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Abstract

In this paper we introduce the logicasCSL, an extension
of continuous stochastic logic (CSL), which provides pow-
erful means to characterise execution paths of action- and
state-labelled Markov chains. InasCSL, path properties
are characterised by regular expressions over actions and
state-formulas. Thus, the executability of a path not only
depends on the available actions but also on the validity
of certain state formulas in intermediate states. Our main
result is that the model checking problem forasCSL can
be reduced toCSL model checking on a modified Markov
chain, which is obtained through a product automaton con-
struction. We provide a case study of a scalable cellular
phone system which shows how the logicasCSL and the
model checking procedure can be applied in practice.

1. Introduction

It becomes increasingly important to assert that distributed
hardware and software systems are working correctly and
that they meet high performance and dependability con-
straints. To reason about stochastic phenomena, several
high-level models such as stochastic Petri nets, stochastic
process algebras, queueing networks, etc., have been es-
tablished. Typically, the verification of quantitative prop-
erties relies on a transformation of these high-level mod-
els into a Markov chain, on which the actual analysis is
carried out. For the model-based verification of func-
tional properties, temporal logics provide powerful means
to specify complex requirements that a system has to sat-
isfy, see e.g. [1]. Over the past 10 years, several researchers
have adapted the temporal-logical approach to reason about

probabilistic properties. One result of these efforts is the
logic CSL (continuous stochastic logic), introduced in [2]
and extended in [3], which is a continuous-time variant of
PCTL (probabilistic computation tree logic) [4] and can
be used as specification formalism for performance and
dependability properties. For instance, theCSL-formula
P≥0.99(legalU ≤5goal) specifies the state-property assert-
ing that “there is at least a 99% chance to reach agoal state
within the next 5 time units while passing onlylegal states
before”. The goal states and legal states can be formalized,
e.g., by atomic propositions that are attached to the states
or by complexCSL-formulas. A so-called steady-state op-
erator allows to reason about stationary probabilities. For-
mulaS≥0.75(green) states that the probability mass accu-
mulated in green states is at least 75%. An extension of
CSL to reason about rewards has been introduced in [5].
However, the specification of these measures is completely
state-oriented. For action-oriented modelling formalisms,
such as stochastic process algebra,CSL is not expressive
enough, since it is not possible to characterise sequences
of actions. In [6] an action-based variant ofCSL, aCSL,
was proposed, and in [7] it was shown how to employ
this logic for performability modelling. A further step is
the logicaCSL+ [8], which combines state-oriented and
action-oriented features, and employs regular expressions
for characterising more general path-based properties.

In this paper we propose a new logic, calledasCSL (for
action- andstate-orientedCSL), which subsumes all the
above mentioned logics. (Preliminary work on logics sim-
ilar to asCSL has been published in [9] and [10].)asCSL
can be seen as being motivated either by the method of
path-based reward variables as described in [11], or by the
propositional dynamic logic [12] and extended linear tem-
poral logic [13]. WithasCSL, paths are characterised by
regular expressions, also called programs, but in addition it
is possible to express that a program is executable only if



the current state satisfies a given state property. This makes
it possible to combine in an elegant way state- and action-
oriented behavior. Unlike extended linear temporal logic
[13], we do not allow forω-regular expressions (represent-
ing infinite behaviors). Instead, inasCSL the regular ex-
pressions are used in combination with lower and upper
time bounds. Thus, the switch fromCSL to asCSL is
orthogonal to the extensionPCTL∗ [14] of PCTL which
is concerned with specifying “complex” properties of infi-
nite computations, whereasasCSL focusses on “complex”
properties of finite computations with real-time constraints
(e.g. deadlines).
This paper is further organised as follows: In Section 2 we
define action- and state-labelled Markov chains. Section
3 presents syntax and semantics of the new logicasCSL.
Section 4 is dedicated to the model checking procedure for
asCSL. In Section 5 we apply the new technique to de-
rive properties of the handover procedure in a cellular ra-
dio network. The paper ends with a short summary and
conclusions.

2. Action and state labelled Markov chains

In this section we explain the notation for Markov chains
with action and state labels. The reader is supposed to be
familiar with Markov chains, c.f. [15]. Action names are
used to label the transitions. The state labels are formalized
by a setAP of atomic propositions, which e.g. can assert
that the system (or one of its subprocesses) is at a certain
control point or that a program variable has a certain value,
and a functionL that assigns to any state the set of atomic
propositions that are assumed to hold in the given state.

Definition 1 (Action- and state-labelled Markov chain)
An action- and state-labelled continuous-time Markov
chain (ASMC) is a tupleM = (S,Act,AP,L,R), where S
is a finite set of states,Act is a finite set of action labels,
AP is a finite set of atomic propositions, L: S→ 2AP a
state labelling function, andR : S×Act×S→ IR≥0 a rate
matrix. We require that for any state s there exists a pair
(a,s′) ∈ Act×S withR(s,a,s′) > 0. ✷

Intuitively, if R(s,a,s′) = λ > 0 then there is ana-labelled
transition from states to states′ whose delay is specified
by an exponential distribution with rateλ . For S′ ⊆ S we
write R(s,a,S′) = ∑s′∈S′ R(s,a,s′) to denote the total rate
to move from states via actiona to state-setS′.

