
An Efficient Symbolic Elimination Algorithm for the
Stochastic Process Algebra tool CASPA

Jens Bachmann, Martin Riedl, Johann Schuster, Markus Siegle

University of the German Federal Armed Forces Munich
Department of Computer Science

{martin.riedl, johann.schuster, markus.siegle}@unibw.de

Abstract. CASPA is a stochastic process algebra tool for performance and de-
pendability modelling, analysis and verification. It is based entirely on the sym-
bolic data structure MTBDD (multi-terminal binary decision diagram) which en-
ables the tool to handle models with very large state space. This paper focuses on
an extension of CASPA’s modelling language by weighted immediate actions. We
discuss the pertaining semantics and present an efficient symbolic algorithm for
the elimination of vanishing states. A non-trivial case study illustrates the usage
features of CASPA, from graphical model specification to numerical analysis.

Keywords: stochastic process algebra, MTBDD, elimination of immediate transitions

1 Introduction

CASPA is a tool for performance and dependability modelling, based on a stochastic
process algebra. Its development began in 2003 [16], and it has since been the en-
vironment in which its developers have experimented extensively with symbolic (i.e.
MTBDD-based) techniques that enable the tool to generate and analyse Markov chains
with very large state spaces in a highly efficient manner [10]. In addition to classical
analysis methods, model checking algorithms have been realised in CASPA, employ-
ing stochastic temporal logics with novel features for characterising accepting paths [9].
However, up to now, acceptance of CASPA by a broader community has been limited,
due to its lacking of two features: (1) CASPA’s process algebraic specification language
had been purely textual, which made it difficult to use for inexperienced users. (2) So
far, the modelling language of CASPA supported only timed, i.e. Markovian actions,
whereas immediate actions, which are often very handy for modelling instantaneous
process interaction, had been missing. As a consequence, when synchronisation of pro-
cesses was modelled by Markovian actions with “fast” rates, state spaces often became
unnecessarily large.

The first problem has recently been dealt with by implementing a new user inter-
face, realised with state-of-the-art software development techniques (Eclipse Graphical
Modelling Framework), offering graphical model specification and easy-to-use interac-
tion with the tool [2].

The present paper focuses on the second issue: We define an extended specifica-
tion language, offering both Markovian and weighted immediate actions, and give the

2 Jens Bachmann, Martin Riedl, Johann Schuster, Markus Siegle

(1) int max = 12;
(2) rate alpha = 5; rate gamma = 5.4; rate fi = 3.2;
(3) weight slow = 2; weight fast = 3;
(4) System:= hide s in (P(max) |[s]| Q(0))
(5) P(n [max]) :=[*] -> (a,alpha); P(n) + (b,7.0); stop
(6) [n>0] -> (c,n*gamma); P(n-1)
(7) [n<max] -> (*s,1*); (d,0.3); P(n+1) + (*t,1*); (d,0.4); P(n+1)
(8) Q(m [10]) := [m>1] -> (e,1.38); ((*s,slow*); Q(m-1) + (*s,fast*); Q(m-2))
(9) [m=1] -> (e,1.38); Q(0)
(10) [m=0] -> (f,fi); Q(5)
(11) statemeasure nonsense (P(n>1) & !Q(m=4))
(12) meanvalue Pmean P(n)
(13) throughputmeasure tput c c

Fig. 1: Specification toy example

pertaining semantics. Most importantly, we propose an efficient algorithm for the elim-
ination of vanishing states (which are caused by the immediate actions and need to
be removed before numerical analysis can take place). The elimination algorithm con-
sists of a very efficient fully symbolic main phase, followed by a semi-symbolic post-
processing phase which is responsible for the elimination of cycles of immediate tran-
sitions – if such cycles exist.

The paper is organised as follows: Section 2 introduces the syntax and semantics of
CASPA’s extended textual specification language. Section 3 is devoted to the symbolic
algorithm for the elimination of vanishing states. Section 4 gives a sketch of the new
graphical model specification features of CASPA and presents a non-trivial application
case study that illustrates the efficiency of the implemented symbolic data structures
and algorithms, and Section 5 concludes the paper.

