
A view-probability-matrix approach to the modelling of
gossiping protocols

Thomas Krieger, Martin Riedl, Johann Schuster, Markus Siegle
University of the German Federal Armed Forces Munich

Department of Computer Science
{thomas.krieger, martin.riedl, johann.schuster, markus.siegle}@unibw.de

ABSTRACT
This paper addresses the quantitative analysis of gossiping proto-
cols. In contrast to existing approaches which are entirely based
on the simulation of the individual nodes’ behaviours, we present
a new approach based on summary stochastic models for the peer
sampling service. Instead of an ordinary state- and transition-based
model, a matrix-based approach is presented. Starting from a ba-
sic model with static node population and without ageing of neigh-
bourhood information, refinements of the model are presented
which enable the modelling of ageing and dynamic population.
The paper also contains some experimental results for the differ-
ent models introduced in the paper.

1. INTRODUCTION
The growing demand for scalable distributed systems has caused

considerable research activities towards modelling, simulation and
implementation of self-organising networks [2], in particular gos-
siping networks. The nodes in a gossiping network act autono-
mously and carry some local information, i.e., each node has its
own so-called (partial) view of the network. The peer sampling
service [3] is responsible for distributing and updating the views
among the nodes. The nodes in the view of a certain node are
called its neighbours. There are many different possibilities of
how to organise the peer sampling mechanism: Using a pure push-
mechanism, communication is initiated by the sending node, i.e., a
sending node pushes its view to some of its neighbours. If a pure
pull-mechanism is chosen, communication is initiated by the re-
ceiving node, i.e., a view is demanded from one of its neighbouring
node. Combinations of pushing and pulling can also be realised.
Furthermore, there are many different possibilities of how to merge
two views in order to obtain a resulting new view.

We are interested not only in the qualitative properties of a gos-
siping network, but also in its quantitative properties, such as, for
example, the probability that it becomes disconnected or the mean
length of the shortest path between two of its nodes. Given the in-
herent randomness of the peer sampling service, e.g., in the choice
of a communication partner, we do not develop a deterministic
model, but a stochastic model of a gossiping network, in which,
for example, the pushing of a view to a neighbouring node occurs
with a certain probability.

The interaction of the nodes exchanging and merging their views
is a challenge for modellers. Basically, gossiping models can be
built with standard discrete-state tools such as PRISM [5] or
CASPA [4, 1]. Following a straight-forward approach, every node
could be modelled as a separate component having as many states
as there are possible views for a node, and the sending and receiv-
ing of views could be realised by pairwise synchronisation of the
nodes. This would result in a stochastic (Markovian) model with

finite state space, but in practice the notorious state space explo-
sion problem would limit the models to a few nodes and very small
views. Using this approach with N nodes and view size C, each
node has N − 1 potential neighbours as, by definition, the node
itself will never appear in its own view. As the view size is fixed to
C and we assume no doubled entries, this yields

`
N−1

C

´
combina-

tions, i.e., valid views, resulting in a total number of
`

N−1
C

´N
states

for the entire model.
This may be the reason why the behaviour of large scale gossip-

ing networks has so far either been explored by real world measure-
ments or by means of explicitly simulating the nodes’ behaviour.
Not much work on rigorous quantitative analysis has been pub-
lished yet, that would help to investigate and understand the cause
of certain behaviour of gossiping networks. Therefore, it is an im-
portant goal to develop gossiping models which carry enough infor-
mation for thorough mathematical analysis, but on the other hand
do not suffer too much from the state space explosion problem. The
current paper presents such an approach, i.e., modelling gossiping
networks by means of a matrix, representing probability distribu-
tions over the views of all nodes at a particular time instant. We
propose an iterative calculation that mimics the gossiping policy
which determines how the nodes behave and therefore how the net-
work evolves.

This paper is organised as follows: Sec. 2 proposes a compact
matrix representation for models with fixed node population and
without ageing of view information, and introduces a round-based
mechanism for the evolution of the state of this model. Sec. 2 also
briefly discusses convergence properties of the basic model. An
extension of the basic model, by adding age information to view
entries, is presented in Sec. 3, where the update mechanism is mod-
ified accordingly. Sec. 4 presents a further extension to the model
that allows for dynamic node population, a phenomenon that is very
important in practice, since nodes may decide to join and leave the
gossiping network over the course of time. Note, however, that
those dynamic changes of the population are dealt with in a simu-
lative way in the experiments. Experimental results for the different
types of models, obtained with the help of a prototypical software
tool, are presented in Sec. 5, and Sec. 6 concludes the paper.

2. MODEL WITHOUT AGE

2.1 Description of the model
This paper considers a gossiping network with overall N nodes.

For the moment, it is assumed that N is fixed and that all nodes al-
ways participate in the gossiping protocol (for dynamic node pop-
ulation see Sec. 4).

