
A Multilevel Algorithm based on Binary Decision
Diagrams

Johann Schuster, Markus Siegle

Universität der Bundeswehr München

Institut für Technische Informatik

{Johann.Schuster, Markus.Siegle}@unibw.de

Abstract: In this paper, a new variant of the mul-
tilevel algorithm for computing the steady-state solu-
tion of a continuous-time Markov chain is proposed.
The method is integrated into a symbolic framework,
where the CTMC is represented in a compact way using
multi-terminal binary decision diagrams (MTBDD). It
is shown how to represent the original CTMC and sev-
eral aggregated chains within the same decision dia-
gram, where particular attention is devoted to the ques-
tion of how to deal with unreachable states. Some pre-
liminary empirical results are provided which indicate
that the method has the potential to solve very large
Markov chains in an efficient manner.

Keywords: Markov chain, numerical analysis, aggre-
gation, multilevel algorithm, Binary Decision Diagram.

I. Introduction

Markov chains are very popular in the area of model-
based performance and dependability evaluation of
computer and communication systems. Today, sev-
eral well-understood high-level modelling formalisms
are available for specifying such models, and all phases
of Markov chain generation and analysis are supported
by powerful and user-friendly tools. State space ex-
plosion is an adverse phenomenon that occurs during
the modelling of complex systems, especially of those
consisting of several concurrent subsystems. In view of
this situation, researchers have developed novel tech-
niques for representing Markov chains with the help of
decision diagram data structures, which make it pos-
sible to construct and manipulate Markov chains of
immense size. However, even though the generation
of billions of states is only a matter of seconds (us-
ing techniques such as the ones described in [5], [16]),
calculating state probabilities by performing numerical
analysis is still a serious bottleneck. In order to allevi-
ate this bottleneck, this paper proposes a new version
of the multilevel algorithm for calculating steady-state
probabilities, which is based entirely on decision dia-
grams. Since data structures such as multi-terminal
binary decision diagrams (MTBDD) [1], [9] offer a nat-
ural structuring of the transition matrix, they seem to
be quite ideally suited for block aggregation methods.

A. Related work

Many different numerical methods exist for calculat-
ing the steady-state probability vector of a continuous-
time Markov chain (CTMC). Apart from standard it-

erative methods such as Jacobi, Gauss-Seidel or SOR,
methods based on the aggregation and disaggregation
of the states of the Markov chain (so-called AD meth-
ods) were proposed already in the 1970ies. Among
these “classical” AD methods are the method of Taka-
hashi [24], the method of Courtois [8] (aimed at
nearly completely decomposable Markov chains) and
the method of Koury/McAllister/Stewart [13]. An
overview of these techniques may be found in [23]. Re-
cently, Bazan et al. [2] proposed a self-correcting aggre-
gation technique, where several approximate first level
aggregations are corrected by results from common sec-
ond level aggregations.

In the 1990ies, Horton and Leutenegger developed
a multilevel AD method, inspired by multigrid solvers
which had turned out to be very effective for the so-
lution of partial differential equations [12]. Buchholz
proposed a multilevel solution method for very large
structured Markov models whose generator matrix is
represented compactly as a Kronecker expression [3].
This work was carried further in [4] where hierarchical
Kronecker structures and different multigrid types were
studied.

For Markov chains represented symbolically by bi-
nary decision diagrams, Parker was the first to develop
numerical analysis techniques whose speed was compet-
itive with those based on explicit data structures [20].
He introduced a hybrid approach, in which the matrix
is represented symbolically while the vectors are stored
as ordinary arrays, and showed how to best exploit the
available memory by replacing parts of the decision dia-
gram by explicit data structures (i.e. sparse matrices).
Based on Parker’s work, Mehmood developed a sym-
bolic out-of-core method where only a small part of
the vector resides in main memory while the remaining
part is kept on disk [18]. Lampka et al. were able to
speed up Parker’s approach by employing a novel type
of decision diagram [17].

To the best of our knowledge, multilevel analysis in
connection with symbolic decision diagram data struc-
tures has not been investigated before.

B. Organisation

The rest of this paper is structured as follows: Sec. II
provides the necessary background material on the mul-
tilevel method and on the symbolic representation of
Markov chains. Sec. III, the core section of the pa-
per, presents new data structures and algorithms which



make it possible to integrate the multilevel aggrega-
tion approach smoothly into a symbolic framework. In
Sec. IV, some empirical results are presented and dis-
cussed, and Sec. V concludes the paper.

