Model Checking Action- and State-Labelled Markov Chains

Christel Baier
Universi&t Bonn
Institut fur Informatik
baier@cs.uni-bonn.de

Lucia Cloth, Boudewijn Haverkort

University of Twente

Department of Computer Science

[lucia,brh]@cs.utwente.nl

Matthias Kuntz, Markus Siegle
University of the Federal Armed Forces Munich
Department of Computer Science
[kuntz,siegle]@informatik.unibw-muenchen.de

Abstract

In this paper we introduce the logasCSL, an extension

of continuous stochastic logi€SL), which provides pow-
erful means to characterise execution paths of action- and
state-labelled Markov chains. lasCSL, path properties
are characterised by regular expressions over actions and
state-formulas. Thus, the executability of a path not only
depends on the available actions but also on the validity
of certain state formulas in intermediate states. Our main
result is that the model checking problem 8B8CSL can

be reduced t&CSL model checking on a modified Markov
chain, which is obtained through a product automaton con-
struction. We provide a case study of a scalable cellular
phone system which shows how the logg€SL and the
model checking procedure can be applied in practice.

1. Introduction

probabilistic properties. One result of these efforts is the
logic CSL (continuous stochastic logic), introduced in [2]
and extended in [3], which is a continuous-time variant of
PCTL (probabilistic computation tree logic) [4] and can
be used as specification formalism for performance and
dependability properties. For instance, @8L-formula

P o99(legal% =5goal) specifies the state-property assert-
ing that “there is at least a 99% chance to reagha state
within the next 5 time units while passing onbgal states
before”. The goal states and legal states can be formalized,
e.g., by atomic propositions that are attached to the states
or by complexCSL-formulas. A so-called steady-state op-
erator allows to reason about stationary probabilities. For-
mula. , ;5(green) states that the probability mass accu-
mulated in green states is at least 75%. An extension of
CSL to reason about rewards has been introduced in [5].
However, the specification of these measures is completely
state-oriented. For action-oriented modelling formalisms,
such as stochastic process algel@8L is not expressive
enough, since it is not possible to characterise sequences
of actions. In [6] an action-based variant@§EL, aCSL,

was proposed, and in [7] it was shown how to employ
this logic for performability modelling. A further step is

It becomes increasingly important to assert that distributed o logicaCSL+ [8], which combines state-oriented and
hardware and software systems are working correctly and action-oriented features, and employs regular expressions

that they meet high performance and dependability con-

straints. To reason about stochastic phenomena, several

for characterising more general path-based properties.

high-level models such as stochastic Petri nets, stochastic In this paper we propose a new logic, callesiCSL (for
process algebras, queueing networks, etc., have been es-action- andstate-orientedCSL), which subsumes all the

tablished. Typically, the verification of quantitative prop-

erties relies on a transformation of these high-level mod-
els into a Markov chain, on which the actual analysis is
carried out. For the model-based verification of func-
tional properties, temporal logics provide powerful means

above mentioned logics. (Preliminary work on logics sim-
ilar to asCSL has been published in [9] and [10a3CSL

can be seen as being motivated either by the method of
path-based reward variables as described in [11], or by the
propositional dynamic logic [12] and extended linear tem-

to specify complex requirements that a system has to sat- poral logic [13]. WithasCSL, paths are characterised by
isfy, see e.g. [1]. Over the past 10 years, several researchersregular expressions, also called programs, but in addition it
have adapted the temporal-logical approach to reason about is possible to express that a program is executable only if

the current state satisfies a given state property. This makes We write paths as sequences of transitions, e.g., for the fi-

it possible to combine in an elegant way state- and action-
oriented behavior. Unlike extended linear temporal logic
[13], we do not allow forw-regular expressions (represent-
ing infinite behaviors). Instead, esCSL the regular ex-
pressions are used in combination with lower and upper
time bounds. Thus, the switch fro@SL to asCSL is
orthogonal to the extensioACTL* [14] of PCTL which

is concerned with specifying “complex” properties of infi-
nite computations, whereasCSL focusses on “complex”
properties of finite computations with real-time constraints
(e.g. deadlines).

This paper is further organised as follows: In Section 2 we
define action- and state-labelled Markov chains. Section
3 presents syntax and semantics of the new lagiCSL.
Section 4 is dedicated to the model checking procedure for
asCSL. In Section 5 we apply the new technique to de-
rive properties of the handover procedure in a cellular ra-
dio network. The paper ends with a short summary and
conclusions.

2. Action and state labelled Markov chains

In this section we explain the notation for Markov chains

nite patho above, we use the notation

gty

Aty . Al
— S Sn71 — .

g = SO a2_>’t2 . anfz_’tnfz
Let o be a finite path as before, théa| = n denotes the
length of o, i.e., number of transitions i, ofi] =s; the
(i+ 1)st state oro. We refer tor(o) = ZT;(l)tj as the ex-
ecution time ofo. Fort < 1(0), c@t denotes the state
that is occupied at timeon patho, that is,c@t = gk,
wherek is the smallest index for which< le(:otj- We
write o (i, j) to denote the fragment of path starting at
the (i + 1)-st states and ending at th¢j + 1)-st states;
(i<j.

If 0;, 0, are finite paths such that the first stategfagrees
with the last state o, then the concatenation, o, is a
path of lengthlo,| + |o,| which is defined in the obvious
way. Similar notation is used for infinite path®ath;”
denotes the set of all finite paths i, whereasPath:?
stands for the set of infinite paths i#. By Path{ (s),
resp.Path;7 (s), we denote the set of all finite, resp. infi-
nite, paths in# with initial states.