2 Modelling language and its semantics

2.1 Informal overview

The specification language of CASPA is a stochastic process algebra (SPA), originally
based on the stochastic process algebra TIPP [6]. The syntax for the purely Markovian
version is described in [10]. The current extensions to the input language are:

– Actions can be specified both as Markovian actions (〈ACTION〉, 〈RATE〉) or as
immediate actions (* 〈ACTION〉, 〈WEIGHT〉 *).

– Processes can synchronise by both immediate and Markovian actions.
– Corresponding to the two different action types, constants can be specified either

as rates (for Markovian actions) or weights (for immediate actions).

A toy example of the specification language is given in Fig. 1 (the example has no
real meaning, it is purely for demonstrating the use of the language elements): In line
(1) a global parameter constant is defined, line (2) and (3) define constants for rates
and weights. The entire system is defined in line (4), where the parametrised processes
P (max) and Q(0) are composed in parallel and synchronised by the common action
s, i.e. action s has to be performed by P (max) and Q(0) at the same time. The system
specification also shows the hide operator, that replaces action s after the parallel com-
position by the internal immediate action tau. In line (5) a guard with parameter * is

An Efficient Symbolic Elimination Algorithm for CASPA 3

given which means that this branch is possible for any process parameter value. This
line also shows the prefix operator ; that separates sequential actions and the choice
operator + that chooses either the branch starting with the Markovian action a leading
to P with the same parameter n or the one starting with the Markovian action b leading
to the stop keyword that disables any further action of P (; binds more tightly than
+). The action in line (6) can only be taken if n > 0 holds. Its rate gamma is scaled
by the current value of the process parameter n. Line (7) shows the specification of an
immediate action with weight 1. The specification of Q(m[10]) can be read in a simi-
lar way. Some examples of measures are defined in lines (11) to (13) of the example.
The first measure is the steady state probability of states fulfilling the given condition
on the process parameter values. The second one calculates the mean value of process
parameter n of P. The last measure calculates the throughput of action c.

The resulting model has tangible and vanishing states, where a state is called van-
ishing if and only if it has at least one outgoing immediate transition (non-vanishing
states are called tangible). In CASPA, a model with both immediate and Markovian
actions has to satisfy the following constraints:

– The initial state of the system must not be vanishing.
– Immediate and Markovian actions with the same name are not allowed.
– As there is no bisimulation equivalence relation for internal Markovian transitions,

hiding of Markovian actions is not supported and the internal action tau has to be
immediate.

– Throughput measures are only allowed for Markovian actions.
– As in the previous releases of CASPA, recursion over static operators (e.g. parallel

composition and hiding) is not allowed (to keep the state space finite).

2.2 Formal semantics

As described in [10], CASPA directly derives an MTBDD representation from a given
SPA without generating an explicit Stochastic Labelled Transition System (SLTS) first.
This is done by means of a denotational semantics [8]. When a model with both imme-
diate and Markovian actions is given as input, CASPA generates two MTBDDs: One
for the immediate and one for the Markovian transitions, again without building the
corresponding ESLTS (extended SLTS) first. To describe the semantics, we give the
following

Definition 1 (weighted ESLTS) Let S be a finite set of states, s0 ∈ S the initial
state, LI and LM finite sets of action labels with LI ∩ LM = ∅ and finally →⊆
S × LM × R>0 × S and 99K⊆ S × LI × R>0 × S be transition relations. We call
T = (S,LM , LI ,→, 99K, s0) a weighted ESLTS. For (s, a, w, t) ∈99K we write s

a,w
99K t

and call it an immediate a-transition from state s to state t with weight w. Analogously

we write s
b,λ→ t for (s, b, λ, t) ∈→ and call it a Markovian b-transition from state s to

state t with rate λ.

Let SM ⊆ LM and SI ⊆ LI be sets of synchronising action labels. The semantics
for Markovian transitions is as usual: Concurring Markovian actions correspond to a

4 Jens Bachmann, Martin Riedl, Johann Schuster, Markus Siegle

race condition [14]. Parallel composition of Markovian transitions leads to the multipli-
cation of rates as shown in Eq. 1 (left). This approach includes the possibility to set one
of the partner rates to 1, modelling passive cooperation (which is the concept realised in
EMPA [3]). There also exist other synchronisation policies [7], but in our experience,
the multiplication of rates is general, flexible and very useful for practical modelling.

