
Symbolic calculation of k-shortest paths and related
measures with the stochastic process algebra tool CASPA

Michael Günther
Universität der Bundeswehr

München
micha1.guenther@web.de

Johann Schuster
Universität der Bundeswehr

München
johann.schuster@unibw.de

Markus Siegle
Universität der Bundeswehr

München
markus.siegle@unibw.de

ABSTRACT
CASPA is a stochastic process algebra tool for performance
and dependability modelling, analysis and verification. It
is based entirely on the symbolic data structure MTBDD
(multi-terminal binary decision diagram) which enables the
tool to handle models with very large state space. This pa-
per describes an extension of CASPA’s solving engine for
path-based analysis. We present a symbolic variant of the
k-shortest-path algorithm of Azevedo, which works in con-
junction with a symbolic variant of Dijkstra’s shortest path
algorithm. A non-trivial case study illustrates the use of this
kind of path-based analysis.

Keywords
stochastic process algebra, k-shortest paths, MTBDD

1. INTRODUCTION
CASPA is a tool for performance and dependability mod-

elling, based on a stochastic process algebra. Its develop-
ment began in 2003 [10], and it has since been the environ-
ment in which its developers have experimented extensively
with symbolic (i.e. MTBDD-based) techniques that enable
the tool to generate and analyse Markov chains with very
large state spaces in a highly efficient manner [6].

Recently, CASPA’s modelling language has been extended
to support immediate actions (beside the usual Markovian
actions) [2]. With this extension, CASPA has been proven
to be very suitable for dependability evaluation purposes,
in particular for analysing the dynamic behaviour of fault
tolerant systems. For example, it is also used as a back-end
solver of the OpenSESAME modelling tool [9]. In the con-
text of dependability evaluation, the most probable action
sequences that lead to an error state are often of interest.
In order to calculate those sequences, we propose to use k-
shortest-path algorithms (in this paper, we use the term “k-
shortest-path” to denote the k-most probable path). This
paper presents symbolical variants of Dijkstra’s algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DYADEM-FTS 2010, April 27, Valencia, Spain
Copyright 2010 ACM 978-1-60558-916-9/10/04 ...$10.00.

and the Azevedo k-shortest-path algorithm. These new al-
gorithms are implemented and used in CASPA.

The paper is organised as follows: Section 2 is dedicated
to our symbolic variant of Dijkstra’s algorithm for calculat-
ing the shortest (i.e. most probable) path in a given tran-
sition system. Section 3 introduces a symbolical derivative
of Schmid’s variant of the Azevedo algorithm for calculating
the k-shortest-path. Section 4 presents a non-trivial appli-
cation case study that illustrates the efficiency of the imple-
mented symbolic data structures and algorithms, and Sec-
tion 5 concludes the paper. The appendix A is devoted to
the MTBDD operations used for the symbolic algorithms
presented in the paper.

2. SPANNING TREE ALGORITHM
This Section introduces a variant of Dijkstra’s algorithm

which is used for calculating the most probable path. Our
variant is a set-theoretic approach, in order to exploit the
possibilities of symbolic data structure. It was developed
within Guenther’s Master thesis [5]. This variant is called
flooding Dijkstra algorithm in the sequel. In order to present
a more readable version of the algorithm we use a slight mod-
ification of Guenther’s original presentation, i.e. we work on
a maximal projection of the transition system of interest.
Suppose we are given a set of states S, a set of labels L and
a labelled transition system Trans defined as follows:

Trans ⊆ S × L× [0, 1]× S,

where we further assume that “parallel” transitions carry
diffent labels, i.e. if (x, a, p, y) ∈ Trans and (x, a′, p′, y) ∈
Trans, then a 6= a′ must hold. The real number in the
interval [0, 1] is the probability of taking the corresponding
transition, i.e.

∀x ∈ S :
X

(x,a,p,y)∈Trans

p = 1.

