A Stochastic Extension of the Logic PDL

Matthias Kuntz Markus Siegle
Friedrich-Alexander-Universitat Erlangen-Nurnberg Friedrich-Alexander-Universitat Erlangen-Nurnberg
Institut fur Informatik 7 Institut fur Informatik 7
Martensstrasse 3, D-91058 Erlangen Martensstrasse 3, D-91058 Erlangen
Email: mskuntz@informatik.uni-erlangen.de Email: siegle@informatik.uni-erlangen.de

Abstract—We present stochastic PDL (SPDL), a stochastic a nutshell this means a process is specified by the sequence
extension of the modal logic PDL (propositional dynamic lo@), of actions that it can perform. In this context, states daurtst
which is interpreted over labelled continuous time Markov dains only an auxiliary means within the semantic model of SPA-
(CTMC). This logic allows one to specify complex path-based | trast . CSL. the det inati fth
performability measures and check their validity automatically. processes. n con ra§, using X , e ae e_rmln_a lon ot the
We define the syntax and semantics of SPDL. In this logic, measures of interest is state-oriented. To avoid this ehaifig
computation paths can be characterised by regular expressns, Vviews, i.e. action- vs. state-oriented, in [4] an actiolsdzh
also ca_lled programs, where the gx_ecutability of a regular yariant of CSL, aCSL, has been proposed. In [5] it was
expression may depend on the validity of test formulae. For shown how to employ this logic for performability modelling

model checking SPDL path formulae, we transform programs : . .
into a variant of deterministic finite automata, and then build In aCSL the requirements are completely action-orientesl. A

the product automaton between this automaton and the labetid 2CSL has only limited capabilities to characterise pathsas
CTMC. The paper contains a small example that illustrates te extended in [6] to aCSL+, where paths can be characterised

model checking procedure. by regular expressions, also called programs.
In this extended abstract we propose a stochastic extension
of the modal logic PDL, SPDL, which extends aCSL+. In
Distributed, concurrent hard- and software systems ha8®DL paths can also be characterised by programs, but in
become part of our daily life and it becomes more and moeeldition it is possible to express that a program is exeteitab
important to assert that they are working correctly and thanly if the current state satisfies a given state propertys Th
they meet high performance and dependability requirementaakes it possible to combine in an easy way state- and action-
In order to carry out performance, dependability and reli@riented behaviour.
bility analysis it is necessary to have both a model and a num-SPDL is thus well suited for performability modelling,
ber of measures of interest, such as utilisation, mean numbice it provides ample means to characterise paths, thereb
of jobs, mean time to failure, etc.. Roughly spoken, the rhodallowing the modeller to obtain a high level of confidence in
is derived in two steps: Firstly, some specification methazhs the performance and dependability of the system at hand.
as stochastic Petri nets, stochastic process algebraseiqge This paper is organised as follows: At first we define
networks, etc. is employed to obtain a high-level specificat the syntax and semantics of the logic SPDL (Sec. Il). In
of the system that is to be analysed. Secondly, from this-higBec. Il we illustrate the possibilities of SPDL to specify
level specification the low-level representation is oledin performability measures by means of an example system.
This low-level representation is normally a continuousetimSec. IV introduces the model checking procedure of SPDL-
Markov chain (CTMC). path formulae, which can be reduced to standard transient
In the realm of functional verification, temporal logicsanalysis, by example. The paper concludes with a summary
such as CTL provide powerful means to specify compleand an outlook on future work.
requirements that a system has to satisfy. In the recensyear
big efforts have been made to provide similar means for the Il. SYNTAX AND SEMANTICS OF SPDL
specification of system properties in the area of performanc
analysis. One result of these efforts is the logic CSL (conti
uous stochastic logic) introduced by [1] and extended in [
with an operator to reason about steady state probahilitigs
CSL allows the specification of certain types of performapil R Syntax of SPDL
measures (cf. [3]) but the specification of these measures ig>enerally spoken, SPDL consists of the following ingre-
completely state-oriented. dients: propositional logic, modal logic, probability trg,
A very important branch of modelling formalisms is that ofind algebra of regular expressions. SPDL expressions can be

stochastic process algebras (SPA), which is action-aéenh formed using as follows: Let € [0, 1] andg € AP, whereAP
is the set of atomic propositions, i.e. elementary state fdae,

