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Abstract— This note describes the tool CASPA, a new perfor-
mance evaluation tool which is based on a Markovian stochastic
process algebra. CASPA uses multi-terminal binary decision
diagrams (MTBDD) to represent the transition systems un-
derlying a given process algebraic specification. All phases of
modelling, from model construction via numerical analysis to
the computation of performance measures, are based entirely on
this symbolic data structure.

I. I NTRODUCTION

Symbolic data structures, such as binary decision diagrams
(BDD) [1] and variants thereof have proved to be suitable for
the efficient generation and compact representation of very
large state spaces and transition systems. It has been shown
that in the context of a compositional model specification
formalism such as process algebra, the size of the symbolic
representation can be kept within linear bounds, even if theun-
derlying state space grows exponentially [2]. The key to such
compact representation is the exploitation of the compositional
structure of a given specification [3], [4], [5]. It is also known
that in addition to functional analysis, performance analysis
and the verification of performability properties can also be
carried out on such symbolic representations [3], [6], [7],[5],
[8].

In this note, we describe the new tool CASPA [9] which
offers a Markovian stochastic process algebra language for
model specification. CASPA generates a symbolic model rep-
resentation, which is based on multi-terminal binary decision
diagrams (MTBDD) [10], [11], directly from the high-level
model, without generating transition systems as an inter-
mediate representation. In addition to specifying the model,
the CASPA modelling language allows the user to specify
performance measures of interest. Numerical analysis and
computation of measures are also carried out directly on the
symbolic representation of the transition rate matrix of the
underlying labelled CTMC.

To our knowledge, CASPA is the first stochastic process
algebra tool whose implementation relies completely on sym-
bolic data structures.

II. T HE MODELLING LANGUAGE

The modelling language of CASPA is a restricted version
of the language supported by TIPPtool [12]. It is a stochastic
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process algebra where all actions have an exponentially dis-
tributed delay. The language provides operators for prefixing,
choice, parallel composition and hiding. Infinite (i.e. cyclic)
behaviour can be specified with the help of defining equations
(instead of employing an explicit recursion operator). The
technique used for symbolic model representation (cf. Sec.IV)
works only for finite state spaces. Therefore the grammar of
the input language is such that recursion over static operators
(i.e. parallel composition and hiding) is not allowed, which
ensures that the underlying state space is finite.

CASPA allows the specification of parameterised processes,
i.e. processes which carry one ore more integer parameters.
This feature is very useful for describing the behaviour of
queueing, counting, or generally indexed processes. Within
a parameterised process, the enabling of actions may be
conditioned on the current value of the process parameters.

We demonstrate the use of the CASPA modelling language
by means of a small example which is shown in Fig. 1. It is a
queueing system, consisting of two arrival processes (inter-
arrival times have Erlang-3 and Erlang-2 distribution) and
a service center with finite capacity buffer and exponential
service times. In the first four lines the rate parameter values
and the buffer size are defined.

III. SPECIFICATION OF PERFORMANCE METRICS

CASPA supports the definition and computation of three
different types of performance measures:

A state measure is defined as the probability of the system
being in a specific state or in a well-defined subset of the
state space. Such sets of states are defined by referencing to
process names, thereby possibly using Boolean operators and
conditioning on process parameter ranges.

A throughput measure is defined as the mean number of
occurences of a specific named action per unit of time.

A mean value measure is defined as the expected value of
a certain process parameter, taken over all reachable states.

For the queueing system example from Sec. II, the measures
describing the probability of the buffer being full, the expected
throughput of actionserve, and the mean number of jobs in
the server are defined in the last three lines of Fig. 1.