Definition 2 (Paths inM ) A finite path inM is a finite
word σ = (s0,a0, t0),(s1,a1, t1), . . . ,(sn−1,an−1, tn−1),sn ∈
(S× Act × IR>0)

∗ × S, whereR(si ,ai ,si+1) > 0 for i =
0, . . . ,n− 1. An infinite path inM is an infinite word
ς = (s0,a0, t0), (s1,a1, t1), . . . ∈ (S×Act× IR>0)

ω with
R(si ,ai ,si+1) > 0 for all i ≥ 0 and such that the infinite
series∑i ti is divergent (i.e., t0 + t1+ t2 + . . . = ∞). ✷

We write paths as sequences of transitions, e.g., for the fi-
nite pathσ above, we use the notation

σ = s0

a0,t0−→ s1

a1,t1−→ s2

a2,t2−→ ·· ·
an−2,tn−2−→ sn−1

an−1,tn−1−→ sn.

Let σ be a finite path as before, then
∣

∣σ
∣

∣ = n denotes the
length ofσ , i.e., number of transitions inσ , σ [i] = si the
(i + 1)st state onσ . We refer toτ(σ) = ∑n−1

j=0 t j as the ex-
ecution time ofσ . For t ≤ τ(σ), σ@t denotes the state
that is occupied at timet on pathσ , that is,σ@t = σ [k],
wherek is the smallest index for whicht < ∑k

j=0 t j . We
write σ(i, j) to denote the fragment of pathσ starting at
the (i + 1)-st statesi and ending at the( j + 1)-st statesj
(i ≤ j).
If σ1, σ2 are finite paths such that the first state ofσ2 agrees
with the last state ofσ1 then the concatenationσ1σ2 is a
path of length|σ1|+ |σ2| which is defined in the obvious
way. Similar notation is used for infinite paths.PathMfin

denotes the set of all finite paths inM , whereasPathMω
stands for the set of infinite paths inM . By PathMfin (s),
resp.PathMω (s), we denote the set of all finite, resp. infi-
nite, paths inM with initial states.
In the sequel, we shall deal with the standard probability
measurePrMs onPathMω (s) (where the underlyingσ -field
can be defined with the help of basic cylinders as in [16]).
For measurableX ⊆ PathMω (s), we often skip the parame-
terM and/ors and simply writePr(X) or PrM (X). The
transient state probabilitiesπM (s,s′, t) are given by

πM (s,s′, t) = PrM
{

ς ∈ PathMω (s) : ς@t = s′
}

,

and the steady state probability of being in states′ on
the long run, provided that the system started in states,
is πM (s,s′) = limt→∞ πM (s,s′, t). For S′ ⊆ S, we put
πM (s,S′) = ∑s′∈S′ π

M (s,s′).

3. Syntax and semantics ofasCSL

We now extendCSL (continuous stochastic logic) as in-
troduced in [2, 3] by path formulas that specify constraints
for action- andstate-sequences in combination with lower
and/or upper time bounds.

3.1. Syntax ofasCSL

The syntax ofasCSL is defined according to Def. 3 (state
formulas) and Def. 4 (programs or path formulas). Here,
we assume that the setsAct of actions andAP of atomic
propositions are fixed.

Definition 3 (State formulas ofasCSL) State formulas
of asCSL are given by the following grammar:

φ ::= q

∣

∣

∣
¬φ

∣

∣

∣
φ ∨φ

∣

∣

∣
S⊲⊳p(φ)

∣

∣

∣
P⊲⊳p(α I ) ,



whereq ∈ AP is an atomic proposition, p∈ [0,1] denotes
a probability value,⊲⊳∈ {<,≤,>,≥} a comparison oper-
ator, I = [t, t ′] ⊆ IR≥0 a time interval andα a program as
defined in Def. 4. We refer toα I as a path-formula and use
Φ to denote the set of state formulas ofasCSL. ✷

The logical connectives¬ and∨ have their usual meaning.
Using negation¬ and disjunction∨, the constantstrue,
false and all other boolean connectives such as conjunc-
tion ∧, implication→, etc. can be derived. The so-called
steady-state operatorS⊲⊳p(φ) asserts that the probability of
being in aφ -state on the long run is within the interval⊲⊳ p.
The operatorP⊲⊳p(α I ) asserts that the probability measure
of all infinite paths which have a prefix that satisfiesα I ,
whereα is a program andI is a real interval specifying the
time bound, is within the interval⊲⊳ p.
The programα specifies a property for finite paths via a
regular set of finite words whose atomic symbols are pairs
(φ ,b) (in the sequel we simply writeφb) consisting of an
asCSL-state formulaφ (which is viewed as a test for the
current state of a path) and an actionb ∈ Act or b =

√

(where
√ 6∈ Act). The symbol

√
can be viewed as a

pseudo-action which is always immediately executable and
does not change the current state in the ASMC. Formally,
the programs are regular expressions over the alphabet

Σ = Φ× (Act∪{√}) =
{

φb
∣

∣ φ ∈ Φ∧b∈ (Act∪{√})
}

.