We will also write x
a,p
→ y for the tuple (x, a, p, y). The

maximal projection Transmax of Trans is defined as

Transmax := {(x, p, y) ∈ S × [0, 1]× S|

(∃a ∈ L : (x, a, p, y) ∈ Trans) ∧

(∀a ∈ L, p
′ ∈ [0, 1] :

((x, a, p
′
, y) ∈ Trans)⇒ (p′ ≤ p))}.

The existence condition ensures that a lifting to Trans exists
and the second condition ensures that p is maximal. So
these are the maximum transition probabilities one can get
by choosing an arbitrary action from a source to a target

state. Again, we will use x
p
→ y as a synonym for the tuple

(x, p, y).
In contrast to Dijkstra’s algorithm we do not only carry

out optimal, final updates but there may also be some up-
dates of probabilities that are re-updated later on. The re-
sulting graph is not a real spanning tree, in the sense that we
include paths that are equally probable. We will resolve this
issue when we read out the most probable path by making
choices then. Nevertheless, in the sequel we will call such
a quasi-spanning tree a spanning tree. (Alternatively one
would have to ensure that in lines 26-28 of Algorithm 1 only
one transition for each target y is added, in order to get a
real spanning tree.)

The code of Algorithm 1 is explained as follows. Lines 1-6
perform the necessary initialisations, i.e. all state probabil-
ities are set to zero except the probability of state 0 which
is set to 1. The current BorderSet from where the updates
start is set to state 0. As the algorithm just starts, the Span-
ningTree of course is the empty set. Lines 7-31 constitute
the main loop that is carried out until there is no state in
the BorderSet any more. First, in lines 8-10 the new proba-
bilities of all states are set to zero. The loop from line 11 to
14 then calculates the maximum probability for every state
y ∈ S to be reached from the BorderSet. The UpdateSet
is defined in line 16 to be those states that gained a higher
probability in the current round. The update of the state
probabilities to the higher probabilities gained by the Bor-
derSet is done in lines 17 to 19. The remaining part is to
update the spanning tree for those states that got a higher
probability. Therefore the old transitions that reached the
UpdateSet are deleted from the SpanningTree in lines 20-24
and the new transitions are added in lines 25-29. Note by
looking at the condition in line 26 that by only looking at
Prob(y) the update in line 27 might not be unique and there-
fore we do not get a spanning tree but a spanning tree that
contains redundant, i.e. equally probable, paths. We will
come to this in Sec. 3. Finally in line 30 the BorderSet is set
to the UpdateSet and the loop can start again. Of course,
the flooding Dijkstra algorithm shown in Algorithm 1 also
performs a reachability analysis, since only reachable states
will be in the spanning tree.

3. CALCULATION OF
K−SHORTEST PATHS

This Section shows how to calculate k-shortest-paths, there-
by employing the flooding Dijkstra algorithm presented in
Sec. 2. First we show the basic procedure of finding the
correct action labels for a path within the spanning tree
calculated in the previous Section. Then we show how the
transition system has to be transformed such that the short-
est path of the transformed transition system is the second
shortest path of the original transition system. With this
algorithms at hand, one can calculate the k−shortest paths
up to a certain fixed k.

3.1 Reading the action labels from a path
Before proceeding with the algorithm, we first have to

define a maximal lifting. The maximal lifting of a subset
T ⊆ Transmax to Trans is given by

T
∗ := {(x, a, p, y) ∈ Trans|∃(x, p, y) ∈ T}.

You may observe that this lifting is not unique: There can

Algorithm 1 Flooding Dijkstra algorithm

1: for all x ∈ S : x 6= 0 do
2: Prob(x) = 0
3: end for

4: Prob(0) = 1
5: BorderSet = {0} ⊆ S
6: SpanningTree = ∅ ⊆ Transmax

7: while BorderSet 6= ∅ do

8: for all y ∈ S do
9: newProb(y) = 0
10: end for

11: for all (x, y) ∈ BorderSet× S do

12: if x
p
→ y ∈ Transmax then

13: newProb(y) = max(Prob(x) · p, newProb(y))
14: end if

15: end for
16: UpdateSet = {x ∈ S|newProb(x) > Prob(x)}
17: for all x ∈ UpdateSet do

