

Virtual-C - a programming environment for teaching
C in undergraduate programming courses

Dieter Pawelczak, Andrea Baumann
Faculty of Electrical Engineering and Computer Science

University of Bundeswehr Munich (UniBw M)
Neubiberg, Germany

Abstract—The C programming language plays an important
role in the education of engineers especially in the field of
embedded systems. On the other hand C is often a burden for
students in the first year, as they have many difficulties in writing
their own programs and the failure rates of course examinations
are typically high. We have investigated different approaches at
our faculty in the last years, how to enhance the students’
capabilities in C programming and how to lower the failure rate
of the C-programming course. Several concepts involved are:
visualization of control and data flow, game programming and
automated assessment tools with plagiarism detection. We have
integrated some of these concepts into the programming
environment Virtual-C IDE. This paper discusses the educational
benefits of using the Virtual-C IDE for lectures, self-learning and
as a platform for programming assignments and reports our first
practical experiences.

Keywords—computer science education, program visualization,
programming environments, debugging, C

I. INTRODUCTION
The C programming language is taught at many technical

faculties. Although this language is very closely linked to the
workings of a machine, many students have difficulties learn-
ing it. These difficulties are wide spread and range from
language specific problems to difficulties regarding pro-
gramming concepts and problem solving in general [1].

We have experienced a high failure rate and a rising
dropout rate of the C-programming course at our Faculty of
Electrical Engineering and Computer Science (UniBw M,
Munich) in the last years. In order to lower the failure rate and
to enhance the students’ capabilities in C programming we
have taken different measures. These include from visualiza-
tion of data and control flow, graphical programming, game
programming, web-based quizzes and questionnaires to an
automatic assessment tool with plagiarism detection.

These different approaches pushed the need for an in-
tegrated programming environment that includes all these
features and can serve as a platform for the complete pro-
gramming course, i.e. for demonstrations during the lectures,
for self-learning, for preparations towards the examination and
for accompanying programming assignments. In the last three

years we have been developing the Virtual-C IDE (VIDE)1.
This paper discusses the educational benefits of VIDE and
presents our first practical experiences from using it in the
course.

II. REVIEW OF RELATED WORK
To counter the problems in programming, a variety of pro-

gramming environments have been developed for learning and
teaching programming [2]. One of the most known is BlueJ [3]
with the focus on object-oriented programming (OOP). Other
studies discuss languages for introductory courses [4, 5]. Both
topics – OOP and the choice of an introductory language – are
out of scope of this paper: first, the C-programming course dis-
cussed here follows an introductory course based on the Java
language; and second, the C programming language is required
due to a high focus on embedded systems in our curriculum.

With respect to procedural programming common dis-
cussed difficulties are: control structures, functions/ subrou-
tines, recursion, primitive and abstract types [1, 6]. More spe-
cific topics are language related problems such as buffer over-
run and memory leaks [7]. We also found severe problems
regarding uninitialized data as well as pointers without proper
memory allocation. VIDE provides visualization means for all
of these topics except for buffer overruns, which currently can
be watch indirectly only.

As prior studies showed, a visualization or animation of
programming concepts without interaction of the student has
only a small impact on the student’s understanding [8]. It can
be useful to emphasize facts or to lighten the mood during
lectures. An important fact is, that the lecturer should teach
students how to work with the visualization tool. In addition,
students use preferable one integrated visualization tool instead
of several different ones [9]. A good example of several
visualizations integrated in one tool is COAC#, that supports
multiple visualizations for different languages in one tool [10].
Unfortunately COAC# is not yet integrated in a programming
environment, so that a student still has to use different tools for
programming and visualization. The software visualization
PROVIT uses a similar approach as VIDE: it visualizes local
variables on the call stack and shows the interaction of pointers

1 Online available at https://sites.google.com/site/virtualcide/

978-1-4799-3190-3/14/$31.00 ©2014 IEEE 3-5 April 2014, Military Museum and Cultural Center, Harbiye, Istanbul, Turkey
2014 IEEE Global Engineering Education Conference (EDUCON)

Page 1142

[11]. However PROVIT offers no such extensive expansion
options such as VIDE.