A view V is a set of fixed size C, whose elements are (pairwise
different) node identifiers ni:

V = {n1, n2, . . . , nC} where i 6= j → ni 6= nj .

We propose a model in which we store for each node the prob-
ability of having a certain view. These probabilities are stored in a
matrix of size N ×

`
N
C

´
(one row for each node). Each row of the

matrix has at most
`

N−1
C

´
non-zero entries, since the view of any

node n will never contain n itself. All row sums of the matrix are
equal to one.

Example:
We consider a fixed population of N = 4 nodes and view size
C = 2. This results in the following matrix, where p

(i)
nm is used as

a shorthand notation for p
(i)

{n,m}, which is the probability that node
i has nodes m and n in its view. The entries marked by “–” are
invalid:

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
1 – – – p

(1)
23 p

(1)
24 p

(1)
34

2 – p
(2)
13 p

(2)
14 – – p

(2)
34

3 p
(3)
12 – p

(3)
14 – p

(3)
24 –

4 p
(4)
12 p

(4)
13 – p

(4)
23 – –

End of Example.

The memory needed to store this matrix is in the order of
N
`

N−1
C

´
(only the non-zero entries need to be stored), which is of

course much better than the straightforward approach mentioned
in the introduction which needs to store

`
N−1

C

´N
states (plus the

transitions between states).
From this matrix, most of the important metrics of the gossip-

ing network, such as the probability of being connected, the mean
length of the shortest path (measured in hop counts) between any
two nodes, the average clustering coefficient, etc., can be computed
(at least in principle). This is done by selecting one entry from each
row and constructing a directed graph with N nodes and the arcs
according to the selected views. The metrics of each such graph can
be determined by standard algorithms, and since each graph is asso-
ciated with a probability (computed as the product of the selected
matrix entries), the overall averages can be computed. Note that
this assumes that events associated with entries in different rows of
the matrix are independent. (This is not really the case, but apart
from trivial cases the dependencies are difficult to quantify, and
for the limiting case, i.e., after many rounds, the independence as-
sumption is justified.) This procedure, however, is practicable only
for very small values of N , since it needs to consider all possible
graph configurations.

We now describe how the dynamic evolution of the network is
modelled by the matrix: First, a valid initial configuration is cho-
sen, either at random (with the help of a pseudo-random-number
generator) or deterministically. Then, the matrix is updated repeat-
edly as specified by the following update policy:

• A round-based scheme is considered, where the views of all
nodes are updated simultaneously, i.e., the matrix update is
in Jacobi- rather than Gauss-Seidel style.

• The scheme is based on the “push”-principle (as opposed to
the “pull” or “push-pull” principles), which means that the
sending of a view is initiated by the sender.

• A node s (sender) can send its view to another node r (re-
ceiver), provided that r is currently in the view of s.

• When a view is sent, in the sent view the receiver’s id is re-
placed by the sender’s id (since the receiver does not need
to receive information about itself, but it wants to know the
sender’s id).

• During the “merge” of two views Vs (sender’s view) and Vr

(receiver’s view), the new view of the receiver is determined
by selecting a set of C nodes from Vs ∪ Vr . Thereby the
following rules are observed:

– The merged view will always contain the entry s
(sender’s id), because this is considered “fresh” infor-
mation (even though we do not consider age informa-
tion at this stage).

– The other C − 1 elements of the resulting view are de-
termined by a random selection from (Vs ∪ Vr) \ {s}.

Formally, this is expressed by an update equation; the new proba-
bility for the receiver to have view V is given by

p
(r,new)
V := cr ·

X
s 6=r

X
Vr

X
Vs

f(r, V, Vs, Vr), (1)

where cr is a normalisation constant and the function f is defined
as

f(r, V, Vs, Vr) =8>>>><>>>>:
p
(s)
Vs
· p(r)

Vr
· 1
|merge(Vs,Vr)| if

(r ∈ Vs

∧
V ∈ merge(Vs, Vr))

0 else.

It remains to define the set merge(Vs, Vr), which is the set of all
views which may result (with equal probability) from the merging
of Vs and Vr .

merge(Vs, Vr) = {V |
s ∈ V

(sender is always in merged view)
∧|V | = C

(view size is fixed)
∧∀k : ((k ∈ V ∧ k 6= s)→ k ∈ Vs ∪ Vr)

(elements (except s) are all from operand views)
}

The normalisation factor is given by

cr =
1P

s6=r

P
Vs3r p

(s)
Vs

i.e., the normalisation factor cr when updating row r of the matrix
is the sum of certain view probabilities of all possible senders s,
where exactly those views of the senders are summed which con-
tain the receiver id (because if a sender does not know the receiver
he cannot push his view on him).