18: Prob(x) = newProb(x)
19: end for
20: for all (x, y) ∈ S × UpdateSet do

21: if x
p
→ y ∈ SpanningTree then

22: SpanningTree = SpanningTree \ {x
p
→ y}

23: end if

24: end for
25: for all (x, y) ∈ S × UpdateSet do

26: if (x
p
→ y ∈ Transmax)∧ (Prob(x) · p = Prob(y)) then

27: SpanningTree = SpanningTree ∪ {x
p
→ y}

28: end if

29: end for
30: BorderSet = UpdateSet
31: end while

32: return SpanningTree

be more than one action fulfilling the maximality condi-
tion while p as the maximum is unique for a certain pair
(x, y) ∈ S2. Note that the algorithm for reading the most
probable path works on the transition system Trans and
uses the maximal lifting of the path found by flooding Di-
jkstra in Transmax. Let Dest be the state which is the
target of the path analysis and let Init be the starting state
of the analysis. Further we use the function PickOne(X)
that chooses one arbitrary element of a set X. Algorithm 2

Algorithm 2 Reading action labels

1: y = Dest
2: while y 6= Init do

3: print ←
4: Predecessors =

{x ∈ S|∃(p) ∈ [0, 1] : (x, p, y) ∈ SpanningTree}
5: x = PickOne(Predecessors)
6: for all (a, p) ∈ L× [0, 1] do

7: if x
a,p
→ y ∈ SpanningTree∗ then

8: print <a>

9: Path = Path ∪ {x
a,p
→ y}

10: end if

11: end for

12: y = x
13: end while

14: return Path

prints the shortest path from the Dest to Init by a traver-
sal of SpanningTree choosing unique predecessor states. The
explanation is straightforward. Line 1 sets the current state
to Dest. The main loop that jumps back to the current
state’s predecessor goes from line 2 to 13 as long as we did

not reach Init. In line 3 prints the arrow indicating the
next step. Line 4 computes all predecessor states of y in
SpanningTree∗ and line 5 arbitrarily chooses one of them.
The loop from line 6 to 11 picks out the corresponding tran-
sitions from state x to state y in SpanningTree∗. In line
8 the corresponding action is printed and line 9 adds the
corresponding transition to Path. Line 12 sets the current
state to the predecessor x.

Note that there can still be concurring actions in the Path
generated. Of course due to the SpanningTree∗-property it
holds that

∀(x, y, a, a′) ∈ S2 × L2 :
((x, a, p, y) ∈ SpanningTree∗∧
(x, a′, p′, y) ∈ SpanningTree∗)⇒ p = p′.

So the probabilities of concurring actions in Path are equal,
no need to distinguish them for further processing.

3.2 Second shortest path
This Subsection will show how to generate a transition

system Trans′ out of a given transition system Trans such
that the shortest path of Trans′ corresponds to the second
shortest path of Trans. Inductively follows that by this con-
cept the k shortest paths can be calculated for an arbitrary
but fixed k. The algorithm is due to Azevedo [1] using a
refinement of Schmid [7].

Starting from a set of states S and a set of transitions
Trans as before we use an additional set of states S′ with
S ∩ S′ = ∅ and |S| = |S′|. We use a fixed bijection

′ : S → S′

x 7→ x′

to identify elements x of S with their corresponding copy x′

in S′ and vice versa. Further we define the set of states

Snew := S ∪ S
′

for the new transition system Trans′ ⊆ Snew × L× [0, 1]×
Snew . Let Path be the path calculated in Sec. 3.1.

