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Abstract

In this habilitation thesis (“Habilitationsschrift”), we describe novel techniques
for analysing the behaviour of complex communication systems by means of ad-
vanced stochastic modelling. We are interested in performance and dependability
properties (which aspects are subsumed by the term “performability”) and fo-
cus on Markovian models derived from high-level specifications. It is well known
that the notorious problem of state space explosion can make the storing and
analysis of large models difficult or even infeasible in practice. We approach this
problem by exploiting the structure of the system to be modelled. For compo-
sitional model specification we advocate the use of stochastic process algebras
(SPA), which offer composition operators for building large models from small
components and enable a compositional reduction of the state space on the basis
of bisimulation equivalences. For compact model representation we use binary
decision diagrams (BDD) and extensions thereof. It is shown that such symbolic
representations can be extremely space-efficient, provided that they are built
according to the compositional structure as given by the high-level model spec-
ification. We describe a comprehensive set of model construction and analysis
techniques which rely completely on the symbolic data structures. These include
the BDD construction from explicit representations, symbolic parallel composi-
tion, reachability analysis, elimination of instable states (which are caused by
immediate transitions), computation of bisimilar states and numerical analysis,
which latter is needed for determining the performability measures of the sys-
tem. It turns out that the runtime of numerical computations, in particular of
linear algebraic operations, is currently the bottleneck of the symbolic approach.
We provide a systematic analysis of this problem and propose possible solutions
for speeding up BDD-based numerical analysis. Then we focus our attention on
the type of measure that can be specified and analysed. Traditionally, the pur-
pose of modelling has been to derive state, throughput or more general reward
measures. It is shown that such classical measures are often not sufficient when
studying complex behavioural properties of interest. Therefore we develop a tem-
poral logic for specifying a more general class of performability properties. This
logic is based on actions rather than on elementary state properties and therefore
ideally suited to be used in conjunction with SPA models. We describe model
checking for this logic, i.e. algorithms for checking whether a certain property
actually holds for a given model, and point out that this type of analysis fits in
well with our symbolic approach to model representation. Throughout this the-
sis we refer to software tools that support the described techniques, discussing
special features of the tools that were developed during the course of this work.
These tools are also employed to carry out the application case studies which are
described towards the end of the thesis.
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Chapter 1

Introduction

1.1 Current and future trends in communica-

tion systems

At the beginning of the third millennium, we live in the age of information, and
to be more precise, one could also say that our society has entered the age of
communication. The Internet, in particular since the advent of the World Wide
Web and electronic commerce, has changed people’s lives and already has huge
economical and sociological effects, which tendency will even increase in the fu-
ture. Computers and communication services become more easily accessible and
more and more affordable for a large proportion of the world’s population. In-
dustry pushes a plethora of innovations in the areas of high-speed and mobile
networks, new classes of services and new application areas are being developed
and marketed. Smart mobile phones and personal digital assistants, equipped
with powerful CPUs and lots of memory, and featuring sophisticated applica-
tions such as hand-held Internet browsers, support the trend towards ubiquitous
computing and universal access to virtually unlimited information.

Distributed computing, cooperation between physically remote processes, inter-
operability and information exchange between previously isolated systems are
also of increasing importance in established areas such as software engineering,
the development of information systems or the design of business processes. As an
example, we may mention our own experiences from analysing the communication
system of the hospital of the University of Erlangen-Nürnberg, where during
the late 1990ies proprietary one-to-one communication has been replaced by the
universal exchange of standardised messages, and where currently a distributed

1



2 1. Introduction

component-based healthcare information architecture is being developed [220].
Improving the communication capabilities of legacy systems is impossible without
partly modifying their basic concepts and architecture, and this is usually a very
tedious task.

As a result of these trends, communication systems of immense complexity are
being developed and will need to be developed in the future, and it will be of the
greatest importance that they exhibit functionally correct behaviour and meet
very strict performance and dependability requirements. In the next section, we
argue that modelling and verification will thus play a more and more important
role during the development process of such systems.

