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Abstract— This note describes the tool CASPA, a new perfor- process algebra where all actions have an exponentialy dis
mance evaluation tool which is based on a Markovian stochaist  tributed delay. The language provides operators for prefixi
process algebra. CASPA uses multi-terminal binary decisio choice, parallel composition and hiding. Infinite (i.e. gk

diagrams (MTBDD) to represent the transition systems un- . o . .. .
derlying a given process algebraic specification. All phaseof behaviour can be specified with the help of defining equations

modelling, from model construction via numerical analysisto (instead of employing an explicit recursion operator). The
the computation of performance measures, are based entirglon  technique used for symbolic model representation (cf. Béc.

this symbolic data structure. works only for finite state spaces. Therefore the grammar of
the input language is such that recursion over static operat
|. INTRODUCTION (i.e. parallel composition and hiding) is not allowed, whic

Symbolic data structures, such as binary decision diagraﬁ%sureS that the underlying state space is finite.

(BDD) [1] and variants thereof have proved to be suitable for CASPA allows the specification of parameterised processes,
the efficient generation and compact representation of vér§- Processes which carry one ore more integer parameters.
large state spaces and transition systems. It has been shéWi$ feature is very useful for describing the behaviour of
that in the context of a compositional model specificatiodue€ueing, counting, or generally indexed processes. ithi
formalism such as process algebra, the size of the symbdlicParameterised process, the enabling of actions may be
representation can be kept within linear bounds, even ifithe conditioned on the current value of the process parameters.
derlying state space grows exponentially [2]. The key tchsuc We demonstrate the use of the CASPA modelling language
compact representation is the exploitation of the comjmrsit by means of a small example which is shown in Fig. 1. It is a
structure of a given specification [3], [4], [5]. It is alsodwn queueing system, consisting of two arrival processes r{inte
that in addition to functional analysis, performance asialy arrival times have Erlang-3 and Erlang-2 distribution) and
and the verification of performability properties can alse ba service center with finite capacity buffer and exponential
carried out on such symbolic representations [3], [6], [3], service times. In the first four lines the rate parametereslu
[8]. and the buffer size are defined.

In this note, we describe the new tool CASPA [9] which
offers a Markovian stochastic process algebra language for
model specification. CASPA generates a symbolic model rep-
resentation, which is based on multi-terminal binary deais
diagrams (MTBDD) [10], [11], directly from the high-level
model, without generating transition systems as an inter-CASPA supports the definition and computation of three
mediate representation. In addition to specifying the rhoddifferent types of performance measures:
the CASPA modelling language allows the user to specify A state measure is defined as the probability of the system
performance measures of interest. Numerical analysis ameing in a specific state or in a well-defined subset of the
computation of measures are also carried out directly on tsgate space. Such sets of states are defined by referencing to
symbolic representation of the transition rate matrix o thprocess names, thereby possibly using Boolean operatdrs an
underlying labelled CTMC. conditioning on process parameter ranges.

To our knowledg(_a, CASPA is_ the ﬂrst stochastic process p throughput measure is defined as the mean number of
algebra tool whose implementation relies completely on-symccurences of a specific named action per unit of time.

bolic data structures. A mean value measure is defined as the expected value of
Il. THE MODELLING LANGUAGE a certain process parameter, taken over all reachables state

The modelling language of CASPA is a restricted version For the queueing system example from Sec. Il, the measures

. escribing the probability of the buffer being full, the d
of the language supported by TIPPtool [12]. It is a stocbas 'hroughpgt of rfctiorser \)//e and the mean gumber o?ﬁﬁs in

This work is supported by the German DFG-funded project BIBA the server are defined in the last three lines of Fig. 1.

IIl. SPECIFICATION OF PERFORMANCE METRICS



/*** rate and constant definitions ***/
rate | anbdal = 0.5;

rate |lanmbda2 = 0. 1;

rate nu = 4. 3;

int max = 15;

[*** system specification ***/
System := ( Arrivall |[]| Arrival2 ) |[enq]| Server(0)

Arrivall := (tau, |l anbdal); (tau,lanbdal); (enq,!|anbdal); Arrivall
Arrival 2 := (tau, |l anbda2); (enq,|anbda2); Arrival?2
Server(n [max]) :=[n < max] -> (enq, 1); Server(n+l)

[n > 0] -> (serve,nu); Server(n-1)