In the sequel, we shall deal with the standard probability
measurePr?’ on Path;7(s) (where the underlying-field

with action and state labels. The reader is supposed to be can be defined with the help of basic cylinders as in [16]).

familiar with Markov chains, c.f. [15]. Action names are

For measurablX C Path;? (s), we often skip the parame-

used to label the transitions. The state labels are formalized ter.# and/ors and simply writePr(X) or Pr-#(X). The

by a setAP of atomic propositions, which e.g. can assert

that the system (or one of its subprocesses) is at a certain

control point or that a program variable has a certain value,
and a functiorl that assigns to any state the set of atomic
propositions that are assumed to hold in the given state.

Definition 1 (Action- and state-labelled Markov chain)

An action- and state-labelled continuous-time Markov
chain (ASMC) is a tuple# = (S,Act,AP,L,R), where S

is a finite set of stateg\ct is a finite set of action labels,
AP is a finite set of atomic propositions, ;LIS — 2P a
state labelling function, an® : Sx Act x S— R_, arate
matrix. We require that for any state s there exists a pair
(a,9) € Act x SwithR(s,a,s) > 0. O

Intuitively, if R(s,a,s') = A > 0 then there is aa-labelled
transition from states to states' whose delay is specified
by an exponential distribution with rafe. ForS' C Swe
write R(s,a,S) = y 4.4 R(s,a,9) to denote the total rate
to move from stats via actiona to state-se§'.

Definition 2 (Paths in.Z) A finite path in.# is a finite
word 0 = (Sova07t0)1(sl’al’t1)! tr (%,1,8,1,1,'[,1,1),31 €
(Sx Act x R_g)* x S, whereR(s,a,s,,) > 0 for i =
0,...,n—1. An infinite path in.# is an infinite word
¢ = (89,8g:1), (S1,89,1), ... € (Sx Act x R_)® with
R(s,&,5,1) > 0 for all i > 0 and such that the infinite
seriesy;t; is divergent (i.e.,f+t; +t,+... = o). O

transient state probabilities” (s, t) are given by
m”(s,8,t) = Pr’{¢ccPath?(s): c@ =5},

and the steady state probability of being in stateon
the long run, provided that the system started in state
is 7 (s,g) = lim_, m7(s¢,t). ForS C S we put
7 (s,S) =S gg M7(s9).

3. Syntax and semantics oAsCSL

We now extendCSL (continuous stochastic logic) as in-
troduced in [2, 3] by path formulas that specify constraints
for action- andstate-sequences in combination with lower
and/or upper time bounds.

3.1. Syntax ofasCSL

The syntax ofasCSL is defined according to Def. 3 (state
formulas) and Def. 4 (programs or path formulas). Here,
we assume that the sebst of actions andAP of atomic
propositions are fixed.

Definition 3 (State formulas ofasCSL) State formulas
of asCSL are given by the following grammar:

@ = Pop(a'),

q\ﬂp\qovm\«f”mp((l))

whereq € AP is an atomic proposition, g [0,1] denotes
a probability valuep € {<,<,>,>} a comparison oper-
ator, | = [t,t'] € R., a time interval andx a program as
defined in Def. 4. We refer ' as a path-formula and use
@ to denote the set of state formulasasCSL. O

The logical connectives andV have their usual meaning.
Using negation— and disjunctionv, the constantsrue,
false and all other boolean connectives such as conjunc-
tion A, implication—, etc. can be derived. The so-called
steady-state operatof..p(@) asserts that the probability of
being in agp-state on the long run is within the intervalp.

The operator@Np(a') asserts that the probability measure
of all infinite paths which have a prefix that satisfies,
wherea is a program andlis a real interval specifying the
time bound, is within the intervak p.

The programa specifies a property for finite paths via a
regular set of finite words whose atomic symbols are pairs
(@,b) (in the sequel we simply writegb) consisting of an
asCSL-state formulap (which is viewed as a test for the
current state of a path) and an actiore Act or b=/
(where \/ ¢ Act). The symbol,/ can be viewed as a
pseudo-action which is always immediately executable and
does not change the current state in the ASMC. Formally,
the programs are regular expressions over the alphabet

T=0x(ActU{y}) = {@b|pc ®Abe (ActU{V/})}.

Definition 4 (Programs) asCSL-programs are defined by
the following grammar:

o :e‘qob‘a;a‘aua‘a*,
wheregb € X (i.e., p € ®, be ActU{,/}). The language
Z(a) C ¥ is defined in the standard way. O

The symbole stands for the empty word (as an element of
>*). The intuitive meaning ofpb is that the current state
s fulfills the teste (that is, the formulap holds ins) and,

if b € Act, states has an outgoing-transition. Ifb =/,
there is no statement about outgoing transitions. Note that
the test can be empty, i.ep = true. The operator ; de-
notes sequential composition (concatenatian)denotes
alternative choice (union), ariddenotes the-fold sequen-
tial composition for arbitraryn > 0 (Kleene star). As ex-
amples for the corresponding languages(@ a; (@,\/ U
@;b)) consists of the two wordg,a, @,/ and @a, @b
whereas? ((@,a; @,b; ¢;1/)*; @,c) is an infinite language
that contains the wordg,c and @,a, @b, @/, @c and
@a, @b, ¢/, ga eb, g/, gc, and soon.

In the context oBsCSL, the meaning of a program (which
will be formally defined in the next subsection) is a set of
finite paths in the underlying ASMC.

3.2. Semantics oAsCSL

The semantics cisCSL is provided by means of a satis-
faction relationj= for the state- and path formulas. In the
sequel, we assume a fixed ASM@Z = (S Act,AP,L,R).