Example:
Returning to the previous example, the update equation for matrix
entry p

(1,new)
23 is as follows:

p
(1,new)
23 := c1 ·

„
p
(1)
23 ·

„
p
(2)
13 +

1

2
· p(2)

14 + p
(3)
12 +

1

2
· p(3)

14

«
+ p

(1)
24 ·

„
1

2
· p(2)

13 +
1

2
· p(3)

12 +
1

2
· p(3)

14

«
+ p

(1)
34 ·

„
1

2
· p(2)

13 +
1

2
· p(2)

14 +
1

2
· p(3)

12

««
,

where c1 is given by

c1 =
“
p
(2)
13 + p

(2)
14 + p

(3)
12 + p

(3)
14 + p

(4)
12 + p

(4)
13

”−1

,

provided that the fraction is well-defined. We explain some terms
of this equation: If node 1 has old view (2, 3), and node 2 sends
view (1, 3), which is changed to (2, 3), then the only choice for the
resulting view is (2, 3). On the other hand, if node 1 has old view
(2, 3), and node 2 sends view (1, 4), which is changed to (2, 4),
then the union is (2, 3, 4), from which views (2, 3) is selected with
probability 1

2
(the other choice would be a resulting view (2, 4),

so the same term appears in the equation for p
(1,new)
24 , also with

weight factor 1
2

). The probabilities p
(4)
xy do not appear in the equa-

tion for p
(1,new)
23 , since if a view were sent from node 4 to node 1,

the sender id (i.e., 4) would have to be in the new view.
End of Example.

2.2 Convergence properties
In this section, several effects of the model behaviour are de-

scribed. Let pr (r = 1, . . . , N) be the vector of all valid matrix
entries of node r and let p := (p1, . . . ,pN). The case N = 4 and
C = 2 leads for instance to

p=
“

p
(1)
23 ,p

(1)
24 ,p

(1)
34 ,p

(2)
13 ,p

(2)
14 ,p

(2)
34 ,p

(3)
12 ,p

(3)
14 ,p

(3)
24 ,p

(4)
12 ,p

(4)
13 ,p

(4)
23

”T
.

Since every node has
`

N−1
C

´
valid views, p is a vector of view

probabilities if and only if

p ∈
“
4(N−1

C)

”N

,

where 4k (k ∈ N) is the standard simplex in Rk (i.e., 4k :=
{v ∈ Rk |

Pk
i=1 vi = 1∧ v1 ≥ 0∧ . . .∧ vk ≥ 0} with vi the i-th

component of v). Let

T :
“
4(N−1

C)

”N

→
“
4(N−1

C)

”N

be the operator which transforms the vector p into the vector
p(new) via formula (1), i.e., p(new) := T (p). The asymptotic
behaviour of the system can now be investigated by evaluating
limn→∞ T n(p0) (if it exists), where p0 is the initial configura-
tion of the matrix. Experiments suggest the following conjecture:
If p0 > 0, i.e., every component of p0 is greater than zero, then
limn→∞ T n(p0) exists and is independent of p0. Furthermore, it
is conjectured that for all i = 1, . . . , N

`
N−1

C

´
eT

i lim
n→∞

T n(p0) =

N − 1

C

!−1

, (2)

where ei is the i-th unit vector in RN(N−1
C), i.e., all valid views of

a node are uniformly distributed in the limiting case. This result
seems plausible: Since p0 > 0 the graph belonging to the initial

matrix is connected in the sense that for every pair of nodes (r1, r2)
there is a directed path from r1 to r2, and therefore no node is
favoured over any other node on the long run.

An attempt to prove conjecture (2) is as follows. Let pi
eq ∈

4(N−1
C) be the vector of uniformly distributed view probabilities

for node i and peq := (p1
eq, . . . ,pN

eq) ∈
“
4(N−1

C)

”N

the corre-
sponding vector of view probabilities. With the definitions

p̃ := p− peq

T̃ (p̃) := T (p̃ + peq)− peq

= T (p)− peq

equation (2) is transformed to

lim
n→∞

T̃ n(p̃0) = 0, (3)

where 0 is the zero vector. The following argumentation is similar
to the proof of the Banach fixed point theorem [6]: If there exists a
k ∈ (0, 1) such that

‖T̃ (p̃)‖ ≤ k · ‖p̃‖ , ∀ p̃ ∈
“
4(N−1

C)

”N

− peq ,

it follows that ‖T̃ n(p̃0)‖ ≤ kn · ‖p̃0‖, where
“
4(N−1

C)

”N

−peq

is the translation of
“
4(N−1

C)

”N

by −peq. As k < 1 and ‖p̃0‖

is bounded, limn→∞ ‖T̃ n(p̃0)‖ = 0 and therefore Equation (3)
is proven. Using the example in subsection 2.1 and the euclid-
ian norm, numerical optimization with Mathematica indicated that
k = 0.85, so the conjecture is considered to be proven in this case.
Unfortunately no general proof exists so far.