P
a,λ→ P ′ Q

a,µ→ Q′

P |[SM]|Q a,λ·µ→ P ′|[SM]|Q′
a ∈ SM

P
a,w
99K P ′ Q

a,v
99K Q′

P |[SI]|Q
a,w·v
99K P ′|[SI]|Q′

a ∈ SI (1)

Immediate transitions are treated in a similar way, as shown in Eq. 1 (right). The intu-
ition behind our weighted approach is that a parallel step (∗a,w1∗);P |[a]|(∗a,w2∗);Q
should get a weight w1 · w2. Thereby the weights of unsynchronised actions remain
the same. In a post-processing step, when the overall system has been composed and
no further parallel composition takes place (a closed system), all outgoing weights of a
state are normalised to a sum of 1. So the concurring weights are mapped to a discrete
probability distribution. Our model should exhibit asynchronous behaviour, i.e. our syn-
chronising processes should be allowed to act independently without assuming explicit
idle-step of processes resting in their states (so we did not follow the synchronous ap-
proach described in [15]). The drawback of our weighted approach is that it is not
scale-free. That means that multiplying all weights within a subprocess by the same
factor may lead to a different overall system. As an example, take the synchronisa-
tion of (P (n)|[s]|Q(m)) with P and Q as defined in Fig. 1. Consider the case where
n < max, m > 1 and Q has just performed the transition (e, 1.38). So Q is wait-
ing for the synchronisation with P . There are three possibilities for the next immediate
transition:

1. ((d, 0.3);P (n+ 1))|[s]|Q(m− 1), slow s transition (synchronised)
2. ((d, 0.3);P (n+ 1))|[s]|Q(m− 2), fast s transition (synchronised)
3. ((d, 0.4);P (n+ 1))|[s]|((∗s, slow∗);Q(m− 1) + (∗s, fast∗);Q(m− 2)), t tran-

sition (only P)

with the probabilities 1
6 (1 · 2, 1 · 3, 1) = (1

3 ,
1
2 ,

1
6). When changing the values of fast

and slow in Q but not their ratio, our approach leads to a different overall behaviour.
Multiplying the weights ofQ by 2 leads to the transition probabilities 1

11 (1·4, 1·6, 1) =
(4
11 ,

6
11 ,

1
11) which are different from the probabilities of the first configuration.

3 Elimination algorithm for immediate transitions

The description of the algorithm is built upon a standard MTBDD representation of a
labelled transition system. Thus, the algorithm is applicable not only to CASPA mod-
els, but also to finite-state models generated from other specification languages (e.g.
elimination of vanishing markings for GSPNs [11]). Enumerating all the states and

all the actions by positive integers, a Markovian transition s
a,λ→ t can be seen as

a function f : N3 → R; (a, s, t) 7→ λ. The same holds for immediate transitions
where the value of the function denotes the weight instead of the rate. The integers
can subsequently be encoded in binary form thus leading to a MTBDD representation

An Efficient Symbolic Elimination Algorithm for CASPA 5

of f . For the details consider e.g. [14]. In the description of the algorithm the fol-
lowing name conventions for MTBDD variables are used: a (action labels), s (source
states), t (target states), u (temporary states). The variable ordering in the MTBDD is
a1 ≺ . . . ≺ an ≺ s1 ≺ t1 ≺ u1 . . . ≺ sm ≺ tm ≺ um according to commonly ac-
cepted heuristics. The following MTBDD operations are used to describe the algorithm
(see e.g. [14] for a more detailed explanation):

– 〈MTBDD1〉〈OP〉〈MTBDD2〉, the general apply operator
– 〈MTBDD〉〈V AR〉=〈V AL〉, returns 〈MTBDD〉 with 〈VAR〉 set to 〈VAL〉 (Restriction)
– ABSTRACT (〈MTBDD〉, 〈VAR〉, 〈OP〉):= 〈MTBDD〉〈V AR〉=0〈OP〉〈MTBDD〉〈V AR〉=1