For statesin .# and state formul®, .#,s = ¢ means that
the state-property specified lgyholds fors. Similarly, for

an infinite pathg, .7 ,¢ = a' denotes that the behaviour
specified by the path formula' is fulfilled by ¢. The for-
mal definition of the satisfaction relatida: for the state
and path formulas is by structural induction on the syntax
of the formulas.

Definition 5 (Semantics ofasCSL) The satisfaction rela-
tion = for the state formulas is defined as follows:

A ,SEq & qel(s)

M, SE @ & MSHEQ

M SE QNG & M,SE@ oM SEQ
M SESp(@) & mh(sSat” (¢))ip
MskE Pop(@') = Prob”(sa') = p

whereSat” (¢) = {s€ S: .#,s = ¢} denotes the satis-
faction set ofp in . and

Prob(s,a') =Pr?{¢ePathf(s9)|.#,¢ca'}.

The meaning of the path formulas is formalized as follows.
If ¢ is an infinite path in# then.#,¢ = o' iff there exists
a finite prefixa of c with o € Path;,/,{(a)andt(o) €.t

Here, the sePathy? (a) consists of all finite pathg in .#
that can be viewed as an instancecofFormally:

ocPathf(e) iff |o|=0
ocPath/ (ga) iff Jt>0sto=s5g
and.Z,sl= ¢

oge Pathf (py/) iff o=sandZ,s=¢
o € Pathi (a;;a,) iff 3i€{0,1,...,|0[} st

o(0,)e Pathi/ (a,) anda(|a|) € Pathi (a,)
oc Pathf (a,Uay) iff o € PathyZ (a;) U Path (a,)
o € Pathy/ (or ifft 3i>0s.t.o e Path (a')

wherea'*! = a;a' anda® = ¢ (the empty word irE*).2
In the sequel, we often writeks @ and¢ |= a' rather than
M sk @and.Z, ¢ = a' respectively. o

We simply writegA for J,., @a. The reader should notice
the difference between the programs = (true Act)* @,/
anda, = (true Act)*@ Act. Programa;, stands for all
finite pathso that end in ap-state, whereaa, stands for
all finite paths whose prefinal state satisfges

A time-bounded until operator can be derived from the
syntax ofasCSL by @, Z'®, = ((¢Act)*g,/)'. From

1Recall thatr (o) denotes the execution time af
2Note that all paths with |g| = 0 belong toPathi” (a*).

this, we may derive the time-bounded eventually-operator
Olgp = true?/'¢. For instance,Z_ os(O = error) states
that the probability to reach an error state within 5 time
units is bounded above by 0.05. Its dual, the time-
bounded always-operator, is obtained (a€8L) through
f//"’zp(D' Q) = ngfp(o'ﬁ(p), stating thatp continuously
holds in the time intervdl with probability at leasp.

3.3. asCSL-equivalence and bisimulation

The correctness proof of the model checking algorithm
presented in Section 4 will make use of the observation
thatasCSL-equivalence (which identifies those states that
cannot be distinguished lsCSL-formulas) agrees with
bisimulation equivalence for ASMCs. The latter can be
viewed as a variant of lumpability [17, 18] and essentially
agrees with Markovian bisimulation as introduced in [19,
20] for action-labelled Markov chains. Formally, bisimu-
lation equivalence- foran ASMC.# = (S,Act,AP,L,R)

is the coarsest equivalence Brsuch that for alls; ~ s,:

(i) L(s;) = L(s,) and (ii) R(s;,a,C) = R(s,,a,C) for all
actionsa € Act and all equivalence class€se S/ ~.

It is well-known that bisimulation equivalence agrees
with CSL-equivalence [16, 21] (which means the equiv-
alence that identifies exactly those states that satisfy the
sameCSL state formulas). In particular, bisimulation

equivalent states have the same transient and steady stat

probabilities. Using structural induction on the syntax of
state- and path-formulas asCSL the preservation prop-
erty for asCSL and bisimulation equivalence can be es-
tablished in the following sense: # ~ s, then we have
s, E @ iff s, |= @ for all state-formulasp of asCSL: and
Prob?(s;,a') = Prob™ (s,,a') for all path-formulasa’

of asCSL. As asCSL subsumes the logiCSL we obtain
by the completeness result established in [21]:

Proposition 1 Bisimulation equivalence agrees with
asCSL-equivalence.

As Markovian testing equivalence [22] is weaker than
bisimulation equivalence, states that fulfill the same
asCSL-formulas are Markovian testing equivalent.

4. Model CheckingasCSL

The model checking procedure fasCSL is similar to that

for CTL [23]. Given theasCSL state formulap and an
ASMC ., we successively consider the subformujasf

@ and calculate the satisfaction sétst” () = {s€ S:
#,s k= Y}. This technique allows us to treat subformu-
las as atomic propositions. The treatment of subformulas
whose top-level operator is a boolean connective (nega-
tion or disjunction) is obvious. Subformulas of the form
Zwap(@) can be handled with the same procedure as for

CSL, see [24]. The new and challenging case is the treat-
ment of formulas of typ@ = #..,(a'). For each statewe
have to compute the probabiliBrob? (s,a') = Pr* {¢ €
Pathy/ (s) | .#,¢ = a'} and check whether it lies within
the specified boungk p. The approach to calculate the val-
uesProb (s,a') is to build the product of# and a finite
automatone,, (representing the program), which yields

a new Markov chain, denote@ x <74, and then to apply
the CSL model checking procedure to calculate the proba-
bilities in .# x <7, to reach a statés', g), with s’ a state in

/ andq a final state ine7;, within the time interval .

Section 4.1 is devoted to the construction of the automaton
Ay, whereas Section 4.2 presents the construction of the
product Markov chainZ x 7.