Definition 4 (Programs) asCSL-programs are defined by
the following grammar:

α ::= ε
∣

∣

∣
φb

∣

∣

∣
α ;α

∣

∣

∣
α ∪α

∣

∣

∣
α∗,

whereφb ∈ Σ (i.e., φ ∈ Φ, b∈ Act∪{√}). The language
L (α) ⊆ Σ∗ is defined in the standard way. ✷

The symbolε stands for the empty word (as an element of
Σ∗). The intuitive meaning ofφb is that the current state
s fulfills the testφ (that is, the formulaφ holds ins) and,
if b ∈ Act, states has an outgoingb-transition. Ifb =

√
,

there is no statement about outgoing transitions. Note that
the test can be empty, i.e.,φ = true. The operator ; de-
notes sequential composition (concatenation),∪ denotes
alternative choice (union), and∗ denotes then-fold sequen-
tial composition for arbitraryn ≥ 0 (Kleene star). As ex-
amples for the corresponding languages,L

(

φ1a;(φ2
√∪

φ3b)
)

consists of the two wordsφ1a,φ2
√

and φ1a,φ3b
whereasL

(

(φ1a;φ2b;φ3
√

)∗;φ4c
)

is an infinite language
that contains the wordsφ4c andφ1a, φ2b, φ3

√
, φ4c and

φ1a, φ2b, φ3
√

, φ1a,φ2b, φ3
√

, φ4c, and so on.
In the context ofasCSL, the meaning of a program (which
will be formally defined in the next subsection) is a set of
finite paths in the underlying ASMC.

3.2. Semantics ofasCSL

The semantics ofasCSL is provided by means of a satis-
faction relation|= for the state- and path formulas. In the
sequel, we assume a fixed ASMCM = (S,Act,AP,L,R).
For states inM and state formulaφ ,M ,s |= φ means that
the state-property specified byφ holds fors. Similarly, for
an infinite pathς , M ,ς |= α I denotes that the behaviour
specified by the path formulaα I is fulfilled by ς . The for-
mal definition of the satisfaction relation|= for the state
and path formulas is by structural induction on the syntax
of the formulas.

Definition 5 (Semantics ofasCSL) The satisfaction rela-
tion |= for the state formulas is defined as follows:

M ,s |= q ⇔ q ∈ L(s)
M ,s |= ¬φ ⇔ M ,s 6|= φ
M ,s |= φ1∨φ2 ⇔ M ,s |= φ1 orM ,s |= φ2
M ,s |=S⊲⊳p(φ) ⇔ πM (s,SatM (φ)) ⊲⊳ p
M ,s |=P⊲⊳p(α I ) ⇔ ProbM (s,α I ) ⊲⊳ p

whereSatM (φ) =
{

s∈ S :M ,s |= φ
}

denotes the satis-
faction set ofφ inM and

ProbM (s,α I ) = PrM
{

ς ∈ PathMω (s)
∣

∣

M ,ς |= α I
}

.

The meaning of the path formulas is formalized as follows.
If ς is an infinite path inM thenM ,ς |= α I iff there exists
a finite prefixσ of ς with σ ∈ PathMfin (α) and τ(σ) ∈ I.1

Here, the setPathM
fin

(α) consists of all finite pathsσ inM
that can be viewed as an instance ofα . Formally:

σ ∈ PathMfin (ε) iff |σ | = 0

σ ∈ PathMfin (φa) iff ∃t > 0 s.t.σ = s
a,t−→ s′

andM ,s |= φ
σ ∈ PathM

fin
(φ

√
) iff σ = s andM ,s |= φ

σ ∈ PathMfin (α1;α2) iff ∃i ∈ {0,1, . . . , |σ |} s.t.
σ(0, i) ∈ PathM

fin
(α1) andσ(i, |σ |) ∈ PathM

fin
(α2)

σ ∈ PathMfin (α1∪α2) iff σ ∈ PathMfin (α1)∪PathMfin (α2)

σ ∈ PathMfin (α∗) iff ∃i ≥ 0 s.t.σ ∈ PathMfin (α i)

whereα i+1 = α ;α i and α0 = ε (the empty word inΣ∗).2

In the sequel, we often write s|= φ andς |= α I rather than
M ,s |= φ andM ,ς |= α I respectively. ✷

We simply writeφA for
⋃

a∈A φa. The reader should notice
the difference between the programsα1 = (true Act)∗φ

√

and α2 = (true Act)∗φ Act. Programα1 stands for all
finite pathsσ that end in aφ -state, whereasα2 stands for
all finite paths whose prefinal state satisfiesφ .
A time-bounded until operator can be derived from the
syntax ofasCSL by φ1U

I φ2 = ((φ1Act)∗φ2
√

)I . From
1Recall thatτ(σ) denotes the execution time ofσ .
2Note that all pathsσ with |σ | = 0 belong toPath

M

fin
(α∗).



this, we may derive the time-bounded eventually-operator
✸

I φ = trueU I φ . For instance,P≤0.05(✸
≤5error) states

that the probability to reach an error state within 5 time
units is bounded above by 0.05. Its dual, the time-
bounded always-operator, is obtained (as inCSL) through
P≥p(✷

I φ) =P≤1−p(✸
I¬φ), stating thatφ continuously

holds in the time intervalI with probability at leastp.