Conjecture (2) might also be true if the requirement p0 > 0 is
replaced by the postulation that the graph belonging to the initial
matrix is not disconnected.

The components of T (p) may behave quite arbitrarily: It may
well be the case that a component of p is close to 1 and that the
same component of T (p) is close to zero. The convergence rate
depends strongly on the values of the initial matrix.

3. MODEL WITH AGE
In this section we extend the model of Sec. 2 by adding age in-

formation to view entries. This stems from the fact that real-life
gossiping protocols use age information in their peer selection and
view merging mechanisms. The age information, sometimes also
referred to as “hop count”, denotes the number of times a certain
view entry has been communicated from one node to another. In
this extended model, a view V is a set of fixed size C, whose ele-
ments are pairs (ni, ai) of (pairwise different) node identifiers and
associated age information.

V = {(n1, a1), (n2, a2), . . . , (nC , aC)}, i 6= j → ni 6= nj .

Again, we employ a model in form of a matrix, but it will have
more columns than before, since the age information is included in
the view. The size of the matrix is therefore

N ×

N

C

!
· (AC − (A− 1)C)

!
,

where A = maxage is the maximal permitted age value: the for-
mula reflects the fact, that we require that at any time at least one
entry carries age information 1. Note that again, only the non-zero
entries of the matrix need to be stored, which results in a required
memory of N ·

`
N−1

C

´
· (AC − (A− 1)C) entries.

The update policy for this model is based on the one described
in Sec. 2, i.e., again a round-based scheme is considered, based on
the “push”-policy, but several new rules need to be established in
order to deal with the age information properly:

• During the “merge” of two views Vs (sender’s view) and Vr

(receiver’s view), in case of “duplicates” the entry with the
larger age is discarded (i.e., fresh information is preferred).

• The merged view will always contain the entry (s, 1)
(sender’s id with age 1).

• Before merging takes place, the age of all entries of the
sender’s view is incremented by one. This is the only situa-
tion in which the age is increased in this model, but in Sec. 4
we will briefly comment on possible “local ageing”.

• The merge procedure is probabilistic, where candidate views
with small age sum are preferred.

Update equation:
The new probability for the receiver to have view V is given as
before by

p
(r,new)
V = c′r ·

X
s 6=r

X
Vr

X
Vs

f(r, V, Vs, Vr)

where c′r is a normalisation constant (not equal to the constant in
Sec. 2), but now the function f is defined differently as

f(r, V, Vs, Vr) =8>>>><>>>>:
p
(s)
Vs
· p(r)

Vr
·mprob(V, Vs, Vr) if

(r ∈ Vs

∧
V ∈ merge(Vs, Vr))

0 else.

It remains to define the set merge(Vs, Vr), which is the set of all
views which may result (with non-zero probability) from the merg-
ing of Vs and Vr , and the probability mprob(V, Vs, Vr), which is
the probability that the merging of Vs and Vr results in the new
view V . First we define the “age-incremented” view of the sender
as

V incr
s = {(ni, ai)|(ni, ai − 1) ∈ Vs ∧ ai ≤ A} .

Note that such an age-incremented view may be incomplete, i.e.,
contain less than C elements, since entries with maximum permis-
sible age are dropped. Furthermore the age sum of a given view is
defined as

agesum(V) =
X

(ni,ai)∈V

ai.

This allows us to define the set of all possible merged views as

merge(Vs, Vr) = {V |
(s, 1) ∈ V

(sender is always in merged view (with age 1))
∧|V | = C

(view size is fixed)
∧∀k, i : ((k, i) ∈ V ∧ (k, i) 6= (s, 1))→ (k, i) ∈ V incr

s ∪ Vr

(elements (except (s, 1)) are all from operand views Vs or Vr)
∧∀i : (r, i) 6∈ V

(receiver itself is not in merged view)
∧∀k, i : (k, i) ∈ V → (6 ∃j < i : (k, j) ∈ V incr

s ∪ Vr)

(elements with non-minimal age are excluded)
}

and the merge-probability as

mprob(V, Vs, Vr) =

1
agesum(V)P

W∈merge(Vs,Vr)
1

agesum(W)

Example:
Consider again a fixed population of N = 4 nodes and a view
size of C = 2. Furthermore, we assume a maximum age A = 2.
This results in the matrix shown in Fig. 1, where the entries marked
by “–” are invalid and p

(i)
namb is used as a shorthand notation for

p
(i)

{(n,a),(m,b)}. Note that in the matrix there are no columns for
the age combination 22, since at least one element (the most recent
sender) will always have age 1.
End of Example.

4. MODEL WITH DYNAMIC POPULATION
In real life, the set of nodes participating in a gossip-style com-

munication is not fixed. New nodes may join at any time, and par-
ticipating nodes may decide to leave. It is quite clear that many
characteristics of a gossiping network’s observed behaviour are due
to the dynamic nature of the node population.