4.1. Program automata

Since programs are regular expressions, we can apply stan-
dard technigues to construct a finite automaton for a given
program. We call this a nondeterministic program automa-
ton (NPA).

Definition 6 (NPA) An NPA is a quintuple & =
(Z2,%,0,Z,4,F), where Z is a finite set of stated] a
finite subset oF (the input alphabe, 5:Z x ¥’ — 2% is
the transition function, C Z the set of initial states and
C Z the set of accepting (final) states (&) C (Z')*
denotes the accepted language.«sf which is defined in
the standard way.]

We now describe how a program automatgrcan be used
to describe the path-sBnth;? (a) for a programa. Thus,
we consider NPAs aacceptors for finite pathis .# (rather
than as acceptors for finite words over the alphabgt
The intuitive behaviour of an NPAY for the input path

at . .
0 =s—— 0’ is as follows. The automaton starts in one
of its initial statesz, € Z,. If the current automata-state is

z, thena chooses nondeterministically between one of the

outgoing transitiong o, Z, wheres = ¢ and eitheb =/
orb = a, and then moves to statk In the latter case, i.e., if
a=bh, & proceeds in the same way for statand the input
patho’. In the former case, i.e., =/, no input symbol

is consumed, i.e., the procedure is repeated with ztated
the input patho. If there is no outgoing transition from
which can be taken for the input paththen.o# rejects. As
soon as# reaches a final state (a statdHjpand the whole
input path has been consumed, the automaton accepts.
The formal definition of acceptance for paths is provided
by means of runs which are sequences of automaton-states
that can be generated by the operational behaviour as
sketched above.

3% is the alphabet of programs as defined in Def. 4.

Definition 7 (Runs in NPAs, accepted paths) et.</ be a
NPA and.# an ASMC as before,z Z ando a finite path
in .#. Then, we definBuns(z, g) as the greatest set of se-
quences z,,...,z, € Z* such that the following two con-
ditions are fulfilled:

(i) z€ Runs(z,0) iff |o| =0

(i) 1fz,z,,...,Z, € Runs(z,0) and n> 1 then there exists
@b e ¥ suchthat z € &(z ¢b), o[0] = ¢ and

e if b e Act then o = s 25 o' with Z,...,7n €
Runs(z;,0")
eifb=/thengz,...,z; € Runs(z;,0).

Let Z C Z. The elements oRuns(Z',0) = U,
Runs(z o) are called runs foro in < with starting state
inZ'. Arun z,z,...,z for o is called accepting iff it is
initial (i.e., z, € Z,) and % < F. The set of accepted paths,
Path; («7), denotes the set of finite paths.if that have
an accepting run in. m|

Acceptance of# as an ordinary finite automaton (acceptor
for finite words overZ’) and acceptance of/ as an NPA
(acceptor for finite paths) are related in the same way as
the language? (a) of a programa and the induced path-
setPath;/ (a). Hence, it is easy to verify the following
proposition:

Proposition 2 If #(a) = (&) then Pathi’ (a) =
Pathy? ().

We now extend the transition functiah of .« to a tran-
sition relationd# which associates with any paiZ’, o)
consisting of a set’ of automaton-states and a finite path

in the ASMC.#, the set of automaton statesuch thatis

the last state of a run far that starts in &'-state. The idea
behind the definition o®“ is similar to the definition of
the transition relation of the deterministic finite automaton
obtained froma” (viewed as an acceptor for finite words)
via the standard powerset construction. However, the fol-
lowing remark shows that the determinisation process of an
NPA as an acceptor for finite paths.it’ has to be done “in
conjunction” with.# .

Remark.An NPA & = (Z,%',98,7,,F) is called determin-
istic if Z, is a singleton set and(z ¢b)| < 1 for all states

z € Z and input symbolspb € ¥’. Given a deterministic
NPA &7, the “behaviour” of« for aninput wordover’

is deterministic, i.e., there is at most one run, whereas the
“behaviour” of a deterministic NPA»' for aninput path

o can benondeterministiceven if <7 does not contain/-
transitions (i.e., transitions that are labelled with an input
symbolg./ € ¥'). The reason is that the current automaton-

statez might have two transitiong . 7 andz 2% Z',
wherea s the first action of the input paih and where the
first state ofo satisfies botlp and (. o

We now return to the formal definition of the extended tran-
sition functioné-”. If o is a path of length 0, i.eqg = s
for some stats, theno# (Z/, o) = 5% (Z',s) consists of all
automaton-statesthiat are reachable i from aZ’-state
via /-transitionsz, LA z, where states fulfills the state

formulasg. This corresponds to the so-callg@closure of
Z' for states which is defined as follows.

Definition 8 (/-closure) /ClosurdZ’,s)
least subset of Z such that

U

ze/ClosuréZ’ s) (PE‘CDS.t.
s=¢

denotes the

zZu o(z,9\/) C /ClosuréZs).

d

We now have all ingredients to defide? (Z', o) by induc-
tion on the length otr:

Definition 9 (Extended transition function) The func-
tion 3% : 22 x Pathy’ — 22 is given by:
5 (Z',s) = \/ClosuréZ',s)
and&“(2',s 2% o'y = 5 (Y, 0") where
Y = U &(z ¢a). i
ze/ClosuréZ’ s) "’i“‘j Z-t-

Note thatY stands for the set of all automaton stayehat
are reachable iny from a statez’ € Z' via transitions la-
belled with elementg),/ € X such thas = ¢ followed by
a transition with a labepa € Z such thas = .