1.2 System design and analysis – the role of

modelling and verification

The analysis of systems with respect to their performance is a crucial aspect in the
design cycle of concurrent information systems. Although huge efforts are often
made to analyse and tune system performance, these efforts are usually isolated
from contemporary hardware and software design methodology [123, 156, 185].
This insularity of performance analysis has numerous drawbacks. Most severe,
it is unclear how to incorporate performance analysis into the early stages of a
design, where substantial changes are still not too costly. In these design stages,
system models are nowadays developed by means of semi-formal methods such
as UML or SDL. In order to overcome the insularity problem, there is a growing
tendency towards the integration of performance modelling and analysis into
(semi-)formal methods, such as Petri nets [1, 2], process algebras [163], or SDL
[257, 256]. This integration has potential benefits for the application of both
formal methods and performance analysis: Using a formal method, performance
models of interest are readily available for analysis. Conversely, the availability
of quantitative insight into a design clearly adds extra value to a formal design.

A typical communication system has a complex life cycle, during which a series
of specifications, models, prototypes and products – in general called “artefacts”
– is generated. Starting from an initial idea, from a set of (mostly informal)
requirements and general design criteria (such as practical and economical con-
siderations, compatibility issues, the preferred hardware/software technology to
be used, etc.), the artefacts at subsequent stages are derived partly manually
and partly automatically with the help of tools. Before the actual system exists,
many kinds of analysis have to be performed on these specifications, models and
prototypes, in order to ensure correct system behaviour and detect undesirable
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Figure 1.1: Communication system life cycle: The role of analysis during the
design phase

effects. Fig. 1.1 presents a coarse overview of the life cycle of a communication
system where different types of analysis are sketched at different stages. In par-
ticular, the figure shows that the design phase of a typical communication system
consists of a complex refinement process. As indicated in the figure by the roll-
back arrows, the results of analysis may make it necessary to modify the current
specification or model, or even force developers to go back to earlier stages within
the life cycle. Such rollbacks may be extremely expensive because they require a
lot of time and human effort. Therefore, in order to avoid rollbacks as much as
possible, model-based analysis of system properties at an early stage during the
system life cycle is of very high importance.

The goals of analysis may be manyfold, depending on the current stage of the sys-
tem life cycle: Developers may be “only” interested in the functional behaviour
of the system under development, i.e. in the question, whether the system ex-
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hibits the correct functional behaviour, regardless of performance. On the other
extreme, they may concentrate on the performance, wishing to know whether
the system fulfils certain timing or throughput requirements. However, quite
obviously, for a communication system, functional behaviour and performance
cannot be considered separately since, for the system to function properly, the
right activities have to be performed at the right time.

While monitoring (measurement) [124, 197, 216] can only be carried out once a
functional system (or at least a prototype) has been built, model-based validation,
verification and performance evaluation of certain aspects of system behaviour
can be performed at an early stage, based on the available specifications and
models.

In order to avoid expensive maldevelopments, integration of non-functional – i.e.
temporal – behaviour analysis into the system development cycle plays an ever
increasing role. Therefore, this kind of integration is currently a very active area
of research, both in academia and in industry. As a practical example we mention
the early integration of performance analysis into the system development cycle
with SDL/MSC, involving modelling and simulation [114, 257, 256, 113, 214],
testing [286] and measurement [238].

The focus of this thesis is on the study of temporal properties, based on the anal-
ysis of stochastic models of the system under consideration. Carrying out this
kind of model-based performance evaluation, performance indices are derived by
mathematical analysis techniques, usually dependent on a set of varying model
parameters. However, from a slightly different perspective, one often needs to
answer questions of the type “Does the system fulfil a performance requirement
which is related to a particular functional behaviour?”. For instance, one may
ask the question “Is the probability that a SEND message is answered by an ACK
message within 50 ms greater than 95%?”. We argue that traditional techniques
for the definition and calculation of performability1 measures are not sufficiently
formalised to enable a flexible and automated evaluation of such problems. This
consideration leads us to the domain of model checking, where complex system
requirements are specified in a formal way with the help of temporal logics, and
thereafter checked by model checking algorithms. In the past (as indicated in
Fig. 1.1), this area of research has dealt mostly with purely functional properties.
In order to answer questions related to timing and performance behaviour, “clas-
sical” model checking techniques need to be extended in various directions, in
order to take into account real-time, stochastic time and probabilistic behaviour.

