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Abstract When modelling large systems, modularity is an important
concept, as it aids modellers to master the complexity of their model.
Moreover, employing different modelling formalism within the same mod-
elling project has the potential to ease the description of various parts or
aspects of the overall system. In the area of performability modelling, for-
malisms such as, for example, stochastic reward nets, stochastic process
algebras, stochastic automata or stochastic UML state charts are often
used, and several of these may be employed within one modelling project.
This paper presents an approach for efficiently constructing a symbolic
representation in the form of a Zero-suppressed Binary Decision Diagram
(BDD) which represents the Markov Reward Model underlying a multi-
formalism high-level model. In this approach, the interaction between the
submodels may be established either by the sharing of state variables or
by the synchronisation of common activities. It is shown that the Deci-
sion Diagram data structure and the associated algorithms enable highly
efficient state space generation and different forms of analysis of the un-
derlying Markov Reward Model, e.g. calculation of reward measures or
asserting non-functional system properties by means of model checking
techniques.

1 Introduction

Due to the complexity of today’s systems, performance and dependability models
should be built in a structured, i.e. modular and hierarchical fashion. Employ-
ing different modelling formalism within the same overall model can greatly
assist the modeller in describing different aspects of the system in a clear and
concise way. (Generalized) Stochastic Petri Nets, Stochastic Activity Neworks,
Stochastic Automata, Stochastic Process Algebras, stochastic extensions of UML
state charts and other modelling formalisms may thus be employed in an overall
multi-formalism model. There are two basic forms of interaction between the
submodels of an overall model, both well understood in the theory of concurrent
processes: One of them is the sharing of state variables, which is a very general
concept supported by literally every modelling formalism mentioned above. In



this approach, a subset of the state variables of a submodel is shared with one
or more other submodels, so these state variables can be considered as global
variables. The other form of interaction is synchronisation of common activities,
which means that a designated subset of events may only take place jointly be-
tween two or more submodels. The consequence is that submodels have to wait
for each other to perform these synchronised activities and are blocked as long
as the partners are not ready to proceed.
For analysis, the high-level model description needs to be transformed into its
low-level counterpart, of which this chapter assumes that it can be formalised as
a Markov Reward Model (MRM), widespread in the performance / dependabil-
ity literature. MRMs are continuous-time Markov chains augmented by reward
/ cost functions which enable the description and computation of a wide range
of interesting performance and dependability measures. Examples for such mea-
sures are the expected accumulated reward gained during the mission of a space-
craft or the mean energy consumption per unit time of a production system.
A well-known drawback of state-based analysis is the problem of state space
explosion, which means that the number of reachable states may grow exponen-
tially in the number of concurrent activities of the high-level model. Among the
techniques devised for coping with this problem, symbolic, i.e. decision diagram
based approaches have shown to be particularly effective.

(Reduced Ordered Binary) Decision Diagrams (DD) are very useful for ef-
ficiently constructing and compactly representing the MRM underlying a high-
level model description. Tools successfully employing DD-based techniques are
stochastic model checkers like PRISM [31] CASPA [16] and SMART [35]. These
tools are able to analyse models with hundreds of millions of states. However,
when it comes to tools which support multiple modelling languages, e.g. the
Möbius performance analysis framework [28], it is important that the DD-based
analysis of MRMs is independent of the concrete model description method.
This is not only because different entities of a system model might be described
in a different method, but future extensions of the set of modelling formalisms
should not require a re-implementation of the analysis engine. Independence of
modelling formalism and DD-based analysis can be achieved by carrying out
standard state space traversal and step-wise augmentation of the DD encoding
the MRM. It is important, however, to note that these steps cannot practically
be performed in a state-by-state manner, since this would lead to an unaccept-
able runtime overhead. Instead, operations which process sets of states and sets
of transitions within one step are needed. Such operations can be provided by a
DD environment, but they need to be used with great care and insight into the
structure of the high-level model. Otherwise, negative effects1 may destroy the
efficiency of the approach.

In order to address these problems, this chapter introduces a scheme for
efficiently constructing a DD-based representation of a high-level model’s under-

1For example, the size of intermediate DD stuctures may increase dramatically
during the incremental insertion of states / transitions, even if the final result is very
compact.
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lying MRM. The proposed technique does not depend on a specific modelling
method and is therefore very well suited for multi-formalism models. This implies
that the method needs to support different model composition schemes, where
the paper discusses model composition via shared state variables and via syn-
chronization of activities, both applicable within the same overall model. The
state space generation method and the method for handling reward variables
have been described before [20,21,18], but they are here placed for the first time
in the context of a multi-formalism modelling environment.

Organisation of the chapter: Sec. 2 recapitulates basics of Markov Reward
Modelling, introduces zero-suppressed Multi-terminal Binary Decision Diagrams
(ZDDs) and shows how they can be employed for representing Markov Reward
Models. This prepares the ground for the modelling formalisms independent
scheme. Sec. 3 elaborates on the part which constructs the Continuous Time
Markov Chain underlying a high-level model description. Sec. 4 presents the
algorithms for constructing ZDD-based representation of reward functions and
computing the performance metrics for the modelled system. Througout the pa-
per, we employ a simple running example, specified as a multi-formalism MRM,
to illustrate the concepts.

2 Background Material

Finite state Markov models constitute the common base for a wide range of
different stochastic modelling formalisms. In the following, we briefly review the
fundamentals of Markov Reward Models (MRM). This will be followed by a very
brief introduction to high-level modelling techniques and composition schemes,
i.e. methods for constructing high-level models in a hierarchic and compositional
style. This will be followed by introducing zero-suppressed Multi-terminal Binary
Decision Diagrams (ZDD) and showing how they can be used in a straight-
forward manner to represent Markov reward models. Overall, this provides the
background for the discussion on how to derive symbolic model representations
in the context of a multi-formalism high-level modelling environment efficiently.

2.1 Markov Reward Models

A (finite state) Markov Reward Model (MRM) consists of a Continuous Time
Markov Chain (CTMC) and a set of reward functions defined for the states and
the state-to-state transitions of the CTMC. In the following we detail on the
relevant concepts.

Continuous Time Markov Chain (CTMC) A CTMC is a stochastic process
{X(t)| t ∈ R} where X(t) is interpreted as the state of the system at time t.
In the context of this chapter, the state space is assumed to be a finite set of
vectors (s ∈ S) of dimension n, where n is the number of state variables. Where
appropriate, we will also employ indices like i and j in order to denote states.
The distinctive property of Markov chains is the fact that they are memoryless,
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which means that the future evolution depends only on the current state and
not on the past history. The memoryless property implies that a Markov chain
is not only independent of the sequence of visited states in the past, but also
that the sojourn time Ti to be spent in the current state i is independent of the
sojourn time already elapsed. Randomly distributed continuous sojourn times
satisfying this property have exponential distribution: Prob(Ti ≤ t) = 1− e−λit.
We formally define Continuous Time Markov chains (CTMC) as follows:

Definition 1. A finite Continuous Time Markov chain (CTMC) is a triple
C := (S, T,π(0)) where S is the finite set of system states. T is the matrix of tran-
sition rates among states, i.e. a mapping S×S 7→ R+

0 where ∀i ∈ S : T (i, i) = 0.
Vector π(0) defines an initial probability distribution on S.

In the context of this chapter, we are only concerned with time-homogeneous
CTMCs, i.e. CTMCs where the transition rates are constant over time.

Reward Functions In addition to the CTMC, which captures the system be-
havior, reward functions constitute the other important part of a Markov reward
model. Rate rewards depend on the system state of the CTMC, i.e. the value
of the state variables, while impulse rewards are associated with the completion
of transitions in the CTMC. A rate reward defines the reward gained per unit
time by the model in a specific state. In contrast, an impulse reward defines the
reward obtained by executing a specific activity in a specific state [32].
A set of rate and impulse reward functions, defined by the user on the high-level
model, can be combined to form complex performance variables, i.e. the value
of a performance variable p is assumed to be the sum of a set of rate or im-
pulse reward functions. In the context of this chapter, the specific state- and/or
transition-dependent reward values are assumed to be time-independent and we
define them as follows:

Definition 2. A rate reward r defined on a CTMC is a function Rr : S→ R.