Algorithm 3 Second shortest path

1: Trans′ = Trans
2: PathCopy := {(x′, a, p, y′)|∃(x, a, p, y) ∈ Path ∧ y 6= Dest}
3: Trans′ = Trans′ ∪ PathCopy
4: SourceStates := {x ∈ S|∃(x, a, p, y) ∈ Path}
5: for all (x, a, p, y) ∈ Trans do
6: if x ∈ SourceStates then

7: if x
a,p
→ y /∈ Path then

8: Trans′ = Trans′ ∪ {x′ a,p
→ y}

9: end if
10: end if

11: end for

12: return (Trans′, Init = Init′)

Algorithm 3 works as follows: The seed of the new transition
system Trans′ are the old transitions Trans (of course the
initial state has to be changed in order not to find the same
path as before) which are set in line 1. The shortest path
(including its parallel actions) is copied to S′ without the
last transition to Dest in line 2. Line 3 adds this path to
Trans′. Line 4 calculates the source states of the transitions
in Path. The loop from line 5 to 11 picks all the transitions
that emanate from a source state in Path but are not on the

Figure 1: Sketch of the busbar model

shortest path and adds them as cross connections from S′

to S to the transitions of Trans′. Finally the initial state is
set to the copy of the initial state in S′ in line 12.

4. CASE STUDY
To show the applicability of our algorithm we modelled

the busbar given in [3] and noticed that the most probable
paths published did not fit the textual description there (e.g.
an initial failure of trafo 2 would not be possible if it was a
cold spare). This is why we give an alternative description of
the model that to our best knowledge produces the desired
paths.

4.1 Description of the model
The model is shown in Fig. 1. The aim of the model is

to provide the busbar with electrical energy. Each of the
main lines consists of upper and lower circuit breakers and
a transformer. They route electrical energy from the grid
to the busbar. If the lines fail or the grid does, the diesel
generator has to be used. The initial configuration is as seen
in Fig. 1 where only CB dw 2 and CB dies are in the open
position, the other switches are closed. The following con-
straints for the operation and dynamic behaviour are given:
• States of the components can be WORKING, STANDBY

or FAILED
• Either line 1, line 2 or the diesel engine is used. Mode

switches can only be line 1 ↔ line 2 ↔ diesel, no direct
switches from line 1 to diesel and vice versa are allowed.
• The trafos and the grid are hot spares and always fail with

the same rate, no matter if they are active or not.
• The circuit breakers CB up and CB dw are cold spares

(i.e. they do not fail as long as no current runs over them)
and they can produce on-demand-failures.
• CB dies does only fails on-demand, it does not fail inter-

nally
• An on-demand-failure of a circuit breaker does not change

its internal state. Reconfiguration can change the internal
state of a component.
• Switching from trafo 1 to trafo 2 means trying to open

CB up 1 and to close CB dw 2. Note that when trafo
1 fails and CB up 1 fails to open, one must try to close
CB dw 2 even if it’s clear that the diesel engine has to be

Figure 2: Sketch of the model of a trafo line

used, as the grid is short-circuited by line 1 in this case.
• Switching on the diesel engine means closing CB dies and

trying to start the engine. Both operations have on-demand
failures
• Switching back after a repair always works without on-

demand failures
• When a trafo fails, its upper circuit breaker has to be

opened, otherwise a shortcircuit will make the grid un-
available for the other trafo.
We have introduced a total ordering of all switching ac-

tions as follows: (CB up 1 > CB dw 1 > CB up 2 > CB dw 2
> CB dies > S dies). Whenever there are more switching
operations to be done in our model, the greater operation
will always be switched first. Following the philosophy of
shortest paths to error states we stress that whenever a
greater switching action fails, we do not explore the path any
further (except for the short circuit situation given above).
All intended switchings succeed with probability 999

1000
, all

failure rates are equal to 10−4 per hour and all repair rates
equal to 10−1 per hour.

4.2 CASPA implementation of the model
The model has been built in CASPA using a compositional

modelling approach with synchronisations. Each line is the
parallel composition of two switches, a transformer and a
line administration. Its synchronised actions are given in
Fig. 2. The line administration process has in addition to
its internal state a counter variable that keeps track of how
many components of the line are currently in the FAILED
state. From this it can be determined, when the entire line
has been repaired. A top-level process synchronises with
two line subprocesses and takes care of the grid and the
entire diesel line. As the immediate actions used only for
synchronising are of no interest for the resulting paths, they
are eliminated. The elimination is done by four semisym-
bolic elimination rounds [2] and the resulting model has 774
reachable states.