II. Preliminaries

A. The multilevel method

Let Q be the generator matrix of an irreducible finite-
state CTMC with n states. The unknown vector ~π of
its steady-state probabilities is the unique solution of
the linear system (further called system),

~πQ = ~0 (1)

which satisfies the normalising condition
∑

i πi = 1.
The multilevel method is a method for solving the
above equation by recursively aggregating the original
system, thereby obtaining systems of smaller dimen-
sion. For the moment, only a single aggregation step
is considered: Let the current (fine) state space with
n states i, j, . . . be partitioned into N macro states
I, J, . . ., where N < n. Assuming that ~π(l) is the
current approximation to the steady-state vector at
the fine level l, the transition rates of the aggregated
(coarse) Markov chain at level l − 1 are computed ac-
cording to the following aggregation equation:

q
(l−1)
IJ =

∑

i∈I π
(l)
i

∑

j∈J q
(l)
ij

∑

i∈I π
(l)
i

(2)

and the initial approximation to the steady-state vector

of the coarse system is obtained by setting π
(l−1,in)
I =

∑

i∈I π
(l)
i . From ~π(l−1,in) an improved approxima-

tion ~π(l−1,out) is then computed by carrying out some
smoothing iteration steps (of the Jacobi, Gauss-Seidel
or SOR scheme, for example) at the coarse level and/or
by possibly aggregating the Markov chain even further.
In the following disaggregation step, the improved ap-
proximation on the coarse level is used to correct the
previous approximation at the fine level. All micro
states i belonging to the same macro state I are cor-
rected by the same factor according to the disaggrega-
tion equation

π
(l,new)
i =

π
(l−1,out)
I

π
(l−1,in)
I

π
(l,old)
i (3)

Fig. 1 shows the pseudo code of the basic multilevel al-
gorithm. In line (2), if the lowest level has been reached
the system is solved (approximately or exactly) without
further recursion. Otherwise, in line (4), some smooth-
ing steps are carried out before the aggregated system
is computed in line (5). Line (6) contains the recursive
call to the algorithm at the next lower (i.e. coarser)
level. Its results are used in lines (7-8) to correct the
solution at level l, which is followed by some further
smoothing steps in line (9).

B. MTBDD-based Markov chain representation

This subsection introduces the MTBDD-based rep-
resentation of CTMCs with the help of a simple exam-

(1) ml(l, Q(l), ~π(l,in))

(2) if l = 0 then solve ~π(l,out)Q(l) = ~0
(3) else
(4) ~π(l,old) := pre smoothing(~π(l,in))
(5) compute ~π(l−1,in) and Q(l−1) acc. to eq. (2)

(6) ml(l − 1, Q(l−1), ~π(l−1,in))
(7) for all I

(8) for all i ∈ I compute π
(l,new)
i acc. to eq. (3)

(9) ~π(l,out) := post smoothing(~π(l,new))
(10) return

Fig. 1. The multilevel algorithm

RM =









0 λ 0 λ

0 0 0 ν

0 0 0 0
µ ν 0 0









Fig. 2. An example Markov chain

ple. For more detailed information on the use of MTB-
DDs for compactly encoding CMTCs see [20], [22], [19].
Consider the Markov chain M whose transition rate
matrix RM is shown in Fig. 2. This CTMC has four
states (numbered 0,1,2,3) of which only three are actu-
ally reachable, i.e. state 2 is unreachable. Table I shows
how the individual transitions of M can be encoded
by bitstrings, where ~s and ~t are bit vectors (vectors of
Boolean variables) of appropriate length nV = 2. The
s-variables encode the source state, and the t-variables
encode the target state of a transition. Column headed
“path” contains the shuffled concatenation of the s-
and t-values, which corresponds to the variable order-
ing used in the decision diagram. Such an interleaved
ordering is a commonly accepted heuristic which yields
not necessarily optimal but provable compact decision
diagrams [10]. The MTBDD M encoding CTMC M
is shown in Fig. 3 (a). Its non-terminal nodes are
labelled with Boolean variables from the ordered set
{s1, t1, s2, t2}, and its terminal nodes carry the transi-
tion rates. Each path through the MTBDD, starting
at the root and ending in a non-zero terminal node
encodes a valid transition of M, where dashed edges
correspond to the Boolean value 0 and solid edges cor-
respond to the Boolean value 1. Starting from a fixed
node, the successor reached by the dashed line will be
called the else-successor, the node reached by the solid
line will be called the then-successor.

~s ~t path rate
00 01 0001 λ

00 11 0101 λ

01 11 0111 ν

11 00 1010 µ

11 01 1011 ν

TABLE I: Binary encoding of CTMC M



t2

s2

t1

s1

λ ν µ

(a)

λ ν µ

1 0 0 1

1 1 0

2 2

2

(b)

Fig. 3. MTBDD representation of CTMC M from Fig. 2

s2

s1

1

2

1 0

Fig. 4. Offset-labelled BDD reach representing the reachability
set of M from Fig. 2

