
Markov Automata: Deciding weak bisimulation by

means of non-näıvely vanishing states

Johann Schustera, Markus Sieglea

aUniversity of the Federal Armed Forces Munich

Abstract

This paper develops a decision algorithm for weak bisimulation on Markov
Automata (MA). For this purpose, different notions of vanishing states (a
concept originating from the area of Generalised Stochastic Petri Nets) are
defined. In particular, non-näıvely vanishing states are shown to be essen-
tial for relating the concepts of (state-based) näıve weak bisimulation and
(distribution-based) weak bisimulation. The bisimulation algorithm pre-
sented here follows the partition-refinement scheme and has exponential time
complexity.

Keywords: Markov automata, weak bisimulation, vanishing state,
elimination

1. Introduction

Markov Automata (MA) are a powerful formalism for modelling systems
with nondeterminism, probability and continuous time. The weak bisimula-
tion relation for MA [1, 2] is not a relation on the set of states, but rather a
relation on the set of subdistributions over states. This is the reason, why it
is not obvious how to develop an algorithm for deciding distribution-based
weak bisimulation for MA, and this is exactly the topic of the present paper.

Our approach carries over some intuition from the area of Generalised
Stochastic Petri Net [3] to the MA setting. There, vanishing markings are
eliminated in order to minimise the number of reachable markings and to
enable the subsequent steps of numerical analysis. A basic example of a
GSPN is given in Fig. 1. It consists of the places p1 to p4, an exponentially
distributed transition t1 and the immediate transitions t2 and t3. We assume
that the weights of the immediate transitions have already been transformed

Preprint submitted to Information and Computation February 14, 2014

l

(1-a)
p1 p2

p3

p4

a

t1

t2

t3

(a) GSPN example

(1,0,0,0) (0,1,0,0)

(0,0,1,0)

(0,0,0,1)

l

(1-a)

a

(b) Reachable markings

(1,0,0,0)

(0,0,1,0)

(0,0,0,1)
al

(1-a)l

(c) After elimination

Figure 1: Example of a GSPN

to probabilities. The resulting Labelled Transition System – including both
exponential and probabilistic transitions – of the reachable markings is shown
in Fig. 1b: the solid arc defines an exponential transition with rate λ, the
dashed arcs denote the immediate transitions driven by probabilities (1− a)
and (a). After elimination of marking (0, 1, 0, 0) we obtain the transition
system in Fig. 1c. In GSPN terminology, the state corresponding to marking
(0, 1, 0, 0) is called “vanishing”, whereas in this paper, where we develop a
more detailed classification of vanishing states, it will be denoted trivially
vanishing.

With this intuition, we are able to define vanishing states in the nondeter-
ministic context of MA. We provide a topological characterisation of a special
kind of states that is equivalent to a “real” distribution, i.e. a distribution
consisting of at least two different classes with respect to some equivalence
relation. It will turn out that this characterisation, that we call non-näıvely
vanishing (nn-vanishing), is sufficient for calculating state-minimal normal
forms of Markov Automata. With the aid of this characterisation we are able
to give a decision algorithm for weak MA bisimulation.

In contrast to distribution-based weak bisimulation, decision algorithms
for näıve weak bisimulation on MA have been known for some time. Since
näıve weak bisimulation on MA [1] corresponds to weak probabilistic bisimu-
lation on Probabilistic Automata (PA), näıve weak MA bisimulation is known
to be decidable since 2002 [4]. There, an exponential time algorithm was pre-

2

Partition W1

Find nn-vanishing
states

Virtually eliminate
nn-vanishing states

Partition W2

Find nn-vanishing
states

Partition Wn

Find nn-vanishing
states

...

...Virtually eliminate
nn-vanishing states

Virtually eliminate
nn-vanishing states

Split current
partition

Split current
partition

Split current
partition

...
Figure 2: Proposed algorithm

sented. In 2012 a polynomial time algorithm has been presented for deciding
näıve weak MA bisimulation [5].

Our algorithm is built upon the algorithm in [4] which is a partition re-
finement algorithm. The main difference is that for every partition of the
state space we first identify nn-vanishing classes of states. Before we split
the current partition, we “virtually” eliminate all states that belong to nn-
vanishing classes, i.e. we only consider restricted probability distributions
where the probability of every nn-vanishing state is equal to zero. On this
“reduced” transition system, we run the algorithm of [4] (on all states, con-
sidering also nn-vanishing states which are sufficiently identified by the not
nn-vanishing states they can reach). This basic scheme of the algorithm is
depicted in Fig. 2.

Our algorithm has exponential time complexity (the result of [5] does not
seem to be applicable to the weak case, as the näıve weak bisimulation prob-
lems after speculative eliminations have an exponential number of transitions
in contrast to the original weak bisimulation problem).

By its generality, using only minor changes it can also be applied to the
case of the MA bisimulation recently defined in [6].

More or less at the same time to our approach [7], a different approach
for a decision algorithm has been given in [8]. A comparison of the two
approaches is given in Sec. 8.

This paper is a major rework of our report [7]. While the algorithm
is completely the same, the correctness proofs of the previous paper relied
heavily on results of [1, 2]. The present paper provides a new line of argu-
mentation and new proofs, independent of Thm. 2 of [1, 2] .

The paper is organised as follows: In Sec. 2 we present the necessary pre-

3

liminaries and recall a mapping from MA to PA from [1]. Sec. 3 recapitulates
some facts on weak and näıve weak bisimulation for MA. In Sec. 4 we define
different notions of vanishing states and use them to relate weak bisimulation
and näıve weak bisimulation. Sec. 5 discusses properties of vanishing states
and provides the main theorems. Sec. 6 describes our decision algorithm for
weak MA bisimulation that heavily relies on Sec. 4 and Sec. 5. In Sec. 7 we
briefly discuss the applicability of our concepts and our decision algorithm
to the weak bisimulation published in [6]. In Sec. 8 we compare our con-
cepts to a recently published alternative approach [8] for deciding weak MA
bisimulation. Finally, Sec. 9 concludes the paper.

2. Preliminaries

This section introduces some common notations on distributions, defines
Markov Automata following [1, 2] and recalls the mapping from Markov
Automata to probabilistic automata which is used in Sec. 3 to define weak
bisimulation for Markov Automata.

2.1. Probability (Sub-)Distributions

First we define the notion of discrete subdistribution and related terms
and notations: A mapping µ : S → [0, 1] is called (discrete) subdistribution,
if
∑

s∈S µ(s) ≤ 1. As usual we write µ(S ′) for
∑

s∈S′ µ(s). The support of
µ is defined as Supp(µ) := { s ∈ S | µ(s) > 0 }. The empty subdistribution
µ∅ is defined by Supp(µ∅) = ∅. The size of µ is defined as |µ| := µ(S).
A subdistribution µ is called distribution if |µ| = 1. The sets Dist(S) and
SubDist(S) denote distributions and subdistributions defined over the set
S. Let ∆s ∈ Dist(S) denote the Dirac distribution on s, i.e. ∆s(s) = 1.
For two subdistributions µ, µ′ the sum µ′′ := µ ⊕ µ′ is defined as µ′′(s) :=
µ(s) + µ′(s) (as long as |µ′′| ≤ 1). As long as c · |µ| ≤ 1, we denote by cµ the
subdistribution defined by (cµ)(s) := c · µ(s). For a subdistribution µ and a
state s ∈ Supp(µ) we define µ− s by

(µ− s)(t) =

{
µ(t) for t 6= s

0 for t = s

Occasionally, we will also need the lifting of relations to distributions:

Definition 1 (Lifting of equivalence relations to distributions). An equiva-
lence relation R ⊆ S×S is lifted to Dist(S)×Dist(S) in the following way:

4

For µ, γ ∈ Dist(S) we write µ ≡R γ (or simply, by abuse of notation, µR γ)
if and only if for each equivalence class C ∈ S/R : µ(C) = γ(C).

2.2. Markov and Probabilistic Automata

The definition of Markov Automata we use is the one from [1, 2].

Definition 2 (Markov Automata [1]). A Markov automaton MA is a tuple
(S,Act, , , s0), where

• S is a nonempty finite set of states,

• Act is a set of actions containing the internal action τ ,

• ⊆ S×Act×Dist(S) a set of action-labelled probabilistic transitions,

• ⊆ S × R≥0 × S a set of Markovian timed transitions and

• s0 ∈ S the initial state.

A state in a MA is called stable if it has no emanating τ transitions, other-
wise it is called unstable. A stable state s will be denoted by s↓.

In order to make our decision algorithm feasible we assume in the follow-
ing that, in contrast to the original definition from [1, 2], all sets in Defi-
nition 2 are finite. This means that there are finitely many states, finitely
many actions and finitely many transitions.

For simplicity we define probabilistic automata (PA) in terms of MA.

Definition 3. A probabilistic automaton (PA) is a MA P = (S,Act,→, ∅, s0).
We also write P = (S,Act,→, s0) if the context is clear.

This definition corresponds to a simple probabilistic automaton in the
sense of Segala [9].

For the mapping from MA to PA introduced in [1] we need to define the
probability distribution on successor states. In contrast to [1, 2, 10], our
definition of successor distribution also takes care of the case rate(s) = 0.

5

Definition 4 (modified1 version of Definition 3 in [1]). Let M = (S,Act, , , s0)
be a MA. Define

rate(s, s′) :=
∑

(s,λ,s′)∈

λ

and rate(s) :=
∑

s′∈S rate(s, s
′) which is called the exit rate of state s. The

probability distributions Ps are defined in the following way:

Ps :=

{
s′ 7→ rate(s,s′)

rate(s)
for rate(s) 6= 0

∆s otherwise

2.3. A mapping from MA to PA

The remarkable idea of [1] is to define bisimulations on MA using a map-
ping from MA to PA. The basic ingredient is a set of special actions, denoted
by χ(.), that cover timed behaviour. In the setting of [1, 2] countable action
sets are mapped to uncountable action sets by definition, as for every real
number a new action name is introduced. In order to keep the action set
finite to retain algorithmic tractability, we redefine Actχ in the context of a
fixed MA:

Definition 5. LetM = (S,Act, , , s0) be a MA. Assume ∀r ∈ R≥0 χ(r) /∈
Act and define RT := {rate(s)|s ∈ S} (which is finite). Then we define
Actχ(RT) = {χ(r)|r ∈ RT } and Actχ := Act ∪ Actχ(RT).

There is a mapping from MA to PA (adapted from [1]) where we use
Definition 4:

Definition 6. Let M = (S,Act, , , s0) be a MA. Define the transitions
→ as follows: For s ∈ S define

s
α
→ µ if

{
α ∈ Act and s α µ

s↓, α = χ(rate(s)) ∈ Actχ(RT) and µ = Ps

Then the mapping PA : MA → PA is defined by M 7→ (S,Actχ,→, ∅, s0).

1The original definition from [1, 2, 10] is problematic, as for rate(s) = 0 the fraction 0

0

is not defined (this case is treated separately in our definition), and for infinite sets
the exit rate may not converge (this case is not problematic for us, as we deal with finite

sets). Both issues have no impact on the decision algorithm presented here, but the first
issue has an impact on the compositionality of MA bisimulation in general. For a detailed
explanation of why compositionality is lost with the original definitions of [1, 2, 10] we
refer to Appendix A of [7].

