
1

CASPA: A Tool for Symbolic Performance and
Dependability Evaluation

Matthias Kuntz, Markus Siegle, University of the Federal Armed Forces Munich, Dept. of Computer Science
[kuntz,siegle]@informatik.unibw-muenchen.de

Edith Werner, Georg-August-Universität Göttingen, Dept. of Computer Science
ewerner@informatik.uni-goettingen.de

I. I NTRODUCTION

Symbolic data structures, such as binary decision diagrams
(BDD) [1] and variants thereof have proved to be suitable for
the efficient generation and compact representation of very
large state spaces and transition systems. The key to such
compact representation is the exploitation of the compositional
structure of a given specification [2], [3]. It is also known that
in addition to functional analysis, performance analysis and the
verification of performability properties can also be carried out
on such symbolic representations [4], [3].

In this note, we describe the current status of our tool
CASPA which offers a Markovian stochastic process algebra
language for model specification. CASPA uses multi-terminal
binary decision diagrams (MTBDD) [5], [6] to represent the
transition systems underlying a given process algebra spec-
ification. All phases of modelling, from model construction
via numerical analysis to the computation of performance
measures, are based entirely on this symbolic data structure.

II. T HE MODELLING LANGUAGE

The modelling language of CASPA is essentially the same
as the language supported by TIPPtool [7]. It is a stochastic
process algebra where all actions have an exponentially dis-
tributed delay. The language provides operators for prefixing,
choice, parallel composition, enabling, disabling and hiding.
Infinite (i.e. cyclic) behaviour can be specified with the help
of defining equations. The technique used for symbolic model
representation (cf. Sec. III) works only for finite state spaces.
Therefore the grammar of the input language is such that
recursion over static operators (i.e. parallel composition and
hiding) is not allowed, which ensures that the underlying state
space is finite.

CASPA allows the specification of parameterised processes,
i.e. processes which carry one ore more integer parameters.
This feature is very useful for describing the behaviour of
queueing, counting, or generally indexed processes. Within
a parameterised process, the enabling of actions may be
conditioned on the current value of the process parameters.
We demonstrate the use of the CASPA modelling language by
means of a small example shown in Fig. 1. It is a queueing
system, consisting of two arrival processes (inter-arrival times
have Erlang-3 and Erlang-2 distribution) and a service center
with finite capacity buffer and exponential service times. In
the first three lines the rate parameter values and the buffer

/*** rate and constant definitions ***/
rate l1 = 0.5;
rate l2 = 0.1;
rate mu = 4.3;
int max = 15;

/*** system specification ***/
System := (Arrival1 |[]| Arrival2) |[enq]| Server(0)
Arrival1 := (tau,l1); (tau,l1); (enq,l1); Arrival1
Arrival2 := (tau,l2); (enq,l2); Arrival2
Server(n [max]) := [n < max] -> (enq,1); Server(n+1)

[n > 0] -> (serve,mu); Server(n-1)

/*** measure definition ***/
statemeasure Buffer full Server(n = max)
throughputmeasure Service rate serve
meanvalue Occupancy Server(n)

Fig. 1. Specification of a small queueing system example

size are defined. The last three lines of the example show
that CASPA supports the definition and computation of three
different types of performance measures:

A state measureis defined as the probability of the system
being in a specific state or in a well-defined subset of the
state space. Such sets of states are defined by referencing to
process names, thereby possibly using Boolean operators and
conditioning on process parameter ranges.

A throughput measureis defined as the mean number of
occurences of a specific named action per unit of time.

A mean value measureis defined as the expected value of
a certain process parameter, taken over all reachable states.

III. C ONSTRUCTION OF THE SYMBOLIC STATE SPACE

REPRESENTATION

CASPA translates a given process algebra specification
directly to an MTBDD-based symbolic representation of the
underlying state space and transition system. It uses the CUDD
library [8] which provides support for the construction and
manipulation of BDD-based data structures. The translation
implements the denotational semantics described in [9], with
some extensions and optimisations. The basic idea of this
translation is as follows: In a first step, the parse tree of the
process algebra specification at hand is constructed. Then the
MTBDD representation of the underlying transition relation is
constructed in a compositional fashion, starting with sequential
processes (i.e. processes which do not contain the parallel
composition operator) which are located close to the leaves
of the parse tree. Finally the MTBDD for the overall process

2

is built from the MTBDDs of its components by applying the
rules for symbolic parallel composition (see, e.g, [3]). This
construction procedure is completely symbolic and composi-
tional, i.e. each sub-process of the specification is represented
by an MTBDD, which is then used as an operand during the
construction of the higher-level processes.

Already during its construction, the parse tree is annotated
with information concerning the performance measures to be
derived. For example, nodes associated with a process name
that occurs in a state measure specification are marked, and
subsequently a BDD is constructed which encodes exactly
the states which are relevant for that state measure. Nodes
associated with a parameterised process for which a mean
value has to be computed are also marked, and subsequently
an MTBDD is constructed which encodes the relevant states
and associated parameter value.

IV. N UMERICAL ANALYSIS AND COMPUTATION OF

PERFORMANCE MEASURES

CASPA supports steady state and transient analysis. For
steady state analysis Power, Jacobi, Pseudo-Gauss-Seidel and
their overrelaxed versions can be used. For transient analysis
uniformisation is employed. The rate matrix of the CTMC
is obtained from the symbolic representation of the transition
system by abstracting from the action labels. This abstraction
can easily be performed with the help of MTBDD operations,
and the result is a symbolic representation of the rate matrix.