1The term “performability” is an artificial combination of the terms “performance” and
“dependability” and was coined by J.F. Meyer, see for instance [248, 249]. Note that in this
thesis we employ the term “performability” in a rather broad sense, characterising general
measures and behavioural properties related to performance and dependability aspects.
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1.3 Limiting factors of modelling

While model-based analysis is a very valuable technique and of high importance
during the life cycle of communication systems, it has of course certain limitations.
It is in the nature of a model or specification that it abstracts from reality and
only captures certain, carefully chosen aspects of the real system. The developer
must always be aware of this fact and ensure that the level of detail of the current
model is appropriate for the analysis at hand. Each model has to represent reality
well enough in order to allow the modeller to derive meaningful answers from it,
but on the other hand a model must not be too detailed, because an excess of
detail might render the model too difficult to understand or impossible to analyse.

Apart from the aforementioned general limitations of modelling, state space ex-
plosion is a very serious problem in the context of state-space-based modelling
(whether it be purely functional or stochastic/temporal). In many areas of system
design and analysis, there is the need to generate, manipulate and analyse very
large state spaces. More precisely, the models to be analysed are often represented
as state-transition systems, namely labelled transition systems (LTS) or – in case
of stochastic models – discrete time or continuous time Markov chains (DTMC or
CTMC). These “low-level” representations are usually derived mechanically from
high-level formalisms such as formal description techniques (FDT) or specifica-
tion languages, queueing networks, (stochastic) automata, (stochastic) Petri nets
or (stochastic) process algebra descriptions. The inherent concurrency of the
high-level representation is often translated into an interleaving of all possible
moves, i.e. all possible totally ordered sequences of actions are included explicitly
in the low-level representation. As a consequence, the number of states tends to
grow exponentially in the number of parallel components of the high-level model
from which it is derived. Such large state-transition systems are often very diffi-
cult to handle in practice, due to memory limitations of the available computing
equipment.

The complexity of the system to be modelled is one of the reasons that give
rise to large state spaces. There are, however, a number of other reasons. As
already mentioned, the use of interleaving semantics, when translating from high-
level formalisms to the underlying state-transition systems, constitutes one of the
general sources of state space explosion and is therefore sometimes referred to as
the “interleaving trap”.

The use of modular or structured models – consisting of a number of interacting
components – makes it easier for the human user to specify complex systems.
However, when the structured high-level model is translated into its correspond-
ing low-level representation, the size of the state space is often exponential in
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the number of components (depending on the degree of independence between
the components), leading to state space explosion. Therefore, alternative rep-
resentations (such as the Kronecker approach or the symbolic approach to be
discussed in depth in this thesis) which avoid this exponential blow-up are of
high importance when working with structured models.

As an additional factor when dealing with stochastic models, the use of approxi-
mations of non-exponential distributions by phase-type distributions can lead to
an enormous further growth of the state space. Using phase-type distributions, a
generally distributed duration is represented by a number of fictitious exponential
phases, each of which leads to a distinct state. This phenomenon is closely related
to the interleaving of events, since for two or more concurrently enabled phase-
type distributions every combination of intermediate phases manifests itself by a
distinct state of the overall model.

1.4 Overview of approaches to the state space

explosion problem

Fig. 1.2 gives an overview of possible approaches to the state space explosion
problem which we will discuss in the following sections. The figure distinguishes
between the two main categories of non-state-space-based approaches and state-
space-based approaches. The former are characterised by the fact that analysis
is carried out on the basis of some high-level model specification without the
need to explicitly generate its possibly huge underlying state space. These ap-
proaches are typically much more efficient than state-space-based analysis, but
unfortunately they are restricted to special classes of models and therefore not
universally applicable. Within the class of state-space-based approaches, Fig. 1.2
further distinguishes between largeness tolerance and largeness avoidance, which
terms will be discussed briefly at the beginning of Sec. 1.6.

Our main focus in this thesis is on space-efficient “symbolic” encodings of large
state spaces and transition systems, based on structured high-level specifications.
For the encoding (i.e. the symbolic representation) we use binary decision dia-
grams and extensions thereof as the underlying data structure. This approach,
which is summarised in Sec. 1.7.5 and elaborated on in Chaps. 4 – 8, belongs to
the category of state-space-based, largeness avoidance methods. In the next sec-
tions, however, we first briefly review the other approaches contained in Fig. 1.2.
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Figure 1.2: Overview of approaches to the state space explosion problem

1.5 Non-state-space-based analysis

For some special classes of models it is possible to prove functional properties
or to derive performance measures, ranging from individual state probabilities to
cumulative performance indices, directly from the high-level model specification,
without ever generating the underlying state space. While these techniques are
far more efficient than state-space-based analysis techniques, their application is
restricted to specialised model classes.