The set of all rate rewards defined for a given CTMC is denoted R.

Definition 3. An impulse reward a of a CTMC is a function Ia : S× S→ R.

The set of all impulse rewards defined for a given CTMC is denoted I. With
these definitions we can now define:

Definition 4. A Markov reward model (MRM) is a triple M := (C, I,R), where
C is a CTMC, I is a set of impulse reward functions and R a set of rate reward
functions.

2.2 Numerical solution of (low-level) Markov Reward Models

The numerical solution of a Markov reward model involves the computation of
state probability distributions and, on top of this, the computation of measures
w. r. t. the reward functions.
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Computing state probability distributions The state probability distribu-
tion of the Markov reward model (both for the transient and – if it exists – the
stationary case) can be computed by standard numerical techniques for CTMC
analysis. For the scope of this paper, we assume that the CTMC at hand is
irreducible, as this simplifies the presentation. However, the methods presented
are also applicable to the general case of Markov chains consisting of more than
one bottom strongly connected components. Numerical methods for calculating
steady-state or transient probabilities can be found in the literature, e.g., [37,8]
and for their BDD-based variants [29,17,38,10,23,34].

Computing performability measures From the state probability distribu-
tion, measures related to the reward functions can be computed. Examples of
such measures are the expected instant-of-time reward at steady state, or the
mean number of transitions of a certain type (i.e. their throughput) per unit
time. For simplicity we defined rate and impulse rewards as being state-/activity-
dependent functions. In the following we briefly discuss the concept of rate and
impulse rewards, details can be found, e. g. , in [33,32,6].

Handling of rate rewards. A rate reward is the cost or gain obtained while being
in a state i. Thus the rate reward obtained in a specific state i at time point t
can be computed as follows:

Rr(i, t) = πi(t) · Rr(i) (1)

where πi(t) is the probability of being in state i at time point t and Rr(i) is
the time-independent rate reward value of state i concerning rate reward r (cf.
Def. 2). The probability πi(t) can be computed by standard numerical methods,
namely the uniformisation algorithm for finite time points and iterative steady-
state solvers for the limit t→∞. Since each state i ∈ S has its own rate reward
value with respect to reward function r, one must simply sum the reward values
over all states yielding the state-independent reward value Rr(t) at time-point
t:

Rr(t) :=
∑
i∈S
Rr(i, t) =

∑
i∈S

πi(t) · Rr(i) (2)

In addition to instant-of-time rewards, also interval-of-time and time averaged
interval-of-time rewards are important. A rate reward obtained for a time interval
[t, t+4t] can be computed as follows:

Rr(t, t+4t) :=
∑
i∈S
Rr(i) · π̄i(t, t+4t) · 4t (3)

where π̄i(t, t + 4t) is the average state probability for being in state i during
time interval [t, t+4t]. It can be computed as follows:

π̄i(t, t+4t) :=
1

4t

t+4t∫
τ=t

πi(τ)δτ
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By norming the computed value to the time period analyzed ( 1
4t ), the above

interval-of-time reward measure can be converted into a time-averaged value.
For the case t → ∞ (steady-state), π̄i(t, t + 4t) is simply replaced with the
steady-state distribution πi.

Note that due to the above definition of rate rewards, only those states con-
tribute to Rr which have a state probability different from 0. We will come back
to this issue in the next section, where SG reduction techniques are addressed.

Handling of impulse rewards. An impulse reward associated with a specific tran-
sition is obtained, each time the respective transition is taken by the system, i.e.

a transition i
λi,j−→ j may contribute to the overall value of an impulse reward Ia.

The impulse obtained during the time interval [t, t +4t] by a single transition
is computed as follows:

Ia(i, j, t, t+4t) := π̄i(t, t+4t) · 4t · λi,j · Ia(i, j) (4)

where π̄i(t, t + 4t) is defined as above and λi,j is the transition rate between
state i and j and Ia(i, j) is the impulse reward associated with this transition.

Since there might be more than one transition emanating form state i and con-
tributing to impulse reward Ia it follows:

Ia(i, t, t+4t) :=
∑
j∈S
Ia(i, j, t, t+4t) = π̄i(t, t+4t) ·4t ·

∑
j∈S
Ia(i, j) ·λi,j (5)

In order to obtain the “state-independent” impulse reward one simply needs to
sum over all states, yielding:

Ia(t, t+4t) :=
∑
i∈S
Ia(i, t, t+4t) =

∑
i∈S

∑
j∈S
Ia(i, j, t, t+4t) (6)

So far we only computed an interval-of-time impulse reward. By norming the
computed values to the length of the time-interval (4t), the above interval-of-
time reward measures can be converted into time-averaged values.

In the steady-state case, we restrict the discussion to time-averaged impulse
rewards, so that π̄i(t, t + 4t) in Eq. 4 can be replaced with the steady-state
distribution πi, where a subsequent norming to the length of the time interval of
interest must follow. This yields the steady-state impulse reward rate from state
i to state j:

Ĩa(i, j) := πi · Ia(i, j) · λi,j (7)

If this is employed in Eq. 5 and 6 one obtains:

Ĩa(i) :=
∑
j∈S
Ĩa(i, j) = πi ·

∑
j∈S
Ia(i, j) · λi,j and Ĩa :=

∑
i∈S

∑
j∈S
Ĩa(i, j) (8)

which is the average impulse reward (value) obtained in steady-state for impulse
reward a and state i.
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2.3 High-level system modelling

In the following we will briefly introduce aspects of high-level system modelling.
This introduction starts with the description of (sub-)models in a concise way,
takes us through mechanisms for composing models in a hierarchical way and
ends with the specification of performability measures.

High-level model description techniques High-level modelling is a key to
state based system analysis, as it supports the compact, human readable sys-
tem description, opposed to the error-prone specification of CTMCs with a huge
number of states.
All high-level model specification methods discussed in the sequel have in com-
mon that a model M consists of a finite ordered set of discrete state variables
(S) and a finite set of activities (Act). We use the term “activity” when referring
to the high-level constructs (such as an action in a process algebra or an arrival
in a queueing network) and the term “transition” when referring to the under-
lying Markov reward model. Thus, the execution of an activity in the high-level
model is reflected by a state-to-state transition in the low-level model, i.e. in the
CTMC.

Stochastic automata networks Stochastic automata networks [30,5,37] are a rel-
atively low-level modeling approach, since the high-level model description re-
sembles activity-labeled CTMCs. For compactly specifying complex systems, the
modeler may combine sets of stochastic automata by activity synchronization
(cf. Sec. 2.3). This leads to a network of stochastic automata which describes
the behavior of a system in a compositional way. Since the individual stochastic
automata do not contain any local variables, the state of a stochastic automata
network is naturally described by a set of local state counters, each referring to
the state of a specific stochastic automaton.

Stochastic state charts In recent years, state charts like the ones employed in
UML have been extended to the Markovian case. In its simplest form, a stochas-
tic state chart consists of a set of states, additional variables and transitions
among these states, whose execution may modify the variables. Thus, a state of
the state chart can be described by the current values of the local variables and
an additional state counter, where we latter is employed for tracking the active
state of the state charts. In order to specify timed behavior, activities of the
state charts are labelled with rates, which specify an exponentially distributed
execution delay. For modelling case distinctions, it is also possible to make use
of a special ”decision” node which is connected to one source state and possibly
many successor states. The incoming edge of this node defines a Markovian ac-
tivity, i.e. an activity which is executed after an exponentially distributed delay.
The outgoing edges are equipped with probabilities, such that they allow the
modelling of a probabilistic choice among the successor states.
By introducing the concept of initial and terminal states and referencing of (sub-
) state charts, state charts can be organized in a modular fashion. It seems to
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be straight-forward to also allow the composition of state charts via the sharing
of variables and/or the joint execution of activities (cf. Sec. 2.3). A stochastic
extension of UML state charts is described in [15].