[*** measure definition ***/

stat eneasure Buffer full Server(n = max)
t hr oughput measure Servicerate serve
nmeanval ue Occupancy Server (n)

Fig. 1. Specification of a small queuing system example

IV. CONSTRUCTION OF THE SYMBOLIC STATE SPACE from which the performance measures of interest are then
REPRESENTATION calculated. The rate matrix of the CTMC is obtained from

CASPA translates a given process algebraic specificatif}f Sympolic representation of the transition system by ab-
directly to an MTBDD-based symbolic representation of thefracting from the action labels. This abstr.actlon canlyasi
underlying state space and transition system. It uses ttizocu Performed with the help of MTBDD operations, and the result
library [13] which provides support for the constructiondan'S & Symbolic representation of the rate matrix. ,
manipulation of BDD-based data structures. The transiatig F°T the numerical computation of the steady-state probabil
implements the denotational semantics described in [1idh, W“?T{_CAE’PA uses the iterative sol;]/grs code thlatb\llva? deed:]op
some extensions and optimisations. The basic idea of thIISth € ERISM perje(_:rt [71, V\Ii IC IISd avalr? e rlom _the
translation is as follows: In a first step, the parse tree ef th web page [15]. To our knowledge, these algorithms
process algebraic specification at hand is constructed fFee are currt_ently the fastest available implementation of MTBD
MTBDD representation of the underlying transition relatie a5€d Imefak: zy_sdten;rs scl)l\t/)erlf.dThey rely on ;he ggvznped
constructed in a compositional fashion, starting with sedial CONCePt of hybrid offset-labelled MTBDDs as described in

processes (i.e. processes which do not contain the para“eqc])' h tor of steadv-stat babilities has b b
composition operator) which are located close to the leaves nce the vector of steady-state probabiiities has been ob-

of the parse tree. Finally the MTBDD for the overall procesB'm_ad’"the pehrformanfce measures ofblnterest arz con;puted.
is built from the MTBDDs of its components by applying asically, each type of measures can be computed as the sum

the rules for symbolic parallel composition (see, e.g, [5 r weighted sum of certain state probabilities. These expre

[8]). This construction procedure is completely symbolda lons can be computed efficiently on the basis of MTEDD
compositional, i.e. each sub-process of the specification

qperations, using the MTBDDs which we mentioned at the

represented by an MTBDD, which is then used as an opera‘?ﬂ)d of Sec. IV.
during the construction of the higher-level processes.

S . . VI. CONCLUSION AND FUTURE WORK
Already during its construction, the parse tree is anndtate he fi i ¢ has | )
with information concerning the performance measures to be! N€ first version of CASPA has just been completed and is

derived. For example, nodes associated with a process nafigently being tested systematically on the basis of sgver
that occurs in a state measure specification are marked, gighdard case studies from the literature. While it is still
subsequently a BDD is constructed which encodes exacfgf €arly for a comprehensive assessment of the tool, we
the states which are relevant for that state measure. NoGg8 already state the following: State space constructon a
associated with a parameterised process for which a mé§flised in CASPA is very efficient, it is several orders of
value has to be computed are also marked, and subsequerﬁ'ﬁgn't“de faster than that of TIPPtool which uses an explici

an MTBDD is constructed which encodes the relevant stafédld therefore much less space efficient) representation of
and associated parameter value the state space and transition system. As an example, for

a certain instance of the Kanban system from [17] CASPA

needs 0.29 seconds to generate the potential state space and

another 2.17 seconds to construct the transition relatioong

the 2,546,432 reachable states (these times were obtained
In its current version, CASPA supports the computation @in a SUN UltraSPARC workstation running at 500 MHz).

the steady-state probability vector of the underlying CTMCO'he numerical solution with the algorithms from PRISM

V. NUMERICAL ANALYSIS AND COMPUTATION OF
PERFORMANCE MEASURES



achieves an efficiency which is almost comparable to sthte-(17]
the-art sparse solvers. Once the state probabilities hage b
computed, the derivation of performance measures is vety fahg]
in fact it is much faster than for TIPPtool.

For the future we plan to extend CASPA by a transient anal-
ysis module, in order to enable the computation of transient
performance measures. We also plan to develop a userdfyiend
graphical user interface to replace the current command-
line interface, and to support modelling experiments with
automatically varying model parameters and graphicallaysp
of results. As a long-term goal, we are hoping to integrate
CASPA with our model checker ETMCC [18], a software tool
which supports the verification of performability propestiof
stochastic systems.
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