1.5.1 Petri net analysis by invariants

As an example for non-state-space-based functional analysis we mention the anal-
ysis of Petri nets by invariants, which can be applied to verification, proof and
analysis of behavioural properties of Petri nets. This kind of analysis works on
the static Petri net structure and employs linear algebraic methods. Taking into
account the information on the initial net marking it yields results concerning the
reachability or non-reachability of certain markings, conditions that hold true for
all reachable markings, and identifies transition firing sequences which lead back
to the original marking [311, 105].
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It is known that Petri net invariants can also be exploited for the purpose of
performance analysis. In [74, 302], efficient algorithms for the computation of
performance bounds are described, which work entirely at the structural level,
without generating the reachability set (i.e. the state space).

1.5.2 Product form queueing networks

Maybe the most prominent example for non-state-space-based methods in the
area of performance evaluation is the analysis of product form queueing net-
works (PFQN), for instance the class of BCMP queueing networks [24], where
the steady-state probabilities can be derived immediately once some rather sim-
ple “traffic equations” have been solved. For closed PFQNs, performance indices
such as the mean queue population or the mean residence time at a queueing
station can be computed directly by the mean value analysis (MVA) algorithm
[277]. However, these methods and their associated efficient computational algo-
rithms are not applicable (in an exact mathematical sense) to general queueing
networks but only to certain well-defined subclasses.

Product form solutions do not only play a role in the context of queueing net-
works, but have also been developed for other modelling formalisms. For instance,
there are also classes of stochastic Petri net models [159, 235, 290], queueing Petri
nets [25] and stochastic process algebra models with product form [150, 289]. All
of this research has been stimulated by the success of product form queueing
networks, and the basic idea of all these approaches is, of course, closely related
to product form queueing networks.

1.5.3 Non-interleaving models

In this section, we briefly summarise a class of approaches which, generally spo-
ken, avoid the interleaving trap. These non-interleaving approaches are often also
referred to as partial order techniques or causality-based techniques.

In the interleaving approach, one abstracts from the fact that the overall model
may consist of more than one interacting submodel. The overall system’s be-
haviour is modelled by sequences of events which are totally ordered. In contrast,
the partial order reflects the causal dependences between events within different
submodels, but there is no need to force a particular order on those events which
are not causally dependent. Therefore, following the partial order approach, “true
concurrency” of events (of actions) is allowed.
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As an example we consider stochastic task graphs where a node starts execution
once all its predecessors are finished and each node has a given stochastic runtime
distribution (for stochastic graph models see also Sec. 3.1). The special subclass
of stochastic task graphs with series-parallel structure is a partial order model,
where the distribution of the overall execution time can be calculated in a very
efficient manner by successive computation of sum and maximum of node runtime
distributions. For generally structured graphs, bounds can be obtained by mod-
ifying the graph structure in order to make it series-parallel [218, 308, 153, 151].

Another, very similar, example is the stochastic causality-based process algebra
of [42] and [208], where event structures are extended in order to be able to
represent stochastic process algebra models. Furthermore, techniques such as
partial order reduction have been developed and successfully applied in the area
of model checking in order to prevent state space explosion (see e.g. [139]).

1.5.4 Bounding techniques

As a last example from the class of non-state-space-based approaches, we now
briefly sketch the idea of bounding techniques. Such techniques are described, for
instance, in [236]. They are used in order to gain insight into the primary factors
affecting the performance of the system under investigation. A bounding tech-
nique consists of the computation of upper and lower bounds of the performance
measures as a function of the system workload. Typically, such computations can
be carried out quickly by means of simple formulas, assuming extreme conditions
of light or heavy loads. Applied to networks of queues, upper and lower bounds
on system throughput and on the response time can be derived, and it is known
that for balanced systems (where a customer’s service demand is the same at
every service centre, cf. [236]) tighter bounds can be obtained than for general,
unbalanced systems.