Generalized stochastic Petri Nets A generalized stochastic Petri Net (GSPN) is a
bi-partite directed graph, which consists of a set of activities (called “transitions”
in the usual Petri net terminology) and a set of places. The current state of the
system is given by the current marking, i.e. the number of tokens contained in
each place, which means that each place of the GSPN can be regarded as a state
variable of the overall model. The dynamic behaviour is specified by the activity
firing rule. For specifying timed behaviour, activities are either executed after an
exponential delay or instantaneously, where the race condition among competing
activities must be resolved. A profound overview of GSPNs can be found in [3].
In order to enable the specification of complex GSPNs, it is possible to combine
different (sub-)nets via the sharing of places. Furthermore, concepts known from
stochastic automata and stochastic process algebras have been extended to the
area of GSPNs, such that also the composition via activity-synchronization is
applicable, e.g. [7,13] (cf. Sec. 2.3).

Stochastic Activity Networks Stochastic Activity Networks (SAN), introduced in
[33], resemble GSPNs. A state of a SAN can also be described as a tuple of state
variables, where each refers to a specific place of the net. In addition to GSPNs,
SANs allow the use of so called input and output gates. These gates can be seen
as an enrichment of the enabling predicates (guards) and the execution functions
of the connected activities. SANs also allow the association of each activity with
a set of “cases”, where where the individual execution probability is determined
by the specific case-individual weight. SANs allow the use of not only exponential
distributions but also general distributions for the delay of activities. However,
in the context of this chapter, we are occupied with Markovian models, thus
we only consider Markovian and non-delayed activities. The SAN modelling
formalism includes operators for composing submodels via the sharing of places
(a general Join and a special Replicate operator). Furthermore, it is also possible
to compose submodels via the joint execution of activities.

Stochastic process algebras A stochastic process algebra (SPA) specification is
built with the help of operators for action prefix, (guarded) choice, (implicit or
explicit) recursion, parallel composition, etc.. Consequently, the state of the pro-
cess may be described by the values of the local process variables and a process
counter. Actions can be timed, i.e. they are equipped with rates, or in some cases
also non-delayed, i.e. instantaneous. Examples of stochastic process algebras can
be found in [9,14,11,12].
An important concept of process algebras is constructivity: (a) Similar to stochas-
tic automata, a system can be built in a compositional manner, where activity-
synchronization (cf. Sec. 2.3) is employed for combining the individual process
instances. (b) Process algebras are equipped with notions of equivalence of pro-
cesses, which allows one to replace processes with simpler ones, such that the
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overall system becomes smaller, but exhibits the same functional and timed be-
havior. In recent years, aspects of constructivity have been adopted to other
high-level model description methods, where especially the compositional con-
struction of high-level models plays an important role [13].

Remark: Timed and untimed activities. Most high-level Markov modelling meth-
ods feature the use of Markovian activities, i.e. activities whose execution delay
is sampled from an exponential distribution, and the use of non-delayed, i.e. in-
stantaneous activities. Therefore, after transformation of the high-level model
into its underlying Markov reward model, two kinds of transitions between pair
of states exist: immediate and timed ones. Timed transitions are taken with an
exponential delay, whereas instantaneous transitions are taken immediately. It
is is evident that within states with outgoing immediate and timed transitions,
the latter will never be taken, known as the maximum progress assumption.
The system will spend non-zero time only in states which can exclusively be
left via outgoing timed transitions. States of such kind are denoted as tangible,
whereas states to be left via immediate transitions are denoted as vanishing. In
case a vanishing state can be left via more than one immediate activity, the non-
determinism has to be resolved. This is done by assigning probabilities to each
immediate transition. The result is a transition matrix T , where some entries
refer to transition probabilities and some to transition rates. As known from the
literature, e.g. [3,6], T can be converted into a pure transition rate matrix by
eliminating all entries referring to vanishing states. This elimination can be done
either at the level of the high-level model or at the level of the state space [2]. For
simplicity we only consider high-level model descriptions with timed activities.

Composition of high-level model descriptions The high-level model is
constructed in a modular and hierarchic way by specifying the type of interaction
between a given set of submodels.

Sharing of state variables. If a high-level modelling formalism employs (local)
variables, it is possible to compose submodels by merging sets of local variables
(J ) [33]. This technique is commonly denoted as sharing or joining of state
variables. In the following, we assume that (global) variables are shared among
submodels. Local variables with the same name are consequently overloaded by
the global definitions.

Joint activity execution. When composing submodels via joint activity execu-
tion, submodels are executed in parallel, but a subset of dedicated activities
has to be executed jointly by all participating partners. Different approaches
concerning the type of synchronizing activities exists, with different schemes for
computing the rate of synchronised activities. In the following we will employ
the operator S1‖ActSS2 for specifying the synchronization of submodel S1 and

S2 over all activities appearing on the set ActS , which means that activities with
the same label are executed synchronously.
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Pure interleaving. If no interaction among the submodels takes place, one speaks
of pure interleaving. In this case, the submodels are in fact (disjoint) partitions
of the overall model executing concurrently. Pure interleaving is the special case
of joint activity execution and sharing of state variables, in case the set of objects
over which the submodels interact is empty. In this case we write S1‖S2.

Running Example. Throughout this chapter, we employ a running example to
illustrate the concepts. The example does not model a particular real system, it
is just for demonstration purposes. The high-level description of the example is
shown in Fig. 1. It is a multi-formalism model, where the overall model consists of
two SPN submodels and three SPA submodels. Using SPA notation, the overall
model is given by:

System := processor(K,L)‖
exceptionHandler(K)‖reset,γ , exceptionHandler(L)‖
User1(K)‖User2(L).

The submodels interact via the global variables K and L, as they are passed
by name into the instances of the submodels. The notation ‖reset,γ means that
the two instances of submodel exceptionHandler(.) interact by synchronizing
the execution of activity reset, with γ as the resulting transition rate of the
synchronized activities. An example of a performance variable w. r. t. this high-
level model is given in Fig. 6. There, we define a performance variable Avail
which consists of the sum of two rate reward functions, r1 and r2 respectively
(defined in a pseudo C notation). We obtain a rate reward value of 1 for each
state where either K or L are 0 and a rate reward value of 2 for the initial system
state (where both K and L are 0).

2.4 Symbolic represententation of Markov Reward Models

In this chapter we make use of zero-suppressed Multi-terminal Binary Decision
Diagrams (ZDDs) [22] which we introduce in the following, together with their
use for encoding MRMs.

The ZDD data structure and its associated algorithms ZDDs are directed
acyclic graphs with a dedicated root node. If they are ordered and reduced, they
allow (weakly) canonical representations of pseudo-Boolean function, i.e. of func-
tions of the kind f : B|V| → R, with V := {v1, . . . , vn} as finite set of (Boolean)
function variables. As we will see below, transition rates of the Markov reward
model are interpreted as function values of transition functions and therefore
stored within the terminal nodes of a ZDD.

A Binary Decision Tree (BDT) [25] is a binary tree B := { V, K, value, var,
then, else }, where:

– V is a finite and non-empty ordered set of boolean variables,
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Figure 1. Running Example: A high-level model composed from heterogeneous sub-
models by sharing variables and synchronizing activities.
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– K = KT ∪ KNT is a finite non-empty set of nodes, consisting of the disjoint
sets of terminal nodes KT and non-terminal nodes KNT ,

– the mapping var : KNT 7→ V is defined,
– the mapping value : KT 7→ B is defined,
– the functions else, then : KNT 7→ K are defined, and
– a function getRoot : B 7→ K yields the dedicated root node.