6

(a) M1 = PA(M1) (b) M2 (c) PA(M2)

Figure 3: MA to PA transformations

(a) M3 (b) PA which is not in PA(MA)

Figure 4: MA to PA transformations - continued

Note that every timed transition is part of a special χ(·) action. So the
set of actions is increased by the mapping PA(·), but no timed transition
remains in the image. For more details on the procedure we refer to [1].

Example 1. Two special cases are given in Fig. 3. M1 (Fig. 3a) has a
τ loop, so no timed transition (i.e. χ(·)) exists after the transformation,
i.e. PA(M1) = M1. In the example M2 (Fig. 3b) u is a stable state and
therefore the transformation leads to a χ transition with exit rate 0 (Fig. 3c).

Lemma 1. The mapping PA : MA → PA is neither injective nor surjective.

Proof. It is not surjective, as a Markovian race condition is always converted
to a deterministic χ transition. That means for example the PA in Fig. 4b
is not in PA(MA). It is also not injective, as M3 in Fig. 4a is not equal to
M1 in Fig. 3a, but PA(M1) = PA(M3) = M1.

2.4. Weak transitions

In the following we use the definitions and terminology of [11], but we
leave out the definitions for labelled transition systems. Given a transition
tr = (s, a, µ), we denote s by source(tr) and µ by µtr. Consider a PA
P = (S,Act,T , ∅, s0) (with transition relation T). An execution fragment of
P is a finite or infinite sequence α = q0a1q1a2q2 · · · of alternating states and
actions, starting with a state and, if the sequence is finite, ending in a state,
where each (qi, ai+1, µi+1) ∈ T and µi+1(qi+1) > 0. State q0, the first state

7

of α, is denoted by fstate(α). If α is a finite sequence, then the last state
of α is denoted by lstate(α). An execution of P is an execution fragment
of P where q0 = s0. We let frags(P) denote the set of execution fragments
of P and frags∗(P) the set of finite execution fragments of P . Similarly,
we let execs(P) denote the set of executions of P and execs∗(P) the set of
finite executions. Execution fragment α is a prefix of execution fragment α′,
denoted α ≤ α′, if sequence α is a prefix of sequence α′.

The trace of an execution fragment α, written trace(α), is the sequence of
actions obtained by restricting α to the set of external actions, i.e. Act\ {τ}.
For a set E of executions of a PA P , traces(E) is the set of traces of the
executions in E. We say that β is a trace of a PA P if there is an execution
α of P with trace(α) = β. Let traces(P) denote the set of traces of P .

A scheduler for a PA P is a function σ : frags∗(P) → SubDist(T) such
that tr ∈ supp(σ(α)) implies that source(tr) = lstate(α). This means that
the image σ(α) is a discrete subdistribution over transitions. The defect of
the subdistribution, i.e. 1 − |σ(α)| is used for stopping in the current state.
A scheduler σ is said to be deterministic if for each finite execution frag-
ment α either σ(α)(T) = 0 or σ(α) = ∆tr (Dirac measure for tr) for some
tr ∈ T . In other words, a deterministic scheduler is the entity that resolves
nondeterminism in a probabilistic automaton by choosing randomly either to
stop or to perform one of the transitions that are enabled from the current
state. A scheduler is called memoryless if it depends only on the last state
of its argument, that is, for each pair α1, α2 of finite execution fragments,
if lstate(α1) = lstate(α2), then σ(α1) = σ(α2). A scheduler is called deter-
minate if its choice depends only on the current trace and on the last state
of its argument, that is, for each pair α1, α2 of finite execution fragments, if
trace(α1) = trace(α2) and lstate(α1) = lstate(α2), then σ(α1) = σ(α2). Fol-
lowing [4] we call a deterministic determinate scheduler a Dirac determinate
scheduler.

A scheduler σ and a discrete initial probability measure µ0 ∈ Dist(S)
induce a measure ǫ on the sigma-field generated by cones of execution frag-
ments as follows. If α is a finite execution fragment, then the cone of α is
defined by Cα = {α′ ∈ frags(P)|α ≤ α′}. The measure ǫ of a cone Cα is
defined recursively: If α = s for some s ∈ S we define ǫ(Cα) = µ0(s). If α is
of the form α′a′s′, ǫ(Cα) is defined by the equation

ǫ(Cα) = ǫ(Cα′) ·
∑

tr∈T (a′)

σ(α′)(tr)µtr(s
′),

8

where T (a′) denotes the set of transitions of T that are labelled by a′. Stan-
dard measure theoretical arguments ensure that ǫ is well defined. We call
the measure ǫ a probabilistic execution fragment of P , and we say that ǫ is
generated by σ and µ0.

Consider a probabilistic execution fragment ǫ of a PA P , with first state
s, i.e. µ0 = ∆s, that assigns probability 1 to the set of all finite execution
fragments α with trace trace(α) = β for some β ∈ (Act \ {τ})∗. Let µ be

the discrete measure defined by µ(s′) = ǫ({α|lstate(α) = s′}). Then s
β
⇒C µ

is a weak combined transition of P . We call ǫ a representation of s
β
⇒C µ.

If s
β
⇒C µ is induced by a deterministic scheduler, we also write s

β
⇒ µ. In

case trace(α) is empty we write s
τ
⇒C µ.

Let {s
a
→ µi}i∈I be a collection of transitions of a PA P , and let {ci}i∈I

be a collection of probabilities such that
∑

i∈I ci = 1. Then the triple
(s, a,

∑
i∈I ciµi) is called a (strong) combined transition of P and we write

s
a
→C

∑
i∈I ciµi. We say that there is a hyper-transition from µ

a
⇒C µ′, if

there exists a family of weak combined transitions {s
a
⇒C µs}s∈Supp(µ) such

that µ′ =
∑

s∈Supp(µ) µ(s) · µs.

3. Relating näıve weak & weak bisimulation

Remember that for a MA M its transitions have been defined by means
of PA(M), so in the following it is safe to assume that all Markov Automata
are represented by their PA images. All calculations will be made in this
context.

Note that, in contrast to the transition tree notation of [1, 2, 12], we do

not need the notation
α̂
⇒ (which includes the possibility of zero steps in the

case α = τ) as our definition of
α
⇒ also includes this case2.

The relation defined in the following is called “weak probabilistic bisim-
ulation” [4] in the context of PA:

Definition 7 (Näıve weak bisimulation in the spirit of [13]). An equivalence
relation R on the set of states S of a MA M = (S,Act, , , s0) is called
näıve weak bisimulation if and only if xRy implies for all α ∈ Actχ: (x

α
→ µ)

implies (y
α
⇒C µ′) with µ ≡R µ′ (note that the transitions are regarded in

PA(M)). If x and y are contained in a näıve weak bisimulation relation, we

2Definition 10 in [1, 2] erroneously uses α instead of α̂.

9

write x ≈näıve y. Two MA are called näıvely weakly bisimilar if their initial
states are related by a näıve weak bisimulation relation on the direct sum of
their states.

We would like to mention that modulo näıve weak bisimulation it is pos-
sible to omit τ -loops in the image PA(·). The property whether a state
is stable or unstable can still be recovered by looking for the presence (or
absence) of χ transitions.

The authors of [1, 2] argued that the (state-based) notion of näıve weak
bisimulation is too fine. Therefore they defined the coarser notion of (distribution-
based) weak bisimulation:

Definition 8 (Weak bisimulation [1, 2]). A relation R on sub-distributions
over the set of states S of a MA M = (S,Act, , , s0) is called weak
bisimulation if for all (µ1, µ2) ∈ R it holds that (transitions regarded in
PA(M))

A.) |µ1| = |µ2|

B.) ∀t ∈ Supp(µ1), ∀α ∈ Actχ : ∃µg
2, µ

s
2 : µ2 ⇒C µg

2 ⊕ µs
2 such that

(i) (µ1(t) ·∆t)Rµg
2 and (µ1 − t)Rµs

2

(ii) whenever (t
α
→ µ′

1), then (∃µ′
2 : µ

g
2

α
⇒C µ′

2 and (µ1(t) · µ
′
1)Rµ′

2)

C.) a symmetric condition with µ1 and µ2 interchanged (roles of left-hand
side and right-hand side also interchanged)

Two distributions µ, γ are called weakly bisimilar (with respect to some MA
M), written µ ≈ γ, if the pair (µ, γ) is contained in a weak bisimulation
relation (with respect to M). Two states are called weakly bisimilar if their
corresponding Dirac distributions are weakly bisimilar. We write s ≈∆ t for
∆s ≈ ∆t. Two MA are called weakly bisimilar if their initial states are weakly
bisimilar in the direct sum of the MA.

Thm. 1 in [1, 2] shows that ≈ is an equivalence relation (and therefore
also ≈∆).

The following statement is a corollary of Thm. 2 in [1, 2]. As we show
in Appendix A that Lemma 16 in [2] (and therefore also Thm. 2 in [1, 2])
must be considered unproven, we give an independent proof of the following
statement.

10

Lemma 2 (Corollary of Thm. 2 in [1, 2]). If two MA are näıvely weakly
bisimilar, they are also weakly bisimilar.

Proof. We provide a direct proof of this statement. Let P = (S,Actχ,→
, ∅, s0), P

′ = (S ′, Actχ,→′, ∅, s′0). We directly construct a weak bisimulation
relation R′ out of a given näıve weak bisimulation relation R ⊆ S × S ′.
R′ = { (µ1, µ2) | µ1 ∈ SubDist(S), µ2 ∈ SubDist(S ′), µ1 ≡R µ2 }. We show
that this is indeed a weak bisimulation. To simplify matters, we assume that
we work on the quotient with respect to ≈näıve of the direct sum of S and
S ′. Now we may verify the condition for weak bisimulation. Assume that
(µ1, µ2) ∈ R′. By µ1 ≡R µ2 it is clear that |µ1| = |µ2|. Now choose an
arbitrary s ∈ Supp(µ1) and let µ1(s) = c. Again by µ1 ≡R µ2 we find also
s ∈ Supp(µ2) and we may choose µg

2 = c∆s (the fact that we may consider
the same state s in both Supp(µ1) and Supp(µ2) holds only for quotients – in
the general case we must find bisimilar states with the same probability mass
c). Of course also the remaining parts µ1 − s and µs

2 (where µ2 = µg
2 ⊕ µs

2)
must be in relation, as µ1 ≡R µ2. Finally it is clear that whenever s

a
→ µ′

1,
then also µg

2
a
⇒C µ′′ with (c · µ′

1, µ
′′) ∈ R′ by näıve weak bisimilarity and the

construction of R′. The same holds with the roles of µ1 and µ2 interchanged,
so the claim is shown.

A precalculation of the elimination procedure presented later in this paper
is the “rescaling” procedure.