B.1 Offset-labelling

When generating a Markov chain from a high-level
modelling formalism, thereby encoding states as bit-
strings of length nV , it is very common that certain
such patterns correspond to unreachable states. In
fact, symbolic algorithms are often employed in order
to determine the set of reachable states, which may be
only a very small subset of the so-called potential state
space. Tools such as PRISM [15], [21], CASPA [14]
and the Moebius pZDD-engine [17] contain such sym-
bolic reachability schemes. During numerical analysis,
in order not to waste memory space, the iteration vec-
tors should be stored as arrays whose size corresponds
to the number of reachable states nr (not the number
of potential states!). Therefore it is necessary to con-
struct a mapping which maps bitstrings from the po-
tential state space {0, 1, . . . , 2nV − 1} to the dense set
{0, 1, . . . , nr − 1}. An order-preserving such mapping
can be achieved by enriching the MTBDD with offsets
which may be computed by an algorithm described in
[20]. More precisely, first a BDD reach encoding the
set of reachable states is computed and labelled by off-
sets. Using those offsets, the MTBDD M encoding
the transitions of the CTMC is then enhanced by off-
sets in a double fashion, i.e. both for the s- and for
the t-variables. Returning to the example, the offset-
labelled BDD reach representing the reachability set of
M is shown in Fig. 4. From this BDD, it is possible,
for example, to calculate the index of state 11 (binary
representation) as 2+0 = 2. The offset-labelled version
of MTBDD M is shown in Fig. 3 (b). (The t2-labelled
node at the bottom left has to be duplicated in this
example since it can be reached via two different paths
with different t2-offsets.) During traversal of a path
of the offset-labelled MTBDD, the index of the source
state of the encoded transition may be determined by
adding all offsets of s-nodes which are left via a 1-valued
(solid) edge. Likewise, the index of the target state may

be determined by adding all offsets of t-nodes which are
left via a 1-valued edge.

III. Aggregation of the DD

In the following, the data structures and algorithms
for the symbolic multilevel algorithm are presented. It
will turn out that all the aggregated matrices can be
added to the MTBDD without having to change the
basic structure of the diagram, which will result in a
small time and memory overhead for the aggregation
process. Below, the term fine system will be used for
the given, not aggregated system, while coarse system
will mean an aggregated system. Furthermore, let the
set of reachable states of the Markov chain be stored in
a BDD reach. Usually in a BDD nodes with identical
then- and else-successors are eliminated, but for com-
patibility with the given algorithms it is assumed that
in the paths leading to the terminal 1-node of reach

all don’t care nodes are inserted explicitly. This is also
done in [20] in order to store offset information in these
nodes.

For an efficient implementation of the aggregation
procedure in an MTBDD environment it is necessary to
use macro states which combine 2i neighbouring states
of the potential state space. In terms of BDD reach

this means that for one aggregation step i variables are
aggregated, starting at the leaves of the graph.

To be consistent with the ordinary multilevel algo-
rithm we use the following convention: With the no-
tations of section II, fix a number of levels l to get a
hierarchy of the fine system and l aggregated systems.
Each level i ∈ {l− 1, . . . , 0} in the multilevel algorithm
is assigned to a variable level, the level l corresponds
to the terminal nodes of BDD reach. In order to avoid
confusion, in the following, aggregation levels referenc-
ing the algorithm in Fig. 1 will be called aggregation
level or agg level, while the term aggregation variable
level or agg var level will be used for aggregation vari-
able levels in BDD reach.

The example given in Fig. 5 (a) indicates that the
mapping from aggregation levels to aggregation vari-
able levels is well defined: Aggregation level 2 corre-
sponds to the fine system, i.e. the constant level of BDD
reach. The aggregation level 1 reduces the fine system
by removing variable s3, aggregation level 0 takes the
result of aggregation 1 and removes variable s2.

As the assignment above is in fact a bijection, both
aggregation levels and aggregation variable levels could
be used to describe the symbolic multilevel algorithm.
For simplicity, the algorithms will always be described
using the aggregation variable levels.

Aggregating a MTBDD according to its variables
is not perfectly symmetric. It depends on how many
reachable states are within one partition of the poten-
tial state space. Aggregating only unreachable states
will lead to an unreachable state in the aggregate.
Fig. 5 (b) sketches the aggregation idea using the BDD
reach from Fig. 5 (a). The arrows indicate how the el-
ements in the probability vectors are summed up in the
two aggregation steps. Unreachable states are crossed



������������������������������������������

0

1

2
0 3

0

0

1 2 4 5

1 2

1

s1

s2

s3

(a) (b)

1

reach agg levelprob. vectorsvariable

Fig. 5. Aggregation process

out. The numbers under the vectors are the indices of
the elements in the vector of reachable states. The ag-
gregation scheme is given by the pattern of reachable
and unreachable states.

The following subsections provide the necessary ex-
tensions to the MTBDD structure and the correspond-
ing algorithms for performing multilevel cycles.

A. Multi-offset labelling

For the aggregations of the solution vector and the
iteration matrix it is necessary to provide BDD reach

with offset information of the fine and all aggregated
systems.

The offset labelling algorithm in Fig. 6 is basically
the same as the one given in [20]. The constant ZERO
denotes the terminal zero node, the constant FINAL
is the variable level where the recursion shall bottom
out. The algorithm is identical to the one in [20] when
setting FINAL to the level for the constants in the
MTBDD. Otherwise, when FINAL is set to an aggrega-
tion level, nontrivial subgraphs (i.e. subgraphs finally
leading to the terminal 1 node) starting with nodes in
the FINAL level play the role of the terminal 1 node.