For the BDT to be ordered the following constraint must hold:

∀u ∈ KNT :
then(u) ∈ KNT : var(then(u)) � var(u)
else(u) ∈ KNT : var(else(u)) � var(u).

where �⊆ V × V is a fixed ordering relation.
The BDT becomes a Multi-terminal BDT [1] if we allow the terminal nodes to
also hold other values than 0 and 1, which can be easily achieved by extending
the definition of function value accordingly. In the following are only concerned
with the ordered multi-terminal case.

A Multi-terminal BDT becomes a Multi-terminal zero-suppressed BDD (ZDD
for short) by applying the following two reduction rules:

(1) Non-terminal nodes whose 1-successor is the terminal 0-node are skipped.
(2) Isomorphic subgraphs are merged.

The first rule is the one originally proposed for zero-suppressed BDDs by Minato
[27], and the second rule is the same as for standard BDDs.

For a ZDD it is important to know the set of Boolean variables on which it de-
pends (since skipping a Boolean variable level means that that variable takes the
value 0). This is especially important in multi-rooted DD environments as imple-
mented in packages such as CUDD [36]. Here, ZDD-nodes lose their uniqueness if
the represented functions have different sets of input variables. We define ZDDs
to be partially shared if they do not necessarily have identical sets of Boolean
variables, leading to different semantics of skipped levels while traversing the
ZDDs. For this reason, we developed an algorithm for efficiently manipulating
partially shared ZDDs, denoted as ZApply-algorithm, which is an extension of
Bryant’s famous Apply-algorithm [4]. Our algorithm which is described in [24]
allows to apply boolean and arithmetic operators to ZDDs, where the opera-
tors mainly differ in the handling of the terminal nodes; we exploit the dualities
+ = ∨ and · = ∧ in our notation from now on. Besides the ZApply-algorithm we
also employ the algorithm Abstract(·, S,Z) which allows the all quantification
of a ZDD Z w. r. t. variables of set S.

ZDD-based representation of Markov reward model By explicitly gen-
erating system states and state-to-state transitions, a CTMC for a given high-
level model can be constructed. The CTMC defines a transition system T ⊆
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(S × Act × R+ × S). Each transition of T can encoded by applying a binary
encoding function Encode. This allows us to transforms each transition of the

CTMC i
λ→ j into a bit-vector. The individual bit positions correspond to the

input variables of the ZDD, where we have the following convention:

– s-variables hold the encodings of a source state,
– t-variables hold the encodings of target states and
– the exponential (transition-)rate goes into the terminal node.

Following a widely used heuristics, the variables are ordered in an interleaved
fashion: s1 ≺ t1 ≺ . . . ≺ sn ≺ tn. This encoding yields a pseudo-Boolean function
for each finite state CTMC.

In a similar fashion one may encoded the set of reachable states, the rate and
impulse reward functions. The corresponding ZDDs take hereby solely the s-
variables as input.

Running Example. For the high-level model specified in Fig. 1, Fig. 2.A - C
sketches the above encoding scheme: The CTMC underlying the high-level model
is depicted in Fig. 2.A. An example of a binary encoded (pseudo-) Boolean func-
tion and the corresponding ZDD-based representation is provided by Fig. 2.B
and C. Dashed (solid) lines in the ZDDs indicate the value assignment 0 (1)
to the corresponding Boolean variable on the respective path. The ZDDs are
ordered, i.e. they have the same variable ordering one each path. As the order
is from top to bottom, we omit the arrow heads on the node connecting edges.
For clarity we also omitted the terminal 0-node and its incoming edges. The
arrows pointing towards the top node of a ZDD signal the root node of the re-
spective ZDD. The ZDDs are reduced and zero-suppressed, i.e. we do not show
isomorphic nodes and we do not show nodes whose outgoing 1-edge leads to the
terminal 0-node.
The variables ki, k

′
i, li, l

′
i in the table of Fig. 2.B report the bit-value of the

respective boolean (state) variable employed for encoding the transitions. The
un-primed variables refer to the values of the bit positions of the encoded state
variables before the transition has taken place, i.e. they refer to the s-variables
in the above encoding scheme. The primed variables refer to the target state,
i.e. the t-variables. Fig. 2.B and C also show the binary encodings and ZDD-
based representation of a reward function w. r. t. the variables K and L of the
high-level model, where we specified the reward function in Fig. 2.B and in a
C-like expression.

3 Scheme for constructing a CTMC from its
multi-formalism model description

The scheme presented in the following makes it possible to treat different high-
level modelling formalisms in a more or less black-box manner. The scheme only
builds on some basic properties derived from the structure of any high-level
model making use of variables and activities.
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3.1 Structural properties of high-level models

We define a high-level model as a quadruple (S, s ε,Act, Con), with

– S := {s1, . . . , sn} is an ordered set of state variables. As each state variable
can take values from a finite domain, the states of a high-level model can be

written as a vector of integers s ∈ S ⊂ N|S|0 .

– s ε is the high-level model’s initial state, i.e. it provides the initial value
assignment for the state variables.

– Act := {n, l, . . . , z} refers to the set of activities, the execution of which
allows the model to evolve from state to state.

– With Con ⊆ (S×Act)∪ (Act×S) we address a connection relation, where
we define a state variable si and an activity l as connected iff si influences
the behavior of l or si changes its value if activity l is executed.

Based on the connection relation Con we define the set of dependent state vari-
ables for each activity l:

SD
l := {si | (si, l) ∈ Con ∨ (l, si) ∈ Con}

The complementary set SI
l = S \SD

l denotes the independent state variables,
i.e. the ones which neither influence the behaviour of activity l nor can they
change their values once l is executed. Based on the above definition we define a

projection function χ
l
: N|S|0 −→ N|S

D
l |

0 for each activity l ∈ Act. This function
extracts the sub-vector w. r. t. activity l’s set of dependent state variables and
w. r. t. a state s, where for simplicity the shorthand notation: sdl := χ

l
(s ) is

employed by us. The partial state vector sdl is called the activity-local marking
of state s (w. r. t. activity l). The above definition of dependent state variables
enables one furthermore to define a reflexive and symmetric dependency relation
ActD ⊆ Act×Act where:

(k, l) ∈ ActD ⇔ SD
k ∩SD

l 6= ∅. (9)

According to this, two activities l, k ∈ Act are called dependent if they have at
least one state variable in common. In total this gives one a set of dependent
activities for each activity l:

ActDl := {k ∈ Act | (l, k) ∈ ActD}. (10)

Please note that the above definition is reflexive, hence we have l ∈ ActDl .
The above sets are important for keeping explicit state space exploration par-
tial, since they allow to execute a selective breadth-first-search scheme, rather
than exhaustively enumerating and encoding the states of a model’s underlying
Markov Reward Model.
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Running Example For the example of Fig. 1 we have Act := {inita, initb, proca,
procb, procboth, reset′1, reset′2} as set of activities, where according to the above
concept each activity possesses its individual sets of dependent and independent
state variables, e. g. activity inita only contains variable K in its set of dependent
state variable (SD

a := {K}). As state variable K is shared among different sub-
models, we also have that inita is in a dependency relation with proca, procboth
and reset′1, which yields ActDa := {proca, procb, reset

′
1}.

The operational semantics of a modelling formalism is irrelevant for the dis-
cussion to follow. This is because the proposed scheme relies on (partial) standard
state space exploration, which makes it applicable for any kind of (state-based)
high-level modelling formalism. The only two things which matter are the fol-
lowings.

Guard functions For a given state s and a given activity l, a test method (aka
guard) has to be available which decides whether or not l is executable in state

s. Formally: guardl : N|S|0 → {true, false} where for guardl(s) = true one says
that activity l is enabled in state s.