1.6 State-space-based analysis: Largeness toler-

ance

The terms ”largeness tolerance” and ”largeness avoidance” (see Sec. 1.7) were
coined by Trivedi et al., see for instance [318]. While the former summarises
sparse storage techniques and memory-efficient — possibly parallel — numerical
methods, the latter subsumes approaches that try to keep the size of the model
representation as small as possible at every stage of the modelling and analysis
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process. This aim may be achieved with the help of state truncation, state space
reduction, hierarchical or structured model description and solution techniques,
or efficient encodings.

1.6.1 Memory-efficient and parallel implementations

As an example of memory-efficient analysis, we mention the disk-based approach
by Deavours et al. [103]. They employ a block Gauss-Seidel (BGS) method for
the solution of Markov models on a single processor where the generator matrix
is stored on disk. The solver maintains high disk throughput using a system of
two cooperating processes which perform disk I/O and computation concurrently.
The memory usage of the BGS solver is low, the main requirement being the space
for the solution vector. By this approach, it is possible to solve systems of 10
million states and 100 million transitions on a workstation with only 128 MB
RAM.

Next we consider parallel or distributed state space generation. The paper [69]
describes parallel state space generation on a CM-2 SIMD machine with massive
parallelism (8K processors), integrated into the stochastic Petri net tool Great-
SPN [73]. The authors state that “sources for massive parallelism have actually
been found in the problem, but they do not match well with the strictly SIMD
type model of computation supported by the CM-2”. Extensions of this are de-
scribed in [70], and more related work can be found in [5, 6, 7, 78, 226]. In [157],
good state encoding techniques and hashing tables are used, such that models
with 55 million states can be done on a single workstation, and models with 400
million states can be done on a cluster of 16 workstations in reasonable time. In
[261], an alternative approach is taken, which uses a heuristic method instead of
hashing.

More recently, Knottenbelt et al. [224, 225] developed distributed disk-based
techniques not only for state space generation, but for Markov chain analysis
based on the Jacobi and Conjugate Gradient Square (CGS) methods. Exploiting
the structure induced by breadth-first search state generation algorithms, an
efficient matrix-vector multiply kernel is developed which exhibits low memory
usage, low communication overhead and good load balance. Markov chains of
up to 50 million states and 500 million transitions were solved on a distributed
memory computer (a Fujitsu AP3000 with 16 nodes, each running at 300 MHz
and equipped with 256 MB RAM). Parallel transient analysis of stochastic reward
nets for both distributed and shared memory machines is described in [8].

Another approach to memory-efficient implementations is on-the-fly generation of
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the state space, i.e. rather than permanently storing states and transitions these
are re-generated every time they are needed. One such approach, matrix-free-
iteration (MFI), is described in [222]. In this work, Markovian queueing networks
(closed single class networks and extensions to (non-product-form) multi-chain
networks) are considered. Gauss-Seidel iteration is used, but the concept could
also be applied to other iterative schemes. The solvability of the linear system of
equations depends only on the size of the iteration vector. Models with up to 70
million states and 1373 million transitions have been analysed (but one iteration
took 1 hour of user time !).

1.7 State-space-based analysis: Largeness avoid-

ance

1.7.1 Decomposition

The idea of decomposing a large state space in order to make it tractable was
presented for the first time in [303] by Simon and Ando (they were interested in
an application from economy). Some years later, Courtois [92] used the same ap-
proach in the context of computer performance evaluation. Instead of analysing
one large system, the decomposition approach relies on analysing several small
subsystems, analysing an aggregated overall system, and afterwards combining
the subsystems’ solutions. Thus, the decomposition/aggregation approach con-
sists of three steps: Decomposition, aggregation and combination. In general, the
decomposition approach works well if the state space can be partitioned into sub-
sets of states, such that there is a lot of interaction between states belonging to the
same subset, but little interaction between states belonging to different subsets.
Systems which possess this property are called nearly completely decomposable
(NCD). For the class of reversible Markov chains, the decomposition/aggregation
approach yields exact results [90], and the approach may also be applied itera-
tively [93, 68]. Decomposition-based analysis is also considered in [77, 82, 83],
where the focus is on approximate decomposition for nearly-independent GSPN
structures.