4.3 Experimental results
All experiments have been carried out on an Intel Xeon

3.06 GHz machine with 2 GB of main memory running
SUSE Linux version 9.1. The elimination of the superfluous
synchronisations takes 0.285 seconds (including reachabil-
ity analysis). For the calculation of the first 100 paths, the
mean time needed to calculate one path is 0.61 seconds with
a minimum of 0.15 seconds for the 4th path and a maximum
of 1.14 seconds for the 24th path.

Table 1 shows the 13 most probable paths calculated by
our algorithm. The first column is the sequence of actions,
the second one the numerical result provided by our algo-

Path numerical result theoretical result
Failure OF GRID
Occurrence OF RC CB dies 2.0e − 04 1

5
1

1000

Failure OF GRID
OK OF RC CB dies
Occurrence OF RS dies 1.998e-04 1

5
999
1000

1
1000

Failure OF GRID
OK OF RC CB dies
OK OF RS dies

Failure OF dies generator 1.990e-04 1
5

`

999
1000

´2 10−4

10−1+3·10−4

Failure OF Transfo2
Occurrence OF RO CB up 2

Occurrence OF RC CB dies 2.000e-07 1
5

`

1
1000

´2

Failure OF CB dw 1
Occurrence OF RC CB dw 2
Occurrence OF RC CB dies
Failure OF CB up 1
Occurrence OF RC CB dw 2
Occurrence OF RC CB dies
Failure OF Transfo2
Occurrence OF RO CB up 2
OK OF RC CB dies

Occurrence OF RS dies 1.998e-07 1
5

999
1000

`

1
1000

´2

Failure OF CB dw 1
Occurrence OF RC CB dw 2
OK OF RC CB dies
Occurrence OF RS dies
Failure OF Transfo1
OK OF RO CB up 1
Occurrence OF RC CB dw 2
Occurrence OF RC CB dies
Failure OF Transfo1
Occurrence OF RO CB up 1
OK OF RC CB dw 2
Occurrence OF RC CB dies
Failure OF CB up 1
Occurrence OF RC CB dw 2
OK OF RC CB dies
Occurrence OF RS dies
Failure OF Transfo1
OK OF RO CB up 1
Occurrence OF RC CB dw 2
OK OF RC CB dies

Occurrence OF RS dies 1.996e-07 1
5

`

999
1000

´2 `

1
1000

´2

Failure OF Transfo1
Occurrence OF RO CB up 1
OK OF RC CB dw 2
OK OF RC CB dies
Occurrence OF RS dies

Table 1: Start of the list of most probable paths

rithm. The third column shows the exact result calculated
by hand. For the by-hand calculation one only has to take
care, which failure event(s) and repair event(s) can occur
for a certain state. For example, the most probable path
calculates as follows: In the initial configuration no compo-
nent has to be repaired and Transfo1, CB up 1, CB dw 1,
Transfo2 or Grid can fail. Therefore

P

„

Failure_OF_GRID →
Occurrence_OF_RC_CB_dies

«

=
10−4

5·10−4 · 1
1000

=
1
5
· 1

1000
.

Due to the fact that CASPA uses the CUDD library [4] with
a default Cudd Epsilon of 1.0 · 10−12, this is the maximum
accuracy one can expect from the results. For example the
tool calculates

P

0

B

@

Failure_OF_Transfo2 →
OK_OF_RO_CB_up_2 →
Failure_OF_GRID →
Occurrence_OF_RC_CB_dies

1

C

A
= P

0

B

B

B

@

Failure_OF_Transfo2 →
Occurrence_OF_RO_CB_up_2 →
OK_OF_RC_CB_dies →
OK_OF_RS_dies →
Failure_OF_dies_generator

1

C

C

C

A

,

but the exact values differ:
1
5
· 999

1000
· 10−4

10−1+4·10−4 · 1
1000

6= 1
5
· 1

1000

`

999
1000

´

2
· 10−4

10−1+3·10−4

As the difference is below 1.0 · 10−12, the values are taken
as equal. Reducing Cudd Epsilon would improve accuracy
but also slow down the calculations.