Transitions generating functions In case l is enabled in a (source) state s, there

is a method which returns the resulting (target) state t ∈ N|S|0 . This function

δl : N|S|0 → N|S|0 is commonly denoted as transition function. In the following,
target states will be equipped with superscripts which refer to the sequence of
activities, i.e. δl executions, which led to the respective state, e. g. for s ω with
ω := (α, . . . , ζ) ∈ Act∗ the state descriptor s ω refers to the activity execution
sequence α, .., ζ with s ω := δζ(..δα(s ε)..). In this line, s ε addresses the high-
level model’s initial state.

Rate returning functions When executing l in a state s one needs a method

which returns the execution rate of l. This function ηl : N|S|0 → R+ is addressed
as rate returning function. Commonly it is evaluate for the source state, i.e. a pri-
ori to the execution of the δ-function.

The concrete implementations of ηl, guardl and δl are irrelevant for the discus-
sion to follow. It is only required, that the evaluation of these functions solely
depend on the dependent SVs of the respective activity.
Employing all ηl, guardl and δl-functions of a high-level model in a fixed point
computation allows one to construct the activity-labeled CTMC for a given high-
level model, the stochastic activity-labeled transition system T ⊆ (S×Act×R+×
S) respectively. In this context, S ⊆ N|S|0 addresses the model’s set of (reachable)
states.

Running Example. For the example of Fig. 1 the guard function guardproca is
given by the following (C-like) expression (K > 0)?true : false. At model con-
struction time, the local variable x of the instance of submodel Processor is
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bound to global variable K, whereas local variable y is bound to global variable
L (see Fig. 1). As another example one may consider activity inita, with the
expression (K < 2)?true : false as guard function.
For proca we also have δproca defined by the expression K = K − 1 and ηproca
by the constant expression α. In case of activity inita we obtain the expressions
K = K + 1 and (K + 1) · µ for the δ, η-function respectively.

As already pointed out, we use joint variables and / or activity synchronisation
for constructing models in a hierarchic manner. We assume that all state vari-
ables have a unique identifier throughout all submodels. Hence, sharing of state
variables is realized by (re-)using the same (global) variable in the respective
submodels. This naming convention is sufficient when it comes to the construc-
tion of the overall model’s MRM at the level of decision diagrams.
Dealing with activity-synchronization also requires to define a naming conven-
tion. We assume that activities to be synchronized carry the same (main) label
which we prime and index accordingly. The index refers to the respective in-
stance of a submodel participating in the synchronization. Moreover, hierarchic
use of synchronization operators, yield a multiset ActS of activity labels, where
each of its elements refers to a set of (sub)activities to be jointly executed,
i.e. synchronized. However, sets of synchronizing (sub)activities referring to the
same (main) label and which are directly adjacent within the model description
need to be merged. E.g., X‖aY ‖X‖aY results in the multiset ActS := {a, a}
where each symbol references it set of (sub)activities, here : {a′X1

, a′Y1
} and

{a′X2
, a′Y2
}. In case of X‖aY ‖aX‖aY we would need to merge the sets accord-

ingly, yielding the (multi)set ActS := {a} and the set {a′X1
, a′Y1

, {a′X2
, a′Y2
} of

(sub)activities. In terms of the model of Fig. 1, we have a single element on the
multiset ActS := {reset} and a single set of subactivities {reset′1, reset′2}.
Beyond the naming convention and as far as the explicit exploration procedure
is concerned, the handling of activities which take part in a synchronisation is
straightforward: the (sub)activities are treated just like any other activity. Syn-
chronization is only considered, when carrying out the ZDD-based computations
for constructing a high-level model’s CTMC.

3.2 The scheme at glance

As main goal we hope to limit the number of explicit state enumerations and
individual encoding of transitions as far as possible, as this is computation-
ally expensive. The vast majority of transitions will be obtained by ZDD-based
computations, where we generate all possible transition interleavings by cus-
tomized cross-product computations. In a nutshell, the proposed technique is
round-based, where a round is made of (a) explicit state space exploration steps,
(b) individual encoding of the generated state-to-state transitions, (c) pure sym-
bolic, i.e. BDD-based manipulations of the generated transition system and (d)
a re-initialization procedure for preparing the next round. Carrying out these
steps in a fixed point computation, ultimately delivers the complete set of reach-
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able states and transitions of the high-level model under analysis. These steps
will be briefly sketched in the following paragraphs.

Explicit generation and encoding of transitions For generating symbolic repre-
sentations of the state-to-state transition functions we employ the activity-local
scheme as presented in [20]. This sheme gives one a ZDD for each activity which
we denoted ZDD Zl in case of a non-synchronizing activity l, and which we de-
noted ZDD Zl′i for a synchronizing activity l′i.
It is important to note, that the number of executions of synchronizing activi-
ties may not be bounded when exploring them in isolation. This situation can
be easily caught by simply limiting the number of explicit state explorations to
be executed at once, i.e. per round.

Symbolic manipulations for obtaining set of states and transitions For obtaining
a symbolic representation of the model’s set of reachable states we employed
a symbolic composition scheme which generates supersets of transitions. These
potential transition functions are employed in a (standard) symbolic reachability
analysis which at termination delivers a ZDD ZR, which is the symbolic repre-
sentation of a model’s set of reachable states.

The algorithms implementing the above steps are shown in Fig. 3. In the follow-
ing we detail now on selected aspects of the scheme.

3.3 Implementation details

For convenience we introduce the following sets:

Dl := {s i, t i|si ∈ SD
l } and Il := {s i, t i|si ∈ SI

l }, (11)

where s i and t i refer to those Boolean variables which encode the value of
dependent state variable si in the source and target state of a transition with
respect to activity l. Consequently the set Il refers to l’s set of independent SVs,
i.e. their Boolean counterparts, respectively. In case it is required we will make
use of the symbols Isl,D

s
l and Itl,D

t
l when referring to the sets restricted to the s-

or t-variables.

In lines 1 - 3 of the top-level algorithm (Fig. 3.A) some data initialization is
done: ZDD ZR is set to the initial state s ε and the exploration and encoding
buffers StateBuffer and TransBuffer are allocated. The buffer StateBuffer is used
for holding tuples of states and activities, where the activities are supposed to
be executed in the state. The buffer TransBuffer holds transitions to be explicitly
encoded and inserted into a ZDD. Routine Initialize() fills StateBuffer with
the (initial) elements to be explored, i.e. with tuples consisting of the initial
state and an activity to be executed in this state, where we have a tuple for each
activity enabled in the initial state.
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Explicit Generation of states and transitions Routine Explore() gener-
ates a symbolic representation Zl for each activity, including the (sub-)activities
l′i. The symbolic structure is generated by explicitly exploring and individually
encoding the detected transitions. This step is repeated until no new transi-
tion can be detected or a pre-defined maximum on the explicit state exploration
steps is reached. This latter maximum is necessary, as the exploration steps of
any synchronizing (sub-)activity may not be finite when considered in isolation.
The most distinguished feature of function Explore is the selective bfs explo-
ration and encoding of transitions. A selective bfs scheme is obtained by only
executing activity k in a state s ωl iff activity k depends on the last activity the
execution of which brought the state s ωl about (here l) and the activity-local
marking of the current state s ωldk has not been tested for enabling activity k

before (k ∈ ActDl ∧ s ωldk 6∈ Eik. One may note that we do not need to expand all
sequences of activity executions, as this is done on the level of symbolic reacha-
bility analysis.
For simplicity we store the activity markings which already have been tested on
activity k in a respective symbolic structure denoted Ekl .
The above ideas are implemented with the help of two complementary while− loops
of the algorithm of Fig. 3.C.