– THRESHOLD(〈MTBDD〉, 〈VAL〉) generates a 0-1-MTBDD with value 1 where the
function represented by the MTBDD is >〈VAL〉, value 0 elsewhere

Abstraction and restriction of more than one variable is defined in the canonical re-
cursive way. The elimination algorithm used in CASPA is a combination of the fully
symbolic approach sketched in [14] and an adaptation of a semi-symbolic algorithm
which was first presented in [4]. The fully symbolic algorithm is a fast method to elim-
inate all the vanishing states without vanishing predecessors and the semi-symbolic
algorithm eliminates the remaining (i.e. loop or cycle) immediate transitions, that are
usually quite few (a loop is a cycle of length one).

The next subsections describe the steps to eliminate all the immediate transitions
in the given ESLTS. In the following, let MMbe the MTBDD encoding the Markovian
transitions and M I the MTBDD encoding the immediate transitions.

3.1 Precomputations

In the overall, closed system model no further parallel composition may take place, so
no immediate transitions are rendered inactive due to synchronisation constraints. By
the assumption of maximal progress [5], Markovian transitions that emanate from states
with outgoing immediate transitions can be disregarded. The following lines show how
this is done symbolically:

– Source states of immediate transitions are determined by
SI = THRESHOLD(ABSTRACT (M I , (a, t),+), 0)

– Markovian transitions concurring with immediate transitions are removed by
MM = MM · (1− SI), where (1− SI) denotes the complement of SI

Now, for every vanishing state, the weights of all outgoing immediate transitions are
normalised to probabilities. This is achieved by the following symbolic operations:

– Abstract from the immediate action labels (ST indicates that this MTBDD only
depends on s and t variables): M IST = ABSTRACT (M I , (a),+)

– Sum up the exit weights for every state (S indicates that this MTBDD only depends
on s variables): M IS = ABSTRACT (M IST , (t),+)

– Divide the outgoing weights by the sum of exit weights to get the new immediate
transition system: M Inew = M IST /M IS

6 Jens Bachmann, Martin Riedl, Johann Schuster, Markus Siegle

1: SIexit =THRESHOLD(ABSTRACT(MInew , (t), +), 0)
2: T Itarget =THRESHOLD(ABSTRACT(SIexit ·MInew , (s), +), 0)
3: T I=swapSourceAndTargetVariables(SIexit)
4: T el = T I · (1− T Itarget)
5: Sel = swapSourceAndTargetVariables(T el)
6: MMleft =MM · (1− T el)
7: MIleft =MInew · (1− Sel)
8: MItemp =changeVariables(MInew , (t 7→ u), (s 7→ t))
9: MMredir =changeVariables(ABSTRACT(T el ·MM ·MItemp , (t), +), (u 7→ t))

10: MM = MMredir + MMleft

11: MInew = MIleft

Fig. 2: Fully-symbolic elimination step

3.2 Fully-symbolic elimination step

The algorithm is a round-based scheme where in every round all immediate transitions
without immediate predecessor transition are eliminated at once. The number of rounds
is determined by the maximum length of sequences of immediate transitions (without
cycles), and not by the number of vanishing states. Such a round-based scheme is typ-
ical for symbolic algorithms and works very efficiently. The algorithm is performed
until only immediate transitions with at least one immediate predecessor remain. The
algorithm in Fig. 2 shows one elimination round, the loop that repeats the procedure is
omitted. In line (1) the source states of immediate transitions SIexit are calculated from
M Inew by abstracting over the target variables, disregarding the actual weights. Line
(2) calculates the target states of immediate transitions by looking at the possible tran-
sitions emanating from SIexit , abstracting over the source states and again disregarding
the actual weights. T Itarget depends only on t variables. The MTBDD SIexit that de-
pends only on s variables is swapped to t variables in line (3). An important immediate
result is calculated in line (4): vanishing states without incoming immediate transitions.
Just a variable swapping from target to source states is performed in line (5). Lines (6)
and (7) calculate the Markovian and immediate transitions that are left unchanged in the
current round. The most important steps are line (8) where the immediate transitions are
swapped to an alternative variable set and line (9) that performs all the redirections and
rescalings for this round via the t variables. After abstraction of the t variables, the u
variables are swapped back to t and the resulting MTBDD only depends on s and t
variables Finally in line (10) the new set of Markovian transitions is calculated and in
line (11) the immediate transitions are reduced to the set that has not been eliminated.
This procedure is repeated until T el is equal to zero.