5. CONCLUSION
In this paper we have presented a set of algorithms to

calculate the k-most probable paths for CASPA models.
Well-known algorithms like Dijkstra and Azevedo have been
adapted to fit the symbolic data structure used in the CASPA
tool. A non-trivial case study shows the applicability of the
approach. The results have been verified to fit the list given
in [3] and for the first 13 paths additionally exact formulas
are given. The exactness of the algorithms has been shown
to be dependent on the exactness of the calculations in the
underlying MTBDD package CUDD. With this path-based
analysis the CASPA tool provides an alternative analysis
method to the numerical analysis. The path-based analysis
can further nicely be used for debugging models. Moreover,
with the algorithmic framework for the symbolic calcula-
tion of the k-most probable paths at hand it is a small step
to calculate the MTTF (Mean Time To Failure) and MTTR
(Mean Time To Repair) in an approximate, path-based way.
A prototypical implementation of the MTTR/MTTF calcu-
lations exists and will be presented in a subsequent paper.

Acknowledgements: Thanks to Alexander Gouberman
for pointing us to the work of Azevedo and Schmid. Further
we would like to thank Deutsche Forschungsgemeinschaft
(DFG) who supported this work under grants SI 710/2 and
SI 710/3.

APPENDIX

A. SPANNING TREE MTBDD CODE
In this Section we give the MTBDD versions of the al-

gorithms presented in the paper. In the description of the
algorithms the following name conventions for MTBDD vari-
ables are used: ~a (action labels), ~s (source states) and ~t

(target states). The variable ordering in the MTBDD is
a1 ≺ . . . ≺ an ≺ s1 ≺ t1 . . . ≺ sm ≺ tm according to
commonly accepted heuristics. The following MTBDD op-
erations are used to describe the algorithm (see e.g. [8] for
a more detailed explanation):
• 〈MTBDD1〉〈OP〉〈MTBDD2〉, the general apply operator
• ITE(〈MTBDD01〉, 〈MTBDDT〉, 〈MTBDDE〉), the general

if-then-else operator: MTBDD01 is a 0-1 MTBDD and
whenever it is equal to 1, the value of MTBDDT is re-
turned, the value of MTBDDE otherwise
• 〈MTBDD〉〈V AR〉=〈V AL〉, returns 〈MTBDD〉 with 〈VAR〉

set to 〈VAL〉 (Restriction)
• ABSTRACT (〈MTBDD〉, 〈VAR〉, 〈OP〉):=
〈MTBDD〉〈V AR〉=0〈OP〉〈MTBDD〉〈V AR〉=1

Abstraction and restriction of more than one variable is de-
fined in the canonical recursive way. For the general APPLY
operation, the following operators are used:
• 〈 MTBDD1〉 == 〈 MTBDD2〉 returns 1 whenever

MTBDD1 and MTBDD2 coincide, 0 otherwise
• 〈 MTBDD1〉 > 〈 MTBDD2〉 returns 1 whenever

MTBDD1>MTBDD2, 0 otherwise
• 〈MTBDD1〉+〈MTBDD2〉 returns MTBDD1+MTBDD2

A.1 Spanning tree algorithm
For the algorithm let us assume we are already given a

transition system Trans where for every state s with at least
one emanating transition the probabilities of all emanating
transitions sum up to one, i.e. they define a discrete prob-
ability distribution. Whenever needed, subscripts show to

which variable set a MTBDD belongs to (e.g. Probs means
that MTBDD Prob is defined by s-variables. Let the initial
state be stored in the variable Init (by s-variables).