The upper loop fetches states and lists of activities (s l,F ls) from the (explo-
ration) buffer StateBuffer (line 3) and computes for each activity k ∈ F ls the
successor state s lk and the transition rate w. r. t. the given source state s l (line
5 and 6). The thereby established (stochastic) transition is inserted into the
(encoding) buffer TransBuffer (line 7). and these steps are repeated until all ac-
tivities of F ls have been processed. This inner for-loop is repeated until all
tuples of states and activities lists have been fetched from the exploration buffer
StateBuffer.
Now, we execute the lower while − loop which reads the individual transitions
from the encoding buffer, individually encodes them and inserts the symboli-
cally represented transition into the respective (activity-local) ZDD, where the
encoding is implemented by function Encode (line 8 and 10). As long as the
maximum number of exploration steps has not been reached (line 11), one com-
putes the set of those activities which need to be considered for being explored
in the state under consideration. The obtained set F ls l of activities is a subset
of those activities which are in the dependency relation with the activity the
execution of which brought the target state about (line 13), and their enabled-
ness w. r. t. the state under consideration as not been tested in a previous round
(line 14). For testing if an activity was already considered for execution we main-
tain a symbolic structure for each activity k (Elk). This structure represents all
activity-local markings the resp. activity was already tested or explored with. It
is updated in line 16. The obtained set of enabled activities, together with the
state under consideration is then inserted into the exploration buffer StateBuffer
(line 19).
One may note that we only explore activities on states if the resp. activity was
not already tested in that state and if the activity is enabled (line 14). As we
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also only test activities which are on the dependency set of the activity whose
execution brought the currently considered target state s l about, here l, we im-
plement a selective breadth-first search scheme.
Both while-loops of Algo. 3.C are executed sequentially until we reach a fixed
point, i.e. StateBuffer = ∅ ∧ FireCnt > MAX holds (line 22). Now, we have
visited all states reachable from the initial state(s) through sequences of depen-
dent activities. In case the maximum number of state enumerations has been
reached, i.e. FireCnt > MAX holds, we resume with state enumeration and
transition encoding in the next round of partition-local explorations only, if
re-initialization (Initialize) indicates the necessity of doing so. As already
mentioned, this catches the case that possible exploration of (sub-)activities in
isolation is unbounded a priori to their synchronization.
Once routine Explore has terminated that follows next, is the execution of rou-
tine SymbReach for obtaining a model’s set of reachable states.

Symbolic reachability analysis SymbReach() (Fig. 3.D)) executes a symbolic
reachability analysis in a fixed point iteration, organised here as a breadth first
search; a more sophisticated scheme can be found in [20]. At first, the sym-
bolic transition functions are extended by identity structures, assigned to those
positions referring to the independent state variables of the respective activity.
Building the union over all the extended symbolic transition functions yields
the superset of transitions (line 2-9). Note that the synchronizing activities need
to be combined via product-building before insertion of the identity structure,
in order to implement their synchronized execution at the level of ZDDs. Once
the symbolic transition function of the overall model is constructed (line 5), the
actual symbolic reachability analysis can start.
Symbolic reachability analysis begins with the known states, i.e. either with the
system’s initial state or the states generated in previous rounds, initialization
of Zunex in line 1. In line 8 we compute the set of transitions emanating from
the symbolically represented set of (currently) reachable states, whereas line 9
restricts these transitions to the encodings of target states and does a relabelling
of the t into s-variables. The latter operation, denoted {t←− s}, shifts the target
states to source states. In fact, the above steps yield the set of newly reached
states, which serve as input to the next iteration of the surrounding do-while-
loop (line 6-7). Once a fixed point is reached, the set of (currently) reachable
states has been generated.
The paper [19] introduces optimizations which make the symbolic composition
procedure (line 2-5) a priori to symbolic reachability analysis unnecessary. At
the bottom-line, [19] introduces a ZDD-operator Execute to be used in the
do-while-loop of routine SymbReach(). This operates executes a symbolic im-
age computation w. r. t. partial transition functions and for ZDD-based state
representations. Moreover, instead of applying a pre-computed synchronisation-
product of the synchronizing activities in a single step, they can simply be ex-
ecuted sequentially. For conciseness, we do not discuss this any further, the
interested reader is referred to [19] for details.
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At termination, routine SymbReach() has constructed the set of all currently
reachable states. This may include states which result from the interleaved ex-
ecution of independent activities. These states must be tested if they trigger
new explicit model behaviour, not covered by the symbolic transition functions
encoded by ZT . For detecting such states we (re-)execute routine Initialize().

Re-initialization A re-initialization of the scheme is necessary, as the rou-
tine Explore() only extracts traces of dependent activities. Interleaving with
independent activities is only done at the level of the symbolic representations.
Therefore, states which are reached on execution traces consisting of the inter-
leaved execution of independent activities may result in new model behavior,
which requires a re-initializing of the scheme. This re-initialisation is realised
by re-executing routine Initialize() which fills StateBuffer with the new el-
ements, i.e. here with tuples consisting of a state and an activity. An activity
l and a state s are considered by routine Initialize for exploration iff the
activity-local marking of state s has not already been tested for enabledness by
this activity (cf. line 2 of Algo. 3.B) and if the activity is enabled in this state
(cf. line 6 of Algo. 3.B). If such states exist, a re-executing of the complete state
space construction scheme must follow.
In case routine Initialize() as called in line 8 of the main routine does not
find states triggering new transitions, a global fixed point has been reached and
the scheme terminates.

Construction of the CTMC At termination, the above scheme delivers a set
of (activity-local) transition systems, each induced by a dedicated activity and
represented by a respective ZDD Zl. Together with the ZDD-based representa-
tion of the set of reachable states ZR, this allows us to construct the ZDD-based
representation of the CTMC as follows:

ZR ·

 ∑
l∈ActS

∏
∀l′i

Zl′i

 · ρl · 1⊥ <Il> +
∑

k∈Act\ActS

Zk · 1⊥ <Il>

 (12)

1⊥ <Il> is an identity structure over the set of activity l’s set of independent SVs,
their boolean counter parts respectively. The insertion of identity structures ac-
counts for the fact that the independent variables maintain their values when
the respective activity is executed. The rate ρl denotes the transition rate of the
synchronised activities.
The above composition scheme resembles the Kronecker-operator-based approach
of [30]. However, as the BDD-operators can cope with partition-wise nested vari-
able orderings, the composition scheme of BDDs is much more flexible and can
therefore be applied to almost arbitrarily structured high-level models which
makes the here presented scheme extremely flexible.
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Running Example . Fig. 4.A-F. illustrates the steps taken for the running
example of Fig. 1. Fig. 4.A shows the ZDD encoding the set of reachable states
at the beginning (when only the initial state (0,0) is known), and at the end of
round 1. In Fig. 4.B, the fraction of the CTMC generated after the first round
of the main routine is depicted. It contains only those transitions which can
be reached on paths of dependent activities, i.e. the activities executed on the
different paths have at least pair-wise, non-disjoint sets of variables. In part C
of the figure, the transitions generated in the second round are shown, which
are enabled due to the execution of independent activities. All of the respective
(interleaved) execution sequences are generated on the level of ZDDs, rather
than doing this explicitly.
The transitions resulting from the synchronisation of activities are also solely
generated at the level of ZDDs. Non-synchronized executions are automatically
discarded, due to the symbolic composition scheme. The remaining parts of the
figure (D - F) depict the ZDDs encoding the activity-local transition functions,
where part E shows where identity structures are inserted to reflect the fact
that state variables not affected by a particular activity remain unchanged. The
resulting transition system and set of reachable states has already been given in
Fig. 2.C.

4 Scheme for the ZDD-based handling of performance
variables

Performance variables, consisting of of rate reward and/or impulse reward def-
initions, enable the modeler to define complex performability measures on the
basis of the high-level model, rather than on the level of the underlying CTMC.