We decided to model the dynamics of a network as follows.
There is an overall population of N nodes, but at a given time only
a subset of these nodes may actively participate in the gossiping.
Nodes which are active (online) may at any time decide to become
passive (inactive, offline), and passive nodes may in turn decide to
become active again. The durations of nodes’ active- and passive-
times are modelled as random variables, and since our model fol-
lows a round-based scheme, where view information is updated in
every round, it was decided to work with geometrically distributed
random variables. This means that a node that is currently active
will remain active in the next round with probability 1 − p, and
become passive with probability p. In turn, a node that is currently
passive will remain passive in the next round with probability 1−q,
and become active with probability q. Note that under these as-
sumptions, the mean number of active nodes (in equilibrium) is
given by N q

p+q
. It would not be difficult to model different dis-

crete distributions for the active- and passive periods, but for the
moment this is the only option considered.

Next, it is necessary to define an activation policy and a deacti-
vation policy, which define what happens when a node becomes ac-
tive or passive. We start with the latter, since it is the more straight-
forward of the two.

When a node becomes passive, it does no longer participate in
the gossiping, so it does no longer push its view information on

nodes: (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

age: 11 12 21 11 12 21 11 12 21 11 12 21 11 12 21 11 12 21

1 – – – – – – – – – p
(1)
2131

p
(1)
2132

p
(1)
2231

p
(1)
2141

p
(1)
2142

p
(1)
2241

p
(1)
3141

p
(1)
3142

p
(1)
3241

2 – – – p
(2)
1131

p
(2)
1132

p
(2)
1231

p
(2)
1141

p
(2)
1142

p
(2)
1241

– – – – – – p
(2)
3141

p
(2)
3142

p
(2)
3241

3 p
(3)
1121

p
(3)
1122

p
(3)
1221

– – – p
(3)
1141

p
(3)
1142

p
(3)
1241

– – – p
(3)
2141

p
(3)
2142

p
(3)
2241

– – –

4 p
(4)
1121

p
(4)
1122

p
(4)
1221

p
(4)
1131

p
(4)
1132

p
(4)
1231

– – – p
(4)
2131

p
(4)
2132

p
(4)
2231

– – – – – –

Figure 1: Probability matrix for the model with age

other nodes. In the model, each row of the matrix is augmented by
a flag which indicates whether the corresponding node is active or
passive. Only the view probabilities of active nodes are updated, no
update is performed for passive nodes (from that point of view, the
model with dynamic population is computationally cheaper than
the model with fixed population, see Sec. 5). Upon deactivation
of node n, not only is its flag set on passive, but also all values
in row n are set to zero, which ensures that during the following
update operations for an active node (say k) no view information is
communicated from node n to node k.

Defining the activation policy is a bit more challenging, since a
node that becomes active has to be assigned a valid initial view (or
rather, valid view probabilities) through a bootstrapping process.
There are many possibilities of how to realise this bootstrapping, so
we had to make some design decisions here, which, however, could
be easily modified for future studies. When node n becomes active,
it chooses one of the currently active nodes (say k) at random as the
source for its initial view information. However, it is not possible to
simply copy line k of the matrix into line n, since some of the valid
entries of line k are in positions which are invalid for node n (see
Fig. 1). So we decided to copy only those entries of line k which
are in valid column positions for node n, ignore the entries of line
k which are in invalid column positions, and leave the remaining
(valid or invalid) columns of row n at value zero. After the copy
operation, the new values in row n are normalised to one, after
which row n contains valid entries and node n may participate in
the regular update process as of the next round.

The fact that a node has become passive is not known to the other
nodes. On the contrary, passive nodes remain in the views of the
active nodes (let us call them zombies), but this information dies
out over time, since fresh information is favoured during the merg-
ing of views. Suppose that a zombie z is in the view of an active
node n, and that its age is quite small, e.g. az = 1. When n pushes
its view to another node, the age of the zombie z is incremented,
and after several such steps the age will hit A = maxage and the
zombie will become forgotten. However, if the entry z survives the
next merge, it will remain in the view of n with the same age, and
this could happen repeatedly over several rounds. This could be the
motivation for a more complicated ageing strategy, where the age
of a view entry is not only incremented when the view is pushed to
another node, but also when a view entry survives a merge locally.
Such local ageing would of course have to happen at a slower rate
than the regular ageing. Our current model, however, does not con-
sider local ageing, but this seems to be all right, since we did not
observe any tendency of zombies dominating the local views.

The model with dynamic population just described could be aug-
mented in different directions. As an example, it would be easy to
model an overall population which consists of different classes of
nodes, some more active than others, by choosing the activation-
and deactivation-parameters depending on a node’s class.

5. EXPERIMENTAL RESULTS
For each considered model (without or with age information, the

latter both with constant and dynamic population) we built a Python
application and carried out experiments on different instantiations
of the models.