3.3 Semi-symbolic elimination step

It remains to eliminate the loops and cycles of immediate transitions. The elimination
has to be done in a semi-symbolic way as vanishing states within a cycle have to be
eliminated one after another. If a vanishing state has an immediate self-loop, the loop
first has to be resolved before the elimination is possible. Self-loops are removed by a
geometric series argument.

An Efficient Symbolic Elimination Algorithm for CASPA 7

The semi-symbolic algorithm uses an MTBDD containing the source states of the
remaining immediate transitions as a trigger. This MTBDD is calculated symbolically
by SI = ABSTRACT (M Inew , (t),+). The initial call for the elimination algorithm
is eliminate(0, SI , 1), where 1 means a MTBDD representing the constant 1. The corre-
sponding subroutine is shown in Fig. 3 (top). The parameter bit encodes a source state

1: eliminate(bit, Trigger, S)
2: if Trigger is not constant node then
3: eliminate(bit + 2, Triggervbit=0, S · vbit)
4: eliminate(bit + 2, Triggervbit=1, S · vbit)
5: else
6: if NOT value(Trigger) == 0 then
7: if bit <NumStateVariables then
8: eliminate(bit + 2, Trigger, S · vbit)
9: eliminate(bit + 2, Trigger, S · vbit)

10: else
11: Sswap=swapSourceAndTargetVariables(S)
12: MIS

curr=MInew · S
13: MIS

curr = ABSTRACT(MIS
curr , (s), +)

14: Loop = MIS
curr · Sswap

15: MIS
curr = MIS

curr·(1-THRESHOLD(Loop, 0))
16: Loop = ABSTRACT(Loop, (t), +)
17: if NOT value(Loop)==0 then
18: MIS

curr = MIS
curr · 1/(1− value(Loop))

19: end if
20: redirect(MM , Sswap, MIS

curr)
21: redirect(MInew , Sswap, MIS

curr)
22: end if
23: end if
24: end if

1: redirect(M , T , I)
2: Mchanged = Mt=T

3: if NOT Mchanged == 0 then
4: M = M ·(1-THRESHOLD(Mchanged · T , 0))
5: M = M + Mchanged · I
6: end if

Fig. 3: Semi-symbolic elimination step

variable or constant level in the MTBDD, Trigger is the node in the trigger MTBDD
that is currently processed and S is a MTBDD used to encode source states of immediate
transitions. In the following the notation vi means the MTBDD variable corresponding
to the i-th bit of the state variables in the MTBDD, vi denotes its negation. Line (2)
checks whether Trigger is a non-constant node. As long as no constant node of Trigger
is reached, the function eliminate is called recursively with the restrictions of Trigger
and S to the possible assignments of vbit in lines (3) and (4). When a non-zero constant
node is reached but not all state variable bits are already processed, these don’t care

8 Jens Bachmann, Martin Riedl, Johann Schuster, Markus Siegle

levels are resolved recursively in lines (8) and (9). Once the source state of a certain
immediate transition is encoded in S and the corresponding terminal node of the trigger
MTBDD is not 0, the elimination of S takes place in lines (11)-(22). In line (11) S is
encoded as target state. Line (12) calculates the immediate transitionsM IS

curr emanating
from S. Immediate loops may occur during the elimination process. They are calculated
in lines (13)-(14), eliminated from M IS

curr in line (15) and finally M IS
curr is rescaled in

lines (16)-(19) by the limit of the corresponding infinite geometric series. Lines (20)
and (21) redirect the Markovian and immediate transition systems according to M IS

curr.
The redirect subroutine is given in Fig. 3 (bottom). Line (2) determines the transitions
in M that end at the currently processed state and therefore have to be redirected. Here
the restriction sets all t-variables in M to the assignment given by state T . If there are
transitions to change, line (4) removes the transitions leading to state T from M and line
(5) adds the redirected transitions to M. Note that I depends only on t variables whereas
Mchanged only depends on s variables. Therefore the product of both again depends on
s and t variables.