Debugging plays an important role to understand the work-
flow of algorithms as well as to find bugs in a program. Sur-
prisingly, as [1] shows, debugging is rarely in the focus of edu-
cational programming environments. As we use debugging a
lot during our courses, debugging became the central concept
of VIDE, on which most of its features are based.

Although most studies reveal, that using programming
environments does not cause major difficulties for students [6,
12], a simple to use environment allows focusing more on
programming than on configuration and handling of the tool. A
special benefit of VIDE is – as discussed before – the
integration of visualization, debugging, editor and build system
into one integrated tool.

III. USING THE VIRTUAL-C IDE FOR LECTURE
AND SELF-LEARNING

A. Usability
VIDE was initially designed for live-coding (compare e.g.

[13]) and visualizations of control and data flow during the
lectures and for students to work with these visualizations.
Although professional IDEs can be configured in such a way,
that fonts are large enough to be readable in the auditorium,
these configurations are time consuming as they differ very
much from the regular ones. An important design criterion
therefore was the simple scalability of the dialogs to be usable
with different beamer screen sizes.

Another design criterion was the one button usage:
selecting any of the debug buttons will automatically compile
and link the program’s source in the active editor window and
start the debugger. There is no need of a project definition, as
demonstrations during lecture typically consists of single C
files with tiny examples. The easy handling of the IDE
simplifies live-coding in the lectures and allows students to
concentrate more on the coding than on operating the IDE.

B. Virtual Machine
Programming and debugging a real machine is a very

complex task. A pointer in a 64-bit process is often displayed
with 16 hexadecimal digits; comparing two pointers is there-
fore difficult for the user even if they are identical. On the other
hand simple examples rarely need much memory. Therefore
VIDE uses a 32-bit virtual machine (VM) with a very simple
memory layout (code, constants, data, stack, heap, hardware).
User memory is always below 16 G; the debugger therefore
presents pointers with typically 6 hexadecimal digits.

C. Visualization of data
During stepwise or slow motion execution all valid

symbols of the process are visualized as memory blocks with a
coloring scheme referring to the memory type (e.g. invalid,
constant, stack, heap etc.). The smallest memory block refers to
a single byte. Memory contents can either be displayed as byte
content (hexadecimal) or as type specific content, i.e. integers
like e.g. short, int as decimal, floating point values like e.g.
float, double in exponential notation and char as char-

acters. Pointers are literally drawn as arrows pointing to the
referencing memory blocks, compare Fig. 1. Thus the user can
detect memory changes during debugging both by content and
color.

Fig. 1. Visualization of variables as memory blocks

After building a program, the IDE displays an overview of
the process’s memory layout. When the user starts the
debugger, the content of all memory segments containing data
are shown: constant data (mainly string literals), data for global
variables, the call stack of each thread and the memory on the
heap allocated by the process. As we avoid global variables, a
student usually can see all variable contents in the visualization
of the call stack. In case a function returns, the IDE will keep
the stack contents of this function as long as possible; all these
memory blocks are drawn in red to emphasize, that local
variables become invalid. A common pitfall in C is for instance
returning a pointer to a local variable, which is no longer valid.

The visualization of symbols as memory blocks is inte-
grated in the IDE and per default available during debugging.
The visualization helps students to understand concepts of dif-
ferent memory locations in a machine, different primitive
types, simple pointers as well as passing parameters to func-
tions by value or by reference. Although the IDE supports a
classical watch window as well, the call stack is typically
sufficient for watching the contents of local variables; further-
more, the call stack does not only show the actual value of a
variable, it also displays the contents of identically named var-
iables in different instances of functions, i.e. a common sce-
nario in recursive functions. On the other hand, an important
application of the watch window is the visibility of variables.