Algorithm 4 Flooding Dijkstra algorithm

1: Probs = Init

2: Borders = Init

3: SpanningTree = 0
4: Transmax = ABSTRACT (Trans,a, max)
5: while 1 do

6: ProbBorder
s = Borders · Probs

7: ProbTrans
st = ProbBorder

s · Transmax

8: Probnew
t = ABSTRACT (ProbTrans

st , s,max)
9: UpdateSett = (Probnew

t > (Probs)s→t)
10: if UpdateSett == 0 then

11: break

12: end if

13: Probs = (ITE(UpdateSett, P robnew
t , (Probs)s→t)))t→s

14: Prob
Updated
t = UpdateSett · Probnew

t

15: NewTransitions =
(ProbTrans

st == Prob
Updated
t)·UpdateSett ·Transmax

16: SpanningTree =
ITE(UpdateSett, NewTransitions, SpanningTree)

17: Borders = (UpdateSett)t→s

18: end while

Algorithm 4 works as follows. In line 1-3 some initialisa-
tion assignments are given. Line 4 calculates the maximal
projection of Trans. The loop from line 5 to 18 calculates
the updates. In line 6, the probabilities for the states in the
current border set are calculated and in line 7 they are mul-
tiplied by the maximal transition probabilities. Line 8 calcu-
lates the new probabilities for successor states of the border
set by abstraction of ProbTrans

st . From this the UpdateSett

can be calculated that encodes the states that are reached
with a higher probability by transitions from the border
states. In lines 10-12 the exit condition is checked: When-
ever there are no more states to be updated, the algorithm
has finished. With the knowledge of the states to be up-
dated, line 13 calculates the correct new probabilities. The
new probabilities that have been updated are calculated in
line 14 and are used in line 15 to get the transitions that
provide the maximum probability for those states (not nec-
essarily unique). Looking at the updated states the spanning
tree can be updated in line 16: All transitions that lead to
a state in UpdateSett are taken from NewTransitions, the
others remain the same. Finally Borders is updated in line
17.

A.2 Reading the action labels from a path
This code fragment reads one shortest path from the span-

ning tree calculated in A.1. Note that the path read may
include parallel actions, but the predecessor states have to
be unique. Suppose that Init encodes the initial state, Dest

the destination state of the analysis (by s-variables). It is
notable that two versions of the SpanningTree are used: The
maximal projection and the maximal lifting. All paths are
printed from Dest to Init. The code in algorithm 5 reads
as follows: Line 1 calculates the probability of Dest by ab-
stracting over all s-variables. In lines 2-4 some initialisations
are done, most notably the maximal lifting of SpanningTree
in line 3. The main loop starts at line 5 and terminates
when Init is reached. All incoming edges of CurrentState

Algorithm 5 Reading action labels

1: p = ABSTRACT (Probs ·Dest, s,max)
2: ShortestPath = 0
3: SpanningTree∗ =

(SpanningTree == Trans) · Trans

4: CurrentStates = Dest

5: while CurrentStates! = Init do

6: Edgesst = (CurrentStates)s→t · SpanningTree

7: Edgest = PickOne(Edgesst)
8: Edgesast =

(Edgest == SpanningTree∗) · SpanningTree∗

9: ShortestPath = ShortestPath + Edgesast

10: while Edgesast! = 0 do

11: Action = PickOne(Edgesast)
12: print getName(Action)
13: Edgesast = Edgesast −Action

14: end while

15: print ←
16: CurrentStates = ABSTRACT (Edgest, t, +)
17: end while

are read from SpanningTree in line 6. Out of them a sin-
gle edge is picked in line 7. Line 8 calculates the maximal
lifting of Edgest in SpanningTree∗. The current Edgeast

(with possible parallel actions) is added to ShortestPath in
line 9. The loop from line 10-14 prints all parallel actions be-
longing to Edgeast. Line 16 switches to the next predecessor
of CurrentState given by Edgest.