Remark 1. Combined transitions ⇒C can be used to rescale loops. A basic
example is given in Fig. 5. A Dirac determinate scheduler choosing the tran-
sition s

τ
→ 1

3
∆x ⊕

1
3
∆s ⊕

1
3
∆y with probability one and stopping in states x

and y leads to the weak transition s
τ
⇒ 1

2
∆x⊕

1
2
∆y. To mimic the τ transition

of s, t has to perform a transition combined of 2
3
times t → 1

2
∆x ⊕

1
2
∆y and

1
3
times t ⇒ ∆t. Without using combined transitions t could not mimick this

transition of s.

For many of the proofs in this paper we are only interested in properties
“up to an equivalence relation R”, which motivates the following definition.
In the quotient automaton, no two distinct states s, t exist with sR t.

Definition 9 (Quotient automaton). Let P = (S,Act,T , ∅, s0) be a PA and
R an equivalence relation over S. The equivalence class of a state s is denoted

11

Figure 5: Resolving a τ loop

by [s]R (when the context is clear we write [s] instead of [s]R). We write P/R
to denote the quotient automaton of P with respect to R, that is

P/R = (S/R, Act, T/R, [s0]R)

with T/R ⊆ S/R × Act × Dist(S/R) such that ([s]R, a, µ) ∈ T/R if and only
if there exists a state s′ ∈ [s]R such that (s′, a, µ′) ∈ T and ∀[t]R ∈ S/R :
µ([t]R) =

∑
t′∈[t]R

µ′(t′). We call an automaton a quotient with respect to R

or, if R is clear, just a quotient, if it holds that P and P/R coincide (up to a
renaming of the set of states).

Definition 10 (Reachable states). Let P = (S,Act,T , ∅, s0) be a PA, S ′ ⊆ S
its set of reachable states, i.e. those states that can be reached with non-zero
probability by a scheduler starting from s0. Let T ′ := T |S′×Act×Dist(S′) be the
restriction of the transition relation to S ′. We define r(P) := (S ′, Act,T ′, s0)
and call it the reachable fragment of P .

As bisimulation only focuses on the reachable fragment of the state space,
we assume from now on that by quotient we always mean the reachable part
of the quotient, i.e. r(P/R).

4. Vanishing states and vanishing representations

We now introduce a notion of vanishing states in the context of MA.

Definition 11. Given a PA P = (S,Act, T, ∅, s0), and t /∈ S, we define the
following renamings:

• for each v ∈ S,

v[t/s] =

{
t if v = s,

v otherwise.

The set of all renamed states is denoted by S[t/s];

12

• for each ν ∈ Dist(S) and v ∈ S[t/s],

ν[t/s](v) =

{
ν(s) if v = t,

ν(v) otherwise;

• for each (v, a, ν) ∈ T , (v, a, ν)[t/s] = (v[t/s], a, ν[t/s]). The set of all
renamed transitions is denoted by T [t/s].

Definition 12 (Emanating Internal Weak Combined Transitions). Given
a PA P = (S,Act, T, ∅, s0) and a state s ∈ S, we denote by C(s) the set
{ (s, τ, ν) | s

τ
=⇒C ν } of internal weak combined transitions emanating from

s. Further, we denote by S(s) the set { (s, a, ν) | s
a

−→ ν, a ∈ Act } of strong
transitions emanating from s.

Definition 13 (local change of transitions). Let P = (S,Act, T, ∅, s0) be a
PA and s ∈ S.

For any T ⊆ C(s) we define the PA

P (T) = (S,Act, (T \S(s) ∪ T), ∅, s0).

If T = {(s, τ, ν)} we also write P(s,ν) – or simply P ′ if the context is clear –
instead of P ({(s, τ, ν)}).

Definition 14 (vanishing states). Let P = (S,Act, T, ∅, s0) be a PA. Let
s ∈ S be unstable and C(s) as in Def. 12. State s is called

trivially vanishing if S(s) = {(s, τ, ν)} for some ν ∈ Dist(S).

vanishing if there exists (s, τ, ν) ∈ C(s) such that s ≈∆ t when comparing
P [t/s] and P(s,ν) for t /∈ S. In this case P(s,ν) – or (s, ν), for short – is
called a vanishing representation of s.

non-näıvely vanishing or nn-vanishing, for short, if it is vanishing and
there is a vanishing representation P(s,ν) such that there exists t ∈
Supp(ν) such that s 6≈∆ t.

näıvely vanishing if it is vanishing, but not nn-vanishing, i.e. for all van-
ishing representations P(s,ν) it holds that for all t ∈ Supp(ν) : s ≈∆ t.

13

vanishing

nn-vanishing naively vanishing

trivially vanishing

tangible

Figure 6: Partition of state space into vanishing and tangible states

A state that is not vanishing is called tangible. A state that is not nn-
vanishing is called nn-tangible3.

Trivially vanishing states correspond to vanishing markings in GSPNs
[14], provided that they are well-defined, i.e. there is no non-determinism [15].
Vanishing states extend this idea to the presence of non-determinism: for a
vanishing state, emanating non-deterministic transitions can be bisimilarly
reduced to a single deterministic transition. Non-naively vanishing states
can be transformed to a distribution, such that the equivalence class with
respect to ≈∆ changes. It will turn out that this is essentially the difference
to state-based bisimulations.

According to the definition, the set of states can be partitioned in two
ways: vanishing vs. tangible, or nn-vanishing vs. nn-tangible. This classifica-
tion of states is illustrated in Fig. 6 and Fig. 7. By definition, any vanishing
representation of a näıvely vanishing state cannot change the equivalence
class with respect to ≈∆. For that reason, näıvely vanishing states do not
have to be eliminated in order to reduce the problem to näıve bisimulation.
We will show later that the only obstacle are nn-vanishing states. The next
example shows basic representatives of the different types of vanishing states.

Example 2. Assume that p ∈ (0, 1). State E in Fig. 8a is trivially vanishing
since it only has an emanating τ transition, and it is näıvely vanishing, as
it holds that E ≈∆ C ≈∆ D. A non-trivially and näıvely vanishing state
E is given in Fig. 8b. Note that all non-τ transitions emanating from E
may be omitted as they can be mimicked by appropriate weak transitions.

3Note that in [7] we used the term “tangible” for describing “nn-tangible”. For a more
readable notation we distinguish now between tangible and nn-tangible.

14

nn-ta
ngible

vanishing

naively vanishing

trivially vanishing

nn-vanishing

Figure 7: Partition of state space into nn-vanishing and nn-tangible states

The automaton in Fig. 8a is the corresponding vanishing representation, so
näıvety follows as in this case. E is näıvely vanishing as it turns out to be in
the same class as C and D modulo weak bisimulation. For the next example,
first note that in Fig. 8c C and D cannot be weakly bisimilar (because C
can only perform the c to A, while D can additionally perform the d to B).
As E is trivially vanishing we notice that it is also nn-vanishing, because E
moves to the distribution p∆C ⊕ (1− p)∆D, where C 6≈ D. Moreover, since
in Fig. 8c D is not vanishing (and E is nn-vanishing), we have that E 6≈ D.
In the last example in Fig. 8d we see that E is not trivially vanishing as
there is more than one emanating transition. Still it is easy to verify that the
automaton in Fig. 8c is a vanishing representation, as the Dirac determinate
scheduler choosing the transition E → p∆C ⊕ (1 − p)∆D with probability
1, D → ∆E with probability 1, and stopping in all other states realises the
transition E

τ
⇒ ∆C .

Definition 15 (Elimination of vanishing states). Let P = (S,Act,→, ∅, s0)
be a PA. Let s ∈ S be a vanishing state and let s

τ
→van ν be the only transition

emanating from s in the vanishing representation P ′ = P(s,ν) = (S,Act,→van

, ∅, s0). The elimination of s is defined by two steps:

1. Rescaling (cf. Remark 1):

→res=

{
→van \{(s, τ, ν)} if ν = ∆s

(→van \{(s, τ, ν)}) ⊎ {(s, τ, 1
1−ν(s)

(ν − s))} otherwise

2. Elimination (only performed if after rescaling a transition s
τ
→res νres

15

(a) E trivially & näıvely vanish-
ing

(b) E non-trivially & näıvely
vanishing

(c) E trivially & nn-vanishing

t

A

BD

C

E

a

b

c

d

p

1-p

t

1

1
1

t

1

(d) E non-trivially & nn-
vanishing

Figure 8: Examples of vanishing states

remains):

P ŝ =





(S \ {s}, Act,→el, ∅, s0) if s 6= s0

((S \ {s0}) ⊎ {s◦0}, Act,→el ⊎{(s
◦
0, τ, νres)}, ∅, s

◦
0) if s = s0 and

∃t →res γ : s0 ∈ Supp(γ)

P ′ otherwise

where →el:= { (t, α, µ′) | t
α
→res µ, t ∈ S \ {s}, µ′ := µs→νres }. Here µs→νres

denotes the replacement of every occurrence of s by the corresponding distri-
bution νres:

Without loss of generality let µ be of the form µ := cs∆s⊕(⊕i∈I,si 6=sci∆si)
and ν be of the form ν = ⊕j∈J,sj 6=sdj∆sj . Then we define µs→ν := cs(⊕j∈J,sj 6=sdj∆sj)⊕
(⊕i∈I,si 6=sci∆si).

We omit the (s, τ,∆s) transition from the set of transitions for the purpose
of minimality of the resulting PA. One could also just add the loop case to
the case where P ′ is not changed. Note that even when loops are removed,
all information about the MA may be safely recovered. Such a state without

16

loop is a deadlock in PA and no longer vanishing according to our definition
(note that there cannot be any other competing transition, as we then could
not get the vanishing representation with the τ loop). Looking back to the
MA setting it is clear that s must be an unstable state as it does not have the
χ(0) transition. We will see later when we describe the decision algorithm
that we basically treat all nn-vanishing states as if they were starting states,
i.e. we consider them as transient copies.

Example 3. To explain Definition 15 we give the following examples. The
first example is the most common one (cf. Fig. 9a): The vanishing state s is
neither the initial state nor does it have a probability-one-self-loop. Therefore
the elimination is straightforward: Redirect all incoming arcs according to the
vanishing representation (cf. Fig. 9b). The next example is the probability-
one-self-loop case (cf. Fig. 9c): It does not matter whether the vanishing
state s is the initial state or not, the self-loop is removed by the rescaling
operation (cf. 9d). In the third example we have a vanishing initial state
with incoming transition(s) (cf. Fig. 9e). We add a copy s◦0 of the initial
state and eliminate the old initial state s0 (cf. Fig. 9f). Note also that when
s is a vanishing initial state but it has no incoming transitions, then nothing
is changed (without a figure).

Lemma 3 (Elimination does not destroy weak bisimilarity). For every van-
ishing state s it holds that P ≈ P ′ŝ

Proof. By definition P ≈ P ′. With the same arguments as in [1] (proof of
Thm. 7) it follows that P ′ ≈ P ′ŝ. So by transitivity of≈ the claim follows.

The following lemma helps to understand the difference between näıvely
vanishing and nn-vanishing states.

Lemma 4. For every vanishing representation (s, τ, µ) that renders state s
nn-vanishing there must be at least two distinct states t1, t2 ∈ Supp(µ) such
that t1 6≈∆ s, t2 6≈∆ s and t1 6≈∆ t2.

