Dependability modelling with the stochastic process
algebra tool CASPA

Johann Schuster
Universitat der Bundeswehr Miinchen
johann.schuster@unibw.de

ABSTRACT

This note describes CASPA, a stochastic process algebra
tool for performance and dependability modelling, analysis
and verification. Internally, the tool works with the sym-
bolic data structure MTBDD (multi-terminal binary deci-
sion diagram), which allows for handling models with very
large state space. The paper illustrates how CASPA can be
used for dependability analysis, by modelling and analysing
a phased mission system from the literature.

Keywords

dependability modelling, stochastic process algebra, MTBDD

1. INTRODUCTION

The tool CASPA, which employs a stochastic process al-
gebra as its input language, can be used for performance
and dependability modelling, analysis and verification. The
development of CASPA started in 2003, and since then it
has been developed to a highly efficient tool for the gener-
ation and analysis of Markov chains with very large state
space [3, 1]. In addition to actions with exponential de-
lay (Markovian actions), CASPA offers immediate actions
which, together with an efficient elimination algorithm [1],
allow for convenient model specification and Markov chain
generation.

The paper is organised as follows: Sec. 2 recapitulates a
case study and Sec. 3 sketches its CASPA model. In Sec. 4
the experimental results are presented and Sec. 5 concludes
the paper.

2. PMSSYSTEM

As a case study we use the Phased Mission System (PMS)
from [2], sketched in Fig. 1. It consists of two non-repairable
components A and B and five switches K1 to K5. The aim is
to keep the connection between S and T over the lifetime of
the system. The lifetime consists of two phases: In phase 1

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DYADEM-FTS 2010, April 27, Valencia, Spain

Copyright 2010 ACM 978-1-60558-916-9/10/04 ...$10.00.

Markus Siegle
Universitat der Bundeswehr Minchen
markus.siegle@unibw.de

Phase 1
BRANCH A

K2 K4 Phase-

s{ ks T=>S
o— o— =1/(100h o~ ol o—2

K1 K3 B | () K1 K3
BRANCH B

Phase 2

=1/(50h)

Phasechange i\
!

po2done

A
p..=5/1000 ,,=10"(1/h) Done

Figure 1: PMS scheme and mission

(1) System :=

(2) ((K1(CLOSED) | [broken]| K2(CLOSED) | [broken] |
(3) K3 (CLOSED) | [broken]| K4(CLOSED) | [broken] |
(4) K5(0PEN))

(5) | [broken] |

(8) (ACOK) | [broken]| B(OK)))

(7) | [SYNCSET] |
(8) PMS(PARALLEL, 0K, O0K)

Figure 2: System process

two parallel branches, namely BRANCH A (A-K2-K4) and
BRANCH B (K1-K3-B) are used. On failure of A or B both
switches of its branch have to be opened. After an exponen-
tially distributed time the phase is changed to phase 2. The
phase change has to be done by first opening K7 and K4 and
then closing K5 thus leading to a serial connection (A-K2-
K5-K3-B). After an exponentially distributed time phase 2
is left and the mission is accomplished. The following er-
rors with exponential failure rate Aerr have to be taken into
account: Failure of A, B, and of currently closed switches.
Furthermore, on-demand failures (probability perr) can oc-
cur when trying to close or open the switches.

3. COMPOSITIONAL MODEL

The PMS system can be modelled with CASPA in a nat-
ural compositional way: One sequential process (i.e. sub-
model) for each switch and each non-repairable component.
A monitoring process PMS keeps track of the errors and
the current phase of the system. Fig. 2 shows the over-
all model, which is the synchronised parallel composition of
the submodels. The synchronising action broken is used to
notify all submodels when the system has failed, whereas
SYNCSET is an abbreviation for all actions allowing for a
bi-directional communication between the PMS process and
the other components (e.g. failK2, open2). The submodels
will be defined in the following sections. Note that the initial
states of the switches are according to phase 1 in Fig. 1.

(1) K2(state[1]) :=
(2) [state=CLOSED] -> (failureK2, SWITCHFAILRATE);
(*failk2,1%*); K2(OPEN)
[state=CLOSED] -> (*open2,1%); (
(*fail_k2_open, FAILUREPROB*) ;
(*openfailed, 1%); K2(CLOSED)
+(*k2_open, SUCCESSPROB*);
(*xopen, 1%); K2(OPEN))
(4) [state!=CLOSED] -> (*open2,1%);(*open,1*);K2(state)
(5) [state=CLOSED] -> (*use2,1*); K2(CLOSED)
(6) [state!=CLOSED] -> (xuse2,1%);
(*unavailable,1*); K2(state)
(7) [*] -> (xbroken, 1%); stop

Figure 3: Model of K2

(3

<

3.1 Switch process

In Fig. 3 we show the CASPA model of switch K2. The
switches are in some sense memoryless, that means if an in-
advertent open occurs, one can simply close it again and it
will work as before. So a switch only has two states, OPEN
and CLOSED. Line (1) of the model description means that
the parameterised process K2 has a parameter range of
{0,1}. In line (2), the inadvertent opening of a switch
is reflected: The action failureK2 is Markovian with rate
SWITCHFAILRATE. 1t is followed by an immediate action
failK2 (which indicates to the PMS process that the switch
has failed) and ends up at process K2 with state=OPEN.
The on-demand failure is covered in line (3), namely when
by the immediate action open2 the switch is requested to
open, a choice between stuck-at-closed (fail_k2_open) and
successful open (k2_open) must be made. Again, the process
is continued in an open or closed state respectively. Line (4)
covers the case where an open request occurs and the switch
is already open. Lines (5) and (6) are used by the PMS pro-
cess to check if all components for phase 2 still work. If at
least one component answers with unavailable, the mission
has failed. Finally, to keep the state space small, we use line
(7) to avoid further activity after the system is broken (the
broken event is broadcast by the PMS process).