Mertsiotakis et al. developed approximate decomposition-based analysis methods
for Stochastic Process Algebra models [245]. Time scale decomposition (TSD) is
based on the concept of nearly completely decomposable Markov chains [193, 244].
Response time approximation (RTA) relies on a structural decomposition for the
special class of decision-free process algebraic models [246, 247]. Another analysis
approach, based on the exploitation of the structure of a special class of process
algebraic models is described in [30].
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1.7.2 Structured representations

We strongly believe that the structure of the real system to be analysed should
play a very important role during the construction and analysis of a model.
For the human modeller, structured models are much more manageable than
monolithic ones, because they allow one to concentrate on a particular part of
the model at a time. During model analysis, i.e. state space construction, state
space reduction, functional and temporal analysis, the structure of the model
may be exploited, resulting in reduced memory requirements and opening the
way for specialised analysis techniques which make even highly complex models
computationally tractable.

The Kronecker approach (also called tensor approach) [271, 272, 50, 54, 57, 107,
292, 80], where an overall model is constructed from a set of interacting sub-
models, relies heavily on the structure of the system to be modelled. The main
advantage of this approach is the fact that the generator matrix of the overall
model never has to be generated explicitly, it is only described implicitly in the
form of a so-called tensor descriptor, a tensor expression which involves submodel
matrices of small size. The memory requirements of this approach can be kept
extremely low, since it suffices to store matrices of the size of the submodels.
All operations necessary for the computation of the stationary and/or transient
state probabilities (mainly vector-matrix multiplication) can be performed by ac-
cessing only the submodel matrices. Specialised algorithms have been developed
[59, 60], which however are notably slower than comparable algorithms which
work on explicit sparse matrix representations of the overall model. Thus, the
advantage of the Kronecker approach lies exclusively in the compactness of its
model representation. We will discuss the Kronecker approach in more depth in
Sec. 3.6.1.

1.7.3 Constructing minimal representations

A very general approach to the state space explosion problem works as follows:
One defines an equivalence relation among states, which yields a partitioning
of the state space, equivalent states forming a subset (class) of the partition.
From this partition a reduced model is constructed where each class of states
is represented by a single “macro” state. The reduced model is then analysed,
which is cheaper than the analysis of the original model, and afterwards certain
(if not all) results for the original model may be derived from the solution of the
reduced model.
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The specific equivalence relation used for constructing the partition depends on
the context: For Markov chains (DTMCs or CTMCs), the well-known notion
of lumpability is defined [212, 55]. More specifically, there exist the notions of
ordinary lumpability, exact, strict and weak lumpability. For instance, two states
of a CTMC are said to be ordinarily lumpable if they can move (directly) to
the same equivalence classes with the same rates. For purely functional labelled
transition systems (without rates or probabilities) we have the notions of (strong
or weak) bisimilarity. Two states are bisimilar, if they can move to the same
equivalence classes with the same actions. For transition systems extended by
transition rates, i.e. the combination of CTMCs and LTS, we have the notions of
(strong or weak) Markovian bisimulation. Two states are Markovian bisimilar,
if they can move to the same equivalence classes with the same actions and with
the same cumulative rates (a formal definition is provided in Section 3.7).

Algorithms for constructing a partition which corresponds to a given equivalence
relation are known and their complexity has been analysed. For instance, strong
Markovian bisimulation can be implemented with time complexity O(m log n)
where n is the number of states and m is the number of transitions. Weak
Markovian bisimulation can be implemented with time complexity n3, which is
due to the fact that the transitive closure of weak transitions must be computed
[162].

In practice, computing the partition of the state space can be very expensive. For
that reason, one should not blindly generate the overall state space of a model
and afterwards try to identify classes of equivalent states. In contrast, it is es-
sential to use the information contained in the model structure as a basis for
state space reduction. For instance, if the model consists of symmetric (or repli-
cated) components, one can directly construct a reduced state space, because it
is known a priori which states are “symmetric” to each other and thus equivalent
(see Sec. 1.7.4). As another example, in the context of (stochastic) process alge-
bras, bisimulation minimisation can be applied in a compositional fashion, which
means that the state space of a component is minimised before that component
is composed in parallel with other components. Following this scheme, it can
be ensured that the state space of any intermediate model is always kept at a
minimum, and the non-reduced state space of the overall model never needs to
be constructed (or stored) explicitly.