Proof. Let (s, τ, µ) be the vanishing representation and assume that there is
only one state t ∈ Supp(µ) such that t 6≈∆ s. Without loss of generality,
we may work on the quotient with respect to ≈∆. Further we may assume
that µ is rescaled, i.e. s /∈ Supp(µ)4. Therefore we may assume that µ = ∆t.

4For otherwise pretend that s is the initial state and eliminate it, i.e. replace it by a
transient copy. By Lemma 3 it is clear that bisimilarity is not lost by this operation.

17

(a) Case 1 (b) Case 1 elimi-
nated

(c) Case 2 (d) Case 2 elimi-
nated

(e) Case 3 (f) Case 3 elimi-
nated

Figure 9: Different cases of eliminations

Thus we obtain the vanishing representation s
τ
→ ∆t from which it would

follow that s ≈∆ t, which is a contradiction.

Lemma 5. It is not always possible to eliminate all näıvely vanishing states,
but by elimination it is always possible to reach an automaton without näıvely
vanishing states.

Proof. A trivial example is given in Fig. 10. Here both s and s′ are näıvely
vanishing. But only either s or s′ may be eliminated (it is easy to see that
after the first elimination, the other state is no longer vanishing but has
become tangible).

Lemma 6. All nn-vanishing states can be eliminated (except for a nn-vanishing
initial state which can only be made transient).

Proof. We show that the situation described in the proof of Lemma 5, cannot
occur for nn-vanishing states. I.e. we show that the elimination of a nn-
vanishing state s may not cause another nn-vanishing state s′ to lose its

18

s s‘

A

t

a

b
1

1

1

b
c

1
1

t

1

Figure 10: Two näıvely vanishing states

property of being nn-vanishing. Again we work on the quotient with respect
to ≈∆. Assume that s is nn-vanishing with vanishing representation (s, τ, µ).
Let s′ be another nn-vanishing state with vanishing representation (s′, τ, γ).
In the case s 6∈ Supp(γ) the elimination of s will not affect s′. In the case s ∈
Supp(γ) the elimination of s will cause s to be replaced by µ in the vanishing
representation of s′. We denote the resulting vanishing representation of s′ as
(s′, τ, γ′)5. Since according to Lemma 4 we know that Supp(µ) still contains
at least two states t1 and t2 such that t1 6≈∆ t2, we conclude that γ′ contains
at least one state (t1 or t2) that is not in the ≈∆ relation with s′. Thus, after
the elimination of state s, state s′ is still nn-vanishing.

Directly from the proof of Lemma 6 we may deduce:

Corollary 1. The property of a state s being nn-vanishing is not destroyed
by other states being eliminated.

Example 4. This example shows that it is not enough to consider only strong
emanating transitions when searching for vanishing representations such that
non-bisimilar states are reached. Assume that p ∈ (0, 1). We start with the
automaton in Fig. 11a. Clearly both states E and F are trivially vanishing.
Considering only strong transitions we see that E is nn-vanishing (vanishing
representation P(E,p∆C⊕(1−p)∆D)), while F would be erroneously detected as
näıvely vanishing with its vanishing representation P(F,∆E). After elimination
of E we obtain the automaton in Fig. 11b. As elimination leads to bisimilar
results (Lemma 3) we see – after possibly rescaling the transition emanating

5The resulting distribution γ′ is still bisimilar to the original one because of Lemma 4.

19

(a) E and F trivially vanishing

(b) E eliminated (c) D rescaled

Figure 11: Examples of nn-vanishing states

from D leading to Fig. 11c – that also F must be nn-vanishing with vanishing
representation P(F,p∆C⊕(1−p)∆D).

We saw that all nn-vanishing states of an automaton may be eliminated,
but not necessarily all näıvely vanishing states. That is why we introduce
m ≤ n in the following definition.

Definition 16. Let P = (S,Act,→, ∅, s0). Let Sv = {sv1, . . . , s
v
n} be the set

of vanishing states. Denote by P̂ the complete elimination of P , i.e. P̂ :=

(. . . (P ′ŝvi1)′ŝ
v
i2 . . .)′ŝ

v
im , m ≤ n, ij ∈ {1, . . . , n} for all j ∈ {1, . . . , m}, such

that P̂ contains no more vanishing states. Let P̂ ∗ denote the elimination of
all nn-vanishing states.

Using this definition, we can state the following important lemma:

Lemma 7 (Complete elimination and bisimilarity). For two PA P1 and P2

it holds: P1 ≈ P2 ⇔ P̂1 ≈ P̂2 ⇔ P̂ ∗
1 ≈ P̂ ∗

2

Proof. By Lemma 3 we know that elimination preserves weak bisimilarity.

20

The following diagrams show this by the right arrows.

P1

��

≈
// P̂ ∗

1

��

≈
// P̂1

��

P2
≈

// P̂ ∗
2

≈
// P̂2

As soon as one of the down arrows is a weak bisimulation, by transitivity
of weak bisimulation we immediately get that the other two arrows are also
weak bisimulations.

Remark 2. In every example from [1], elimination leads to isomorphic au-
tomata (assuming that we replace vanishing initial states by their vanishing
representation).

It is clear by Lemma 2 that P̂1 ≈näıve P̂2 ⇒ P̂1 ≈ P̂2 and therefore (by
Lemma 7) P1 ≈ P2. Now we try to understand why it is also the case that

P1 ≈ P2 ⇒ P̂1 ≈näıve P̂2.

5. Canonical vanishing representations and properties of vanishing
states

In this section we prove that every nn-vanishing state s has a vanishing
representation (s, τ, µ) where Supp(µ) only consists of nn-tangible states and
the weak transition s

τ
⇒ µ is driven by a Dirac determinate scheduler (i.e. it

is not a combined transition).

Lemma 8 (Vanishing representations don’t need nn-vanishing states). Every
nn-vanishing state s has a vanishing representation (s, τ, µ′) where Supp(µ′)
does not contain any nn-vanishing state (i.e. only nn-tangible states are in
Supp(µ′)).

Proof. Let s be nn-vanishing with vanishing representation (s, τ, µ). We
assume that s 6∈ Supp(µ), otherwise rescale. If Supp(µ) does not contain
any nn-vanishing state we are done. Otherwise we perform “successive”
eliminations (and possibly rescalings) of the nn-vanishing states in µ until all
nn-vanishing states are eliminated. In detail: Replace all nn-vanishing states
in Supp(µ) by their vanishing representations, leading to a new vanishing
representation (s, τ, µ′) of state s. If s ∈ Supp(µ′) then rescale. In case

21

Supp(µ′) contains only nn-tangible states we are finished. Otherwise set
µ := µ′ and perform another round of elimination / rescaling. The finally
resulting vanishing representation (s, τ, µ′) has only nn-tangible states. The
procedure terminates according to Lemma 6.

Theorem 1 (nn-vanishing states correspond to “real” distributions). Let
P = (S,Act, T, ∅, s0) be a PA. A state s ∈ S is nn-vanishing iff there exists
a distribution µ such that ∆s ≈ µ but ∃t ∈ Supp(µ) such that s 6≈∆ t.

Proof. ⇒ Assume that s is nn-vanishing, then we may use the vanishing
representation. Let (s, τ, µ′) be the vanishing representation of s. Then
we have both ∆s ≈∆ µ′ (which follows directly from the definition of weak
bisimilarity) and ∃t ∈ Supp(µ′) such that s 6≈∆ t. Therefore we can use
µ = µ′ to satisfy the right hand side of the Theorem.

⇐ Without loss of generality we may work on quotients with respect to
≈∆. Assume that on the quotient it holds that µ = ⊕i∈{0,...,n}di∆ti for some
n ∈ N (ti 6= tj whenever i 6= j) and without loss of generality we assume that
t0 6≈∆ s. Firstly, we show that there must be a weak combined transition
s

τ
⇒C γ with ∃x ∈ Supp(γ) : x 6≈∆ s and ∆s ≈ γ: From ∆s ≈ µ we get by [2,

Lemma 11] a transition s
τ
⇒C γ = ⊕i∈{0,...,n}γi such that for all i ∈ {0, . . . , n}

we get di∆ti ≈ γi. First note that by [2, Lemma 9] we get ∆s ≈ γ, as from
di∆ti ≈ γi it follows that µ = ⊕i∈{0,...,n}di∆ti ≈ ⊕i∈{0,...,n}γi = γ and we have
∆s ≈ µ as a precondition. So also ∆s ≈ γ. For (s, τ, γ) being a vanishing
representation and s being nn-vanishing, it remains to show that there exists
some x ∈ Supp(γ) such that s 6≈∆ x. Assume that this is not the case,
i.e. ∀x ∈ Supp(γ) : x ≈∆ s. Now assume that γi = ⊕j∈Jibij∆xij

(xij 6= xik

whenever j 6= k). But then we have

d0∆s 6≈ d0∆t0 ≈ ⊕j∈J0b0j∆x0j︸ ︷︷ ︸
γ0

≈ d0∆s

which is a contradiction (the rightmost ≈ follows from
∑

j∈J0
b0j = d0 and

that for all x0j we have x0j ≈∆ s, therefore γ0 ≈ d0∆s). So we conclude
that there must be a x ∈ Supp(γ) such that x 6≈∆ s. Therefore we have a
transition s

τ
⇒C γ with ∆s ≈ γ and ∃x ∈ Supp(γ) : s 6≈∆ x.

Secondly, we have to show that (s, γ) is a vanishing representation, i.e. that
s ≈∆ t when comparing P [t/s] and P(s,ν). So we have to show that when
only using the transition (s, τ, γ) all other transitions emanating from t can
be mimicked and thus omitted. Now let t

a
→ ρ be an arbitrary transition

22

t

A

BD

C

s

a

b

c

c

d

p

1-p

t

1

1
1

1

Figure 12: Example for the substitution of transitions

from P [t/s]. By ∆t ≈ γ we get directly from Definition 8 a hypertran-
sition γ

a
⇒C ρ′ such that ρ ≈ ρ′. It remains to show that γ

a
⇒C ρ′ is

possible in P(s,ν) (i.e. without using the transition t
a
→ ρ). If there was

a transition γ
τ
⇒C ∆t, this would be a contradiction to the existence of

∃x ∈ Supp(γ) : x 6≈∆ t because all states in Supp(γ) would be bisimilar to
t due to the loop t

τ
⇒C γ

τ
⇒C ∆t. Therefore we know that such a tran-

sition does not exist6. That means we may successively substitute every
occurrence of t

a
→ ρ by the transition t

τ
⇒C γ

a
⇒C ρ′. Note that such a sub-

stitution clearly does not change bisimilarity, as the substituted distribution
is bisimilar (by [2, Lemma 9] distributions containing those different sub-
distributions will still be bisimilar). The successive substitutions make the
probability of choosing t

a
→ ρ tend to zero, i.e. this transition is not needed.

As our example transition was general (and not equal to t ⇒ γ), we see that
state t must be nn-vanishing.