Note that once the algorithm has finished for a cer-
tain FINAL level, for further calculations only the else-
offsets and the total number of reachable states are sig-
nificant. So after a reset the then-offsets may be reused
for calculating the offsets of the next system. The offset
nodes provide arrays for the else-offsets and one entry
for a then-offset.

Depending on the number of systems one MTBDD
variable level belongs to, different numbers of offsets
have to be stored. For example, the root node always
has l+1 offsets, while the nodes up to the variable level
corresponding to the first aggregation level always carry
the offsets of the fine system only.

For the example BDD reach in Fig. 5 (a) the multi-
offset labelling is shown in Fig. 7. The nodes for s1 carry
from left to right offsets for the fine level, aggregation
level 1 and 0, while nodes for s2 only have offsets for
the fine level and aggregation level 1, and so on.

B. Aggregating a vector

Once the BDD reach is multi-offset labelled, the ag-
gregation of an iteration vector can be performed with
the algorithm shown in Fig. 8. As the given algorithm
only sums up the probability masses of single states be-
longing to the same aggregate, the coarse vector has to

(1) label(node, si)
(2) if (node=ZERO)
(3) return 0
(4) if (si=FINAL)
(5) return 1
(6) if (node’s offsets not calculated)
(7) node.then off := label(node.then, si+1)
(8) node.else off[system] := label(node.else, si+1)
(9) return node.then off+node.else off[system]

Fig. 6. Offset labelling algorithm

1

2 21 1

2 1 1

11

s1

s2

s3

Fig. 7. Multi-offset labelling

be initialised with zeroes.
Let S be the variable level of the system to be aggre-

gated and D the variable level of the aggregated system.
Set iS and iD to the corresponding indices in the offset
arrays. Note that iD = iS + 1 as only neighbouring
levels can be aggregated.

The invocation of agg vector(root(reach),0,0,s1) per-
forms the aggregation. The algorithm basically calcu-
lates the correct offsets for the summations. Until the
D level is reached, in lines (7-10) both the fine and
the coarse offsets are modified. Between D and S level
in lines (11-13) only the fine offset is modified. When
reaching the S level, lines (4-6) perform the summation
according to the calculated offsets. In lines (2-3) un-
reachable subgraphs are skipped, as they either remain
unreachable after aggregation or do not contribute to
the aggregtion with a reachable state.

C. Aggregated iteration matrix

From the offset labelled BDD reach it is possible to
derive the multi-offset labelled MTBDD of the itera-
tion matrix from the ordinary MTBDD of the iteration
matrix. The basic algorithm is the same as in [20].
The main difference is that in the generated MTBDD
not the actual offset values but rather pointers to the
multi-offset arrays are stored.

During the construction process for every node two
pointers to BDD reach are stored: One for the s and
one for the t variables. As these pointers represent
the whole set of offsets corresponding to this node, the
usual comparison may be used to detect offset clashes
and will be sufficient: A node to be inserted in the offset
labelled MTBDD for the iteration matrix is equal to
another node on the same level if and only if the node
and its offset pointer coincide. Equal nodes won’t be
re-inserted when constructing the multi-offset labelled
MTBDD while unequal nodes have to be inserted.



(1) agg vector(node, offset, coarse offset, si)
(2) if (node = ZERO)
(3) return
(4) else if (level = S)
(5) coarse vector[coarse offset]+=vector[offset]
(6) return
(7) else if (level < D)
(8) agg vector(node.else, offset,

coarse offset, si+1)
(9) agg vector(node.then, offset+node.else off[iS],

coarse offset+node.else off[iD], si+1)
(10) return
(11) else if (D ≤ level < S)
(12) agg vector(node.else, offset,

coarse offset, si+1)
(13) agg vector(node.then, offset+node.else off[iS],

coarse offset, si+1)
(13) return

Fig. 8. Vector aggregation algorithm

3

6 2

2 2
2 2

2

s1

s2

t1

t2

3 6 2

β

βα

γ

γ δ

Fig. 9. Aggregation in a MTBDD

An example of the aggregation step is shown in
Fig. 9. The multi-offset labelling is not shown in the
figure. However, as in this example the reachable state
space equals the potential state space, the offset arrays
for all the nodes in the s1 and t1 variable levels are
just [2,1] while the offsets for all nodes in the s2 and
t2 variables are equal to [1]. The aggregation of the
s2-Variable causes a reduction of the matrix size to one
quarter.

