =
∑

l∈Act

M(~a, E(I(l)) ·Ml · Stabl,

One may note that the entire scheme of activity-local state graph generation
can be interpreted as the partitioning of the overall model into KAct submodels,
where each submodel consists of one activity and the set of its dependent
SVs Sdl

. The process of merging the symbolically encoded not necessarily
connected activity-local state graphs can then be understood as the execution
of a Möbius-type Join of the KAct submodels [12].

The MTBDD M thus constructed encodes the potential set of transitions of
the overall model. One needs to carry out a reachability analysis, in order
to eliminate transitions originating from non-reachable states. A symbolic
reachability analysis can be performed as follows [17]:

(1) SymbolicReachabilityAnalysis(M(~a,~b,~b ′ ))

(2) Trans(~b,~b ′) := Abstract(M,~a,+)

(3) Reach(~b ′) :=M(~b ′, E(s1))

(4) Unex(~b ) :=M(~b, E(s1))

(5) while Unex(~b ) 6= 0 do

(6) New(~b ′) := Abstract((Trans(~b,~b ′) ∧ Unex(~b )),~b,∨) ∧Reach(~b ′)

(7) Reach(~b ′) := Reach(~b ′ ) ∨New(~b ′)

(8) Unex(~b ) := New(~b ′){~b ′ ← ~b};

(9) od

(10) return Reach(~b ′ )

One should note that reduction of the state space to the set of reachable states
may increase the size of the corresponding MTBDD, which is due to the loss
of regularity [16].

4 Summary and Future work

In this paper we have shown how symbolic state graph representations can
be constructed in the context of monolithic models such as Möbius. We saw
that only parts of the state graph need to be generated, which may yield
advantages concerning run-time behaviour. The complete state graph of the
overall model is constructed by merging the activity-local state graphs and
subsequent symbolic state space exploration. Furthermore, employing unre-
duced MTBDDs during the encoding phase of the transitions may reduce the
runtime considerably.

So far, we have not considered the problem that the bounds Ki for the state
variables may not be known a priori. However, we have considered to employ
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Z-BDDs [13] and their extension to the multi-terminal case. The reduction
rules for this type of decision diagram enables an efficient handling of this
problem, and it also reduces the memory requirements for representing fStab

[11].

The performance evaluation tool Möbius is capable of exploiting symmetries
specified within a model, generating a reduced state space by applying the
lumpability theorem on-the-fly. We plan to support this feature during the
symbolic state space generation as well. Furthermore, we also plan to develop
an efficient scheme for handling reward variables in the symbolic context,
especially in combination with reduced overall models.

References

[1] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic Decision Diagrams and their Applications. Formal
Methods in System Design, 10(2/3):171–206, April/May 1997.

[2] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.
IEEE ToC, C-35(8):677–691, August 1986.

[3] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H.
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