Example 5. A basic example of this kind of substitution used in the proof is
given in Fig. 12. Let (s, p∆C ⊕ (1−p)∆D) be the candidate for the vanishing
representation. We have to show that s

c
→ ∆A is superfluous. According

to the construction of the previous proof we get a hypertransition p∆C ⊕
(1 − p)∆D

c
⇒C ∆A. We assume that this hypertransition is driven by the

transitions ∆C
c
→ ∆A and ∆D

τ
→ ∆s

c
→ ∆A. This leads us to the sequence

of transitions s
τ
→ (p∆C ⊕ (1 − p)∆D)

τ
⇒ (p∆C ⊕ (1 − p)∆s)

c
→ ∆A, where

s
c
→ ∆A is taken with probability (1 − p) < 1, as assumed. So in the next

substitution step, we may use s
τ
→ (p∆C ⊕ (1 − p)∆D)

τ
⇒ (p∆C ⊕ (1 −

p)∆s)
τ
⇒ (p(2 − p)∆C ⊕ (1 − p)2∆s)

c
→ ∆A, that is we utilise s

c
→ ∆A only

with probability (1 − p)2. Taking this to infinity means that the transition
s

c
→ ∆A is indeed redundant, so (s, p∆C ⊕ (1 − p)∆D) is really a vanishing

6So the probability for returning to s is strictly smaller than one.

23

representation.

The following corollary states that all states within an equivalence class
with respect to ≈∆ are either nn-vanishing or not.

Corollary 2. Let P = (S,Act,→, ∅, s0) be a PA. If s ∈ S is nn-vanishing
and s ≈∆ t then t is also nn-vanishing.

Proof. It follows from Thm. 1 that there exists a distribution µ such that
∆s ≈ µ but ∃x ∈ Supp(µ) with s 6≈∆ x. The assumption s ≈∆ t yields,
by transitivity of ≈ (cf. Thm. 1 in [1, 2]), that ∆t ≈ µ. Still t 6≈∆ x, for
otherwise s ≈∆ t ≈∆ x which would be a contradiction to the nn-vanishing
property of s. So, again by Thm. 1, we find that t must be nn-vanishing,
too.

The following theorem states that the nn-vanishing states are the “ob-
stacle” between “weak bisimulation” and “näıve weak bisimulation”. This
theorem renders Thm. 2 in [1, 2] more precisely.

Theorem 2. It holds that P1 ≈ P2 ⇔ P̂ ∗
1 ≈näıve P̂

∗
2 .

Proof. ⇐ is immediate by Lemma 2 and Lemma 7.
⇒ From Lemma 7 we already know P1 ≈ P2 ⇔ P̂ ∗

1 ≈ P̂ ∗
2 . So it remains to

show that P̂ ∗
1 ≈ P̂ ∗

2 is already a näıve weak bisimulation. By the definition
of weak bisimilarity (Definition 8) it follows that whenever s ≈∆ t then for
every s

a
→ µ we find t

a
⇒C γ with µ ≈ γ (and vice versa). By Lemma 6

and Definition 15 it is clear that neither P̂ ∗
1 nor P̂ ∗

2 contain any nn-vanishing
states (the only exception are, if present, nn-vanishing initial states, which
then must be transient). We have to show that µ ≈ γ already coincide on
classes, i.e. the weak bisimulation is already näıve. Assume that we split µ
according to its support: µ = ⊕i∈Ici∆si , then with Lemma 11 of [2] we get a
hypertransition γ ⇒C γ′ = ⊕i∈Iciγ

′
i with ∆si ≈ γ′

i. By assumption si cannot
be nn-vanishing (only the initial state could be, but si 6= s0 as it is a target
state of some transition and s0 is transient). Now it is clear that for all states
x ∈ Supp(γ′

i) it must hold that x ≈∆ si – for otherwise by Thm. 1 si would
be nn-vanishing, which is a contradiction. Summing up, we have t

a
⇒C γ′

and µ ≡≈∆
γ′. We can use the same argumentation for t

a
→ γ to find s

a
⇒C µ′

with γ ≡≈∆
µ′ and we conclude that ≈∆ is already a näıve weak bisimulation

relation.

24

The following lemma will be used in the proof of Lemma 10, which shows
that it suffices to consider Dirac determinate schedulers when trying to iden-
tify nn-vanishing states. Note that, since Lemma 9 assumes that the PA at
hand is a quotient with respect to ≈∆, it cannot contain any näıvely vanishing
states.

Lemma 9. Let P = (S,Act,→, ∅, s0) a PA that is a quotient with respect to
≈∆. Let s be a nn-vanishing state. For a vanishing representation (s, τ, µ)
where Supp(µ) contains only nn-tangible states it holds that µ is uniquely de-
fined, i.e. there is no other vanishing representation (s, τ, γ) with µ 6= γ where
Supp(γ) contains only nn-tangible states. (Such a vanishing representation
(s, τ, µ) is called canonical.)

Proof. Let P ′ = (S,Act,→, ∅, s0) be a quotient with respect to ≈∆, s ∈ S
nn-vanishing and assume that there exist different vanishing representations
(s, τ, µ) and (s, τ, γ), where Supp(µ) and Supp(γ) contain only nn-tangible
states. We now pretend that s is the starting state, i.e. consider the au-
tomaton P = (S,Act,→, ∅, s). According to Thm. 2 it must hold that

P̂(s,µ)

∗
≈näıve P̂(s,γ)

∗
. It is easy to see that (s, τ, µ) and (s, τ, γ) are not

changed by the elimination procedure7. As µ and γ do not coincide and
there are no other emanating transitions of state s, Thm. 1 of [16] tells us
that the corresponding Normal Form cannot have an emanating τ transition
from s. A contradiction to the nn-vanishing property of s.

The use of combined transitions C(s) for vanishing representations is not
necessary, as the following lemma shows:

Lemma 10 (Considering Dirac determinate schedulers is sufficient to find
nn-vanishing states). Every nn-vanishing state s has a vanishing representa-
tion (s, τ, µ) where s

τ
⇒ µ is driven by a Dirac determinate scheduler.

Proof. Let P 0 = (S,Act,→, ∅, s0) be a PA. In the following we assume that
we work on quotients with respect to ≈∆. We will show that any vanish-
ing representation (s, τ, µ) of nn-vanishing state s can be transformed to a

7The transitions corresponding to the vanishing representations must already be
rescaled as s is nn-vanishing while all states in the support of γ and µ are nn-tangible, so
it holds that s /∈ Supp(µ) and s /∈ Supp(γ). No state in the support of these distributions
will have been eliminated.

25

vanishing representation (s, τ, µ′) where s
τ
⇒C µ′ starts with a strong non-

combined transition. Let { (s, τ, ν) | s
τ

−→ ν } = {(s, τ, ν1), . . . , (s, τ, νn)}.
Assume now that we have a vanishing representation (s, τ, µ) where the first
strong step of s

τ
→C ν

τ
⇒C µ leads to a non-trivial combination ν =

∑
i∈I ciνi

where I ⊆ {1, . . . , n} and 0 < ci < 1 for all i ∈ I. Now we pretend for
the moment that s is the starting state, i.e. we consider the automaton
P = (S,Act,→, ∅, s). Fix for every nn-vanishing state t a vanishing represen-
tation (t, τ, µt) with support in nn-tangible states (which is unique according
to Lemma 9). Now we perform two different kinds of eliminations:

1. P̂ ∗, i.e. the usual elimination from Def. 15

2. P̂(s)

∗
, which means we make s transient by elimination but keep all

τ -transitions emanating from s, i.e. we do not move to its vanishing
representation. (All nn-vanishing states apart from s are eliminated as
usual.)

By construction, all transitions in P̂ ∗ and P̂(s)

∗
lead to distributions whose

support consists only of nn-tangible states (this will be denoted by the super-
script “nn-tang”). As the common starting point for reaching eliminations

P̂ ∗ and P̂(s)

∗
is the automaton P , we get by Thm 2 that P̂ ∗ ≈näıve P̂(s)

∗
,

so the resulting transition in P̂(s)

∗
emanating from s leading to nn-tangible

states must still be a vanishing representation. In P̂ ∗ the transitions s
τ
→ νi

are transformed to strong non-combined transitions s
τ
→ νnn-tangi . In P̂(s)

∗

the transition s
τ
→C ν is transformed to a strong (possibly combined) tran-

sition s
τ
→C νnn-tang. Now we need the following reduction argument: If

there are i, j such that νnn-tangi = νnn-tangj , then we can substitute νi by νj in
ν =

∑
i∈I ciνi without losing the property of (s, τ, ν) being the first step of

a vanishing representation (by Thm. 1). (As an example we have in Fig. 13
the distributions ν1 = 2

3
∆x ⊕ 1

3
∆C and ν2 = 1

3
∆A ⊕ 2

3
∆y, which leads to

νnn-tang1 = νnn-tang2 = 1
3
∆A ⊕ 1

3
∆B ⊕ 1

3
∆C — therefore we may substitute ν1

by ν2 in ν =
∑

i∈I ciνi). If after this reduction argument, the vanishing rep-
resentation has a strong transition as first step, we are done. Otherwise we
may assume that ν =

∑
i∈I∗ c

∗
i νi with I∗ ⊆ I, where νnn-tangi 6= νnn-tangj for

i 6= j. As for every nn-vanishing state t a unique vanishing representation
(t, τ, µt) was chosen, it must hold that νnn-tang =

∑
i∈I∗ c

∗
i ν

nn-tang

i (with the

same coefficents c∗i as above). As s is transient in P̂ ∗ and P̂(s)

∗
by defini-

tion, all transitions emanating from s in these eliminated automata must be

26

x

1
3

A

a

1

B

b

1

C

c

1

2
3

1
2

1
2

1
2

1
2

y

s

1
3

2
3

Figure 13: Coinciding νnn-tangi and νnn-tangj

rescaled. Now we may apply Thm. 1 of [16] to see that the corresponding
normal form (whose set of transitions must be from the intersection of the

transition sets of P̂ ∗ and P̂(s)

∗
) cannot have an emanating τ transition from

s8. This is a contradiction to the nn-vanishing property of s. This means
that the first step of a transition leading to a vanishing representation must
be non-combined, i.e. some c∗i = 1 in the sum above. As the same argument
holds for the other nn-vanishing states, we see that with Lemma 8 a van-
ishing representation (s, τ, ρ) for s with some t ∈ Supp(ρ) : s 6≈∆ t can be
reached from s by Dirac Determinate schedulers.

It can be shown that as long as there are no probability-one τ -loops, the
elimination procedure is unique. At the presence of such loops the elimination
procedure is unique up to isomorphism [17].

Corollary 3. It holds that P1 ≈ P2 ⇔ P̂1 ≈näıve P̂2.

Proof. ⇐ is immediate by Lemma 2 and Lemma 7.
⇒ Using Thm. 2 we know that after elimination of nn-vanishing states ≈∆ is
already a näive weak bisimulation, so it only remains to show that P̂ ∗

1 ≈näıve

P̂ ∗
2 ⇔ P̂1 ≈näıve P̂2. This is true since eliminating any näıvely vanishing

states from P̂ ∗
1 or P̂ ∗

2 does not change the behaviour with respect to ≈∆, so
it is still a näıve weak bisimulation.