3.2 ThePMS process

The monitoring process of the PMS system is sketched in
Fig. 4. As seen in line (1) the process has three parameters:
The current phase, the state of BRANCH A and the state
of BRANCH B. Line (2) shows an example of a switch fail-
ure when both branches are working in parallel. Again, the
other switches have to be covered, as well. More interest-
ing, line (3) shows the case when K1 fails but BRANCH A
does not work any more. Then the system breaks and PMS
changes to the FAIL state. Line (4) shows the detection of a
failure of component A during phase 1 and does the recon-
figuration: K2 and K4 are requested to open (actions open2
and open/). If both switches get stuck at closed (PMS pro-
cess receives openfailed twice), PMS stops all switches and
components by the immediate broken action and sets phase
and both branches to FAIL. If at least one switch can be
opened, the system continues in the PARALLFEL phase but
with brancha=FAIL. A similar line has to be given for the
case of a failure of component B. Of course, some other cases,
the phase change and the entire serial phase are missing, but
we think this should be enough to get the idea.

4. EXPERIMENTAL RESULTS

For determining the probability that the mission will be

(1)PMS (phase [PHASES], brancha[1], branchb[1]) :=
(2) [phase=PARALLEL, brancha=0K, branchb=0K] -> (*failk2,1%);
PMS (PARALLEL,FAIL,branchb)
(3) [phase=PARALLEL, brancha!=0K, branchb=0K] -> (*¥failK1,1%);
(*broken,1*); PMS(FAIL,FAIL,FAIL)
(4) [phase=PARALLEL] -> (xfailA,1#);(*open2,1%); (
(*openfailed,1%) ; (*open4, 1%) ; (
(*openfailed, 1%) ; (*broken, 1*); pms(FAIL,FAIL,FAIL)
+ (*open,1*); pms(PARALLEL,FAIL,branchb))
+(*open, 1%) ; (*open4, 1%) ; (
(*openfailed, 1*) ; pms (PARALLEL,FAIL,branchb)
+(*open,1*); pms(PARALLEL,FAIL,branchb)))

Figure 4: Administration process (sketch)

accomplished successfully, we used both CASPA’s path-based
solver and its uniformisation solver on an Intel Xeon 3.06
GHz machine with 2 GB of main memory running SUSE
Linux version 9.1. CASPA directly generates an MTBDD
representation of the model specification. The model has
117 reachable states, and path-based analysis leads in 1.1
seconds (including model generation and reachability anal-
ysis, ~ 0.08 seconds per path) to three fulfilling paths (two
of them given in Tab. 1). The third path is the dual to the
second one with K1 and K4 interchanged. The probability
for a successful completion of the mission is 9.24006 - 107*.
The same probability can be calculated in CASPA specify-

Path Probability
phasechangel2->k1_open->k4 open->k5_close->
phasechange2done 9.066497 - 10™*

failureK1->phasechange12->k4_open->k5_close->
phasechange2done

8.678150 - 1073

Table 1: Successful paths

ing the measure statemeasure survival PMS(phase=DONE)
and using the uniformisation algorithm. For this approach
CASPA reduces the model to only 19 tangible states. The re-
sult for a sufficiently large T (e.g. T>41000 hours) is 9.24006-
10~ and the calculation takes 0.91 seconds (again, including
model generation, elimination and reachability analysis).

5. CONCLUSION

In this note we have shown how to model a phased mis-
sion system with the performance and dependability analy-
sis tool CASPA. We have used both path-based analysis and
uniformisation for the calculations.

Acknowledgements: We would like to thank Deutsche
Forschungsgemeinschaft (DFG) who supported this work un-
der grants SI 710/2 and SI 710/3.

6. REFERENCES

[1] J. Bachmann, M. Riedl, J. Schuster, and M. Siegle. An
Efficient Symbolic Elimination Algorithm for the
Stochastic Process Algebra tool CASPA. In SOFSEM
2009, pages 485-496. Springer, LNCS 5404, 2009.

[2] M. Bouissou, Y. Dutuit, and S. Maillard. Reliability
analysis of a dynamic phased mission system:
Comparison of Two Approaches. Modern Statistical and
Mathematical Methods in Reliability, pages 87-104,
2005.

[3] M. Kuntz, M. Siegle, and E. Werner. Symbolic
Performance and Dependability Evaluation with the
Tool CASPA. In Europ. Perf. Engineering Workshop,
pages 293-307. LNCS 3236, 2004.