L©Matthias Kuntz and Markus Siegle and lete {<, <, >, >}. The state formula® of SPDL are

I. MOTIVATION AND INTRODUCTION

This section introduces the syntax of SPDL formulae and
EJrograms and describes in an informal way their semantics.

defined by the following grammar: [1l. EXAMPLE: SYSTEM MODEL AND REQUIREMENTS

d = q‘q) \% q)\ﬁ@\swp(q))‘pm(@”(q)) In order to illustrate our approach, specifying and chegkin

L . . erformability measure ing the logic SPDL, we consider
Thus, a state formula is either an atomic proposition, trP% exampllely sures using g W Sl

disjunction of two state formulae, the negation of a staﬁ‘a
formula, a steady state formula), or a probabilistically A. The System Model

quantified path formulaR). Path formulagy are defined by: The model in Fig. 1 represents a system that receives four

o = ®r)l® data packets and processes them together. This behaviour is

wherel is the closed intervdk, t']. 7 is a program as defined repeated indefinitely.

in the sequel.

Let Act be a set of atomic programs, which we may also
call actions, andr'EST be a set of state formulae. A program
m is defined by the following grammar:

pre,w

T = €|mw|rUr|®?w|m(n)

™ o= a‘m;m‘m U 771|7rf|(1>7;7rl|(7rl)

wherea € Act and ® € TEST. ¢ is the empty program,
m; 7 is the sequential execution of two programs,) = is the
non-deterministic choice between two progra®$, = checks
whether ® holds in the actual state, if it does, execute
otherwise fail. Finally,7;7 means, execute; an arbitrarily
chosen finite number of times, including zero times.
Swp(P) asserts that the steady-state probability, i.e. the Abbreviations: A=a,u C=co,y FE=¢e,6
probability to reside in a particular set of states on theglon
run, given an initial state, satisfies the boundary as given by Fig- 1. System model — a 4 place buffer with erroneous agival
> p. Peap(p) asserts that the probability measure of the set

. of a data packet can be error-free (arrival rajeor erroneous
B. The Semantic Model

o _ (arrival rate ;). An erroneous data packet can be corrected
SPDL is interpreted over an action- and state-labellgdo, v), or cannot be correcte@, 4). If it cannot be corrected,
CTMC (ASMC) M, which is a quadruple(S,Act, L, R), the buffer is emptied and all data packets have to be retriagnsm

where ted(rt,). If all data packets are error-free or correctable, then
« S: finite set of states the received data can be procesgpte,w) and the system
o Act: set of action names awaits new data.
« L: state labelling functionS — 2AP We must also provide the state labellings, i.e. atomic for-

o R: state transition relation R C S x (A x IR>o) x S mulae that are valid in the states of the system model. The
The semantics of SPDL-state formulae is defined the standaschmple system has 10 states, indexed 1 to 10.
way, details can be found in [7]. We only describe informally , 7,(s,) = {empty}
the semantics of SPDL-path formulae as their semantics is, L(sy) = L(s3) = L(s4) =0
very different from that of CSL: A path of model M satisfies L(ss) = {full}

path formUIacp = (I)[’/T]I\II iff: . L(S@) = L(S7) = L(Sg) = L(Sg) = L(Slo) = {error}
- & V-state on patlv is reached after the passagetSf A state satisfies the negations of the formulae that are it va

time units, where” is within /. in it, e.g. states 2 - 4 satisfj~empty, —full, —error}.
« all preceeding states satisfly

« the actions offered by correspond to the program B. Performability Measures
» all test formulae occuring im are satisfied in the corre- Now, we will give some example requirements:
sponding states af.