3.3. asCSL-equivalence and bisimulation

The correctness proof of the model checking algorithm
presented in Section 4 will make use of the observation
thatasCSL-equivalence (which identifies those states that
cannot be distinguished byasCSL-formulas) agrees with
bisimulation equivalence for ASMCs. The latter can be
viewed as a variant of lumpability [17, 18] and essentially
agrees with Markovian bisimulation as introduced in [19,
20] for action-labelled Markov chains. Formally, bisimu-
lation equivalence∼ for an ASMCM = (S,Act,AP,L,R)
is the coarsest equivalence onS such that for alls1 ∼ s2:
(i) L(s1) = L(s2) and (ii) R(s1,a,C) = R(s2,a,C) for all
actionsa∈ Act and all equivalence classesC∈ S/∼.
It is well-known that bisimulation equivalence∼ agrees
with CSL-equivalence [16, 21] (which means the equiv-
alence that identifies exactly those states that satisfy the
sameCSL state formulas). In particular, bisimulation
equivalent states have the same transient and steady state
probabilities. Using structural induction on the syntax of
state- and path-formulas ofasCSL the preservation prop-
erty for asCSL and bisimulation equivalence can be es-
tablished in the following sense: Ifs1 ∼ s2 then we have
s1 |= φ iff s2 |= φ for all state-formulasφ of asCSL: and
ProbM (s1,α

I ) = ProbM (s2,α
I ) for all path-formulasα I

of asCSL. As asCSL subsumes the logicCSL we obtain
by the completeness result established in [21]:

Proposition 1 Bisimulation equivalence agrees with
asCSL-equivalence.

As Markovian testing equivalence [22] is weaker than
bisimulation equivalence, states that fulfill the same
asCSL-formulas are Markovian testing equivalent.

4. Model CheckingasCSL

The model checking procedure forasCSL is similar to that
for CTL [23]. Given theasCSL state formulaφ and an
ASMCM , we successively consider the subformulasψ of
φ and calculate the satisfaction setsSatM (ψ) = {s∈ S :
M ,s |= ψ}. This technique allows us to treat subformu-
las as atomic propositions. The treatment of subformulas
whose top-level operator is a boolean connective (nega-
tion or disjunction) is obvious. Subformulas of the form
S⊲⊳p(φ) can be handled with the same procedure as for

CSL, see [24]. The new and challenging case is the treat-
ment of formulas of typeφ =P⊲⊳p(α I ). For each stateswe
have to compute the probabilityProbM (s,α I ) = PrM

{

ς ∈
PathMω (s)

∣

∣

M ,ς |= α I
}

and check whether it lies within
the specified bound⊲⊳ p. The approach to calculate the val-
uesProbM (s,α I ) is to build the product ofM and a finite
automatonAα (representing the programα), which yields
a new Markov chain, denotedM ×Aα , and then to apply
theCSL model checking procedure to calculate the proba-
bilities inM ×Aα to reach a state〈s′,q〉, with s′ a state in
M andq a final state inAα , within the time intervalI .
Section 4.1 is devoted to the construction of the automaton
Aα , whereas Section 4.2 presents the construction of the
product Markov chainM ×Aα .

4.1. Program automata

Since programs are regular expressions, we can apply stan-
dard techniques to construct a finite automaton for a given
program. We call this a nondeterministic program automa-
ton (NPA).

Definition 6 (NPA) An NPA is a quintuple A =
(Z,Σ′,δ ,Z0,F), where Z is a finite set of states,Σ′ a
finite subset ofΣ (the input alphabet)3, δ : Z×Σ′ → 2Z is
the transition function, Z0 ⊆ Z the set of initial states and
F ⊆ Z the set of accepting (final) states.L (A ) ⊆ (Σ ′)∗

denotes the accepted language ofA which is defined in
the standard way. ✷

We now describe how a program automatonA can be used
to describe the path-setPathM

fin
(α) for a programα . Thus,

we consider NPAs asacceptors for finite pathsinM (rather
than as acceptors for finite words over the alphabetΣ ′).
The intuitive behaviour of an NPAA for the input path

σ = s
a,t−→ σ ′ is as follows. The automaton starts in one

of its initial statesz0 ∈ Z0. If the current automata-state is
z, thenA chooses nondeterministically between one of the

outgoing transitionsz
φb−→ z′, wheres|= φ and eitherb=

√

orb= a, and then moves to statez′. In the latter case, i.e., if
a= b,A proceeds in the same way for statez′ and the input
pathσ ′. In the former case, i.e., ifb =

√
, no input symbol

is consumed, i.e., the procedure is repeated with statez′ and
the input pathσ . If there is no outgoing transition fromz
which can be taken for the input pathσ thenA rejects. As
soon asA reaches a final state (a state inF) and the whole
input path has been consumed, the automaton accepts.
The formal definition of acceptance for paths is provided
by means of runs which are sequences of automaton-states
that can be generated by the operational behaviour ofA as
sketched above.

3Σ is the alphabet of programs as defined in Def. 4.



Definition 7 (Runs in NPAs, accepted paths)LetA be a
NPA andM an ASMC as before, z∈ Z andσ a finite path
inM . Then, we defineRuns(z,σ) as the greatest set of se-
quences z,z1, . . . ,zn ∈ Z+ such that the following two con-
ditions are fulfilled:

(i) z∈ Runs(z,σ) iff |σ | = 0

(ii) If z,z1, . . . ,zn ∈ Runs(z,σ) and n≥ 1 then there exists
φb∈ Σ′ such that z1 ∈ δ (z,φb), σ [0] |= φ and

• if b ∈ Act then σ = s
b,t−→ σ ′ with z1, . . . ,zn ∈

Runs(z1,σ
′)

• if b =
√

then z1, . . . ,zn ∈ Runs(z1,σ).