4 Tool and Application case study

CASPA GUI

CASPA Core
Textual

Representation

Graphical
Representation

(XML-based)

import

export

e
x
e
c
u

te

load

visualize

load

save

o
u

tp
u

t

Fig. 4: CASPA Architecture

The CASPA Core component includes the parser
for the SPA language, the symbolic state space
generator and manipulator (including the elimina-
tion of vanishing states), as well as the analysis
components, most notably the numerical analysis
methods for computing steady-state and transient
solutions. Recently, the CASPA Core component
has been extended by a graphical user interface

(GUI) [2], such that the overall architecture is as shown in Fig. 4.

CASPA and its GUI extension now allow the user to
– specify and edit models graphically,
– import/export textual representations of CASPA models,
– serialise the GUI-model including its layout information,
– and to call the CASPA Core component to perform the model analysis.

The graphical specification of a system takes place on two layers:
– On System-Layer the overall model is represented as a rooted directed graph with sequential

processes as its leaves.
– On Process-Layer the sequential processes are represented as labelled transition diagrams.

Figure 5 and 6 are exemplary screenshots of parts of our case study model as one can
visualize or specify them using CASPA GUI. The details of the case study follow in the
next sections.

4.1 An accident and emergency department

As a case study, we consider the accident and emergency department (AED) of a large
hospital. Our model is based on the one described in [1], i.e. the basic structure and

An Efficient Symbolic Elimination Algorithm for CASPA 9

Fig. 5: CASPA GUI System Layer Example

Fig. 6: CASPA GUI Process Layer Example

behaviour, as well as the numerical parameters, are taken from there. Contrary to [1],
we model the AED as a three-level hierarchical SPA model as shown in Fig. 7a. This is
done in order to keep the state space at a manageable size, i.e. to avoid the construction
of the complete state space of the overall model.

In the high-level model (see Fig. 7b, which corresponds to Fig. 5, seen here as a
queueing network), the flow of patients (belonging to four different classes) through the
AED is shown. Patients with minor (major) injuries or illnesses belong to class 1 (2),
emergency patients requiring resuscitation belong to class 3 and patients yet to be classi-
fied belong to class 4. Patients enter the AED either through the reception, by (ordinary)
ambulance or by (emergency) ambulance blue call. While in the AED, it is possible for
patients to switch their class, e.g. moving from class 4 to class 1 or 2, from class 1 to
2 or from class 2 to 3. The high-level model contains the nodes “reception”, “assess-
ment room”, “ambulance nurse”, “accident and emergency unit (AEU)” and “resusci-
tation”, each of which is modelled as a multi-server queueing station for one or more
patient classes. A node’s behaviour is modelled by a multi-parameter CASPA process,
where a particular parameter is used to keep track of the current number of patients
of a particular class. The transition of patients from one node to another is modelled
by synchronising immediate actions, e.g. the action t rec2 ar4 models the transit of
a class 2 patient from the reception (rec) to the assessment room (ar) which he or
she enters as a class 4 patient. As an example, consider the “assessment room” process
shown in Fig. 8 (which is the textual version of Fig. 6). Since only class 4 patients enter

10 Jens Bachmann, Martin Riedl, Johann Schuster, Markus Siegle

LabRad
sub-submodel

Specialists
sub-submodel

C1

C2

C1

C2

AEU submodel

High-level submodel

C1

C2

C1

C2

C2

C1

C4

C2

C3

C1 C2

C2 C3

C1

C2

(a) Hierarchical structure

reception assessment
room

amulance
nurse

resusci-
tation

AEU

(b) High-level model

Fig. 7: AED model

ar(nar[max_ar]) :=
/* arriving from the reception as class 4 patient: */

[nar<max_ar] -> (*t_rec2_ar4,1*); ar(nar+1)
/* the assessment nurses perform their work, */
/* where a maximum of 3 assessment nurses are working concurrently */