1) &, = Psool-fullla*;e;rt;a* U a*]05full): Is the
C. Derived Temporal Operators probability to receive all data packets without error or
The only temporal operator presented so fafz¥. The with at most one non-correctable error within 5 time
usual until-operator of CSL (cf. [8]) can be expressed as Units at least 0.9?
follows: 2) @y := Po(truefa]®>)full): Is the probability to reach

I il a state in which the buffer is full with a single arrival
QU = Q[Act’] greater than zero@, characterises state 4 as this is
Other operators, likeX' ('next’) and 'F’ (‘finally’) can also the only state from which it is possible to reach a state
be derived. Details can be found in [7]. satisfying full’ by a single arrival action.

3) &3 = P<oi(truela®; (P27;a;c0)]073ull): Is the g

probability that the buffer is full after at most 7.3 time ﬂ(@\ a B P2%a,3) co (D
units and that the 4th packet contains a correctable error
and that all preceeding packets are error free, at most

ten percent? Fig. 3. Non-deterministic automataN;; for a*; (®27?; a; co)
4) @y := P>q.85(true[(a U a; co)*]1%19ull): Is the proba-
bility to reach state 5 within 10 time units, provided no 027 P27a

packet contains incorrectable errors, at least/85

IV. MODEL CHECKING SPDL

In this section we illustrate by example how we can model
check SPDL path formulae. A thorough account of how to Fig. 4. Deterministic automatoA . for a*; (27?; a; co)
model check SPDL can be found in [7].

—|2.;a

A. General Aproach

Fig. 2 shows the general approach to model check SPDL
path formulae. We assume that a system matiéland a

SPDL path formula
M

o[r]I v

System Model

Nondet. Automaton
Ny

i

Det. Automaton

Ax

\ /

Product automaton
M* =M x A,

Transient Analysis on a labelled CTMC

Fig. 5. Product automatomM * = M x A, for checking validity of®s

Fig. 2. Model checking SPDL path formulae — general approach . . .
Fig. 4 we see that the labels of the transitions emanatinyg fro

statesAB and ABC are labelled with-®57; a resp.®s7; a,

SPDL requirement[r]! ¥ are given. Fromr we derive a e) 20
i.e. the tests are disjoint. We discuss this issue furthtavbe

non-deterministic automatory,, that is transformed into a
Fig. 5 shows, how the product automatdn™ := M x A,

deterministic oneA,. From A, and M a product automaton |) . ;
M is built, which in fact is a CTMC whose transitions rate&® generated. The state labelled wiVCC is an absorbing

are taken fromM. Finally, on M> we can perform transientgoal state in which the path formula functionally holds, the
analysis to check whether the model satifies its requireméiiete labelled with” A7 L is an absorbing error state to which

or not. Transient analysis is done by the well-known methd transitions are redirected that lead to states thateetie
of unif.ormisation path formula unsatisfiable. The model checking itself, the.

check whethetM satisfies the path formula, would be done
B. Example by transient analysis.

Consider the example system!, from Fig. 1 and the ~ Now, we will briefly explaiq whyA, possesses transitions
requirementy := true[a*; ($27; a; c0)]®7-3full. We want to labelled 0275 a and P57 a, instead ofa e_m(_j ®y7;a: For
check whethetM satisfiesy, especially for state 1. Corre-model checking to yield correct result it is necessary to
sponding to Fig. 2 we derive from*;(®2?;a;c0) a non- Preserve the ;tochastlc be_hawour_ of. For an art|f|g|al
deterministic automatotV, (cf. Fig. 3f. The test®, forms €xample, we will see that this requirement might be violated
together witha a single transition. Now, we have to transforn{Cf- Fig. 6). If we assume that in state 4 8f(the formula
N, into a determininistic automator, (cf. Fig. 4) which ¥ of an imaginary path formula;,, := ®[(67; a)*; £7; a]’ ¥
possesses states from the powerset of the state spaGe dh holds, then the lower path ok , the Z-path leads to the

FAIL-state, as once in stat8 of the automaton for the
2Grey-shaded states indicate the accepting end states. programs of ¢;,, no transition is possible. In contrast, the

'A;a_‘?. V. CONCLUSION
A== We have presented a stochastic extension of the logic
PDL, SPDL, that allows the user to specify very complex
>< performability requirements, including both state measwand

path-based measures.