8The only possible vanishing representation on the quotient would be (s, τ,∆s), which
clearly doesn’t satisfy the nn-vanishing property.

27

s1

t

1

E

F

1

t

(a) Example au-
tomaton

(b) S(s1, τ)

Figure 14: Example for reachable distributions

6. A partition refinement algorithm

With Lemma 10 we can find nn-tangible states and Th. 2 reduces the
problem to näıve weak bisimulation. For the description of the partition
refinement algorithm below we need the convex sets S(x, a) ⊆ Rn introduced
by [4]. For details on how to calculate those sets we refer to [4].

Example 6. For the MA given in Fig. 14a the set S(s1, τ) is given by the
shaded triangle in Fig. 14b. This triangle encodes all distributions that are
reachable via a (weak) combined τ transition starting from s1.

Remark 3. It was shown in [4] that each convex set is the convex hull
(CHull) of distributions (i.e. points in Rn) generated by Dirac determinate
schedulers. It is shown there that the extremal points (i.e. generators) of the
convex hull can be found by a linear program and that the complexity of cal-
culating the sets S(s, a) is exponential for the weak case. This is one of the
reasons why our algorithm also has exponential complexity (see Sec. 6.2).

Given a set S(s, a) ⊆ Rn, it may be restricted, which is an essential
ingredient of our decision algorithm.

Definition 17 (Restriction of convex sets). We define

S(s, a)|xi=0 := {(x1, . . . , xn) ∈ S(s, a)|xi = 0}

Multiple restrictions can also be realised. Especially, we define a restriction
to a set of “nn-tangible” states S(s, a)|Snn−tangible

by requiring that xi = 0 for
all nn-vanishing states xi.

28

Note that the restriction of convex sets is still convex by definition.

Lemma 11. Restriction of S(s, a) to the set of nn-tangible states corresponds
to virtual elimination of nn-vanishing states.

Proof. In the elimination procedure we redirect transitions according to the
vanishing representation. The vanishing state is no longer reached and can
be removed from the state space (or alternatively: its probability can be
restricted to zero). All other transitions that can be realised from a nn-
vanishing state s using other transitions than the one belonging to the van-
ishing representation can be weakly emulated by using the vanishing rep-
resentation as a first step. The only exception to keep in mind is when
considering the sets S(s, a) where s itself is nn-vanishing. There normally
∆s must be in S(s, τ) (as of course always s

τ
⇒ ∆s). As s is nn-vanishing,

there must also be a vanishing representation consisting of nn-tangible states
which uniquely identifies s (cf. Lemma 8 and Lemma 9). Note that it holds
that S(s, τ) = CHull(∆s, S(s, τ)|prob(s)=0) and therefore S(s, τ) is uniquely
determined by the set S(s, τ)|prob(s)=0. Similar considerations apply also for
the case a 6= τ : nn-vanishing states are identified by their vanishing repre-
sentations consisting of nn-tangible states.

The last missing part for setting up the algorithm is to show how it can
be fitted to a partition refinement algorithm. This can be seen in Fig. 15.
The underlying idea is to treat every nn-vanishing state in the elimination as
if it were an initial state (i.e. eliminate it, but leave a transient copy in the
transition system). Note, however, that the algorithm does not perform a real
elimination, but only a “virtual” elimination (by considering the restricted
S(s, a)-sets). But now it is clear by Thm. 2 that the bisimulation problems
we have to solve are näıve weak bisimulations that can be treated by the
Segala/Cattani algorithm. For example, in Fig. 15 one trivially sees that E
and F are näıvely weakly bisimilar. But after a splitting occurred, we have
to verify if all nn-vanishing states are still nn-vanishing with respect to the
new partition. This justifies the iterative scheme sketched in Fig. 2.

So the proposed algorithm for deciding whether two MA are weakly bisim-
ilar looks as follows:

1. Start with the initial partition W = {S1 ⊎ S2}.

2. For all states s and actions a calculate the convex sets S(s, a) (cf. [4])
and for every (Dirac determinate) weak transition (s, τ, ν) calculate

29

(a) E and F nn-vanishing

A

BD

C

a

b

c

d

p

1-p

1

1

t

F

t

E‘

p

1-p

t

1-p

p

(b) E eliminated (treating it as if it
were a starting state)

Figure 15: Rendering nn-vanishing states transient

Sν(s, a) (Sν(s, a) denotes the convex set calculated for the PA (P1 ⊎
P2)(s,ν), that is the direct sum of automata P1 and P2 where we move
to the vanishing representation (s, ν)).

3. Set Snn−tangible = ∅.

4. For all states s that are not in Snn−tangible

• Check whether s can leave its equivalence class in W by a (Dirac
determinate) weak transition (s, τ, ν) such that (modulo W)
S(s, a)|Snn−tangible

= Sν(s, a)|Snn−tangible
for all a ∈ Act. This is a

vanishing representation of nn-vanishing state s with respect to
W.

• If no vanishing representation with respect to the current partition
W can be found, then s must be nn-tangible with respect to W.
Add state s to Snn−tangible .

• Cross-check all other states if they also become nn-tangible as an
effect of s being nn-tangible.

5. Find a new splitter (in the sense of [4]) with respect to the current par-
tition and the current set of nn-tangible states, i.e. a tuple (C, a,W)

30

which indicates that class C needs to be refined w.r.t. a weak a transi-
tion.

6. Refine the partition according to the splitter and start next round at
step 3.

The algorithm is depicted in Alg. 1. By DiracDet(s, τ) we mean all
distributions ν induced by s ⇒ ν by means of a Dirac determinate scheduler.
It remains to define the ComputeInfo algorithm, FindWeakSplit algorithm
and the Refine algorithm. As the Refine algorithm is standard, we omit it
from this paper. The routine ComputeInfo just calculates the convex sets
S(s, a) according to Remark 3. The routine FindWeakSplit given in Alg. 2
looks very much like the one given in [4] but it only “sees” nn-tangible states
that are provided as an additional parameter to the routine.

Lemma 12. The algorithm in Alg. 1 calculates the coarsest partition with
respect to ≈∆.

Proof. The claim follows by the correctness of the näıve weak bisimulation
algorithm given in [4]. The only special case to consider is when a nn-
vanishing and a nn-tangible state are detected in the same class. This case
is not problematic due to the following reasoning: the nn-vanishing state can
leave its class towards an equivalent distribution (i.e. a distribution weakly
bisimilar to the Dirac distribution on the nn-vanishing state) which consists
of at least two other classes (cf. Lemma 4). In contrast, the nn-tangible
state either cannot leave its class at all, or it can leave its class but thereby
losing bisimilarity. As the classes are refined and never merged, by the above
reasoning nn-vanishing and nn-tangible states cannot be bisimilar and may
always be split. Therefore the special case that an nn-tangible state s has ∆s

in S(s, τ)|Snn−tangible
, whereas – due to restriction – for an nn-vanishing state

t, ∆t is not in S(s, τ)|Snn−tangible
is not problematic as it allows for separating

nn-vanishing from nn-tangible states. Similar considerations apply to the
case a = τ , which we do not discuss explicitly.

Once the algorithm terminates, there is no class containing both nn-
vanishing and nn-tangible states. When restricting to the nn-tangible frac-
tion of successor states (which corresponds by Lemma 11 to elimination of
nn-vanishing states), the states within one class are näıvely weakly bisimilar
(this follows from the algorithm given in [4]). Furthermore, our algorithm
calculates for each nn-vanishing state the canonical vanishing representation

31

consisting of nn-tangible states only (cf. Lemma 8). Summing up, this means
(by Thm. 2) weak bisimilarity when considering both nn-tangible and nn-
vanishing states (i.e. without restrictions).

Algorithm 1 DecideWeakBisim

Require: Two MA as PA P1 = (S1, Act1,→1, ∅, s0), P2 = (S2, Act2,→2

, ∅, t0)
1: S = S1 ⊎ S2, W = {S}, Act = Act1 ∪ Act2
2: for s ∈ S, a ∈ Act, ν ∈ DiracDet(s, τ) do
3: S(s, a) = ComputeInfo(s, a) on (P1 ⊎ P2)
4: Sν(s, a) = ComputeInfo(s, a) on (P1 ⊎ P2)(s,ν)
5: end for
6: while W changes do
7: Snn−tangible := ∅
8: while Snn−tangible changes do
9: for s ∈ S \ Snn−tangible do
10: for ν ∈ DiracDet(s, τ) where ∃x ∈ Supp(ν) : [x]W 6= [s]W do
11: if ∀a ∈ Act : (S(s, a)|Snn−tangible

)/W = (Sν(s, a)|Snn−tangible
)/W

then
12: vanishing representation found break
13: end if
14: end for
15: if no vanishing representation found then
16: Snn−tangible := Snn−tangible ∪ {s}
17: end if
18: end for
19: end while
20: (C, a,W) = FindWeakSplit(Snn−tangible ,W, S, Act, S(·, ·))
21: W = Refine(C, a,W)
22: end while
23: P1 ≈ P2 iff [s0]W = [t0]W

Remark 4. The algorithm detects nn-vanishing states and finds their van-
ishing representations (regarding the most recent partition W). Therefore, at
the end of the algorithm, we will be able to really (i.e. not virtually) elimi-
nate all nn-vanishing states and reach a form where only nn-tangible states

32

Algorithm 2 FindWeakSplit (Find weak bisimulation splitter)

Require: nn-tangible states Snn−tangible , partition W, states S, actions Act,
Info S(·, ·)

1: for Ci ∈ W, s, t ∈ Ci, a ∈ Act do
2: if (S(s, a)|Snn−tangible

)/W 6= (S(t, a)|Snn−tangible
)/W then

3: return (Ci, a,W)
4: end if
5: end for

are present (with the only exception of a nn-vanishing initial state, which
can only be rendered transient) and where for every equivalence class only
one state is used. This can be regarded as a kind of normal form.

6.1. Example

Suppose we are given the MA in Fig. 16a (there already transformed to a
PA P) where p, q ∈ (0, 1). This automaton can be seen as a condensed form
of two separate automata (starting with s1 and t1, thus these are indicated
as initial states), where states A and B have been identified (to keep things
short – if there were two copies of A and B: one for the left and one for the
right automaton, they would be grouped in the course of the algorithm). We
want to show that s1 ≈∆ t1.

We assume that p = q = 1
2
, as the pictures are easier to draw in that

case, but we would like to stress that the same arguments work for all other
choices (as long as p and q are not equal to 0 or 1).

Remark 5. In the following graphical representations of the convex sets,
we add dots for every result of a Dirac determinate scheduler (according to
[4]) whenever we draw the convex sets of reachable distributions as subsets of
Rn. Dots that are not extremal points may safely be omitted, as they can be
reached as convex combinations of the extremal points.

First round: Start with the partitionW0 = {{s1, s2, t1, A, B}} (cf. Fig. 16b).
Observe that in the loop from line 9 to line 18 we can never find a vanish-
ing representation of a nn-vanishing state, as no state may leave its equiv-
alence class with some probability greater than zero. Therefore we get
Snn−tangible = {s1, s2, t1, A, B}.