Let Z′ ⊆ Z. The elements ofRuns(Z′,σ) =
⋃

z∈Z′
Runs(z,σ) are called runs forσ in A with starting state
in Z′. A run z0,z1, . . . ,zn for σ is called accepting iff it is
initial (i.e., z0 ∈ Z0) and zn ∈ F. The set of accepted paths,
PathM

fin
(A ), denotes the set of finite paths inM that have

an accepting run inA . ✷

Acceptance ofA as an ordinary finite automaton (acceptor
for finite words overΣ′) and acceptance ofA as an NPA
(acceptor for finite paths) are related in the same way as
the languageL (α) of a programα and the induced path-
setPathM

fin
(α). Hence, it is easy to verify the following

proposition:

Proposition 2 If L (α) = L (A ) then PathMfin (α) =
PathM

fin
(A ).

We now extend the transition functionδ of A to a tran-
sition relationδ̂M which associates with any pair(Z′,σ)
consisting of a setZ′ of automaton-states and a finite pathσ
in the ASMCM , the set of automaton stateszsuch thatz is
the last state of a run forσ that starts in aZ′-state. The idea
behind the definition of̂δM is similar to the definition of
the transition relation of the deterministic finite automaton
obtained fromA (viewed as an acceptor for finite words)
via the standard powerset construction. However, the fol-
lowing remark shows that the determinisation process of an
NPA as an acceptor for finite paths inM has to be done “in
conjunction” withM .
Remark.An NPAA = (Z,Σ′,δ ,Z0,F) is called determin-
istic if Z0 is a singleton set and|δ (z,φb)| ≤ 1 for all states
z∈ Z and input symbolsφb ∈ Σ′. Given a deterministic
NPA A , the “behaviour” ofA for an input wordover Σ ′

is deterministic, i.e., there is at most one run, whereas the
“behaviour” of a deterministic NPAA for an input path
σ can benondeterministic, even ifA does not contain

√
-

transitions (i.e., transitions that are labelled with an input
symbolφ

√∈ Σ′). The reason is that the current automaton-

statez might have two transitionsz
φa−→ z′ andz

ψa−→ z′′,
wherea is the first action of the input pathσ and where the
first state ofσ satisfies bothφ andψ . ✷

We now return to the formal definition of the extended tran-
sition functionδ̂M . If σ is a path of length 0, i.e.,σ = s
for some states, thenδ̂M (Z′,σ) = δ̂M (Z′,s) consists of all
automaton-states ˜z that are reachable inA from aZ ′-state

via
√

-transitionsz1
φ ,
√

−→ z2 where states fulfills the state
formulasφ . This corresponds to the so-called

√
-closure of

Z′ for states which is defined as follows.

Definition 8 (
√

-closure)
√

Closure(Z′,s) denotes the
least subset of Z such that

Z′ ∪ ⋃

z∈√Closure(Z′,s)

⋃

φ∈Φs.t.
s|=φ

δ (z,φ
√

) ⊆ √
Closure(Z′,s).

✷

We now have all ingredients to defineδ̂M (Z′,σ) by induc-
tion on the length ofσ :

Definition 9 (Extended transition function) The func-
tion δ̂M : 2Z×PathM

fin
→ 2Z is given by:

δ̂M (Z′,s) =
√

Closure(Z′,s)

and δ̂M (Z′,s
a,t−→ σ ′) = δ̂M (Y,σ ′) where

Y =
⋃

z∈√Closure(Z′,s)

⋃

φ∈Φs.t.
s|=φ

δ (z,φa). ✷

Note thatY stands for the set of all automaton statesy that
are reachable inA from a statez′ ∈ Z′ via transitions la-
belled with elementsψ

√∈ Σ such thats |= ψ followed by
a transition with a labelφa∈ Σ such thats |= φ .

It can be shown by induction on|σ | that δ̂M (Z′,σ) consists
of all states that are reachable inA via a run starting inZ ′

for σ , i.e.,

δ̂M (Z′,σ) =
{

z∈Z | ∃z0,z1, . . . ,zn ∈ Runs(Z′,σ):zn = z
}

.

For Z′ = Z0, we obtain thatδ̂M (Z0,σ) consists of all
automaton-states that can be reached via an initial run for
σ . Thus,PathMfin (A ) =

{

σ ∈ PathMfin : δ̂M (Z0,σ)∩F 6=
/0
}

. From this observation we obtain:

Proposition 3 If α is a program andA an NPA with
L (α) =L (A ) then we have:

PathM
fin

(α) =
{

σ ∈ PathM
fin

: δ̂M (Z0,σ)∩F 6= /0
}

.

Example 1 We consider the ASMC shown in Fig. 1(a) and
the program

α = (φ a)∗;(ψ a);((true c)∪ (ξ b))
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s1 s2

s3
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(φ a)

(φ a)

(ψ a)
(true c)

(ξ b)
z1 z2 z3 z4

(b)
Figure 1. ASMCM (a) and NPA A =Aα (b)

with corresponding program automatonA =Aα as shown
in Fig. 1(b). For the relevant state formulas we assume
SatM (φ) = {s1,s2}, SatM (ψ) = {s4} and SatM (ξ ) =
{s5}. The finite paths that start in states1 and end in state
s6 have the form

σ1 = s1
a,·−→ s2

a,·−→ s4
a,·−→ s5

b,·−→ s6

or σ2 = s1
c,·−→ s3

d,·−→ s4
a,·−→ s5

b,·−→ s6,

with arbitrary sojourn times. We then have
δ̂M ({z1,z2},σ1) = {z4} and δ̂M ({z1,z2},σ2) = /0.