To represent the aggregated matrices it remains to
store the matrix entries of the aggregated systems in the
given MTBDD. It will turn out to be useful to store the
diagonal entries of the aggregated systems in separate
vectors, so in the MTBDD only non-diagonal elements
will have to be stored. Therefore, at the MTBDD nodes
in the aggregation variable levels arrays are added stor-
ing the aggregated values calculated with eq. (2). The
size of such an array is calculated individually for each
node by counting the number of paths from the root
node leading to this node. In the summation, paths
leading to a diagonal value of the aggregated system
are skipped. This can be checked by evaluating the
offsets corresponding to the aggregated system: The
s- and t-offsets have to be different. As long as the
BDD is always traversed in a depth first order, it suf-
fices to store for every node in an aggregation variable

level the current position of its pointer to the array of
aggregated values. Below, this pointer will be called
aggregate pointer. Prior to reading or writing values of
an aggregated system, the pointers in the correspond-
ing aggregation level have to be reset. Every time a
node is visited during BDD traversal its pointer po-
sition is incremented. So the pointer keeps the index
of the current value in the array as indicated by the
unidirectional arrow in Fig. 9.

For the aggregation step, let S be the variable level
the aggregation starts from, D the variable level of the
aggregated system and iS and iD the corresponding
indices of the offset arrays. Before calculating the ag-
gregated rates according to eq. (2), the values in the
arrays of the D level and the diagonal array have to
be reset to 0. The aggregation algorithm is given in
Fig. 10. For simplicity, only the case where S is the
constant level is shown. In the other case, where S is
an aggregation variable level, reading node.value in line
(5) would change to first incrementing this node’s ag-
gregate pointer and then reading the value given by the
current pointer position. To avoid another parameter
in the agg matrix algorithm, the global variable cur-
rent ptr is used.

The invocation of agg matrix(root(MTBDD),0,0,s1)
performs the aggregation. Basically, the algorithm cal-
culates the offsets of the source and destination system.
Whenever the level D is reached, the pointer to the cur-
rent coarse value is set to the next position in the array
of aggregated values as seen in lines (12-13). Traversing
the nodes from level D to level S, line (8) ensures that
only the fine system’s offsets are calculated in the next
recursive call. At line (5) the S level is reached, so the
current weighted fine vector’s value is added to the cur-
rent coarse value. After a node of level D is completely
processed, the current coarse value is normalized in line
(17) by the coarse vector entry corresponding to the
coarse offset of this node, that is the probability mass
of all the states in this aggregate, and finally in line
(18) this new non-diagonal matrix entry is subtracted
from the diagonal value. For the sake of simplicity, the
recursion in line (15) on the s-variables, which is given
by four different possibilities, is not shown in detail.

With the aggregated system smoothing steps can be
performed in the usual way. Prior to a matrix vector
multiplication of an aggregated system, the correspond-
ing counters in each node of the aggregation level have
to be reset.

D. Correction of the upper level solution

The correction of an upper level solution by an aggre-
gated solution according to eq. (3) is done in a similar
way as the aggregation of a vector by a single depth
first traversal of the reachability BDD.

E. Sparse matrix approach

The sparse matrix approach, as proposed in [20] is
adapted to the multilevel case in the following way:
For speeding up the smoothing steps and aggrega-
tion method of the fine system, the lower levels of



(1) agg matrix(node, row offset, coarse row offset, si)
(2) if (node = ZERO)
(3) return
(4) if (level = S)
(5) increment value of current ptr by

vector[row offset]*node.value
(6) return
(7) if (level ≥ D)
(8) coarse offsets change := false
(9) else
(10) coarse offsets change := true
(11) if (level = D)
(12) increment node.aggregate pointer
(13) current ptr := node.aggregate pointer
(14) if (not diagonal element)
(15) recurse on s-variables updating required offsets
(16) if (level = D)
(17) normalise value of current ptr by

coarse vector[coarse row offset]
(18) subtract value of current ptr from

coarse diag[coarse row offset]

Fig. 10. Matrix aggregation algorithm

s1s1

s2s2

t1t1

t2t2
3

3 66
2

22

ββ γγ

Fig. 11. Adding sparse matrices

the MTBDD are substituted by sparse matrices. In
our current implementation of the algorithm, only the
nodes up to the first aggregation variable level can be
replaced by sparse matrices. C. f. the example in
Fig. 11 where the first aggregation level is s2, so the
sparse matrix level cannot exceed this level.

It is important to note that, using our current imple-
mentation, the sparse matrix speedup is only achieved
for the fine system. All the aggregated systems do not
benefit from the sparse matrix speedup, as their levels
still have to be processed recursively.

F. Memory considerations

In the current version of the symbolic multilevel al-
gorithm, Jacobi iterations are used for the smoothing
steps. So a lower bound for the memory consumption of
the multilevel algorithm is the memory consumption of
the Jacobi algorithm. The total memory consumption
of the multilevel algorithm can be written as

matrix + diag + vect + max(vect, agg) + sm (4)

where matrix is the memory used for the transition
matrix of the fine system - without diagonal elements
- stored as multi-offset labelled MTBDD, diag is the
memory for the vector of diagonal elements of the tran-
sition matrix of the fine system, vect is the memory

for one iteration vector of the fine system, agg means
the memory for additional aggregation information (i.e.
diagi and two times vecti for each aggregated system
i, one temporary iteration vector temp and the rates
for the aggregated transition systems) and the optional
sparse matrix memory sm. The vector temp ist used for
the smoothing steps of the aggregated systems. It has
the same size as the iteration vector of the finest aggre-
gate. Depending on the number of aggregation levels
and their location, the size of agg may vary consider-
ably. Aggregation levels next to the root of the graph
result in a low memory consumption, aggregation lev-
els next to the terminal nodes result in high memory
consumption.