1.7.4 Exploitation of model symmetries

Technical systems consist of components or parts, some of which may be repeated
or replicated several times. For instance, a MIMD multiprocessor system contains
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several identical processor/memory modules. Several stations connected to a local
area network may exhibit similar behaviour and thus be considered symmetrical.
In a cellular network, a number of mobile stations within reach of the same base
station may all have similar statistical behaviour.

Such symmetry in the real world should also be reflected in models of these
systems. Using state-space-based modelling techniques, the information about
model symmetries can be exploited during the modelling process, leading to a
possibly vast reduction of the state space size. The general idea is to identify
“symmetric” states and combine them into a single macro state, thereafter per-
forming analysis on the basis of the macro states.

In the modelling formalism of stochastic activity networks, an extension of stochas-
tic Petri nets, specification of symmetric systems is supported with a special
“replicate” operator [283], and during state space construction a reduced base
model is directly constructed from the high-level specification. Symmetries also
play a predominant role for the analysis of stochastic well-formed coloured Petri
nets [76, 127] where a reduced reachability graph is constructed directly from the
net description, without the need to construct the full (expanded) reachability
graph first. The special role of symmetries in connection with the Kronecker ap-
proach has been studied in [291, 293], where an algorithm for directly generating
the reduced state space from a structured high-level specification is described.
For the Markovian framework of [293], it was shown that symmetry reduction
corresponds to strict lumpability. In the the context of stochastic process alge-
bras, it is known that model symmetries lead to transition systems with bisimilar
states, which can be reduced on the basis of bisimulation equivalences. Symmetry
exploitation for stochastic process algebras is described in [280, 182, 137].

We emphasise that it is essential for successful symmetry exploitation that the
reduced model can be generated directly from a high-level description, without
the need to generate the full-blown low-level model first, since the latter may be
too large to be computationally tractable.

1.7.5 Symbolic encodings

In recent years, the problem of generating, representing and analysing large tran-
sition systems has been very successfully approached by using symbolic represen-
tations, in particular binary decision diagrams (BDD) and derivatives thereof, see
e.g. [45, 63, 46, 65, 118]2. Most of this work took place in the areas of design and

2BDD-based representations (also called encodings) of sets, transition relations or transition
systems are commonly termed “symbolic” in the literature, as opposed to traditional, explicit
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verification of digital circuits and model checking of concurrent systems, i.e. ar-
eas where state space explosion is also a severe problem. Experience showed that
symbolic representations make it possible to handle much larger state spaces than
traditional methods. Applying symbolic techniques, the border between manage-
able and unmanageable sizes of verification problems has been moved upwards by
several orders of magnitude. Therefore, today, mechanised hardware verification
is considered by many companies to have industrial strength [88].

BDDs are compact canonical representations of Boolean functions as directed
acyclic graphs, where the representation of redundant information is completely
avoided. State spaces or transition systems can be represented as BDDs by a
binary encoding of state identities or state-to-state transitions. In view of the
numerous success stories related to BDDs, a proper assessment of BDDs must
mention that much of this success is based on heuristics concerning the efficient
encoding of state spaces as Boolean functions. Without applying such heuristics,
BDDs are usually no more space efficient than conventional, explicit state space
representations.

Most of the literature on BDDs deals with functional behaviour only. For repre-
senting stochastic performance models, the basic BDD data structure has to be
extended, such that, for instance, transition probabilities or transition rates can
be included in the symbolic representation. Multi-Terminal BDDs [86] (called
Algebraic Decision Diagrams in [147]), Edge-Valued BDDs [232], Binary Mo-
ment Diagrams [48] and Decision Node BDDs [294, 295, 298] are all extensions of
standard BDDs capable of representing numerical information. Symbolic repre-
sentation of stochastic systems has not got much consideration in the literature,
but some pioneering previous work exists [147, 131, 294, 295, 177]. The latter
three references document the stages of our own work on the symbolic represen-
tation and analysis of stochastic systems.