D. Visualization of advanced data structures
In order to create data visualization for advanced topics,

e.g. for sorting algorithms or abstract data types, the IDE is
extensible. As a bachelor thesis, J. Wonneberger wrote an ex-
tension to visualize binary trees and single-linked lists [14].
Fig. 2 shows his visualization in action: a representation of an
unbalanced binary tree (2a) and the modified tree after bal-
ancing (2b). As the view is updated with every execution step,
a student can watch the tree-modifications during insertion and
balancing. Such visualizations do not only help to understand
the data flow of algorithms, they also allow students to debug
their own tree or list implementation: a cycle in a tree, a
mismatched child node or an unintentionally shortened list is
immediately shown in the visualization. The extension shown
in Fig. 2 was written in C++. As accessing the internal data of
the compiler and the VM requires a quite complex interface,
the demand for a much simpler interface arose.

978-1-4799-3190-3/14/$31.00 ©2014 IEEE 3-5 April 2014, Military Museum and Cultural Center, Harbiye, Istanbul, Turkey
2014 IEEE Global Engineering Education Conference (EDUCON)

Page 1143

a)

b)
Fig. 2. Visualization of binary trees (unbalanced and balanced insert) –

screenshots created with the IDE extension described in [14]

An easy to use plug-in mechanism has been established:
students can write individual extensions to the IDE using
JavaScript (JS) and access data from VIDE via JS objects. The
graphical presentation can be done e.g. by a HTML5 canvas
element.

<html><body>

<h1>Local Variables</h1>

<p id = "insert">-</p>

<script>

function OnBreaked() {

 var elem = document.getElementById("insert");
 elem.innerHTML = "-"; // clear child nodes

 // get current functions on stack
 var functions = VCThread.getFunctions();

 // get local variables of active stack frame
 var vars = VCThread.getLocalVariables(
 functions.length-1);

 // print local variables
 for (var i = 0; i < vars.length; i++) {

 // get and print type
 elem.appendChild(document.createTextNode(
 VCThread.getVariableType(vars[i]) + " "));

 // get and print name
 elem.appendChild(document.createTextNode(
 vars[i] + " = "));

 // get and print content
 elem.appendChild(document.createTextNode(
 VCThread.getVariableValue(vars[i]) + ","));
 }
 }
 </script></body></html>

Fig. 3. A a simple plug-in to print the contents of local variables

An excerpt of a simple plug-in is presented in Fig. 3: it
prints the type, name and content of each local variable. The
realization is done in the OnBreak() method, which is called,
whenever the process is interrupted. It queries from the current
thread all functions of the call stack and then iterates over all
local variables in the active stack frame. This simple JS
interface allows students to implement advanced data visuali-
zations without detailed knowledge of the VM.

E. Visualization of control flow
The visualization of a program’s control flow is especially

important regarding loops, conditional instructions and re-
cursive functions. A typical pitfall for instance is the value of a
counter-variable in a for-loop after the loop; or respectively,
the loop condition required to get a certain number of iterations
in different kind of loops. Fig. 4 shows an active debug session
with the next instruction highlighted. A simple animation of
this example can be achieved by executing the program in slow
motion: VIDE runs the program step-wise, highlights the active
line in the editor and prints the call stack, variables or memory
contents in the watch or memory dump window respective.

Fig. 4. Visualization of the control flow in the debugger

with tooltips for variable contents

Visualization of the call stack is, as described in the previous
section, especially important when debugging recursive
functions. A work-in-progress is a plugin to additionally dis-
play the flow trace. Fig. 5 presents a prototype of the plugin
during debugging a recursive calculation of the factorial: The
plugin traces the call hierarchy and evaluates each line in the
source code. The concrete contents of a parameters or variables
are appended to the original code line in square brackets, e.g.
n[�3] (3 is the current value of n). Each function call is
intended and enclosed in two arrows (-> call and return <-). It
can be collapsed, i.e. showing call (with concrete parameters)
and return (with the evaluation result) only, to make the
structure of the diagram clearer. Fig. 5 shows the complete
flow trace of the sample program for a better understanding of
the overall concept. Actually the flow trace prints only steps up
to the currently debugged line (e.g. here: return 1), thus the
following greyed-out lines would not yet be visible.