Therefore, all pathsσ1 belong toPathM
fin

(A ) as we have
δ̂M (Z0,σ1)∩F 6= /0, whereas none of the pathsσ2 belong
to PathM

fin
(A ) becausêδM (Z0,σ2)∩F = /0. ✷

4.2. The product Markov chain

We now return to the question of how to calculate the sa-
tisfaction setSatM (φ) whereφ =P⊲⊳p(α I ). We first ap-
ply recursively anasCSL-model checking algorithm to the
state formulas that occur in the programα . As soon as the
satisfaction setsSatM (ψ) are known for all state formulas
ψ in α we can treat them as atomic propositions. Then, we
apply standard algorithms to construct a (nondeterministic)
finite automatonA for α (viewed as an ordinary regular
expression over the alphabetΣ). We then considerA as an
NPA and build the product of the ASMCM andA (which
is defined below) and finally apply aCSL model checking
algorithm toM ×A to calculate the probability to reach a
final automaton state within the given time intervalI .

Definition 10 (Product Markov chain M ×) Let M =
(S, Act, AP,L,R) be an ASMC andA = (Z,Σ, δ ,
Z0,F) an NPA. The product ASMC is defined as
M ×A = (S×,Act×,AP×,L×,R×) where

S× = {〈s,Z′〉
∣

∣ s∈ S∧Z′ ∈ 2Z},

Act× = Act, AP× = AP ∪ {accept} (where accept 6∈
AP) and L×(〈s,Z′〉) = L(s)∪{accept} if Z′ ∩F 6= /0 and

L×(〈s,Z′〉) = L(s) otherwise. The rate matrixR× is
defined byR×(〈s1,Z1〉,a,〈s2,Z2〉) = R(s1,a,s2), if Z2 =

δ̂M (Z1,s1
a,·−→ s2), andR×(·) = 0 otherwise. ✷

The idea behind the definition ofR× is to copy the transi-
tions fromM , provided that the corresponding transition
is possible in the current set of states ofA .
Our goal is to show that the valuesProbM (s,α I ) can
be calculated using aCSL model checking procedure for
M ×A and theCSL-path formula✸ Iaccept (which states
that a state labelled with the atomic propositionaccept will
be reached at some point in the time intervalI ). To establish
this result, we first observe thatM andM ×A are state-
wise bisimulation equivalent when the set of atomic propo-
sitions inM ×A is restricted toAP, i.e., we deal with the
labeling functionL×

AP
which is given byL×

AP
(〈s,Z〉) = L(s)

rather thanL×. This follows by the fact that the coarsest
equivalenceR on S⊎ (S×2Z) which identifies any states
with any of its copies〈s,Z′〉 whereZ′ ⊆Z is a bisimulation.
Hence,s ∼ 〈s,Z′〉 for all statess inM and all subsetsZ′

of Z. Using Prop. 1, we obtain:

Proposition 4 For any state s ofM we have:

ProbM (s,α I ) = ProbM×A (〈s,Z0〉,α I )

Next we observe the one-to-one-correspondence between
paths inM and paths inM × A (when we fix the
states〈s,Z0〉 as starting states). Clearly, by removing the
automaton-component of any state in a path inM ×A one
obtains a path inM . Vice versa, each finite path

σ = s0

a0,t0−→ s1

a1,t1−→ ·· ·
an−1,tn−1−→ sn inM

can be lifted to a pathσ× inM ×A by extending the states
by sets of automaton-states with the help ofδ̂M :

σ× = 〈s0,Z0〉
a0,t0−→ 〈s1,Z1〉

a1,t1−→ ·· ·
an−1,tn−1−→ 〈sn,Zn〉

where Zk = δ̂M
(

Zk−1,sk−1

ak−1,·
−→ sk

)

, k = 0,1, . . . ,n.

Hence, ifL (α) =L (A ) then (by Prop. 3):

〈sn,Zn〉 |= accept iff accept ∈ L×(〈sn,Zn〉)
iff Zn∩F 6= /0
iff δ̂M (Z0,σ)∩F 6= /0
iff σ ∈ PathMfin (A ) = PathMfin (α).

Thus, for all infinite pathsς× ∈ PathM×A
ω (〈s,Z0〉) we

have: M ×A ,ς× |= ✸
Iaccept iff M ×A ,ς× |= α I .

Hence, for all statess inM we have

ProbM×A (〈s,Z0〉,α I ) = ProbM×A (〈s,Z0〉,✸Iaccept).

Using this observation and Prop. 4 we obtain the following
theorem.



Theorem 1 If α is an asCSL-program,A an NPA with
L (α) =L (A ) and s a state inM then

ProbM (s,α I ) = ProbM×A (〈s,Z0〉,✸Iaccept).

Theorem 1 shows that the problem of computing the satis-
faction setSatM (φ) for theasCSL-formulaφ =P⊲⊳p(α I )
is reducible to the problem of calculating the satisfaction
set SatM×A (φCSL) for the CSL-state formulaφCSL =

P⊲⊳p(✸
Iaccept). In summary, to calculateSatM (φ) where

φ is as above we
• apply standard techniques to generate a nondeterminis-

tic finite automatonA for α (viewed as an ordinary reg-
ular expression over the alphabetΣ);

• calculate the product ASMCM ×A , where it suffices
to calculate the reachable part ofM ×A with an on-
the-fly construction that starts with the states〈s,Z0〉, and
to ignore the action-labels in the sense that the rates of
“parallel” transitions are cumulated;

• apply aCSL-model checker to calculate the valuesps =
ProbM×A (〈s,Z0〉,✸Iaccept) for all statess inM , e.g.
with the help of a transient analysis of the Markov chain
which is obtained fromM ×A when all states labelled
by accept and all states from which one cannot reach a
state labelled byaccept (especially those that have an
empty automaton part) are made absorbing [16, 24];

• return the set
{

s∈ S: ps ⊲⊳ p
}

.