5.1 Model Without Age
On the left-hand-side of Fig. 2 an instantiation of a model with-

out age with N = 6 is shown. Every box represents one node,
and within each box those views which have non-zero probabil-
ity are depicted. The arc information, which is actually redundant,
illustrates which nodes are known by a certain node. These proba-
bilities are initial values which were set by hand. Within that model
every node “knows” two nodes, meaning that it has a fixed view-
size C = 2. Node 1 has the view (2, 3) with probability 1.0, node
2 the view (1, 3) with probability 1.0, node 3 the view (1, 2) with
probability 0.9 and view (1, 4) with probability 0.1. Nodes 4,5 and
6 are only aware of each other. The network is nearly partitioned
as there are two strongly related subnets (nodes 1, 2, 3 and nodes
4, 5, 6) in the network. The only interrelation exists at node 3 that
knows 4 with probability 0.1. Using the program implementing the
update algorithm provided in Sec. 2 for models without age, the
probabilities converged to a uniform distribution with probability
0.1 as one can see on the right-hand-side of Fig. 2. From the figure
we can also read that the probability of node 3 knowing node 4 is
0.4, which is sum of the probabilities of views of node 3 containing
node 4.

32
1.0

21
0.9

41
0.1

65
1.0

54
1.0

64
1.0

31
1.0

21
0.1

41
0.1

51
0.1

61
0.1

42
0.1

52
0.1

62
0.1

54
0.1

64
0.1

65
0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

1 2

65

4

3

1 2

3

4 5 6

Figure 2: Model without age (N = 6, C = 2). Initial configuration
(left), converged probabilities (right).

Fig. 3 shows the convergence behaviour for this model. In the
figure, the view probabilities of all nodes are plotted over time,

Figure 3: Convergence of view probabilities of all nodes for model
from Fig. 2.

measured in rounds (synonymously called iterations). We see that
the initial probability values are 0, 0.1, 0.9 and 1.0 and that after
30 iterations all probability values have converged to 0.1. All our
other experiments with different gossiping network instantiations
(number of nodes, view size, initial probability distribution) also
showed that the view probabilities converge to a uniform distribu-
tion (unless the network is already disconnected at the beginning).

5.2 Model With Age
An instance of a model with age is described by a tuple Mage =

(N, C, A), where N is the fixed number of nodes, C is the fixed
size of a view and A defines the maximum permitted age (starting
at 1). We have implemented the model with age allowing us to pro-
cess arbitrary network configurations specified by such tuple iden-
tifiers. Experiments have shown that the probabilities of the second
model also converge to a limiting distribution. In Table 1 one can
see an arbitrary initialized matrix of a (4,2,2) model as output by
our program (our program prints the matrix in transposed form).
After 30 update iterations the matrix is the one represented in Table
2. One can see the limit distribution for the age combinations of
the view: for every view {(n1, a1), (n2, a2)} with a1 = a2 = 1
the probability converged to 0.265986. For a1 = 1, a2 = 2 or
a1 = 2, a2 = 1 the probability converged to 0.033674.

===
----------------------------MATRIX-------------------------
View {(n_1,a_1),...,(n_i,a_i)} | Nodes: [1, 2, 3, 4]

((1, 1), (2, 1)) | -------- -------- 0.023544 0.126685
((1, 1), (2, 2)) | -------- -------- 0.166562 0.024473
((1, 2), (2, 1)) | -------- -------- 0.171524 0.108916
((1, 1), (3, 1)) | -------- 0.091061 -------- 0.135361
((1, 1), (3, 2)) | -------- 0.137136 -------- 0.110231
((1, 2), (3, 1)) | -------- 0.158067 -------- 0.159641
((1, 1), (4, 1)) | -------- 0.111335 0.113766 --------
((1, 1), (4, 2)) | -------- 0.064549 0.066746 --------
((1, 2), (4, 1)) | -------- 0.097139 0.100780 --------
((2, 1), (3, 1)) | 0.163572 -------- -------- 0.125100
((2, 1), (3, 2)) | 0.092586 -------- -------- 0.116538
((2, 2), (3, 1)) | 0.084521 -------- -------- 0.093054
((2, 1), (4, 1)) | 0.010872 -------- 0.140351 --------
((2, 1), (4, 2)) | 0.155088 -------- 0.098462 --------
((2, 2), (4, 1)) | 0.137327 -------- 0.118264 --------
((3, 1), (4, 1)) | 0.111677 0.122080 -------- --------
((3, 1), (4, 2)) | 0.154802 0.113918 -------- --------
((3, 2), (4, 1)) | 0.089556 0.104714 -------- --------
===

Table 1: (4,2,2) model with age: initialisation matrix.