A.3 Changing the transition system
In this Subsection the symbolic operations for changing

the transition system are shown. The transition system is
altered in such a way that the shortest path of the new tran-
sition system is the second shortest path of the old transition
system. Suppose Probs contains the probabilities of states
and ShortestPath contains a shortest path with possible
parallel actions as calculated in A.2. The Expand function
used in the code is just a short-hand notation, given as fol-
lows:

Expand(Trans,s, t) := NewV ariables(s) ·

NewV ariablet(t) · Trans

Expand(State, s) := NewV ariables(s) · State

Two new variables are introduced (here between action and
state variables) in order to encode original and copied states
in source and target variables. NewV ariables encodes wheth-
er the source state lies in the original or the copied set of
states. If it is set to 0 it means that the source state lies
in the original set of states, if it is set to 1 the state is a
copied one. A similar statement applies to the target states.
Algorithm 6 works as follows. First the reachability analysis
done by the spanning tree calculation is used to minimise the
Trans by leaving out unreached states (i.e. states that have
a maximal probability of 0). This is done in line 1 and 2.
Next, the shortest path without the last transition to Dest

is calculated in line 3. Line 4 calculates all allowed devia-
tions, i.e. those transitions that emanate from states on the
shortest path but do not lie on the shortest path. In lines 5-7
some expansions are done. From the given parameters one
sees that PathWithoutDest lies in the copyied states, while
Deviations lead from copies to original states and Trans

Algorithm 6 Second shortest path

1: NonZeroProbs = (Probs > 0)
2: Trans = NonZeroProbs · Trans

3: PathWithoutDest = ITE((Dest)s→t, 0, ShortestPath)
4: Deviations = ITE(ShortestPath,0, T rans)·

(ABSTRACT (ShortestPath,t, +) > 0)
5: PathWithoutDest = Expand(PathWithoutDest,1, 1)
6: Deviations = Expand(Deviations, 1, 0)
7: Trans = Expand(Trans,0, 0)
8: Trans′ = Trans + Deviations + PathWithoutDest

9: Init′ = Expand(Init,1)
10: Dest′ = Expand(Dest,0)

still lies in the original states. The new transition system is
built in line 8 as the union of the three precalculations and
finally in line 9 and 10 Init and Dest are copied.

B. REFERENCES
[1] J. Azevedo, J. Madeira, E. Martins, and F. Pires. A

Shortest Paths Ranking Algorithm. In Proc. of the

Annual Conference AIRO’90 Operational Research

Society of Italy, pages 1001–1011, IEEE, 1990.

[2] J. Bachmann, M. Riedl, J. Schuster, and M. Siegle. An
Efficient Symbolic Elimination Algorithm for the
Stochastic Process Algebra tool CASPA. In SOFSEM

2009: Theory and Practice of Computer Science,
pages 485–496, Špindler̊uv Mlýn, Czech Republic,
2009. Springer, LNCS 5404.

[3] M. Bouissou and J.-L. Bon. A new formalism that
combines advantages of fault-trees and Markov
models: Boolean logic driven Markov processes.
Reliability Engineering and System Safety, 82:149–163,
2003.

[4] CUDD website.
http://vlsi.colorado.edu/~fabio/CUDD/, (last
checked March 2010).

[5] M. Günther. Pfadbasierte Algorithmen zur
Zuverlässigkeitsanalyse. Master’s thesis, Univ. der
Bundeswehr München, Fakultät für Informatik (in
German), 2009.

[6] M. Kuntz, M. Siegle, and E. Werner. Symbolic
Performance and Dependability Evaluation with the
Tool CASPA. In Europ. Perf. Engineering Workshop,
pages 293–307. LNCS 3236, 2004.

[7] W. Schmid. Berechnung kürzester Wege in

Straßennetzen mit Wegeverboten. PhD thesis,
Universität Stuttgart, Fakultät für Bauingenieur- und
Vermessungswesen, 2000.

[8] M. Siegle. Behaviour analysis of communication

systems: Compositional modelling, compact

representation and analysis of performability

properties. Shaker Verlag, Aachen, 2002.

[9] M. Walter, M. Siegle, and A. Bode. OpenSESAME:
The Simple but Extensive, Structured Availability
Modeling Environment. Reliability Engineering and

System Safety, 93(6):857–873, 2007.

[10] E. Werner. Leistungsbewertung mit Multi-terminalen
Binären Entscheidungsdiagrammen. Master’s thesis,
Univ. Erlangen, Computer Science 7 (in German),
2003.