In the current multilevel implementation, the nodes
storing the matrix of the transition system are 4 Bytes
bigger than the nodes used for Jacobi or pseudo Gauss
Seidel iterations (24 Bytes).

IV. Experiments

In the following, experimental results of the
MTBDD-based multilevel algorithm are given. The
current implementation uses the probabilistic symbolic
model checker PRISM as a framework. All measure-
ments were performed on an Intel Xeon 3.0 GHz pro-
cessor with 2 GByte of main memory.

The following numerical algorithms are compared:

• JOR, Jacobi OverRelaxation with relaxation param-
eter 0.9.
• PGS Pseudo Gauss-Seidel [20], a block oriented
method which uses the Gauss-Seidel idea on the block
level, inside the blocks JOR with overrelaxation param-
eter 0.9 is used.
• ML1 Multilevel algorithm using 8 pre- and post-
smoothing steps respectively on the fine system and
6 pre- and post-smoothing steps respectively for the
aggregated systems.
• ML2 Multilevel algorithm using 4 pre- and post-
smoothing steps respectively on the fine system and
4 pre- and post-smoothing steps respectively for the
aggregated systems.

For the multilevel smoothing steps of the fine system
and all the aggregated systems, ordinary JOR steps
with overrelaxation parameter 0.9 are used.

For every ML experiment the aggregation variable
levels for each aggregate are given in parenthesis, start-
ing with the first and ending with the last aggregate.
For the aggregation example given in Fig. 5 the algo-
rithm would be called MLx(3,2), x ∈ {1, 2}, i.e. the
first aggregation reduces the fine system by eliminating
s3, the second aggregation reduces the first aggregate by
eliminating s2. In the MTBDD encoding the transition
system, the corresponding t-variables are aggregated as
well.

The stopping criterion for all the algorithms is a rela-
tive elementwise error smaller than 1.0 ·10−6. For JOR
and PGS this is measured between two consecutive it-
erations, in the ML-case the post-smoothing step in the
fine system is measured.

The tables are organised as follows: In the first



three columns the model characteristics are shown: The
scaling parameter of the model (e.g. number of to-
kens for the Kanban system), the number of reach-
able states and the number of transitions between the
reachable states. Column algorithm specifies the nu-
merical method used. In column ML-cycles the num-
ber of multilevel cycles until convergence is given. This
only makes sense for the ML algorithm. Column steps
gives the number of iteration steps until convergence
for JOR and PGS. In the multilevel case the smooth-
ing steps on the fine system are given. In variable lev-
els the number of number of s-variables is shown. The
next two columns give the number of s- (and t-) vari-
ables substituted by sparse matrices beginning from the
bottom (sparse levels) or from the top (block levels) of
the MTBDD (the latter is only applicable to the PGS
scheme). In column residual the maximum norm of the
vector ~πQ is given. The column memory (kB) shows
the total memory consumption of the different algo-
rithms in kilobyte, finally the column time (s) shows
the consumed time until convergence was achieved.

The case studies given in the following subsections
are chosen from the standard examples shipped with
PRISM. The results are presented in Tables II-IV.

A. Tandem queueing network

This model was originally described in [11]. The re-
markable part of the results given in Table II is that
the multilevel algorithm converges faster although there
are comparably few sparse levels used. Only for the
smallest system considered (parameter 200) the stan-
dard methods are faster, which is due to the multilevel
overhead.

B. Kanban manufacturing system

This model is described in [6]. For this model,
initially the aggregation scheme reducing one sub-
model per aggregation, e.g. aggregation variable levels
(37,25,13), was used. However, due to a low sparse level
of 12 variables, this scheme did not lead to faster cal-
culation time. So the aggregation levels for the multi-
level algorithms were chosen in order to grant the same
sparse level for the JOR and ML algorithms. The re-
sults are shown in Table III. It can be seen that in all
cases the multilevel algorithm is between 1.7-1.9 times
slower than the ordinary solvers used. But looking at
the total number of iterations until convergence, the
ML2 algorithm always takes fewer iterations on the fine
system than the ordinary JOR solver. Thus speeding
up the aggregation steps and iterations of the aggre-
gated systems, which is part of our future work, the
solution times are expected to improve.