33

(a) Non-trivial example

(b) W0 (c) W1 (d) W2

Figure 16: Example and partitions during algorithm run

Now we have to find a splitter with respect to (Snn−tangible ,W0). Suppose
that we check the sets S(·, b)/W0. Here we see that:

S(x, b)/W0 =





for x ∈ {B, s1, s2, t1}

∅ otherwise

So we have found a splitter. Refining according to ({s1, s2, t1, A, B}, b,W0)
leads to W1 = {{s1, s2, t1, B}, {A}} (cf. Fig. 16c).

Second round: We first have to detect the nn-vanishing states with
respect to the current partition. We calculate S(x, τ) for every state, verify
if it is possible to reach another equivalence class and see whether one single
τ transition suffices. The values of S(x, τ) are given in Tab. 1. Firstly notice
that both A and B cannot be nn-vanishing, as they have no possibility of
leaving their equivalence classes. Notice also, that even if s2 is trivially
vanishing, as it has only one single emanating τ transition, we cannot detect it
as nn-vanishing (the only vanishing representation that leaves the class would
be P(s2,

1

3
∆A⊕ 2

3
∆B), but S(s2, b)/W1 6= S 1

3
∆A⊕ 2

3
∆B

(s2, b)/W1). Regarding s1 we

see that we cannot omit transition s1
τ
→ 1

2
∆A ⊕ 1

2
∆s2 , as S(∆s2

)(s1, τ)/W1 =

S(B, τ)/W1 6= S(s1, τ). But notice also that s1
τ
→ ∆s2 cannot be omitted,

34

x S(x, τ)/W1 x S(x, τ)/W1 x S(x, τ)/W1

s1 t1 s2

B A

Table 1: S(x, τ)

as S(s1, b)/W1 = S(B, τ)/W1, but S(1
2
∆A⊕ 1

2
∆s2

)(s1, b)/W1 = ∅. So we see
that s1 cannot be nn-vanishing. With the same argument we see that also t1
cannot be nn-vanishing. Therefore we get Snn−tangible = {s1, s2, t1, A, B}.

Now we look for splitters with respect to (W1, Snn−tangible). Looking at
C = {s1, s2, t1, B} we see in routine FindWeakSplit that we can use a splitter
(C, τ,W1) and get the partitionW2 = {{s1, t1}, {s2}, {A}, {B}} (cf. Fig. 16d,
note that S(s1, τ)/W1 = S(t1, τ)/W1, as (1

2
, 1
2
) is not a generator of the

convex set).
Third round: We first have to detect nn-vanishing states. It is clear

that s2 must be nn-vanishing as it can leave its class and only has a single
outgoing τ transition. With the same arguments as above we see that both
s1 and t1 must be nn-tangible. So we get Snn−tangible = {s1, t1, A, B}.

Now we again can look for splitters, but have to consider the restriction
to Snn−tangible . Notice that with coordinates [s1] = [t1], [s2], [A], [B] we have

S(s1, τ)/W2 = CHull(




1
0
0
0


 ,




0
1
0
0


 ,




0
0
0
1


 ,




0
1
2
1
2

0


 ,




0
0
2
3
1
3


).

We want to calculate the restriction S(s1, τ)|Snn−tangible
/W2. Let us for the

moment ignore the vertex [s1] ∈ S(s1, τ)/W2. Then we get the picture in
Fig. 17a for S(s1, τ)|s1=0/W2. We see that the restriction of this set to
Snn−tangible gives only the line from (0, 0, 1) to (0, 2

3
, 1
3
) (cf. Fig. 17b), therefore

35

(a) S(s1, τ)|s1=0/W2 (b)
S(s1, τ)|s1,s2=0/W2

(c)
S(s1, τ)|Snn−tangible

/W2

Figure 17: Convex sets

we conclude that S(s1, τ)|Snn−tangible
/W2 is the set given in Fig. 17c. We get

the same set for S(t1, τ)|Snn−tangible
/W2 (here, no nn-vanishing state has to be

ignored). Looking at all other sets S(·, ·) we find no other splitter, so W2

cannot be refined.
With the partition W2 and the set of stable states Snn−tangible we have

reached our fixed point, the algorithm terminates and we see that s1 and t1
are still in the same partition, so they are weakly bisimilar.

Remark 6 (Optimisations). A few optimisations can be performed:

• In every round states without other τ transitions than the loop will al-
ways be detected as stable, so this set can be separated as a preprocessing
step.

• All states with only one single outgoing τ transitions and without non-τ
transitions can safely be eliminated in advance (cf. Lemma 3).

6.2. Complexity considerations

Our algorithm needs to compute the sets S(s, a) and Sν(s, a) for all s ∈ S,
a ∈ Act and all distributions ν that can be reached from s by a τ transition
driven by a Dirac determinate scheduler. The sets have to be considered with
respect to certain partitions. According to Sec. 7 in [4] the problem of finding
one of the above sets is already exponential. Further the Dirac determinate
schedulers needed to find nn-vanishing states are also exponentially many,
as pointed out in Example 1 of [4]. The restriction operation to nn-tangible
states is negligible, as the generating points of the above sets, that have non-
zero probabilities for nn-tangible states, can simply be omitted to describe
the restricted sets.

36

7. Relation to Deng-Hennessy bisimulation

Recently an alternative distribution-based bisimulation ≈bis for Markov
Automata has been defined [6]. One key property of µ ≈bis γ is that whenever
µ

a
⇒C ⊕i∈Ipiµi then also γ

a
⇒C ⊕i∈Ipiγi where µi ≈bis γi for all i ∈ I

and vice versa. This assumption can be directly fed into the proof of our
Thm. 2 (instead of having to use Lemma 11 from [2]). The reduction to
Dirac determinate schedulers works similarly as for the bisimulation ≈, as
we (as well as [16]) only use standard arguments for PA which also apply to
the Deng-Hennessy setting. Therefore we conclude that our approach is also
capable of deciding ≈bis.

8. Related work

Recently, in [8] an alternative approach has been presented to solve the
weak bisimulation problem for MA. We now sum up the analogies and dif-
ferences, omitting the proofs. In the approach of [8], MEC contractedness
plays a crucial role:

Definition 18 (Maximal End Components, Definitions 6 and 7 in [8]). Given
a PA P = (S,Act, T, s0), a maximal end component (mec) is a maximal set
C ⊆ S such that for each s, t ∈ C : s

τ
⇒C ∆t and t

τ
⇒C ∆s. A PA P =

(S,Act, T, s0) is called mec-contracted, if for each pair of states (s, t) ∈ S×S
it holds that (s

τ
⇒C ∆t and t

τ
⇒C ∆s) ⇒ s = t.

Definition 19 (Behaviourally pivotal state [8]). We call a state s behaviourally
pivotal, if s

τ
→ µ implies that s and µ are not observation equivalent, i.e.

∆s 6≈ µ. It is not behaviourally pivotal if there exists (at least) one transition
s

τ
→ µ such that ∆s ≈ µ.

Lemma 13 (Relating vanishing states to the definitions of [8]). On MEC-
contracted PA, “vanishing” corresponds to “not behaviourally pivotal” and
“tangible” corresponds to “behaviourally pivotal”.

Note that MEC-contractedness is crucial for this coincidence. Omitting
this precondition, the definitions are different: Even if “not behaviourally
pivotal” is defined for arbitrary PA, the definition only makes sense for MEC-
contracted PA. Look at the PA given in Fig. 18. Of course s and s′ are
in the same class with respect to ≈∆. Therefore both s and s′ are not
behaviourally pivotal, but it does not make sense to think about ignoring

37

s s‘

A

t

a

b
1

1

1

c

1

t

1

Figure 18: Not behaviourally pivotal vs. vanishing states

both of them. In the context of vanishing states we see that s is tangible
while s′ is trivially vanishing. The state s′ can be safely ignored, that is:
eliminated. Note that for MEC-contracted PA this problem doesn’t arise.
Our approach has a finer granularity: The set of vanishing states is split
into the nn-vanishing and näıvely vanishing states. We show in our approach
that classes of nn-tangible states (where also näıvely vanishing states belong
to) cannot “vanish”, whereas classes of nn-vanishing states can “vanish”
without losing weak bisimilarity. Lacking this fundamental difference makes
the approach of [8] unnecessarily complicated.

Looking at preserving transitions defined in [8], the picture is similar.

Definition 20 (Preserving Transitions (adapted from [8])). Let B be an
equivalence relation on S. A set P of τ -transitions in T is called preserving
with respect to B if for all (s, τ, γ) ∈ P it holds that whenever s

a
⇒C µ then

there exist µ′, γ′ such that µ
τ |P
⇒C µ′ and γ

a
⇒C γ′ and µ′ ≡B γ′. Here |P

means that we only use transitions from the set P .

Lemma 14 (Relating vanishing representations to the definitions of [8]). On
a MEC-contracted PA, let s be a vanishing (i.e. not behaviourally pivotal)
state. Then a “vanishing representation” s

τ
→ µ corresponds to a “preserving

transition”.

Note that it is important that we use strong transitions, as preserving
transitions are defined as a subset of the set of transitions T (no weak tran-
sitions allowed). It can be shown that every vanishing state has such a
vanishing representation9. Similar to the definition of not behaviourally piv-

9When searching for nn-vanishing states, it is not enough to consider only these strong
transitions, as example 4 shows.

38

s

A

B

1/2

1/2

a

a

b

1

1
t

1/21/2

C D
c d

11

1

1

t

t

Figure 19: A not contracted example

otal states, also the definition of preserving transitions only makes sense for
MEC-contracted PA: The restriction to the set P of preserving transitions
is not required for the τ parts of the weak a transition from γ to γ′ in Defi-
nition 20. Therefore this definition would render the set of all τ transitions
in Fig. 19 as “preserving”, but still the a transition from s can clearly not
be left out, as from γ = 1

2
∆C ⊕ 1

2
∆D still the a transition from s must be

used in order to mimick the transition to 1
2
∆A ⊕ 1

2
∆B. In the context of

vanishing states it is clear that there is no vanishing representation for s, as
then clearly the a transition would get lost.

We collect the following important differences and coincidences from our
approach to the approach of [8]:

• The results of [8] only apply to MEC-contracted PA/MA, while our
approach does not preassume MEC-contracted MAs, it is a general
approach.

• The concept of preserving transitions – which remains rather unspecific
in [8] and has to be tackled by a brute force attack over all possible sub-
sets – is nicely explained by our concept of vanishing representations
consisting of strong transitions. Especially we have shown that it is
enough to consider those sets of preserving transitions where each not
behaviourally pivotal state has only one emanating preserving transi-
tion (this is a direct consequence of our Lemma 10).

• The definitions of [8] only characterise “vanishing” states, but do not
distinguish between nn-vanishing and näıvely vanishing states. There-
fore that work is lacking the main result similar to our Thm. 1 (nn-
vanishing states are the missing part when switching from state-based
to distribution-based bisimulations) and Thm. 2 (after elimination of

39

nn-vanishing states, a weak bisimulation will be a näıve weak bisimu-
lation).

• With our theory we can easily explain the so-called “pitfalls” described
in [8], Example 6 and 7. We show that these are no pitfalls at all in
the context of nn-vanishing states in Appendix B.