It can be shown by induction dor| that 3"//(2’, 0) consists
of all states that are reachabledri via a run starting irz’
foro,i.e.,

6(Z,0)={2€2|3%.,....7 € Runs(Z',0):z

z}.

For Z' = Z,, we obtain that§(Z,,) consists of all
automaton-states that can be reached via an initial run for
0. Thus,Path{’ (o) = {0 € Pathi’ : 67 (Z,,0)NF #

0}. From this observation we obtain:

Proposition 3 If a is a program ande/ an NPA with
Z(a)=2(«)then we have:

Pathi (a) = {0 € Path : 5 (Z,,0)NF # 0}.

Example 1 We consider the ASMC shown in Fig. 1(a) and
the program

a

(pa)"; (Y a);((truec)u (& b))

S1

ad 2 a) 2 a) SS. b, SB.
cy 4.5
? @
a
ﬁa) (truec)
(pa) CK:) Q
Z4] /.22 Z3 (£ b) Zy

(b)
Figure 1. ASMC .# (a) and NPA &7 = o7, (b)

with corresponding program automaten= ./, as shown
in Fig. 1(b). For the relevant state formulas we assume
Sat”(¢) = {51,,}, Sat” (@) = {s,} and Sat* () =
{ss}. The finite paths that start in stadégand end in state
s have the form
a, a, a, b,
O, = §—S$S—$—S—F%

c, d, a,- b,
or 0, = 73— 7% %

with arbitrary sojourn times. We then have

5" ({z.}.01) = {2} and §7({z,2}.0,) = 0.
Therefore, all pathe, belong toPathi” (<) as we have

3“”(20, 0,)NF #0, ijereas none of the patbs belong
to Pathi// (<) becaus®“ (Z,,0,) NF = 0. O

4.2. The product Markov chain

We now return to the question of how to calculate the sa-
tisfaction seSat? (@) wherep = Z,.p(a'). We first ap-
ply recursively arasCSL-model checking algorithm to the
state formulas that occur in the programAs soon as the
satisfaction setSat*/ () are known for all state formulas

Y in o we can treat them as atomic propositions. Then, we
apply standard algorithms to construct a (nondeterministic)
finite automatone for a (viewed as an ordinary regular
expression over the alphal®t We then consides as an
NPA and build the product of the ASM@7 and.e# (which

is defined below) and finally apply@SL model checking
algorithm to.# x &/ to calculate the probability to reach a
final automaton state within the given time interal

Definition 10 (Product Markov chain .#Z *) Let .# =
(S, Act, AP,L,R) be an ASMC andy = (Z,%, 9,
Zy,F) an NPA. The product ASMC is defined as
M x o = (S Act™ ,AP* L R*) where

S ={(sZ)|seSAZ €24},

Act® = Act, AP* = AP U {accept} (where accept ¢
AP) and L*({(s,Z)) = L(s) U {accept} if Z’NF # 0 and

L*({s,Z')) = L(s) otherwise. The rate matrbR* is
defined byR*((5,.2,).a.(5,,2,)) = R(s;,a.8,), if Z, =
57 (2,5, =5 s,), andR*(-) = O otherwise. O

The idea behind the definition & is to copy the transi-
tions from.#, provided that the corresponding transition
is possible in the current set of states«f

Our goal is to show that the valu®ob"//(s7a') can
be calculated using &SL model checking procedure for
M x o/ and theCSL-path formula®'accept (which states
that a state labelled with the atomic propositi@aept will

be reached at some pointin the time intefyallo establish
this result, we first observe tha# and.# x </ are state-
wise bisimulation equivalent when the set of atomic propo-
sitions in.# x < is restricted tAP, i.e., we deal with the
labeling functionL 5, which is given byl X, ((s,Z)) = L(s)
rather tharL*. This follows by the fact that the coarsest
equivalenceZ on S (Sx 24) which identifies any state
with any of its copiess, Z') whereZ’ C Z is a bisimulation.
Hences ~ (s, Z') for all statessin .# and all subsetg’

of Z. Using Prop. 1, we obtain:

Proposition 4 For any state s of# we have:
Prob?(s,a') = Prob”*¥((s Zy),a")

Next we observe the one-to-one-correspondence between
paths in.# and paths in.Z x o (when we fix the
states(s, Z,) as starting states). Clearly, by removing the
automaton-component of any state in a pathhx ./ one
obtains a path inZ. Vice versa, each finite path
t

0=% 25
can be lifted to a patlr in ./ x & by extending the states
by sets of automaton-states with the helpof :

aty A gty
— 3 ... —_

Shin A

1 1 it
0% = (5,Z0) 29 (5,2) B (g, 7))

where z, = &/ (Zkfl,q(fl ey sk), k=01,...,n
Hence, if.Z(a) = £ (&) then (by Prop. 3):

(Sn,Zn) = accept iff accept € L*({Sn,Zn))
iff Z,NF#0
iff 57(Z,,0)NF #0
itff o e Pathi ()= Pathi (a).

Thus, for all infinite pathsg* € Path? *<((s,Z,)) we
have: .# x o ,¢* |= Olaccept iff . # x o7/, ¢* = a'.
Hence, for all statesin .# we have

Prob?*< ((s,Z,),a') = Prob” > ((s,Z,), 0 accept).

Using this observation and Prop. 4 we obtain the following
theorem.

Theorem 1 If a is anasCSL-program, .« an NPA with
Z(a)=.2(«)and s a state in# then

Prob (s,a') = Prob”*“((s,Z,), ' accept).