Structural properties of rate reward returning functions Each rate reward func-
tion Rr(s ) has a set of input variables SD

r ⊆ S which is the set of state
variables on which the computation of the rate reward value actually depends.
Analogously to activities, we can extend this set to the Boolean variables used
for encoding the respective state variables within the ZDD structures, denoted
by the sets Ds

r and Isr, (containing the rate reward dependent Boolean variables
/ the reward independent Boolean variables). Here we are only dealing with
state encodings and not transition encodings, hence the above sets of Boolean
variables are restricted to the set of s-variables. Analogously to the δ-functions,
the concrete implementation of a reward returning function Rr is irrelevant.

Structural properties of impulse reward returning functions An impulse reward
i is generated each time an activity k from the impulse reward’s set of activities
Acti is executed. The value of the impulse reward can be constant or state-
dependent. This allows us to define the impulse reward returning function for
impulse reward i as follows:

Ii(s ) :=
∑

k∈Acti∩As

Iik(s) · ηk(s)
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where As is the set of activities enabled in state s, and η is the rate returning
function, both introduced earlier. Iik is the impulse reward returning function of
impulse reward i and w. r. t. activity k. This allows for greater flexibility, as an
impulse reward can be associated with different activities. Moreover, an activity
may produce different reward values for different impulse reward definitions. In
the following we assume that the computation of the impulse reward returning
function Iik solely depends on those positions of s which actually correspond
to state variables of SD

k , otherwise SD
k needs to be adapted accordingly. An

adjustment is irrelevant for the scheme for generating the state space, as the
generation of reward values for transitions and states only take place once state
space construction has terminated. Analogously to rate rewards, we derive the
sets Ds

k and Isk which contain the dependent and independent variables.

For computing the mean and variance of the user-defined performance variables,
the top-level routine ComputePV() defined in Fig. 5.A exploits the following
algorithms.

(1) Algorithm ComputeStateProbabilities for computing the state probability dis-
tribution. This algorithm is not explained here. An overview of numerical
solution methods can be found e.g. in [37]. The adaptations of the numerical
solution methods to the case of BDD-based matrix representations will be
briefly sketched below.

(2) Algorithms MakeRateRewards and MakeImpulseRewards which generate the
ZDD-based representations of the user-defined rate and impulse reward func-
tions.

(3) Algorithm ComputeRew which combines reward information with the com-
puted state probabilities.

In the following we will explain these algorithms.

4.1 Computing state probabilities

Function ComputeStateProbabilities (line 3 of algorithm of Fig. 5.A) delivers the
vector of state probabilities. The iterative solvers follow an approach in which
the generator matrix is represented by a symbolic data structure and the prob-
ability vectors are stored as arrays. For details please refer to [29,38,23].
If n Boolean variables are used for state encoding, there are 2n potential states,
of which only a small fraction may be reachable. Allocating entries for unreach-
able states in the vectors would waste memory space, thereby severely restricting
the applicability of the algorithms. Therefore a dense enumeration scheme for
the reachable states is implemented via the concept of offset-labeling, as first
suggested in [29] for the MTBDD data structure. While traversing the MTBDD
representation of a matrix, in order to extract a matrix entry, the row and col-
umn index in the dense enumeration scheme can be determined from the offset
values, basically by adding the offsets of those nodes where the then-Edge is
taken. In other words, the offsets are used to map the s and t vectors to a pair
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(r, c) of dense row and column indices. Using ZDDs we adapted the concept of
offset-labeling:

– With standard Multi-terminal Binary Decision Diagrams (MTBDDs), skipped
nodes (corresponding to don’t cares) must be reinserted, because they carry
an offset (which is relevant if their then-edge is followed). With ZDDs,
skipped nodes correspond to zero-valued variables for which the offset is
irrelevant. Therefore, in the ZDD case, skipped nodes do not have to be
reinserted, which keeps the symbolic data structure compact.

– Similar to the MTBDD case, a ZDD node may have to be duplicated if
the offset of a shared node is different on different paths (also called “offset
clash”).

The space efficiency of ZDD-based matrix representation comes at the cost of
computational overhead, caused by the recursive traversal of the DD during ac-
cess to the matrix entries. Analogously to [29], we replace the lower levels of
the ZDDs by explicit sparse matrix representations, which works particularly
well for block-structured matrices. We call the resulting data structure hybrid
offset-labeled ZDD (HO ZDD). The level at which one replaces the remaining
ZDD-levels with a sparse matrix representation is called sparse level. It depends
on the available memory space, i.e. there is a typical time/space tradeoff.
For numerical analysis, the Gauss-Seidel (GS) method and its over-relaxed vari-
ant typically exhibit much better convergence than the power method, Jacobi
(JAC) or Jacobi-Over-relaxation (JOR). However, Gauss-Seidel requires row-
wise access to the matrix entries, which, unfortunately, cannot be realized effi-
ciently with DD-based matrix representations. As a compromise we adapt the
so-called pseudo-Gauss-Seidel (PGS) iteration scheme [29] to the case of HO
ZDDs. For doing so the overall matrix is partitioned into blocks (not necessarily
of equal size, due to unreachable states). Within each block, access to matrix
entries is in arbitrary order, but the blocks are accessed in ascending order. PGS
requires only one complete iteration vector and an additional vector whose size
is determined by the maximal block size. Given a HO ZDD which represents
the matrix, each inner node at a specific level corresponds to a block. Pointers
to these nodes can be stored in a sparse matrix, which means that effectively
the top levels of the HO ZDD have been replaced by a sparse matrix of block
pointers. The level at which the root nodes of the matrix blocks reside is called
block level. Overall, this yields a memory structure in which some levels from
the top and some levels from the bottom of the HO ZDD have been replaced
by sparse matrix structures. The choice of adequate sparse and block levels for
converting the ZDD into sparse matrix structures is an optimization problem.
In general, increasing the number of top ZDD levels improves convergence of the
PGS scheme, and replacing more levels at the bottom of the ZDD, i.e. turning
the terminal nodes into sparse matrix structures, improves speed of access. Since
ZDDs are often more compact, their processing requires less CPU-time, if com-
pared to MTBDDs. Due to their lower memory requirements they furthermore
allow the removal of more levels, resulting in an additional speed-up. If the block-
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level meets the sparse-level, as has been described in [26] and [38], all DD levels
have disappeared and the PGS scheme becomes a proper GS scheme, but in most
interesting cases this situation cannot be realized since memory is at a premium.
Our experiments, carried out in [38], showed that using ZDDs an optimal choice
for the block-levels to be removed often lies beyond half of the DD-levels. For
comparison, the heuristic developed in [29] for MTBDDs suggested a third.

4.2 Generating ZDD-based representations of rate rewards

Once the state probabilities are computed, we call the functions MakeRate-
Rewards and MakeImpulseRewards for computing symbolic representations of the
rate reward and impulse reward functions associated with the user-defined per-
formance variables. Again, our algorithms exploit locality, such that the explicit
evaluation of reward functions is limited to a small fraction of states, rather than
evaluating a reward function for each state.

Algorithm MakeRateRewards as specified in Fig. 5.B consists of two nested
loops. The outer for-loop processes each rate reward definition contained in a
user-defined performance variable, whereas in the inner while-loop sets of states
are processed. ZU , initialized with the set of reachable states in line 2, contains
all those states which still need to be considered for reward computation. First,
an arbitrary state is extracted from the set of reachable states (line 4). This
state is reduced to the positions referring to the rate reward-dependent state
variables by an abstraction operation. Next, r’s rate reward is calculated w. r. t.
the extracted state vector, which can be done by executing the respective rate
reward function Rr(s) (line 6). In case the obtained reward rew is not equal to
zero, Zs, ZR and rew are multiplied. The newly obtained pairs of full (!) states
and rate rewards are then added to the previously computed pairs as represented
by ZDD Rr (line 8). Note that the operation Zs · ZU in line 8 yields the set of
reachable states which are all equivalent concerning the variables of Ds

r. Line
9 removes all these states from the set of states represented by ZU . Once all
rate reward-dependent partitions of ZR are processed, i.e. once ZU is empty,
the reward computation proceeds with the next rate reward (outer for-loop).
At termination, a ZDD-based representation for each rate reward function is
generated.