In [24] it was shown that the time complexity of the
uniformisation-based model checking algorithm forCSL-
formulas of typeP⊲⊳p(φ1U

[t,t′ ]φ2) isO(M ·q·t ′), whereM
is the number of transitions of the model andq is the uni-
formisation rate (which is given by the largest exit-rate of
a state of the model). In our approach, anasCSL-formula
of typeP⊲⊳p(α I ) is checked by first constructing an NPA
Aα which has|Z| = O(|α |) states, and then constructing
the product Markov chain, which has at mostM ·2|Z| tran-
sitions. The uniformisation rate and the time boundt ′ are
not affected by the product automaton construction. There-
fore, the overall time complexity of our algorithm to cal-
culate the satisfaction set for anasCSL-formula of type
P⊲⊳p(α [t,t ′]) is bounded byO(M ·2|α| ·q · t′).

5. Handover in a cellular radio network

In this section we present a case study in order to illustrate
the techniques we have developed. We consider a scalable
cellular phone setting, where base stations and switching
center operate at different load levels. We track a single dis-
tinguished mobile radio station (MS) moving from one cell
to another, thereby possibly triggering a so-called handover
procedure. We are especially interested in the behaviour of
the system concerning this distinguished user. The model

Request

Handover

Wait

For

Handover

activate

deactivate
ActiveIdle

move

handoverCommand
loss

handoverComplete

loss

Figure 2. State machine for the MS behaviour

is inspired by the description of the GSM handover pro-
cedure in [25] and [26]. We describe the system as a set
of synchronising processes, namely the cells, the switching
center and the user. Each of these processes will be repre-
sented by a stochastic Petri net. The properties of interest
are expressed withasCSL-formulas involving programs.
We show the corresponding NPAs and relate the size of the
resulting product Markov chains to the size of the original
model.

5.1. The model

In the model, each cell corresponds to one base station sub-
system (BSS). A BSS is modelled with only two states: ei-
ther it has still free capacity or it is full and does not accept
further connections. The numberN of cells is a parameter
of the model. The mobile services switching center (MSC)
is modelled similarly: it has either low, medium or high
load. The time needed for the handover command proce-
dure depends on the current load. Under high load, the
MSC does not process any request for handover.
Our distinguished MS has predetermined possibilities of
moving between cells. For the time being, we assume that
cells are positioned in a ring order, that is, if the MS is lo-
cated in celli it can only move to cells(i + 1)modN and
(i − 1)modN. We could easily change this to other topo-
logical cell orderings.
Finally, we have a model of the MS behaviour (beside its
spatial position). When not being active with a connection,
the MS is idle. At any time, the MS can become active,
meaning that it has established a (radio) connection. After
a while, the connection is terminated and the MS becomes
idle again. If it moves from one cell to another while being
active, the corresponding BSS commands a handover to the
new cell from the MSC. If the new cell has free capacity,
the handover is eventually completed and the MS returns
to state active (note that the connection is continued during
the entire handover procedure). If the handover procedure
is not completed in time, the connection might also be lost.
The connection is then terminated (assume, that the dis-
tance to the former cell has become too large) and the MS
is back in idle state.



process action rate description

BSS block 0.002 cell will not accept further connections
free 0.008 cell will accept further connections

MSC lowtoMedium 0.5 from low load to medium load
mediumToHigh 1.0 from medium load to high (blocking) load
highToMedium 3.0 from high (blocking) load to medium load
mediumToLow 1.0 from medium to low load

MS position move 0.02 from cell i to (i −1)modN or (i +1)modN
MS behaviour activate 0.000625 average time between connections is 1600 seconds

deactivate 0.008 connections last on average 125 seconds
handoverCommand 1.0/0.5 for low/medium load of MSC,

not available if MSC is blocking
handoverComplete 1.0 only activated if new cell is not blocking
loss 0.1 might happen during handover procedure

Table 1. Action labels and rates of the transitions of
the cellular network model

Figure 2 shows a state machine for the user call behaviour.
Transitions are labelled with action names. Themove tran-
sition synchronises with the spatial movement of the user
whenever he is active. Table 1 states the rates for transi-
tions labelled with the given actions. Note that all numbers
are educated guesses made on the basis of [27].

5.2. asCSL-properties

Out-dated handover. When the MS moves from one cell
to the next, the BSS requests a handover to the new cell.
However, the model does not prevent the MS from moving
on to yet another cell. This behaviour is not explicitly vis-
ible in the model: here a handover is simply made to the
cell the MS is in, no matter where it has been in between.
In reality this type of movement could cause a problem. So,
we would like to know whether the probability of such an
outdated handover is lower than 2%. AsasCSL-formula,
this becomes:Φ1 =P≤0.02(α

[0,∞]
1

), with

α1 = (Active,move); (1)

(RequestHandover∨WaitForHandover, (2)

Act\{handoverComplete,move})∗; (3)

(RequestHandover∨WaitForHandover,move)(4)

A move while the MS is active triggers a handover. Lines
(2/3) describe the system inside the handover procedure. A
move (4) leads to an outdated handover. An NPA for the
programα1 is given in Fig. 3(a).