Theorem 1 shows that the problem of computing the satls—
faction seSat“ (¢) for theasCSL-formulag = Popla

is reducible to the problem of calculating the satlsfact|on

set Sat”*“ (¢,) for the CSL-state formulag.g, =

Prap(Olaccept). Insummary, to calculagat*” (@) where
@is as above we

handoverComplete

actlvate

Request

deactlvate Handover

Wait
For

Figure 2. State machine for the MS behaviour

loss

handoverCommand
loss

e apply standard techniques to generate a nondeterminis- s inspired by the description of the GSM handover pro-

tic finite automatons for a (viewed as an ordinary reg-
ular expression over the alphalagt

e calculate the product ASMC# x <7, where it suffices
to calculate the reachable part.of x .o with an on-
the-fly construction that starts with the statesZ,,), and
to ignore the action-labels in the sense that the rates of
“parallel” transitions are cumulated;

e apply aCSL-model checker to calculate the valyes—
Prob > ((s,Z,), ' accept) for all statessin .7, e.g.
with the help of a transient analysis of the Markov chain
which is obtained from# x <7 when all states labelled
by accept and all states from which one cannot reach a
state labelled byccept (especially those that have an
empty automaton part) are made absorbing [16, 24];

e return the se{se S: psi p}.

In [24] it was shown that the time complexity of the
uniformisation-based model checking algorithm @fBL-
formulas of typeZ,.p(, % ' @,) is 6(M-qg-t'), whereM

is the number of transitions of the model aq the uni-
formisation rate (which is given by the largest exit-rate of
a state of the model). In our approach,eCSL-formula

of type Z..p(a') is checked by first constructing an NPA
o/ which has|Z| = &(|a|) states, and then constructing
the product Markov chain, which has at most 212! tran-
sitions. The uniformisation rate and the time bouhdre
not affected by the product automaton construction. There-
fore, the overall time complexity of our algorithm to cal-
culate the satisfaction set for asCSL-formula of type
Pop(altt]) is bounded by?(M - 2101 . q.-t').

5. Handover in a cellular radio network

In this section we present a case study in order to illustrate

cedure in [25] and [26]. We describe the system as a set
of synchronising processes, namely the cells, the switching
center and the user. Each of these processes will be repre-
sented by a stochastic Petri net. The properties of interest
are expressed withsCSL-formulas involving programs.

We show the corresponding NPAs and relate the size of the
resulting product Markov chains to the size of the original
model.

5.1. The model

In the model, each cell corresponds to one base station sub-
system (BSS). A BSS is modelled with only two states: ei-
ther it has still free capacity or it is full and does not accept
further connections. The numbirof cells is a parameter

of the model. The mobile services switching center (MSC)
is modelled similarly: it has either low, medium or high
load. The time needed for the handover command proce-
dure depends on the current load. Under high load, the
MSC does not process any request for handover.

Our distinguished MS has predetermined possibilities of
moving between cells. For the time being, we assume that
cells are positioned in a ring order, that is, if the MS is lo-
cated in celli it can only move to cellgi + 1)modN and
(i—1)modN. We could easily change this to other topo-
logical cell orderings.

Finally, we have a model of the MS behaviour (beside its
spatial position). When not being active with a connection,
the MS is idle. At any time, the MS can become active,
meaning that it has established a (radio) connection. After
a while, the connection is terminated and the MS becomes
idle again. If it moves from one cell to another while being
active, the corresponding BSS commands a handover to the
new cell from the MSC. If the new cell has free capacity,

the techniques we have developed. We consider a scalablethe handover is eventually completed and the MS returns
cellular phone setting, where base stations and switching to state active (note that the connection is continued during
center operate at different load levels. We track a single dis- the entire handover procedure). If the handover procedure
tinguished mobile radio station (MS) moving from one cell is not completed in time, the connection might also be lost.
to another, thereby possibly triggering a so-called handover The connection is then terminated (assume, that the dis-
procedure. We are especially interested in the behaviour of tance to the former cell has become too large) and the MS
the system concerning this distinguished user. The model is back in idle state.

process I
BSS

action [
block

free

lowtoMedium
mediumToHigh
highToMedium
mediumToLow
move

activate

deactivate
handoverCommand

rate

0.002
0.008
0.5

1.0

3.0

1.0

0.02
0.000625
0.008
1.0/0.5

description

cell will not accept further connections
cell will accept further connections

from low load to medium load

from medium load to high (blocking) load
from high (blocking) load to medium load
from medium to low load

from celli to (i — 1)modN or (i + 1)modN
average time between connections is 1600 secor|d
connections last on average 125 seconds
for low/medium load of MSC,

not available if MSC is blocking

only activated if new cell is not blocking
might happen during handover procedure

MSC

MS position
MS behaviour

[

handoverComplete
loss

1.0
0.1

Table 1. Action labels and rates of the transitions of
the cellular network model

Figure 2 shows a state machine for the user call behaviour.
Transitions are labelled with action names. Tloge tran-
sition synchronises with the spatial movement of the user
whenever he is active. Table 1 states the rates for transi-
tions labelled with the given actions. Note that all numbers
are educated guesses made on the basis of [27].

5.2. asCSL-properties

Out-dated handover. When the MS moves from one cell

to the next, the BSS requests a handover to the new cell.
However, the model does not prevent the MS from moving
on to yet another cell. This behaviour is not explicitly vis-
ible in the model: here a handover is simply made to the
cell the MS is in, no matter where it has been in between.
In reality this type of movement could cause a problem. So,
we would like to know whether the probability of such an
outdated handover is lower than 2%. AsCSL-formula,

this becomes®, = Z_, ,,(al%*), with

1
0, = (Active,move), Q)
(RequestHandoverV WaitForHandover, (2)
Act\{handoverComplete,move})™; 3

(RequestHandoverVWaitForHandover,move)(4)

A move while the MS is active triggers a handover. Lines
(2/3) describe the system inside the handover procedure. A
move (4) leads to an outdated handover. An NPA for the
programa, is given in Fig. 3(a).

