

HORIZON EUROPE EGNSS UPSTREAM R&D Prof. Thomas Pany, Uni. Armed Forces, Germany

HORIZON EUROPE CONSULTATION WORKSHOP • Prague, 13th Sept. 2019

Service first ...

Galileo developed according to ESA standards ...

- To which extend can those standards be applied to a navigation service?
 - Procurement and operation under market conditions and political constraints!
- Galileo appears to the public as satellites, services and applications
 - But what about ground segment and operations?
- R&D on procurement, operations and ground segment
 - Conceptual, programmatic and regulations
 - To understand relevant process, make them robust against market conditions, foster interest of young people

The GNSS challenge

New nav. Technologies:

- Camera/LiDAR (Aug. Real)
- HD Radar (self driving)

Who is the backup?

- Unprecedented Acc. & Avail

GNSS/Galileo Signal optimization COSTS BENEFITS

C-band for small user antenna arrays

Mega-constellation

Galileo navigation message improvements

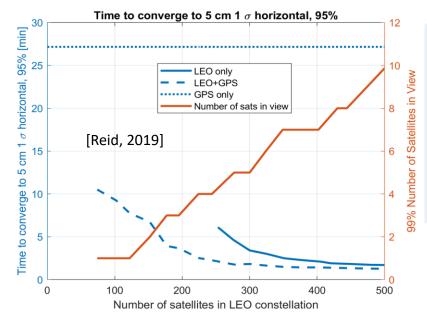
- Classical one-way satellite navigation highly consolidated; nevertheless Galileo found great ways of improvements:
 - I/NAV improvement on E1 (reduced TTFF)
 - On-demand research based on established comm. knowledge
 - OSNMA (authentication) on E1
 - Demand created by research
 - High Accuracy Service on E6
 - On-demand adaption an established concept (PPP)
 - E5b? E1D,E,F,...?
 - ...

Willingness to focus and to wait (as within GPS)...

Flexibility in payload, ground segment and operations

The antenna array challenge ...

Today virtually only single antenna receivers are used ...


- But:
 - GSM/UMTS (single) => LTE (2x2,4x4) => LTE-A (8x8) => 5G (massive)
 - Receiver technology follows Moore's law
 - Now ready to support many elements
 - Obvious and well known benefits
 - Anti-jam, anti-spoofing, higher ranging accuracy, higher signal robustness (cycle slips, ...)
- But size matters ...
 - Antenna size ... 1/f
- Integration with 5G
 - Limited number of visible 5G transmitters
 - Massive 5G groud multipath, antenna array?

Coordinated R&D to support higher GNSS frequency bands (C-Band and beyond)

GNSS mega-constellations

- Current MEO concept highly consolidated
 - 130+ satellites in orbit
- Mega-constellation (1000+ satellites)
 - Benefit in geometry, signal availability, PPP-convergence time:

- Feasibility?
 - No on-board atomic clocks!
 - Sync via MEO constellation? Inter satellite links?
 - Synergy with comm?

THANK YOU

thomas.pany@unibw.de

http://ec.europa.eu/galileo