• Regarding the complexity, even if not explicitly mentioned in [8] (but as
a consequence of the broken “strong challenger characterisation”), all
Dirac determinate schedulers have to be considered for deciding weak
bisimilarity between two states. In other words this means that also
there the sets S(s, a) are constructed. Therefore, the approach of [8]
lies in the same complexity class as our approach.

9. Conclusion

We have shown that weak and näıve weak bisimulation for MA are closely
related by an appropriate formulation of elimination and that the two nota-
tions coincide, when no non-näıvely vanishing states are present. We have
presented an algorithm for deciding weak MA bisimilarity that, as a by-
product, finds non-näıvely vanishing states and their corresponding vanish-
ing representations. This can also be used to define normal forms for MA.
Even with the magnificent results of [5] it remains an open question whether
weak MA bisimulation can be decided in polynomial time.

Acknowledgements: Cordial thanks to Andrea Turrini for giving a beauti-
ful and more readable reformulation of our original definition of nn-vanishing
states [7] and some interesting discussions on Markov Automata and bisimu-
lations. We would also like to thank the anonymous reviewers of Information
and Computation who indicated problems in the proof of the main Theorem,
which finally uncovered a problem in Lemma 16 of [2] and lead to our new
proofs of the main Theorems that are independent of [2].

Deutsche Forschungsgemeinschaft (DFG) supported this work under grant
SI 710/7-1, and we also acknowledge support by the DFG/NWO Bilateral
Research Programme ROCKS.

References

[1] C. Eisentraut, H. Hermanns, L. Zhang, On Probabilistic Automata in
Continuous Time, in: Proceedings of the 2010 25th Annual IEEE Sym-

40

posium on Logic in Computer Science, LICS ’10, IEEE Computer Soci-
ety, Washington, DC, USA, 2010, pp. 342–351.

[2] C. Eisentraut, H. Hermanns, L. Zhang, On Probabilistic Au-
tomata in Continuous Time, http://www.avacs.org/fileadmin/

Publikationen/Open/avacs_technical_report_062.pdf, Reports of
SFB/TR 14 AVACS 62 (2010).

[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschi-
nis, Modelling with Generalized Stochastic Petri Nets, Wiley Series in
Parallel Computing, 1995.

[4] S. Cattani, R. Segala, Decision Algorithms for Probabilistic Bisimula-
tion, in: L. Brim, P. Jancar, M. Kret́ınský, A. Kucera (Eds.), CON-
CUR, Vol. 2421 of Lecture Notes in Computer Science, Springer, 2002,
pp. 371–385.

[5] H. Hermanns, A. Turrini, Deciding Probabilistic Automata Weak Bisim-
ulation in Polynomial Time, in: D. D’Souza, T. Kavitha, J. Radhakr-
ishnan (Eds.), IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2012), Vol. 18
of Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2012,
pp. 435–447. doi:http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.435.
URL http://drops.dagstuhl.de/opus/volltexte/2012/3879

[6] Y. Deng, M. Hennessy, On the semantics of Markov automata, in: Pro-
ceedings of the 38th international conference on Automata, languages
and programming - Volume Part II, ICALP’11, Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 307–318.

[7] J. Schuster, M. Siegle, Markov Automata: Deciding Weak Bisimulation
by means of “non-näıvely” Vanishing States, http://arxiv.org/abs/
1205.6192, Revised version with appendix on compositionality (initial
version May 2012) (2013).

[8] C. Eisentraut, H. Hermanns, J. Krämer, A. Turrini, L. Zhang, Deciding
Bisimilarities on Distributions, in: 10th International Conference on
Quantitative Evaluation of SysTems (QEST 2013), 2013, pp. 72–88.

41

[9] R. Segala, Modeling and Verification of Randomized Distributed Real-
Time Systems, Ph.D. thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology (1995).

[10] H. Hatefi, H. Hermanns, Model Checking Algorithms for Markov Au-
tomata, ECEASST 53.

[11] N. A. Lynch, R. Segala, F. W. Vaandrager, Observing Branching Struc-
ture through Probabilistic Contexts, SIAM J. Comput. 37 (4) (2007)
977–1013.

[12] C. Eisentraut, H. Hermanns, L. Zhang, Concurrency and Composition
in a Stochastic World, in: P. Gastin, F. Laroussinie (Eds.), CONCUR
2010 - Concurrency Theory, Vol. 6269 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2010, pp. 21–39.

[13] R. Segala, N. A. Lynch, Probabilistic Simulations for Probabilistic Pro-
cesses, Nord. J. Comput. 2 (2) (1995) 250–273.

[14] M. Ajmone Marsan, S. Donatelli, F. Neri, GSPN models of Markovian
multiserver multiqueue systems, Performance Evaluation 11 (1990) 227–
240.

[15] G. Ciardo, R. Zijal, Well-defined stochastic Petri nets, in: Proceedings of
the 4th International Workshop on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems, MASCOTS ’96, IEEE
Computer Society, Washington, DC, USA, 1996, pp. 274–280.

[16] C. Eisentraut, H. Hermanns, J. Schuster, A. Turrini, L. Zhang, The
Quest for Minimal Quotients for Probabilistic Automata, in: Tools and
Algorithms for the Construction and Analysis of Systems - 19th Inter-
national Conference, TACAS 2013, Vol. 7795 of LNCS, Springer, 2013,
pp. 16–31.

[17] J. Schuster, Towards faster numerical solution of Continuous Time
Markov Chains stored by symbolic data structures, Ph.D. thesis, Uni-
versität der Bundeswehr München (2011).

42

Appendix A. “Continuous” vs. “nn-vanishing” states

Thm. 2 in [1, 2] relies on Lemma 16 of [2]. There, the concept of “con-
tinuous” states is introduced and used for proving a key property of weak
bisimulation. However, this appendix points out a counterexample, thus
[2, Lemma 16] and therefore Thm. 2 in [2, 1] have to be considered as yet
unproven. But in this appendix we also show that with the notion of nn-
vanishing states it is possible to prove [2, Lemma 16], thus that the lemma
and Thm. 2 in [2, 1] are now known to be indeed correct.

Definition 21 (Continuous state [2]). P = (S,Act, T, ∅, s0) be a PA. A state
s ∈ S that has a transition s → ν where ∆s ≈ ν , but ∃t ∈ Supp(ν) such
that s 6≈∆ t is called a continuous state.

In order to compare the concepts of “continuous” and “nn-vanishing”
states, it is convenient to have an alternative characterisation of nn-vanishing
states. By Thm. 1 and Lemma 10 we see that we could alternatively define
nn-vanishing states in the following way:

Definition 22 (nn-vanishing state – alternative definition to Definition 14).
P = (S,Act, T, ∅, s0) be a PA. A state s ∈ S that has a (non-combined!)
weak transition s ⇒ ν where ∆s ≈ ν but ∃t ∈ Supp(ν) such that s 6≈∆ t is
called a nn-vanishing state.

So we see that the set of continuous states is in general smaller than
the set of nn-vanishing states (strong transition s

τ
→ ν vs. weak transition

s
τ
⇒ ν). With this knowledge, we can give a simple example that renders the

proof of [2, Lemma 16] wrong.

Example 7 (Counterexample: Weak transitions not considered). The proof
of [2, Lemma 16] consists of two steps. The first step constructs canonical
transitions that resolve “continuous” states µ ⇒ µ∗ and γ ⇒ γ∗ (where
µ∗ ≈ µ and γ∗ ≈ γ) using Dirac determinate schedulers. In the second
step it is shown that every further transition µ∗ ⇒C µ′ (where µ′ ≈ µ∗) and
analogously γ∗ ⇒ γ′ (where γ′ ≈ γ∗) do not change the equivalence classes.
Assume we are given the automata in Fig. A.20. The states s, s′ and t are
nn-vanishing. Assume that µ = ∆s, γ = ∆t. According to [2] we see that t
and s′ are continuous while s is not. By the construction from [2] we would
get then µ∗ = µ (no state in µ can change its equivalence class with a strong
transition) and γ∗ = 1

2
∆A ⊕ 1

2
∆B. But now it is trivially wrong that µ∗ and

43

s s‘

A

B

1/2

1/2

tt

a

b1

1

1

(a) s and s′ nn-vanishing

t

A

B

1/2

1/2

t

a

b

1

1

(b) t nn-vanishing

Figure A.20: Examples of vanishing states

s tv

t

b1

1

1

b
a

t

1
B

t

Figure B.21: Example 6 from [8] – s and t in one class

γ∗ coincide on classes, as s is clearly nn-vanishing while A and B are not.
Therefore the proof of [2, Lemma 16] is incorrect.

Still, [2, Lemma 16] remains correct, and its correctness can be proven
in the nn-vanishing context: We can substitute every nn-vanishing state by
its canonical vanishing representation consisting of nn-tangible states, and
the resulting distributions are näıvely weakly bisimilar (with respect to the
lifting of ≈näıve to distributions). This is, with the help of our notion of
nn-vanishing states, now proven by Lemma 8 and Thm. 2. The fact that
non-combined transitions can be used in this lemma is now proven by our
Lemma 10.

Appendix B. Examples from [8]

The following two examples from [8] are called “pitfalls” there. We show
why – in the context of the nn-vanishing state concept – these pitfalls are no
pitfalls at all.

Appendix B.1. Strong challenger characterisation

In example 6 of [8] (cf. Fig. B.21) it is clear that the preserving-approach
fails as long as v remains absorbing: States s and t belong to one class
with respect to ≈∆. It can be easily verified that both states cannot be

44

t

A B

s

a b

p1-p

t

t

CD

t

t t

t

1 1

c

11

11

1

1 1
t

Figure B.22: An instance of Example 7 from [8] – nn-vanishing case

vanishing, as no vanishing representation can be found. As both states are
tangible, they actually don’t need a special treatment in our algorithm. Note
that “preserving transitions” in our understanding are only necessary for nn-
vanishing states and not for all vanishing states in order to solve the decision
problem.

Appendix B.2. Brute force attack for “preserving” transitions

The problem of example 7 of [8], as exemplified by Fig. B.22, doesn’t hit
the bull’s eye. The basic question is not “which transitions can be omit-
ted?” (or alternatively “which transitions are preserving?”). The first ques-
tion must rather be “are states s and t nn-vanishing or not?”. If they are
nn-tangible, not any transition may be omitted. If they are nn-vanishing,
Lemma 10 justifies that for both states the same transition must be omitted
(as long as the successor distributions are not bisimilar), as Fig. B.22 shows
(assume that the “triangle” (“pentagon”) distribution from [8] corresponds
to state C (D) in our example. Obviously the automaton is MEC-contracted.
Clearly states A, B and C are not weakly bisimilar. Assume that p ∈ (0, 1).
Then D is trivially nn-vanishing. Further it is clear that the τ transitions
from s and t to C can be omitted, as they may be weakly mimicked. But
then (and only then) we have vanishing representations of states s and t. So
we conclude that the statement in [8] that “Then, clearly, none of the tran-
sitions is preserving” is in general wrong. It rather depends on the context
whether s or t are nn-vanishing or not.

45