C. Flexible manufacturing system

This model is described in [7]. The results are pre-
sented in Table IV. Aggregating the model according
to the submodel structure with the aggregation variable
levels (43,34,20), the number of total smoothing steps
of the fine system was reduced for all cases except for
parameter 4. However, because of the low sparse level

this scheme did not lead to faster calculation time. In
order to obtain more competitive results, the aggrega-
tion scheme was parametrised such that the same num-
ber of sparse levels as with the ordinary JOR algorithm
was used. As shown in Table IV, except for the small-
est system considered (parameter 4) the ML algorithm
leads to fewer iterations of the fine system, but due to
the multilevel overhead only for parameter 6 the ML1
algorithm slightly outperforms the standard solvers.

V. Conclusion

In this paper, a symbolic multilevel method has been
presented. For that purpose, we introduced the concept
of multi-offset labelled MTBDDs. The MTBDD data
structure is supplied by additional arrays for storing the
aggregated transition matrices in the same MTBDD as
the fine system. Symbolic aggregation algorithms for
vectors of reachable states and transition matrices are
given. First empirical studies indicate that the sym-
bolic multilevel algorithm could be a way to alleviate
the state space explosion problem for the numerical so-
lution of Markov chains. The experimental results also
indicate that the benefits of the multilevel approach
strongly depend on the model used.

References

[1] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic Decision
Diagrams and their Applications. Form. Meth. in Sys. De-
sign, 10(2/3):171–206, 1997.

[2] P. Bazan and R. German. Approximate analysis of stochas-
tic models by self-correcting aggregation. In Proc. of
QEST’05, pages 134–144. IEEE Computer Society Press,
2005.

[3] P. Buchholz. Multilevel solutions for structured Markov
chains. SIAM J. Matrix Anal. Appl., 22(2):342–357, 2000.

[4] P. Buchholz and T. Dayar. Comparison of multilevel meth-
ods for kronecker-based markovian representations. Com-
puting, 73(4):349–371, 2004.

[5] G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation:
An efficient strategy for symbolic state-space generation.
In Proc. TACAS’01, pages 328–342, Genova, Italy, 2001.
Springer, LNCS 2031.

[6] G. Ciardo and M. Tilgner. On the use of Kronecker oper-
ators for the solution of generalized stochastic Petri nets.
ICASE Report, 96(35), 1996.

[7] G. Ciardo and K.S. Trivedi. A decomposition approach
for stochastic reward networks. Performance Evaluation,
18(1):37–59, 1993.

[8] P.J. Courtois. Decomposability, queueing and computer sys-
tem applications. ACM monograph series, 1977.

[9] M. Fujita, P. McGeer, and J.C.-Y. Yang. Multi-terminal
Binary Decision Diagrams: An efficient data structure
for matrix representation. Form. Meth. in Sys. Design,
10(2/3):149–169, 1997.

[10] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and
M. Siegle. On the use of MTBDDs for performability anal-
ysis and verification of stochastic systems. Journal of Logic
and Algebraic Programming, 56(1-2):23–67, 2003.

[11] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi ter-
minal binary decision diagrams to represent and analyse
continuous-time Markov chains. Proc. 3rd Int. Workshop
on the Num. Sol. of Markov Chains, pages 188–207, 1999.

[12] G. Horton and S. Leutenegger. A Multi-Level Solution Al-
gorithm for Steady-State Markov Chains. ACM Perfor-
mance Evaluation Review, 22(1):191–200, May 1994. Pro-
ceedings of the ACM Sigmetrics and Performance 1994, In-
ternational Conference on Measurement and Modeling of
Computer Systems.

[13] J.R. Koury, D.F. McAllister, and W.J. Stewart. Iterative
Methods for Computing Stationary Distributions of Nearly



scaling states transistions algorithm ML- steps variable sparse block residual memory time
cycles levels levels levels (kB) (s)

200 80601 280599 ML1(16,12,8) 159 2544 17 2 - 2.2204 · 10−16 2423.0 92.35
ML2(16,12,8) 240 1920 17 2 - 1.1102 · 10−16 2423.0 91.49

JOR - 3670 17 15 - 2.2204 · 10−16 2357.3 86.88
PGS - 2624 17 11 6 2.2204 · 10−16 868.4 75.19

400 321201 1121199 ML1(16,12,8) 341 5456 19 4 - 2.2204 · 10−16 5675.0 482.97
ML2(16,12,8) 524 4192 19 4 - 2.2204 · 10−16 5675.0 503.47

JOR - 7389 19 14 - 5.5511 · 10−17 6101.9 860.11
PGS - 5274 19 12 7 1.1102 · 10−16 3290.7 682.29

800 1282401 4482399 ML1(16,12,8) 739 11824 21 6 - 2.2204 · 10−16 22574.7 3381.51
ML2(16,12,8) 1133 9064 21 6 - 2.2204 · 10−16 22574.7 3659.10

JOR - 14880 21 15 - 1.1102 · 10−16 23443.7 7429.79
PGS - 10614 21 13 8 2.2204 · 10−16 22574.7 5686.90

TABLE II: Tandem model

scaling states transistions algorithm ML- steps variable sparse block residual memory time
cycles levels levels levels (kB) (s)