/*** rate and constant definitions ***/
rate lambda1 = 0.5;
rate lambda2 = 0.1;
rate mu = 4.3;
int max = 15;

/*** system specification ***/
System := ( Arrival1 |[]| Arrival2 ) |[enq]| Server(0)
Arrival1 := (tau,lambda1); (tau,lambda1); (enq,lambda1); Arrival1
Arrival2 := (tau,lambda2); (enq,lambda2); Arrival2
Server(n [max]) := [n < max] -> (enq,1); Server(n+1)

[n > 0] -> (serve,mu); Server(n-1)

/*** measure definition ***/
statemeasure Buffer full Server(n = max)
throughputmeasure Service rate serve
meanvalue Occupancy Server(n)

Fig. 1. Specification of a small queuing system example

IV. CONSTRUCTION OF THE SYMBOLIC STATE SPACE

REPRESENTATION

CASPA translates a given process algebraic specification
directly to an MTBDD-based symbolic representation of the
underlying state space and transition system. It uses the CUDD
library [13] which provides support for the construction and
manipulation of BDD-based data structures. The translation
implements the denotational semantics described in [14], with
some extensions and optimisations. The basic idea of this
translation is as follows: In a first step, the parse tree of the
process algebraic specification at hand is constructed. Then the
MTBDD representation of the underlying transition relation is
constructed in a compositional fashion, starting with sequential
processes (i.e. processes which do not contain the parallel
composition operator) which are located close to the leaves
of the parse tree. Finally the MTBDD for the overall process
is built from the MTBDDs of its components by applying
the rules for symbolic parallel composition (see, e.g, [5],
[8]). This construction procedure is completely symbolic and
compositional, i.e. each sub-process of the specification is
represented by an MTBDD, which is then used as an operand
during the construction of the higher-level processes.

Already during its construction, the parse tree is annotated
with information concerning the performance measures to be
derived. For example, nodes associated with a process name
that occurs in a state measure specification are marked, and
subsequently a BDD is constructed which encodes exactly
the states which are relevant for that state measure. Nodes
associated with a parameterised process for which a mean
value has to be computed are also marked, and subsequently
an MTBDD is constructed which encodes the relevant states
and associated parameter value.

V. NUMERICAL ANALYSIS AND COMPUTATION OF

PERFORMANCE MEASURES

In its current version, CASPA supports the computation of
the steady-state probability vector of the underlying CTMC,

from which the performance measures of interest are then
calculated. The rate matrix of the CTMC is obtained from
the symbolic representation of the transition system by ab-
stracting from the action labels. This abstraction can easily be
performed with the help of MTBDD operations, and the result
is a symbolic representation of the rate matrix.

For the numerical computation of the steady-state probabili-
ties, CASPA uses the iterative solvers code that was developed
within the PRISM project [7], which is available from the
PRISM web page [15]. To our knowledge, these algorithms
are currently the fastest available implementation of MTBDD-
based linear systems solvers. They rely on the advanced
concept of hybrid offset-labelled MTBDDs as described in
[16].

Once the vector of steady-state probabilities has been ob-
tained, the performance measures of interest are computed.
Basically, each type of measures can be computed as the sum
or weighted sum of certain state probabilities. These expres-
sions can be computed efficiently on the basis of MTBDD
operations, using the MTBDDs which we mentioned at the
end of Sec. IV.

VI. CONCLUSION AND FUTURE WORK

The first version of CASPA has just been completed and is
currently being tested systematically on the basis of several
standard case studies from the literature. While it is still
too early for a comprehensive assessment of the tool, we
can already state the following: State space construction as
realised in CASPA is very efficient, it is several orders of
magnitude faster than that of TIPPtool which uses an explicit
(and therefore much less space efficient) representation of
the state space and transition system. As an example, for
a certain instance of the Kanban system from [17] CASPA
needs 0.29 seconds to generate the potential state space and
another 2.17 seconds to construct the transition relation among
the 2,546,432 reachable states (these times were obtained
on a SUN UltraSPARC workstation running at 500 MHz).
The numerical solution with the algorithms from PRISM



achieves an efficiency which is almost comparable to state-of-
the-art sparse solvers. Once the state probabilities have been
computed, the derivation of performance measures is very fast,
in fact it is much faster than for TIPPtool.

For the future we plan to extend CASPA by a transient anal-
ysis module, in order to enable the computation of transient
performance measures. We also plan to develop a user-friendly
graphical user interface to replace the current command-
line interface, and to support modelling experiments with
automatically varying model parameters and graphical display
of results. As a long-term goal, we are hoping to integrate
CASPA with our model checker ETMCC [18], a software tool
which supports the verification of performability properties of
stochastic systems.
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