[nar>0, nar<4] -> (work_ar,mu_ar*nar); ar_decide(nar)
[nar>0, nar>3] -> (work_ar,mu_ar*3); ar_decide(nar)

ar_decide(nar[max_ar]) :=
/* leaving the AED: */

[*] -> (*tau,0.1464*);ar(nar-1)
/* transfering to AEU as class 1 patient: */

[*] -> (*tau,0.7682*);(*t_ar4_aeu1,1*);ar(nar-1)
/* transfering to AEU as class 2 patient: */

[*] -> (*tau,0.0854*);(*t_ar4_aeu2,1*);ar(nar-1)

Fig. 8: CASPA code describing the activities in the assessment room

the assessment room, a single process parameter (nar) suffices to keep track of the
number of patients. Transitions into the assessment room are modelled by immediate
action t rec2 ar4, and transition from the assessment room to the AEU as class 1/2
patients are modelled by actions t ar4 aeu1 and t ar4 aeu2, respectively.

4.2 Hierarchical modelling approach

The AEU node of the high-level model is special in that it is the flow-equivalent of
the AEU submodel. The AEU submodel, similar to the high-level model, consists of
a number of interacting nodes, of which LabRad (lab test and radiology unit) and
Specialists (three different kinds of medical specialists) in turn are flow-equivalent
servers of two further sub-submodels.

For the analysis, we proceed as follows: In a first (top-down) step the effective
arrival rates at the AEU submodel are calculated by hand from the external patient arrival
rates at the high-level model, taking into account the routing probabilities and class
switching probabilities in the high-level model (this can be seen as solving the network’s
traffic equations). Similarly, at the next lower level of the hierarchy, from the arrival
rates at the AEU submodel, considering the routing and class switching probabilities in
the AEU model, the effective arrival rates at the LabRad and Spec sub-submodels are
obtained.

In a second (bottom-up) step, submodels are analysed and the analysis results used
to compute the class-dependent service rates of the corresponding node at the next

An Efficient Symbolic Elimination Algorithm for CASPA 11

Model stotal sMarkov tgen treach telim niter tsol

Specialists sub-submodel 14,641 14,641 0.019 0.020 – 340 0.637
LabRad sub-submodel 156,849 38,283 0.171 0.212 0.039 948 5.331
AEU submodel 10,936,950 1,409,286 0.038 1.644 1.097 859 181.378
high-level model 3,812,364 697,160 0.075 0.566 1.299 1013 101.901

Table 1: Empirical results for the AED model (all times given in seconds)

higher level of the hierarchy. This hierarchical procedure has the advantage that the
huge state space of the flattened overall model never has to be generated.

4.3 Empirical results

In this section, we present some empirical results which we obtained when analysing the
AED model on an Intel Xeon 3.06 GHz machine with 2 GB of main memory running
SUSE Linux version 9.1. For the steady-state analysis of the high-level model and the
submodels, the pseudo Gauss-Seidel method was used. This method is a compromise
between the methods of Jacobi and Gauss-Seidel and lends itself well to an MTBDD-
based (or hybrid symbolic-explicit) implementation, as first described in [12].

Table 1 shows the results. Column stotal gives the size of the reachable state space
including the vanishing states. Column sMarkov gives the size of the state space after
the vanishing states have been eliminated. Column tgen gives the time for generating
the symbolic representation from the process algebraic description, and columns treach
and telim show the times for reachability analysis and for the elimination of the vanish-
ing states (where a “–” in column telim indicates that the model does not contain any
immediate transitions). The last two columns provide information about the number of
iterations for the numerical method to converge (niter) and the total solution time (tsol).
All timing information is given in seconds. For the experiments, the maximum values
of process parameters, which determine the size of the state space, were chosen such
that the probability of stations being full (and thus blocked) is kept sufficiently small
(up to around 10 percent).