4 454475 3979850 ML1(13,8) 39 624 48 36 - 5.4149 · 10−10 8752.2 67.65
ML2(13,8) 59 472 48 36 - 4.8971 · 10−10 8752.2 70.76

JOR - 803 48 36 - 5.5631 · 10−10 8721.0 37.28
PGS - 402 48 29 19 5.5785 · 10−10 5204.0 40.43

5 2546432 24460016 ML1(22,16,8) 54 864 48 27 - 1.8432 · 10−10 45701.1 574.47
ML2(22,16,8) 79 632 48 27 - 2.1860 · 10−10 45701.1 582.64

JOR - 663 48 27 - 2.2239 · 10−10 45660.5 340.59
PGS - 573 48 27 19 2.2321 · 10−10 25842.1 341.11

6 11261376 115708992 ML1(24,17,9) 72 1152 48 25 - 9.5764 · 10−11 198947.8 3536.67
ML2(24,17,9) 107 856 48 25 - 9.9801 · 10−11 198947.8 3692.36

JOR - 891 48 25 - 9.6216 · 10−11 198901.0 2083.72
PGS - 772 48 25 19 9.4921 · 10−11 111082.6 2142.28

TABLE III: Kanban model

scaling states transistions algorithm ML- steps variable sparse block residual memory time
cycles levels levels levels (kB) (s)

4 35910 237120 ML1(15,11,8) 61 976 55 41 - 9.0486 · 10−10 2376.9 7.50
ML2(15,11,8) 90 720 55 41 - 8.7807 · 10−10 2376.9 8.17

JOR - 803 55 41 - 8.7390 · 10−10 2244.6 4.33
PGS - 749 55 33 22 8.6704 · 10−10 1447.6 5.54

5 152712 1111482 ML1(28,17,8) 56 896 55 28 - 4.7222 · 10−10 5184.0 39.31
ML2(28,17,8) 83 664 55 28 - 5.9121 · 10−10 5184.0 41.12

JOR - 996 55 28 - 5.5554 · 10−10 4959.9 31.53
PGS - 936 55 28 22 5.5231 · 10−10 3798.6 36.37

6 537768 4205670 ML1(32,16,8) 50 800 55 24 - 1.5117 · 10−10 12641.0 132.99
ML2(32,16,8) 81 648 55 24 - 2.1612 · 10−10 12641.0 152.10

JOR - 1189 55 24 - 3.9511 · 10−10 12304.8 139.23
PGS - 1124 55 24 22 3.8807 · 10−10 8171.7 152.97

TABLE IV: FMS model

Completely Decomposable Markov Chains. SIAM Jour-
nal on Algebraic and Discrete Methods, 5(2):164–186, June
1984.

[14] M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance
and Dependability Evaluation with the Tool CASPA. In
Europ. Perf. Engineering Workshop, pages 293–307. LNCS
3236, 2004.

[15] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
model checking in practice: Case studies with PRISM. ACM
Performance Evaluation Review, 32(4):16–21, 2005.

[16] K. Lampka and M. Siegle. Activity-local Symbolic State
Graph Generation for High-Level Stochastic Models. In
Proc. of 13th GI/ITG Conference on Measuring, Modelling
and Evaluation of Computer and Communication Systems
(MMB), pages 245–263, Nürnberg, Germany, 2006.

[17] K. Lampka and M. Siegle. Analysis of Markov Reward Mod-
els unsing Zero-suppressed Multi-terminal BDDs. In 1st.
Int. Conf. on Performance Evaluation Methodologies and
Tools (Valuetools), Pisa, Italy, ACM press, ISBN 1-59593-
504-5 (CD edition), 10 pages, 2006.

[18] R. Mehmood. Disk-Based Techniques for Efficient Solution
of Large Markov Chains. PhD thesis, School of Computer
Science, Faculty of Science, University of Birmingham, 2005.

[19] A. Miner and D. Parker. Symbolic representations and anal-
ysis of large probabilistic systems. In C. Baier, B. Haverkort,
H. Hermanns, J-P. Katoen, and M. Siegle, editors, Valida-
tion of Stochastic Systems: A Guide to Current Research,
volume 2925 of Lecture Notes in Computer Science (Tuto-
rial Volume), pages 296–338. Springer, 2004.

[20] D. Parker. Implementation of symbolic model checking for
probabilistic systems. PhD thesis, School of Computer Sci-
ence, Faculty of Science, University of Birmingham, 2002.

[21] PRISM website. http://www.cs.bham.ac.uk/∼dxp/prism/.
[22] M. Siegle. Behaviour analysis of communication systems:

Compositional modelling, compact representation and anal-
ysis of performability properties. Shaker Verlag, Aachen,
2002.

[23] W.J. Stewart. Introduction to the numerical solution of
Markov chains. Princeton University Press, 1994.

[24] Y. Takahashi. A Lumping Method for Numerical Calcula-
tion of Stationary Distributions of Markov Chains. Tech-
nical Report B-18, Tokio Institute of Technology, Dpt. of
Information Sciences, June 1975.