Return without interruption. Assume that the MS ini-
tiates a connection while in cell 1. It is free to move be-
tween cells. We would like it to leave cell 1 and to re-
turn within 10 minutes (600 seconds) without terminating
or loosing the connection. Is the probability for this sce-
nario at least 50%? Coded into anasCSL-formula this

Active

move

RequestHandover ∨WaitForHandover

Act\{handoverComplete, move}

RequestHandover ∨WaitForHandover

move

(a)
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¬InCell1√ InCell1√
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Figure 3. NPAs for the programs α1, α2 and βi

readsΦ2 =P>0.5(α
[0,600]
2

), with

α2 = (InCell1,activate); (5)

(true,Act\{deactivate,loss})∗; (6)

(¬InCell1,√); (7)

(true,Act\{deactivate,loss})∗; (8)

(InCell1,
√

) (9)

The regular expression first ensures that the user activates a
connection while being in cell 1 (5). Then the user can be-
have arbitrarily, as long as the connection is not ended via
a deactivate or loss event (6). At some time, the user
must have left cell 1 (7) and can again behave arbitrarily,
as long the connection remains established (8). Finally, he
should return to cell 1 (9). Figure 3(b) shows an NPA for
the programα2.

Ping-pong. Sometimes there are handovers from a celli
to a neighbouring cell and back to celli within a short time
interval. From a performance point of view this is not de-
sirable since presumably the call could have remained in
cell i. If having an active connection, is the probability of
such a ping-pong handover to occur within 10 seconds at
most 10 %? AsasCSL-formula: Φ3 =P≤0.1(α

[0,10]
3

). A



ping-pong originating from celli is described by the pro-
gram

βi =(InCelli,
√

);(Active,move);(true,B1)
∗; (10)

((InCell(i +1)modN,handoverComplete);(11)

(InCell(i +1)modN,B2)
∗; (12)

(InCell(i +1)modN,move) ∪ (13)

(InCell(i −1)modN,handoverComplete); (14)

(InCell(i −1)modN,B2)
∗; (15)

(InCell(i −1)modN,move)); (16)

(true,B1)
∗;(InCelli,handoverComplete) .(17)

with B1 = Act\{move,loss,handoverComplete} and
B2 = Act\{deactivate,move}. An NPA for this program
is given in Fig. 3(c). If there areN cells, all possible ping-
pong situations are described byα3 = β0∪β1∪ . . .∪βN−1.
The NPA forα3 consists ofN replicas of the automaton in
Fig. 3(c), instantiated withi = 0, . . .N−1. It hasN initial
andN final states.

5.3. Tool support

A prototype implementation that performs the construction
of the product Markov chain given an ASMC and an NPA
was done in C++.
For the evaluation we used a stochastic Petri net (SPN)
model of the cellular phone system. All components of the
systems are described by simple state machines, we there-
fore omit their SPN representation. The SPN is described
in a variant of CSPL, which also allows the specification of
marking-dependent properties, which can be seen as atomic
propositions in the underlying Markov chain. The state
space generation code of [28] has been extended in order
to record these properties and the transition names (as ac-
tion labels) and generates an ASMC.
Programs have been described directly via their corre-
sponding NPA. The prototype implementation takes the
ASMC and the NPA as input and computes the reduced
product Markov chain where only reachable states are gen-
erated andaccept-states and states〈s, /0〉 with empty au-
tomaton part are merged into two special absorbing states.
The final computation of the satisfaction relation of the cor-
respondingCSL formula can then be done using an exist-
ing CSL model checker, for example ETMCC [7].

5.4. Results

Figure 4 shows the number of states and transitions of the
original ASMC model of a cellular radio network and of
the product Markov chains needed for the model checking
procedure of the three givenasCSL-formulas as a function
of the numberN of cells that ranges from 2 to 11.
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Figure 4. Size of state space (a) and number of transitions
(b) in the original ASMC and the product Markov chains

The original model has about 270000 states and 3.6 million
transitions forN = 11. For all three presented programs,
the number of states in the product Markov chain is larger
than in the original ASMC. This could be expected, since
the state space is a subset of the Cartesian product ofS
and 2|Z|. The increase in size varies between a factor 1.5
and 4. The largest state space is the one of the ping-pong
property, it has more than one million states forN = 11.
If we keep only those states from which theaccept-state is
reachable and merge the others into one absorbing state, the
number of states can also become smaller than the orginal
state space.

For the properties “outdated handover” and “return with-
out interruption”, the number of transitions in the product
Markov chain is smaller than in the original ASMC. The
corresponding program automata are very restrictive, in the
sense that in each state of the original ASMC only a subset
of all outgoing transitions is allowed by the NPA. The NPA
for “ping-pong” allows a broader range of different combi-
nations of states and transitions. Consequently, it shows the
largest growth in state space, and the number of transitions



is larger than in the original model.

6. Conclusions

We introduced the logicasCSL as a new specification
formalism to reason about performability measures for
Markov chains with both action- and state-labels. It sub-
sumesCSL (with time intervals[0, t]) and several variants
that have been suggested in the literature, such asaCSL,
aCSL+, pathCSL, SPDL [6], [8], [9],[10]. Our model
checking algorithm for formulas of typeP ⊲⊳p(α I ) relies
on a reduction to theCSL model checking problem via a
product construction of the Markov chainM and an au-
tomaton for the path formulaα I . The case study in sec-
tion 5 demonstrates howasCSL formulas can specify com-
plex properties that refer to both action and state labels in a
rather simple way.
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