Return without interruption. Assume that the MS ini-
tiates a connection while in cell 1. It is free to move be-
tween cells. We would like it to leave cell 1 and to re-
turn within 10 minutes (600 seconds) without terminating
or loosing the connection. Is the probability for this sce-
nario at least 50%? Coded into asCSL-formula this

RequestHandover VWaitForHandover
Act\{handoverComplete, move}
[]

Active
move

° o
RequestHandover VWaitForHandover

@)

true
Act\{deactivate,loss}

true
Act\{deactivate,loss}

\
o @

InCelll
activate

—InCelll

v
(b)

InCell (i +1)modN

InCelll

v

InCelli
handoverComplete

InCell(i — 1)modN
B,

v

InCelli

\

(©

Figure 3. NPAs for the programs a,, a, and f3

readsd, = 7_ 5(al®%9), with

a, = (InCelll,activate);)
(true,Act\{deactivate,loss})*; (6)
(~InCelll, /); (7
(true,Act\{deactivate,loss})"; (8)
(InCelll, /) 9)

The regular expression first ensures that the user activates a
connection while being in cell 1 (5). Then the user can be-
have arbitrarily, as long as the connection is not ended via
adeactivate or loss event (6). At some time, the user
must have left cell 1 (7) and can again behave arbitrarily,
as long the connection remains established (8). Finally, he
should return to cell 1 (9). Figure 3(b) shows an NPA for
the programu,,.

Ping-pong. Sometimes there are handovers from a icell
to a neighbouring cell and back to celkithin a short time
interval. From a performance point of view this is not de-
sirable since presumably the call could have remained in
celli. If having an active connection, is the probability of
such a ping-pong handover to occur within 10 seconds at
most 10 %? AsasCSL-formula: ®; = #_,,(al01?). A

ping-pong originating from cell is described by the pro-
gram

B, =(InCelli,\/);(Active,move); (true,B,;)"; (10)
((InCell(i 4+ 1)modN,handoverComplete)(11)
(InCell(i+1)modN,B,)"; (12)
(InCell(i+1)modN,move) U (13)
(InCell(i — 1)modN,handoverComplete);(14)
(InCell(i —1)modN,B,)"; (15)
(InCell(i — 1)modN,move)); (16)
(true,B;)"; (InCelli,handoverComplete) (17)

with B; = Act\{move,loss,handoverComplete} and
B, = Act\{deactivate,move}. An NPA for this program
is given in Fig. 3(c). If there arBl cells, all possible ping-
pong situations are described by = B,U B, U...UBy_;-
The NPA fora, consists oN replicas of the automaton in
Fig. 3(c), instantiated with=0,...N — 1. It hasN initial
andN final states.

5.3. Tool support

A prototype implementation that performs the construction
of the product Markov chain given an ASMC and an NPA
was done in C++.

For the evaluation we used a stochastic Petri net (SPN)
model of the cellular phone system. All components of the

systems are described by simple state machines, we there-

fore omit their SPN representation. The SPN is described
in a variant of CSPL, which also allows the specification of

1le+07

T
original model ——
outdated handover ---x---
return without interruption ------
ping-pong &
1e+06 | a

100000 |-

18|

10000 [

1000

1e+08

T
original model —+—
outdated handover ---x---
return without interruption ---%---
ping-pong &
1e+07 | o

o

1e+06

IRI

100000

10000

1000

(b) [R*|
Figure 4. Size of state space (a) and number of transitions
(b) in the original ASMC and the product Markov chains

marking-dependent properties, which can be seen as atomic o o
propositions in the underlying Markov chain. The state The o.rllglnal model has about 270000 states and 3.6 million
space generation code of [28] has been extended in order transitions forN = 11._ For all three presented programs,
to record these properties and the transition names (as ac- the number of states in the product Markov chain is larger
tion labels) and generates an ASMC. than in the orlgm_al ASMC. This could be e_xpected, since
Programs have been described directly via their corre- e state space is a subset of the Cartesian produst of
sponding NPA. The prototype implementation takes the and 24, The increase in size varies between a fa_ctor 15
ASMC and the NPA as input and computes the reduced and 4. The largest state space is the one of the ping-pong
product Markov chain where only reachable states are gen- Property, it has more than one million states for= 11.
erated anchccept-states and states, 0) with empty au- If we keep only those states frorr_1 which tiitaept-gtate is
tomaton part are merged into two special absorbing states. reachable and merge the others into one absorbing state_, the
The final computation of the satisfaction relation of the cor- "umber of states can also become smaller than the orginal
respondingCSL formula can then be done using an exist- State space.

ing CSL model checker, for example ETMCC [7]. For the properties “outdated handover” and “return with-
out interruption”, the number of transitions in the product
Markov chain is smaller than in the original ASMC. The
corresponding program automata are very restrictive, in the
sense that in each state of the original ASMC only a subset
of all outgoing transitions is allowed by the NPA. The NPA
for “ping-pong” allows a broader range of different combi-
nations of states and transitions. Consequently, it shows the
largest growth in state space, and the number of transitions

5.4. Results

Figure 4 shows the number of states and transitions of the
original ASMC model of a cellular radio network and of
the product Markov chains needed for the model checking
procedure of the three giversCSL-formulas as a function

of the numbeN of cells that ranges from 2 to 11.

is larger than in the original model.