In Fig. 4 each dot in the graphs represents an age-abstracted view
probability. This means that for node k the probability to have view
{n1, . . . , nc} is given by the sum

p
(k)

{n1...nc} =
X

a1,a2,...,ac

p
(k)

{(n1,a1),(n2,a2),...(nc,ac)}

===
----------------------------MATRIX-------------------------
View {(n_1,a_1),...,(n_i,a_i)} | Nodes: [1, 2, 3, 4]

((1, 1), (2, 1)) | -------- -------- 0.265986 0.265986
((1, 1), (2, 2)) | -------- -------- 0.033674 0.033674
((1, 2), (2, 1)) | -------- -------- 0.033674 0.033674
((1, 1), (3, 1)) | -------- 0.265986 -------- 0.265986
((1, 1), (3, 2)) | -------- 0.033674 -------- 0.033674
((1, 2), (3, 1)) | -------- 0.033674 -------- 0.033674
((1, 1), (4, 1)) | -------- 0.265986 0.265986 --------
((1, 1), (4, 2)) | -------- 0.033674 0.033674 --------
((1, 2), (4, 1)) | -------- 0.033674 0.033674 --------
((2, 1), (3, 1)) | 0.265986 -------- -------- 0.265986
((2, 1), (3, 2)) | 0.033674 -------- -------- 0.033674
((2, 2), (3, 1)) | 0.033674 -------- -------- 0.033674
((2, 1), (4, 1)) | 0.265986 -------- 0.265986 --------
((2, 1), (4, 2)) | 0.033674 -------- 0.033674 --------
((2, 2), (4, 1)) | 0.033674 -------- 0.033674 --------
((3, 1), (4, 1)) | 0.265986 0.265986 -------- --------
((3, 1), (4, 2)) | 0.033674 0.033674 -------- --------
((3, 2), (4, 1)) | 0.033674 0.033674 -------- --------
===

Table 2: (4,2,2) model with age: matrix after 30 iterations.

Figure 4: Experiment with a (4,2,2) network.

As an example, for a (4,2,2) model this means that the age-abstract-
ed view consisting of nodes n1 = 1 and n2 = 3 is obtained by
summing the detailed views {(1, 1), (3, 1)}, {(1, 1), (3, 2)} and
{(1, 2), (3, 1)}. If we look at Table 1 we can sum the values for
these views, for example for node 4: We obtain

0.135361 + 0.110231 + 0.15964 = 0.405233

for the ordinate-value of a dot. If we take the corresponding values
from Table 2 we obtain

0.265986 + 0.033674 + 0.033674 = 0.333334 ≈ 1

3
,

as expected, since each of the 3 possible age-abstracted views
should be equally likely on the long run. We performed a number of
experiments with different randomly generated initialisation matri-
ces, but also with some matrices initialised by hand with “extreme”

values. All of them showed the same convergence behaviour, as
expected, as there is no node that is in any way prioritized.

5.3 Model With Age and Dynamic Population
We also implemented the model with age and dynamic popu-

lation, where nodes become active/inactive after a geometrically
distributed number of rounds. The new view probabilities are cal-

initialisation of the Matrix
automatically/by-hand

determine the nodes
meant to become inactive

deactivate nodes and set
their rows to zero

bootstrap the
entering nodes

determine the nodes
meant to become active

update the probability
disregarding the inactive

node entries

Figure 5: Update algorithm for the model with dynamic population.

Figure 6: Experiment with a (5,2,2) network.

culated in a loop as depicted in Fig. 5. In each round and for each
active node a pseudo-random-number generator produces a value
uniformly distributed over the interval [0, 1]. If the value is be-
tween [0, p] the node is made inactive. Likewise, for all inactive
nodes the random generator is consulted, such that with probability

q a node is made active. In the next step, for every node that be-
comes inactive the associated row in the matrix is set to zero and
the node itself is marked inactive. For every node that becomes ac-
tive a bootstrapping node is chosen (uniformly at random) from the
nodes that remain active. The bootstrapping itself is done by copy-
ing all valid entries from the matrix row of the bootstrapping node
to the row of the node to be activated and afterwards normalising
that row. No update calculations need to be performed for inactive
nodes. During the calculation of the new view probabilities of ac-
tive nodes the contribution coming from inactive nodes is 0, as their
row has been set to 0. As an example, consider an experiment with
a (5, 2, 2) network with dynamic population (see Fig. 6, where the
probabilities for age-abstracted views are plotted for nodes 1 and
2). Initially, up to round 5, the probabilities converge to 1

6
, as ex-

pected for this model, since there are 6 possible view combinations
for each node. In round 5 node 5 becomes inactive, leaving only 4
active nodes in the network. This means that the possible number
of view combinations for each node is reduced to 3, resulting in a
convergence towards the value 1

3
for views not containing node 5,

and to the value 0 for views containing node 5. A further distur-
bance of the view probabilities occurs in iterations 8 and 9, where
node 3 becomes passive and after only a single iteration reenters
the network. In round 9, node 3 bootstraps from node 2, and in the
following rounds the probabilities converge again towards the value
1
3

. In round 16 node 2 becomes passive, which means that its view
probabilities are all set to zero, as can be seen on the right-hand
side of Fig. 6. As the network is now like a (3, 2, 2) network, there
remains only a single valid view for each node. Consequently, as
one can see in the graph on the left of Fig. 6, the view probabilities
converges to either 0 or 1.