4.3 Generating ZDD-based representations of impulse rewards

Fig. 5.C. shows the algorithm MakeImpulseRewards for calculating impulse re-
ward functions. Each activity may generate different impulse rewards for dif-
ferent impulse reward definitions, thus the algorithm iterates over three nested
loops. The two outer for-loops process each impulse reward definition and its
respective sets of activities. The inner while-loop processes one state for each
activity-local marking in which the activity is enabled and calculates the re-
spective impulse reward (line 5-12). In case the obtained impulse reward for a
state is not equal to zero, the ZDD-based representation of all equivalent states
(i.e. those with the same activity-local marking) is multiplied with the impulse
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reward imp (line 10-11). Due to the construction of ZU (line 4), the obtained
pairs of states and impulse rewards are automatically weighed by the execution
rate of the activity. The newly obtained pairs of full states and weighed impulse
rewards are then added to the set of previously computed impulse rewards. This
procedure is repeated until all “activity-local” markings are processed, i.e. until
ZDD ZU is empty.

4.4 Computing the performability measures

From the symbolic representations Zrate,Zimp and the probability vector, the
first and second moment of performance variable p is compututed by simultane-
ously traversing the offset-labeled ZDD ZoR and Zrate, Zimp respectively. This is
the idea behind algorithm ComputeRew of Fig. 5.D: while traversing the ZDDs,
the state index of the traversed path is obtained by summing over the offsets of
nodes (line 7-8 of algorithm of Fig.5.D). Once a terminal non-zero node for ZoR
is reached, the index of the state currently under consideration is determined,
here contained in variable off (offset). The index allows one to fetch the re-
spective probability value from the vector of state probabilities and compute
(successively) the mean and second moment of the user-defined reward (line
2-3).

4.5 The top-level algorithm

Routine ComputePV() puts everything together: in line 1, we restrict the CTMC
to its reachable portion. This is followed by applying the offset-labeling scheme,
thereby generating ZDD ZoR. Depending on the employed solution method, the
state probability vector refers either to the steady state probability distribution
or the transient state probabilities at time t. In line 4 and 5 our algorithm gen-
erates the symbolic representation for each rate and impulse reward function as
contained in the user-defined performance variables.
The for-loop of lines 6-15 processes each of the user-defined performance vari-
ables, where in lines 7-8 the respective reward functions are aggregated and
where the call to ComputeRew delivers the mean and second moment of the re-
ward function under consideration. After using these values for computing the
variances of the rate and impulse reward (lines 13-14) the algorithm resumes
with the next performance variable until all user-defined performance variable
have been processed.

4.6 Running Example

Continuing our running example, the ZDD-based representation of the user-
defined performance variable Avail (already introduced earlier) is depicted in
Fig. 6. It consists of the sum of two rate reward functions, r1 and r2 respectively
(see Example in Sec. 2.3). Fig. 6.B depicts the ZDDs obtained for the rate reward
functions Rr1 , the skipping of the variables k1, k2 refers to the fact that they
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are not in the support of rate reward function Rr1 . The combined rate reward,
i.e. a ZDD-based representation of performance variable Avail, is also given
Fig. 6.B, together with the offset labeled ZDD Zreach. As the latter encodes
the set of reachable states, it allows a dense numbering of the state space via
the concept of offset-labelling as already mentioned above. Fig. 6.C shows parts
of the recurison tree of algorithm ComputeRew when executed on ZDDs ZAvail
and Zreach. The return values are indicated at the bottom-line. For conciseness,
the parameters m and v are omitted, as they are only used for propagating the
return values (mean and second moment of the reward function).

5 Conclusion

This chapter reviewed an efficient semi-symbolic technique for constructing a
compact, ZDD-based representation of a high-level model’s reachable state space,
as well as its underlying Markov Reward Model. As its key feature, the presented
approach is independent of the modelling formalism, which makes it applicable
in the context of multi-formalism modelling environments (as shown by a small
running example). Our implementations were carried out in the Moebius per-
formance analysis framework [28], but the method could easily be adapted to a
wide range of tools. The independence of the modelling modelling formalism has
its price, namely it comes with explicit enumeration and encoding of states and
transitions, and reward evaluations for individual states. For keeping this over-
head as low as possible, the presented technique exploits the dependency relation
among activities, reward returning functions and state variables of the high-level
model. This features a selective handling of individual states, thereby effectively
limiting CPU-time and peak memory consumption. Without such a feature, any
BDD-based technique handling individual states could not succeed, since the
peak number of BDD-nodes and the related memory requirements easily exceed
the capacity of today’s computers.
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Figure 2. Running example: CTMC and ZDD-based representations of the underlying
Markov reward model
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Figure 3. Algorithms for the exploration scheme
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Figure 4. Running Example: From a multi-formalism model to the ZDD-based repre-
sentation of the activity-local transition functions
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(A) Top level algorithm

ComputePV()
(1) ZT = ZT · ZR
(2) ZoR := OffsetLabel(ZR)
(3) prob := ComputeStateProbabilities(ZoR, ZT )
(4) MakeRateRewards(ZR)
(5) MakeImpulseRewards(ZR)
(6) for p ∈ PV
(7) Zrate :=

∑
r∈Rp Rr

(8) Zimp :=
∑
i∈Ip Ii

(9) n := getRoot(Zrate), r := getRoot(ZoR)
(10) ComputeRew(n, r, 0, p.r mean, p.r var)
(11) n := getRoot(Zimp)
(12) ComputeRew(n, r, 0, p.i mean, p.i var)
(13) p.r var := p.r var − p.r mean2

(14) p.i var := p.i var − p.i mean2

(15) end for

(B) Generating symbolic rate reward functions

MakeRateRewards(ZR)
(1) for r ∈ R
(2) Rr := ∅, ZU := ZR
(3) while ZU 6= ∅
(4) Zs := ExtractState(ZU )

(5) s := Encode−1(Zs)
(6) Zs := Abstract(Ztmp, Is

r,+)
(7) rew := Rr(s)
(8) if (rew 6= 0) then
(9) Rr := Rr + rew · (Zs · ZU )
(10) ZU := ZU \ Zs
(11) end while
(12) end for

(C) Generating symbolic impulse reward functions

MakeImpulseRewards(ZR)

(1) for i ∈ I: Z̃T := ZDD2zBDD(ZT)
(2) for k ∈ Acti
(3) Iik := ∅
(4) ZU := Abstract(Z̃T · Zk,Vt,+)
(5) while ZU 6= ∅
(6) Zs := ExtractState(ZU )

(7) s := Encode−1(Zs)
(8) Zs := Abstract(Ztmp, Is

k,+)

(9) imp := Iik(s)
(10) if (imp 6= 0) then

(11) Iik := Iik + imp · (Zs · ZU )
(12) ZU := ZU \ Zs
(13) end while
(14 end for

(15) Ii :=
∑
k∈Acti

Iik
(16) end for

(D) Computing Rewards

ComputeRew(n, r, off,m, v)
(1) if n ∈ KT then
(2) m := m+ prob[off ] ∗ value(n)
(3) v := v + prob[off ] ∗ value(n)2
(4) else if var(n) π> var(r) then
(5) ComputeRew(n, else(r), off,m, v)
(6) else
(7) ComputeRew(then(n), then(r),

r.offset+ off,m, v)
(8) ComputeRew(else(n), else(r),

off,m, v)

Figure 5. Algorithms for the handling performance variables
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Figure 6. ZDD-based representation of Performance Variables
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