978-1-4799-3190-3/14/$31.00 ©2014 IEEE 3-5 April 2014, Military Museum and Cultural Center, Harbiye, Istanbul, Turkey
2014 IEEE Global Engineering Education Conference (EDUCON)

Page 1144

Fig. 5. Visualizating the flow trace of a recursive function (plug-in)

IV. USING THE IDE FOR PROGRAMMING ASSIGNMENTS

A. Simplified Usage
The tremendous options and dialogs of a professional soft-

ware development system might overwhelm students and dis-
tract them from their programming assignments [15]. VIDE in
contrary requires no configuration, provides a program
skeleton at start up and a single button (run or step) simplifies
the handling of compiler, linker & debugger.

B. Graphics-/ game programming
Programming assignments with graphical output enlarge

motivation of students [16]. Some programming concepts,
students feel hard to grasp, can easily be explained using
graphics. A simple example is a visualization of numeric faults
of floating point arithmetic in line drawing algorithms.
Graphics programming is integrated in the IDE using the
Simple DirectMedia Library (SDL). This platform independent
library supports graphics and events like, e.g. mouse or key-
board actions [17]. A project skeleton to plot images and
handle mouse events allows students to implement simple
games like e.g. Pairs or Roulette.

C. Exercise assistant and electronic questionnaires
A major feature of the VIDE is an embedded test

framework (TF), that allows functional and performance tests.
Students can stepwise solve programming exercises and check
if their solution fulfills the requested requirements. The teacher
can define a questionnaire-like checklist in HTML with addi-
tional test files written in C. Fig. 6 presents an example of such
a checklist. Although in general an arbitrary layout can be
used, we typically designed the checklist as a table, in which
each line represents a certain task, the student has to fulfill and

submit the results for the automated tests. A task can be a
question (text or multiple choice input), a complete C program
or any other user interaction with the IDE. In case the user
selects the submit button, a JS method is invoked. This method
can perform checks within the checklist, as e.g. user input in a
form, a multiple choice test, or run a functional test on the C
program of the user, see Fig. 6.

Fig. 6. Example of a questionnaire with integrated functional tests

designed as a checklist

In case of a functional test, VIDE will first run static tests
and report these results to the user: compilation of the program
(Comp.), check on the coding style of the source file (Style) and
link the user’s program with the test file (Link). As Fig. 6
shows, the results of each step are displayed in a traffic light
scheme. A green light reports success. In case of an error, e.g.
the program does not compile, the submission is aborted and
the user has to work on these errors before re-submission. After
a successful build, the functional test is invoked (Func.). In
case all steps passed and the overall result is above a given
threshold, the task is passed and the overall result for the task is
calculated and reported with a time stamp, compare Fig. 6.

Fig. 7 lists a simple example of a functional test, e.g. to
check, if a student’s program calculates the Fibonacci-number
for the given input 8 correctly. The test framework provides
several extensions to the C standard including access to statistic
data from the compiler (static information). This data can be
queried per function or for the overall program: for example
the call _queryIntAttributes("floatOps") returns the
total number of floating point operations of the program,
whereas the attribute main_floatOps represents the count of
float operations for the function main(). Other static infor-
mation is for example:

� number of integer operations
� count of function calls
� maximum depth of loops and count of loops
� contents of defines
� values of enumeration types.