For the numerical computation of the probability vectors
CASPA uses the iterative solvers code developed within the
PRISM project [10], which is available from the PRISM
web page. To our knowledge, these algorithms are currently
the fastest available implementation of MTBDD-based linear
systems solvers. They rely on the advanced concept of hybrid
offset-labelled MTBDDs as described in [10].

Once the probability vector has been obtained, the perfor-
mance measures of interest are computed. Basically, each type
of measures can be computed as the sum or weighted sum
of certain state probabilities. These expressions are computed
efficiently on the basis of MTBDD operations, using the
MTBDDs which we mentioned at the end of Sec. III.

As an example, we modelled the well-known Kanban sys-
tem from [11] with four cells andN Kanban cards (of a single
type). We considered the case that a workpiece may need
rework and computed, among others, the following measures:

• Mean values: average number of cards in each cell.
• Throughput measures: throughput of parts with and with-

out rework for each cell.
The state space size and time needed for computing the
measures can be found in Table I, where MTBDD-generation
times include reachability analysis and numerical analysis
times include measure computation. The steady-state analysis
method used here was Pseudo-Gauss-Seidel. The results were
obtained on an AMD Athlon 2000+ CPU with 512 MB RAM,
running Red Hat 8.0 Linux.

V. CONCLUSION AND FUTURE WORK

Based on the results of this and other case studies we can
state the following: State space construction as realised in

N reachable MTBDD MTBDD numerical
states nodes generation analysis

4 454,475 3990 0.17 sec. 20.41 sec.
5 2,546,432 5392 0.42 sec. 184.44 sec.
6 11,261,376 8086 0.89 sec. 1191.46 sec.
7 41,644,800 10389 1.74 sec. 21h
8 133,865,325 13998 3.28 sec. -
9 384,392,800 17762 5.23 sec. -
10 1, 005, 927, 208 23231 8.94 sec. -

TABLE I

RESULTS FORKANBAN SYSTEM

CASPA is very efficient, it is several orders of magnitude
faster than that of TIPPtool which uses an explicit (and
therefore much less space efficient) representation of the state
space and transition system. The numerical solution with
the algorithms from PRISM achieves an efficiency which
is almost comparable to state-of-the-art sparse solvers. Once
the state probabilities have been computed, the derivation of
performance measures is very fast, in fact it is much faster
than for TIPPtool.

We are currently extending CASPA to a stochastic model
checker which supports specification and verification of com-
plex performability properties of stochastic systems, specified
with the help of the temporal logic sPDL [12].

REFERENCES

[1] R. Bryant, “Graph-based Algorithms for Boolean Function Manipula-
tion,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691,
August 1986.

[2] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala,
“Symbolic Model Checking for Probabilistic Processes using MTB-
DDs and the Kronecker Representation,” inTACAS’2000, S. Graf and
M. Schwartzbach, Eds. Springer LNCS 1785, 2000, pp. 395–410.

[3] M. Siegle, “Advances in model representation,” inProcess Algebra
and Probabilistic Methods, Joint Int. Workshop PAPM-PROBMIV 2001,
L. de Alfaro and S. Gilmore, Eds. Springer, LNCS 2165, September
2001, pp. 1–22.

[4] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic Symbolic
Model Checking with PRISM: A Hybrid Approach,” inTACAS’2002,
J.-P. Katoen and P. Stevens, Eds. Springer LNCS 2280, April 2002,
pp. 52–66.

[5] M. Fujita, P. McGeer, and J.-Y. Yang, “Multi-terminal Binary Decision
Diagrams: An efficient data structure for matrix representation,”Formal
Methods in System Design, vol. 10, no. 2/3, pp. 149–169, April/May
1997.

[6] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and
F. Somenzi, “Algebraic Decision Diagrams and their Applications,”
Formal Methods in System Design, vol. 10, no. 2/3, pp. 171–206,
April/May 1997.

[7] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle,
“Compositional performance modelling with the TIPPtool,”Performance
Evaluation, vol. 39, no. 1-4, pp. 5–35, January 2000.

[8] F. Somenzi, “CUDD: Colorado University Decision Diagram Package,
Release 2.3.0,” September 1998, user’s Manual and Programmer’s
Manual. [Online]. Available:http://vlsi.colorado.edu/∼fabio.

[9] M. Kuntz and M. Siegle, “Deriving symbolic representations from
stochastic process algebras,” inProcess Algebra and Probabilistic
Methods, Proc. PAPM-PROBMIV’02, H. Hermanns and R. Segala, Eds.
Springer, LNCS 2399, 2002, pp. 188–206.

[10] D. Parker, “Implementation of symbolic model checking for probabilistic
systems,” Ph.D. dissertation, School of Computer Science, Faculty of
Science, University of Birmingham, 2002.

[11] G. Ciardo and M. Tilgner, “On the use of Kronecker operators for the
solution of generalized stochastic Petri nets,” ICASE, Tech. Rep. 96-35,
1996.

[12] M. Kuntz and M. Siegle, “A stochastic extension of the logic PDL,”
in Sixth Int. Workshop on Performability Modeling of Computer and
Communication Systems (PMCCS6), Monticello, Illinois, 2003, pp. 58–
61.