5.4 Performance Considerations
Timing measurements were taken for models with age (with

both, fixed and dynamic population), varying the network param-
eter tuples (N, C, A) as shown in Table 3, where the entry n.e.
stands for “not evaluated”. As expected, the dynamic population
model shows smaller user time consumption than the fixed popu-
lation model, since no updates need to be performed for passive
nodes.

model population
with age fixed dynamic
(4,2,1) 0.31s n.e.
(4,2,2) 6.5s n.e.
(4,2,3) 32.31s 21.23s
(5,2,1) 2.39s n.e.
(5,2,2) 62.34s n.e.
(5,2,3) 323.07s 228.3s
(5,3,3) 12522.24s n.e.
(6,2,3) 1937.01s 1442.21s
(7,2,3) 8146.36s n.e.
(8,2,3) 28287.33s n.e.
(9,2,3) 80475,71s n.e.

Table 3: Computation time (in seconds) for 30 iterations on a Pen-
tium M (1700MHz / 1MB Cache / 1024MB).

The number of operations to be performed during each round of
update calculations grows combinatorially with the parameters N ,
C and A. Therefore it is not practically feasible to perform cal-
culations on large models. However, we measured the time which
an update round takes and counted the number of operations (in

terms of multiplications of matrix entries) which are performed per
round for a certain model (N, C, A). Table 4 shows the measured
values as well as the time/operation ratios between a certain model
and the next smaller one. Quite unintuitively, one can see that the
ratios decrease for larger models. This may support the hope that
the ratios converge to a certain limit, but for the moment this is still
an open question. Note, that the runtime of such a Python imple-

Model
(N, C, A)

user time
UT

UTN
UTN−1

OpsN
OpsN

OpsN−1

(4,2,3) 32.31s - 2880 -
(5,2,3) 323.07s 10.094 17100 5.937
(6,2,3) 1937.01s 5.997 62400 3.649
(7,2,3) 8146.36s 4,205 173250 2.776

Table 4: User time, operations per iteration and ratios of consecu-
tive steps (model with age).

mentation should not be compared to a highly optimized C or C++
program, which would be significantly faster. The message of our
results is not in the absolute values but in the growth of those values
for increasing model parameters.

6. CONCLUSION
This paper described the current progress of a new modelling

approach for gossiping networks. Our first results rely only on nu-
merical solutions of the update equations. Mathematical proofs of
convergence or speed of convergence so far have not been found.
It is still an open problem how the calculation of network proper-
ties can be done efficiently from the matrix representing the model.
Checking all possible configurations of the network as indicated in
Sec. 2 leads to the desired network properties but is prohibitively
slow. As a future task we will concentrate on efficient computation
methods to derive network properties of the given model.

Acknowledgement(s): The idea of modelling a gossiping net-
work by a matrix containing the probabilities of certain nodes hav-
ing a certain view was brought up by Frits Vaandrager in Novem-
ber 2007 during the Lorentz-Center workshop on “Two Decades of
Probabilistic Verification – Reflections and Perspectives”.

This work was supported in part by ITIS e.V. (Institut für Tech-
nik Intelligenter Systeme e.V. an der Universität der Bundeswehr
München) and by Deutsche Forschungsgemeinschaft (DFG) under
grants SI 710/2 (Validation of Stochastic Systems (VOSS)) and SI
710/3.

7. REFERENCES
[1] J. Bachmann, M. Riedl, J. Schuster, and M. Siegle:. An

Efficient Symbolic Elimination Algorithm for the Stochastic
Process Algebra tool CASPA. In Proc. of 35th International
Conference on Current Trends in Theory and Practice of
Computer Science, to appear in 2009.

[2] P. Th. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulie. From Epidemics to Distributed Computing.
IEEE Computer, 37(5):60–67, 2004.

[3] M. Jelasity, R. Guerraoui, AM. Kermarrec, and M. van Steen.
The peer sampling service: experimental evaluation of
unstructured gossip-based implementations. In Middleware
’04: Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware, pages 79–98, New York, NY,
USA, 2004. Springer-Verlag New York, Inc.

[4] M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance
and Dependability Evaluation with the Tool CASPA. In Proc.
of First European Performance Engineering Workshop
(EPEW), FORTE’04 Workshop, pages 293–307. Springer
LNCS 3236, 2004.

[5] PRISM website.
http://www.prismmodelchecker.org/, September
26th, 2008.

[6] K. Yosida. Functional Analysis. Springer, 1995.