-> main()
| printf("%d", factorial(3));
| -> factorial(n [�3])
| | if (n [�3] <= 1)�� false
| | return n [�3] * factorial(n [�3]-1)
| | -> factorial(n [�2])
| | | if (n [�2] <= 1)�� false
| | | return n [�2] * factorial(n [�2]-1)
| | | -> factorial(n [�1])
| | | | if (n [�1] <= 1)�� true
| | | | return 1
| | | <- 1
| | | return n [�2] * 1
| | <- 2
| | return n [�3] * 2
| <- 6
| printf("%d", 6));
| return 0;
<- 0

978-1-4799-3190-3/14/$31.00 ©2014 IEEE 3-5 April 2014, Military Museum and Cultural Center, Harbiye, Istanbul, Turkey
2014 IEEE Global Engineering Education Conference (EDUCON)

Page 1145

The TF executes the function _mopcheck(), which returns
a number between 0 and 100, reporting the functionality as a
percentage from poor to perfect. This function typically
invokes functions of the student’s program with a given input
and checks the resulting output; the example in Fig. 7 calls the
function main(). During the test run, the VM provides
additional dynamic information (e.g. count of instructions,
exceptions, stack and heap usage).

#include <mopvmex.h>

extern int main(void);

int _mopcheck(void){

 char result[512]; /* holds the output */

 /* static tests, e.g. number of float operations */
 if (_queryIntAttributes("floatOps") > 0) {

 _printErrorToOutput("Floating points are "
 "not allowed!");

 return 0;
}

/* set test conditions: here redirecting stdin/stdout */
 _redirectStdout(result, sizeof(result));
 _redirectStdin("8\n", 2);

/* limit CPU instructions, enable exception handler */
 _setExecutionLimit(10000);

/* dynamic test: call the user program */
 if (main() != 0)
 _printWarningToOutput("main() should "
 "return EXIT_SUCCESS.");

if (_printFault("main() does not terminate.",
 "unhandled exception."))
 return 0;

/* check output of user program */
 if (!_containsRegEx(result, "\\b21\\b")) {
 _printErrorToOutput("main() does not print "
 "the right Fibonacci-"
 "Number for input 8.");

 return 5; /* at least no crash */

}

 return 100; /* success, return 100% */

}

Fig. 7. A simple test program

To circumvent a deadlock or a crash of the test itself, when
calling the student’s code, the test specifies the maximum
number of machine instructions (_SetExecutionLimit). In
case this number exceeds or an exception occurs, the VM will
continue execution in the stack frame, which called
_SetExecutionLimit; thus continuing the test code as if the
student’s code had properly finished. The test program then can
check the condition, for example querying the number of
instructions or the kind of exception. The function _print-
Fault() combines both checks and prints the corresponding
error messages. The user in- and output can be redirected from/
respectively to a string and – for convenience – a regular
expression can be tested on a string, which simplifies testing
the program’s output.

In addition to the TF, the new plug-in mechanism (see Sec.
III.D) allows access to the same static and dynamic information
from JS. This offers a tremendous variety of options how to

design the questionnaire: questions based on the student’s
solution can be generated dynamically. While the checklist in
Fig. 6 shows a static question related to the data type (“which
data types can extend the range”), querying the actual type used
in the student’s program allows modifying the question
dynamically: imagine, a student already used an unsigned
long long int, the question could be for instance: does the
type double extend the range of possible Fibonacci-numbers
or not?

D. Automated assesment system and plagiarism detection
Checklists and functional tests for exercises as described in

Sec. IV.C can either be done standalone (i.e. loading the
exercise from a local file folder) or integrated into a course’s
assessment system. Therefor VIDE provides a web interface,
which can retrieve exercise descriptions from a web server and
upload the filled-out checklists back to the server. In the C
programming course at our faculty, a utility program called
MopClient manages the student’s authentication as well as a
checklist on the overall results of the programming assign-
ments. This tool invokes VIDE with the proper checklist for
each assignment, compare Fig. 8.