6. Conclusions

We introduced the logi@sCSL as a new specification
formalism to reason about performability measures for
Markov chains with both action- and state-labels. It sub-
sumesCSL (with time intervals[O,t]) and several variants
that have been suggested in the literature, suchG&L,
aCSL+, pathCSL, SPDL [6], [8], [9],[10]. Our model
checking algorithm for formulas of type?..,(a') relies

on a reduction to th€SL model checking problem via a
product construction of the Markov chais#’ and an au-
tomaton for the path formula'. The case study in sec-
tion 5 demonstrates hoasCSL formulas can specify com-
plex properties that refer to both action and state labels in a
rather simple way.

References

[1] E. Clarke, O. Grumberg, and D. Pelellodel Checking
MIT Press, 1999.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying
continuous time Markov chains,” i€AV'96, LNCS 1102
1996, pp. 269-276.

[3] C. Baier, J.-P. Katoen, and H. Hermanns, “Approxi-

mate symbolic model checking of continuous-time Markov

chains,” inCONCUR99, LNCS 16641999, pp. 146-161.

H. Hansson and B. Jonsson, “A logic for reasoning about

time and reliability,”Formal Aspects of Computingol. 6,

no. 5, pp. 512-535, 1994.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “On

the logical characterisation of performability properties,” in

ICALP’00, LNCS 18532000, pp. 780-792.

H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle,

“Towards model checking stochastic process algebra,” in

IFM’00, LNCS 19452000, pp. 420—439.

H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle,

“Implementing a model checker for performability be-

haviour,” in Proc. 5th Int'l. Workshop on Performability

Modelling of Computer and Communication Systefs

langen, Germany, 2001, pp. 110-115.

[8] J. Meyer-Kayser, “Automatische Verifikation Stochasti-
scher Systeme,” Ph.D. dissertation, Universitat Erlangen-
Nurnberg, Institut fur Informatik, 2004.

[9] C. Baier, L. Cloth, B. Haverkort, H. Hermanns, and J. Ka-

toen, “Model checking pathCSL,” iRroc. 6th Int’l. Work-

shop on Performability Modeling of Computer and Commu-

nication Systemsvionticello, lllinois, 2003, pp. 19-22.

M. Kuntz and M. Siegle, “A stochastic extension of the logic

PDL,”in Proc. 6th Int’l. Workshop on Performability Model-

ing of Computer and Communication Systeisnticello,

lllinois, 2003, pp. 58-61.

W. Obal and W. Sanders, “State-space support for path-

based reward variablesPerform. Eval, vol. 35, no. 3-4,

pp. 233-251, 1999.

(4]

(6]

(7]

[10]

[11]

[12] M. Fischer and R. Ladner, “Propositional dynamic logic of
regular programs,J. Comput. Syst. Sgivol. 8, pp. 194—
211,1979.

P. Wolper, “Specification and synthesis of communicat-
ing processes using an extended temporal logicPrioc.

9th Symposium on Principles of Programming Languages
1982, pp. 20-33.

A. Aziz, V. Singhal, F. Balarin, and R. K. Brayton, “It usu-
ally works: The temporal logic of stochastic systems,” in
CAV’'95, LNCS 9391995, pp. 155-165.

W. Stewart, Introduction to the Numerical Solution of
Markov Chains Princeton University Press, 1994.

C. Baier, B. Haverkort, J.-P. Katoen, and H. Hermanns,
“Model checking continuous-time Markov chains by tran-
sient analysis,” ifCAV’00, LNCS 18552000, pp. 358—-372.

J. Kemeny and J. SneFinite Markov Chains Springer,
1976.

P. Buchholz, “Exact and ordinary lumpability in finite
Markov chains,’J. Appl. Prob, no. 31, pp. 59-75, 1994.

J. Hillston, “A Compositional Approach to Performance
Modelling,” Ph.D. dissertation, University of Edinburgh,
1994,

H. Hermanns and M. Rettelbach, “Syntax, semantics, equiv-
alences, and axioms for MTIPP,” PAPM’'94. Universitat
Erlangen-Nurnberg, 1994, pp. 71-88.

J. Desharnais and P. Panangaden, “Continuous stochastic
logic characterizes bisimulation of continuous-time Markov
processesJ. Logic Algebr. Progr.vol. 56, no. 1-2, pp. 99—
115, 2003.

M. Bernardo and R. Cleaveland, “A theory of testing for
Markovian processes,” ICONCUR 2000, LNCS 1877
2000, pp. 305-319.

E. Clarke, E. Emerson, and A. Sistla, “Automatic verifica-
tion of finite-state concurrent systems using temporal logic
specifications,”ACM Trans. Program. Lang. Syswol. 8,

no. 2, pp. 244—-263, 1986.

C. Baier, B. Haverkort, H. Hermanns, and J. Katoen,
“Model-Checking Algorithms for Continuous-Time Markov
Chains,”IEEE Trans. Softw. Engvol. 29, no. 7, pp. 1-18,
2003.

B. H. Walke,Mobile Radio Networks Wiley, 1999.

J. M. Thomsen and R. Manggaard, “Analysis of GSM han-
dover using coloured Petri nets,” Master’s thesis, University
of Aarhus, 2003.

J. Ventura Agustina, P. Zhang, and R. Kantola, “Perfor-
mance evaluation of GSM handover traffic in a GPRS/GSM
network,” inProc. 8th IEEE Int'l. Symp. on Computers and
Communications |IEEE Press, 2003, pp. 137-142.

B. Haverkort, H. Bohnenkamp, and A. Bell, “On the ef-
ficient sequential and distributed evaluation of very large
stochastic Petri nets,” IRNPM’'99. |IEEE Press, 1999, pp.
12-21.

(13]

(14]

(15]

(16]

(17]
(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