The dominating times are the ones for numerical analysis, but we think that a so-
lution time of around three minutes for a model with more than 10 million reachable
states and 1.4 million tangible states is quite acceptable. We point out that the time con-
sumed by the other steps, in particular the time for the new elimination algorithm, are
extremely small and almost negligible when compared to the numerical solution time.
This is a notable fact, as the major part of the models (except Specialists sub-submodel)
consists of immediate actions.

5 Conclusion

This paper described the current state-of-the-art of the SPA tool CASPA. The focus
was on the increased expressiveness of the tool’s modelling language which is gained
through the introduction of weighted immediate actions. A symbolic algorithm for the
elimination of vanishing states was described in detail, and empirical results showed
its high efficiency. The paper also touched on the improved usability of CASPA for
users not familiar with the syntax of stochastic process algebras, by shortly describ-
ing the recently added features for graphical model specification. As future work, we

12 Jens Bachmann, Martin Riedl, Johann Schuster, Markus Siegle

are currently developing an advanced model debugging feature, and we plan to inte-
grate additional numerical analysis algorithms, such as the one described in [13], into
CASPA.

A copy of CASPA may be requested by sending an email to one of the authors.

Acknowledgements: We would like to thank the authors of [1] for clarifying some
details of their AED model. We would further like to thank Deutsche Forschungsge-
meinschaft (DFG) who supported this work under grants SI 710/2 and SI 710/3.

References
1. S.W.M. Au-Yeung, P.G. Harrison, and W.J. Knottenbelt. A Queueing Network Model of

Patient Flow in an Accident and Emergency Department. In Proc. 20th Ann. European
Simulation and Modelling Conf., pages 60–67, Toulouse, France, 2006.

2. J. Bachmann. Entwurf und Implementierung eines graphischen Modelleditors und einer
Benutzerschnittstelle für das Werkzeug CASPA. Master’s thesis, Universität der Bundeswehr
München, Dept. of Computer Science 4 (in German), 2007.

3. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes with
nondeterminism, priorities, probabilities and time. Theoret. Comp. Science, 202:1–54, 1998.

4. E. Frank. Erweiterung eines MTBDD-basierten Werkzeugs für die Analyse stocchastischer
Transitionssysteme. Int. Report, Univ. of Erlangen, Computer Science 7 (in German), 2000.

5. H. Hermanns. Interactive Markov Chains : The Quest for Quantified Quality. Springer
LNCS 2428, 2002.

6. H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP.
Proc. of PAPM’94, Arbeitsberichte des IMMD, 27(4):71–88, 1994.

7. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

8. M. Kuntz and M. Siegle. Deriving symbolic representations from stochastic process algebras.
In Proc. Process Algebra and Probabilistic Methods (PAPM-PROBMIV’02), pages 188–206.
Springer, LNCS 2399, 2002.

9. M. Kuntz and M. Siegle. Symbolic Model Checking of Stochastic Systems: Theory and
Implementation. In Proc. of 13th Int. SPIN Workshop, pages 89–107. Springer, LNCS 3925,
2006.

10. M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance and Dependability Evalua-
tion with the Tool CASPA. In Proc. of First European Performance Engineering Workshop
(EPEW), FORTE’04 Workshop, pages 293–307. Springer LNCS 3236, 2004.

11. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with
generalized stochastic Petri nets. Wiley, 1995.

12. D. Parker. Implementation of symbolic model checking for probabilistic systems. PhD thesis,
School of Computer Science, Faculty of Science, University of Birmingham, 2002.

13. J. Schuster and M. Siegle. A symbolic multilevel method with sparse submatrix representa-
tion for memory-speed tradeoff. In 14. GI/ITG Conf. Measurement, Modelling and Evalua-
tion of Comp. and Communic. Systems (MMB08), pages 191–205. VDE Verlag, 2008.

14. M. Siegle. Behaviour analysis of communication systems: Compositional modelling, com-
pact representation and analysis of performability properties. Shaker-Verlag, 2002.

15. C. Tofts. Processes with probabilities, priority and time. Formal Aspects of Computing,
6(5):536–564, September 1994.

16. E. Werner. Leistungsbewertung mit Multi-terminalen Binären Entscheidungsdiagrammen.
Master’s thesis, Univ. Erlangen, Computer Science 7 (in German), 2003.