Fig. 8. System for automated assesment including plagiarism detection

For the programming assignment, VIDE requests test
programs (as described in Sec. IV.C) for functional tests from
the web server. Each completed task (either a pass or a fail) is
uploaded to the web server in order to log the progress of the
student and to store the individual state of the programming
assignment. The teacher uses the course & user management
system to specify the tasks per assignment, to define the
number of allowed repetitions in case a submission is
erroneous or incomplete, to adapt individual assignments and
to monitor the students’ achievements and the overall course
results.

A plagiarism detection system can be integrated to prevent
unwanted collaboration: the submission of a programming
assignment is tested against all submissions from the fellow
students. Exceeds the similarity of two submissions a given
limit, a submission is rejected. As the program sizes of the

�������� ��
��!��"����
 ��&����

����
�
�
�
�
�
�
�
�
�
�

!$���!�

�
�
�
�
�
�
�
�
�
�

!$���!�

�
�
�
�
�
�
�
�
�
�

!$���!�
�
�
�
�

��������

���
��%���
��!$��*������	��$� !�!� !�������� �

��������!�
� ���������

���!(���
$� ��

�����
�� !����

��+� !���
�

��$� ��)�� ���
���������!�

� �����������!�������� !��
�����+� !����

	��$� !��������� ��������

978-1-4799-3190-3/14/$31.00 ©2014 IEEE 3-5 April 2014, Military Museum and Cultural Center, Harbiye, Istanbul, Turkey
2014 IEEE Global Engineering Education Conference (EDUCON)

Page 1146

assignments are quite small (source lines of code are typically
between 40 to 200) the limit is about 80%. For details on the
plagiarism detection system see [18].

Although the assessment system would allow submissions
at any time, we restrict submissions to class time and to our
internal lab network. So students can prepare their pro-
gramming assignment at home, but have to come into the lab
for their submission. This allows our course instructors to help
students with their submissions and to discuss individual pro-
gramming difficulties.

V. EVALUATION OF THE VIRTUAL-C IDE
In the years 2011 and before, a commercial IDE had been

used in the C-programming course. VIDE had been used for
demonstrations during lecture in the spring course 2012 next to
the professional IDE, which had been used for programming
assignments and exercises. Although the courses evaluation
revealed, that students like the live-coding and these
demonstrations, only a view students downloaded VIDE and
run the examples on their own. As discussed in Sec. II the
effect of these visualizations was negligible: the failure rate
slightly increased and the number of students with above 75%
of all points even decreased a little bit, compare Fig. 10. The
usage of two different programming environments during the
lecture might be one reason, that students downloaded less of
the programming examples, which had been shown during the
course. Fig. 9 shows the download rate of 8 typical pro-
gramming examples like e.g. integer arithmetic, pointers,
strings, dynamical data structures and file handling, etc.

Fig. 9. Download rate of example projects/ files given during the lectures

in the last three years

In the spring course 2013 VIDE had been used for the
complete course, i.e. during the lectures, for exercises and for
the programming assignments. The failure rate dropped down
more than 15 % while 20 % more students reached 75 % and
above points in the examination compared to the previous
years, see Fig. 10. All examples shown in the lecture had been
provided as single C-files except the last two examples, which
used multiple files and were therefore zipped folders. The
average download rate was about 29 % respectively 13 %

above the rates for the last two years. Although the download
rate does not give sound proof of the VIDE’s acceptance, it can
certainly serve as an indicator. As the student’s evaluation of
the course showed, most students downloaded the IDE on their
private computer and most students debugged at least at one
example.

The formal and pedantic functional tests of the automated
assessment system required, that students put more time into
their programming assignments at least with respect to fixing
errors: the functional tests for the assignments revealed more
programming faults, like e.g. invalid pointer usage, memory
leaks or uninitialized variables, compared to manual checking
in the previous years; course instructors didn’t had the time to
scrutinize that detailed source codes of each student; especially
as the number of students is high compared to a dissatisfactory
low count of course instructors. The automated assessment
system helped instructors to work with students on program-
ming issues more than on administrative tasks.