M GA G ad g a) g By a small example we have demonstrateq how to check
©.0.5 (0,0 (.3} w0 Wheth_er the model _at hand_meets the requirements. In the
technical report version of this paper [7] we have also shown

that bisimulation preserves validity of SPDL formulae. +ur
M Product automaton thermore we have shown that SPDL is strictly more expressive

than CSL, aCSL and aCSL+.
A A In the near future we plan to implement SPDL and integrate
0, 0, =-path it into our existing performance analysis td@ASPA [9]

N =— path ACKNOWLEDGMENTS
== pal i .
The authors wish to thank Joachim Meyer-Kayser for many
Fig. 6. Incorrect product automaton fo;,, fruitful discussions.
REFERENCES

[1] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifygncontinu-
upper path, th¢®, ©, =)-path leads to state 4 ¢¢1 and to an ous time Markov chains,” ilComputer-Aided VerificatignR. Alur and

accepting state in the automaton fartherefore this path is a _ T- Henzinger, Eds., vol. LNCS 1102. Springer, 1996, pp. 16@-
[2] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximaten8glic Model

satisfying path. But, as pOth pat.h_s can be taken _in $ﬂatﬂ) Checking of Continuous-Time Markov Chains,” @onurrency Theory

we doubled the rata, which modifies the stochastic behaviour J. Baeten and S. Mauw, Eds., vol. LNCS 1664. Springer, 1909, p
f nd would therefore | wrong results during modg| 146-162.

Othf"‘ d wou d therefo ef edadhto ong esuctjs during mod r3_|] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoenn ‘tBe logical

checking. In Fig. 71_We ind t e correct pro uct automat M characterisation of performability properties,”fRALP, vol. LNCS 1853.

by using the same kind of transition labelling proceduremas i Springer, 2000, pp. 780-792.

Fig. 4. We see that the product automaton in Fig. 7 presenisH- Hermanns, J. Katoen, J. Meyer-Kayser, and M. Sieglewards model
checking stochastic process algebra,lritegrated Formal Methodsvol.

the branching gnd therefore the stp.chastic behgvioWloIn LNCS 1945. Springer, 2000, pp. 420-439.
contrast toN; in A, no two transitions are activated at thgs] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. 8jetmple-
same time. The tests iA, are disjoint therefore wheM is menting a Model Checker for Performability Behaviour,” Hifth Int.

. . L. . . Workshop on Performability Modelling of Computer and Comization
in statel and A is in stateA only the transition with labelling Systems (PMCCSHR. German, J. Luethi, and M. Telek, Eds. Universitat

(6 ANE)?;a to stateAB can be taken, leading in the product Erlangen-Nurnberg, Arbeitsberichte des Instituts fifoimatik, Band 34
X i Nummer 13, September 2001, 2001, pp. 110-115.
aUtomatonMAﬂ to the unique successor Stdﬂ: AB)' [6] J. Meyer-Kayser, “Verifikation stochastischer, prozagebraischer Mod-
elle mit aCSL+ (in German),” Universitat Erlangen-Nieny, Institut fur

Informatik 7, Tech. Rep. 01/03, 2003.

[7] M. Kuntz and M. Siegle, “A Stochastic Extension of the lodDL,”
Friedrich-Alexander-Universitat Erlangen-Nirnbefggch. Rep. 03/03,
2003.

[8] C. Baier, B. Haverkort, J.-P. Katoen, and H. Hermannsptid checking
algorithms for continuous time Markov chainstd appear in IEEE
Transactions on Software Engineerjnig003.

[9] M. Kuntz, M. Siegle, and E. Werner, “CASPA: A performaneealuation

(O AE)a tool based on stochastic process algebra and symbolic tatauses,”

in to appear in tool proc. of the 2003 lllinois Int. Multiconfgrce on
Measurement, Modelling, and Evaluation of Computer-Conioation
Systems2003.

@ a5k 2 @A 2
®06,z {»06 {3z} {+}

X .
M Product automaton

Fig. 7. Correct product automaton fef;,,