Fig. 10. Examination results of the C-programming course

in the last three years

Two surprising results of the students’ evaluation of the
2013 course are:

� students stated a slightly lower workload compared to
the years before. The impressions of the course
instructors were contrary: students seemed to work
harder for the 2013 course. A higher motivation of the
students competing with the assessment system might
explain this difference

� and students wished electronic submission to be avail-
able outside the class time.

Although students appreciated the help of the instructors
very much, some students preferred an anonymous submission.
Such an “open round-the-clock” submission system would
certainly encourage students’ academic freedom, but also
would counteract our pedagogic approach to help and discuss
programming difficulties with students in class time.

%1�

&%1�

'%1�

(%1�

)%1�

*%1�

+%1�

,%1�

-%1�

.%1�

&%%1�

������������ ��������
�������
������� 	������� 	�������'� ������������ ������ ���

���
���������������	���������

'%&&���������������
'%&'���������������"�������!������������������
'%&(�������!�������

)�

!)�

")�

)�

$)�

%)�

" !!��������
������ " !"��������
��������
	����
�������������
�����

" !#�	����
���������

���	
�������������	���
�

�����&%)�

�
������
��

978-1-4799-3190-3/14/$31.00 ©2014 IEEE 3-5 April 2014, Military Museum and Cultural Center, Harbiye, Istanbul, Turkey
2014 IEEE Global Engineering Education Conference (EDUCON)

Page 1147

VI. CONCLUSION AND OUTLOOK
We successfully introduced the Virtual-C IDE (VIDE) as a

standalone programming environment for the complete C-pro-
gramming course (including live-coding in the lectures, for the
accompanying programming assignments and self-learning for
the course examination) at our university. Although many
different factors may influence the examination results, the
failure rate significantly dropped more than 15 % compared to
previous years, see Fig. 10. The students’ evaluation of the
course revealed, that many students liked the game-like
approach of the checklists for exercises and automated
assessment. Certainly, the electronic exercises and the simple
handling of the debugger, compiler and visualization tools
brought more students to actively work with the programming
environment as in the years before. Another benefit of VIDE
are the pedantic functional tests, which required, that students
had to work harder on their assignments, as typical pro-
gramming faults like, e.g. uninitialized data or memory leaks,
were rejected in submission. Last but not least the plagiarism
detection prevented unwanted collaboration and required each
student to prepare an individual solution. Although some
solutions resulted from teamwork, these had to be elaborated
before submission. Students surprisingly stated a lower work-
load compared to the previous years, although the impression
of the course instructors was that students spent more time for
the course.

With respect to the future development of the Virtual-C
IDE, we will extend the number of questionnaires for smaller
and shorter exercises and plan to improve the static analytics of
the compiler to give better feedback on typical coding
mistakes. As VIDE is based on the open source library Qt2 a
current work in progress is a port to Android based mobile
platforms.

Our future research focus is to further combine the visuali-
zation of complex data structures, like e.g. binary trees, with
the presentation of the control flow: A challenging approach is
to store the history of a program execution for both its data and
control flow in order to allow students to navigate forward and
backward in the visualization. We expect students to get a
better understanding of their own programs, to learn from their
mistakes and therefore enhance their programming capabilities.

ACKNOWLEDGMENT
We like to thank the students that contributed to the

Virtual-C IDE: D. Schmudde, M. Huettner and J. Wonne-
berger and the instructors in the lab for their feedback: T.
Groetzbach and M. Schneider.

see http://qt-project.org

REFERENCES
[1] M. Hertz, S. M. Ford, “Investigating factors of student learning in

introductory courses“. In Proc. of the 44th ACM technical symposium on
Computer science education (SIGCSE '13), New York, NY, USA, 2013,
pp. 195-200

[2] C. Kelleher, R. Pausch, “Lowering the barriers to programming: a taxo-
nomy of programming environments and languages for novice program-
mers“. ACM Computing Surveys, Vol. 35, 2 (June 2005), pp. 83-137

[3] M. Kölling, B. Quig, A. Patterson, J. Rosenberg, “The BlueJ system and
its pedagogy“. J. Comput. Science Educ., Special Issue of Learning and
Teaching Object Technology 12, 4, pp. 249–268.

[4] L.Mannila, and M. de Raad, “An objective comparison of languages for
teaching introductory programming“. Proc. of the 6th Baltic Sea conf. on
Computing education research: Koli Calling 2006, New York, NY,
USA, 2006, pp. 32-37.

[5] A. Dingle, and C. Zander, “Assessing the ripple effect of CS1 language
choice“. J. Comput. Sci. Coll. 16, 2 (October 2000), pp. 85-93

[6] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the difficul-
ties of novice programmers“. SIGCSE Bull. 37, 3 (June 2005), pp. 14-18

[7] A. Allevato, S. H. Edwards, and M. A. Pérez-Quiñones, “Dereferee:
exploring pointer mismanagement in student code“. SIGCSE Bull. 41, 1
(March 2009), pp. 173-177

[8] C. Hundhausen, S. Douglas, and J. T. Stasko, “A meta-study of
algorithm visualization effectiveness“. J. of Visual Languages and
Computing, 13 (3), 2002, pp. 259–290

[9] T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Rößling, W. Dann, A.
Korhonen, L. Malmi, J. Rantakokko, R. J. Ross, J. Anderson, R.
Fleischer, M. Kuittinen, and M. McNally, “Evaluating the educational
impact of visualization“. SIGCSE Bull. 35, 4 (June 2003), pp. 124-136

[10] M. A. Jakeline, “Learning computer programming with COAC#“.
FECS'13: The 9th Int. Conf. Frontiers in Education: Computer Science
and Computer Engineering, July 22-25, 2013, Las Vegas, USA, pp. 160-
165

[11] K. Matsumura, S. Daisukey, A. He, “A C language programming
education support system based on Software Visualization“. Joint
Conferences on Pervasive Computing (JCPC), 2009, pp. 9-14

[12] S. Xinogalos, “Programming techniques and environments in a techno-
logy management department“. In Proc. of the 5th Balkan Conf. in
Informatics (BCI '12). ACM, New York, USA, pp. 136-141

[13] M. J. Rubin, “The effectiveness of live-coding to teach introductory
programming“. Proc. of the 44th ACM technical symposium on
Computer science education (SIGCSE '13)., New York, NY, USA,
2013, pp. 651-656

[14] J. U. Wonneberger, “Developing an application for a graphical view of
dynamic data structures“. Bachelor thesis, UniBw M (in German):
„Entwicklung einer Anwendung zur graphischen Darstellung dynami-
scher Datenstrukturen“, 2012

[15] E. Dillon, M. Anderson, and M. Brown, “Comparing feature assistance
between programming environments and their "effect" on novice
programmers“. J. Comput. Sci. Coll. 27, 5 (May 2012), pp. 69-77

[16] A. Slaby, and E. Milkova, “Computer graphics as a way of improvement
programming skills“. ITI 2006, 28th Int. Conf. Information Technology
Interfaces, June 19-22, 2006, Cavtat, Croatia, pp. 295-300

[17] B. Pendleton, “Game programming with the sdl“. Linux J. 2003, 110
(June 2003)

[18] D. Pawelczak, “Online detection of source-code plagiarism in under-
graduate programming courses“. FECS'13: The 9th Int. Conf. Frontiers
in Education: Computer Science and Computer Engineering, July 22-25,
2013, Las Vegas, USA, pp. 57-63

978-1-4799-3190-3/14/$31.00 ©2014 IEEE 3-5 April 2014, Military Museum and Cultural Center, Harbiye, Istanbul, Turkey
2014 IEEE Global Engineering Education Conference (EDUCON)

Page 1148