Motivated by the success of symbolic representations in other fields and by the
mentioned pioneering work, we propose in this thesis an approach to the represen-
tation and manipulation of stochastic transition systems which is entirely based
on symbolic techniques. We develop strategies for the space-efficient representa-
tion of large stochastic models, pointing out the importance of taking into account
the model structure. In particular, we discuss BDD-based parallel composition,
i.e. the parallel composition of submodels which are represented as decision dia-
grams. Furthermore, we discuss BDD-based algorithms for reachability analysis,
hiding of functional information, vanishing state elimination, bisimulation and
even numerical analysis of the stochastic process.

representations. This use of the term “symbolic” should not be mixed up with “symbolic”
formula manipulation packages.
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1.8 Organisation of this thesis

Fig. 1.3 provides an overview of the four parts of this thesis. We now briefly
describe the content of each chapter and sketch the general line of thought.

In Chap. 2, the foundations of stochastic processes, transition systems and binary
decision diagrams are revisited. Chap. 3 contains a survey of techniques for high-
level model specification and their particular benefits and shortcomings. In view
of the tractability of complex models with large state spaces, this chapter empha-
sises the importance of structured models and contains a detailed introduction to
stochastic process algebras. In Chap. 4, we discuss the symbolic representation
of transition systems with the help of binary decision diagrams, since this data
structure enables extremely space-efficient representations of huge state spaces.
The chapter also introduces extensions of binary decision diagrams for the repre-
sentation of stochastic systems. BDD-based compositional model construction,
as well as state space manipulation and reduction algorithms are presented in
depth in Chap. 5. In particular, it is shown that symbolic parallel composition
is the key to compact representations, and this theme is carried on in Chap. 6,
which contains a study of the factors influencing the compactness of the symbolic
representation. Chap. 7 describes the numerical analysis of Markov chains based
on their symbolic representation, thereby rounding off our symbolic approach to
modelling and analysis. In Chap. 8, after showing that the algorithms for numer-
ical computation are currently the main bottleneck of the symbolic approach, we
address the challenging problem of speeding up BDD-based analysis techniques.
Chap. 9 is a short introduction to the verification of (temporal) behavioural prop-
erties by means of model checking. We motivate the importance of this topic by
considerations on the class of performance and dependability measures a user
may wish to specify and compute, and by the fact that symbolic techniques are
well established in the area of verification. The chapter introduces the temporal
logic aCSL and gives an overview of the associated model checking algorithms.
In Chap. 10, we present three application case studies, after which we wrap up
in Chap. 11 with conclusions and suggestions for future research.

As can be observed from Fig. 1.3 (and as already mentioned in Sec. 1.4), with
Part II bearing the main weight of the thesis, our main focus is on space-efficient
symbolic encodings, based on structured high-level specifications of large per-
formability models.
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Chapter 2

Preliminaries

In this chapter, we recall the definitions of some fundamental concepts and data
structures which are needed as basic ingredients for modelling and verification.

Most “low-level” representations used for the modelling of the dynamic behaviour
of sequential, parallel or distributed systems are based on the notions of “states”
and “transitions” between states, together with some appropriate labelling of
these states and transitions. A state characterises the system in a particular
situation, often involving a rather radical abstraction from the situation of the
real system, while transitions denote the change of the system’s state.

Examples for such basic state-transition representations are finite state automata,
labelled transition systems and Kripke structures. Among the more advanced
concepts which offer structuring concepts, at the cost of a more intricate seman-
tics, are statecharts [149, 96].

If one is not only interested in purely functional properties of a system but also
wishes to express probabilistic or stochastic aspects, possibly involving quantita-
tive timing information, then Markov chains, where transitions between states are
labelled by probabilities or rates, are often an appropriate means for describing a
system’s behaviour. Among other formalisms including time are timed automata
[11] and stochastic automata [106].

In this chapter, we focus on Markov chains and labelled transition systems, in-
cluding stochastic extensions of the latter. Furthermore, we introduce binary
decision diagrams which are the basis of the symbolic encodings which we shall
study in depth in Chaps. 4 – 8.

21
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2.1 Stochastic processes

A stochastic process [71, 219] is a family of random variables {X(t) | t ∈ T}
which take on values from a state space S, indexed by a parameter t ∈ T . The
index may represent an arbitrary physical quantity, but is often interpreted as
a time parameter. There are several classification schemes for stochastic pro-
cesses: On the one hand, the state space S of the random variables may be either
discrete or continuous, yielding discrete or continuous state space stochastic pro-
cesses. Stochastic processes with discrete state space are also called stochastic
chains. On the other hand, the (time) parameter space T may be either dis-
crete or continuous, depending on whether the process is observed at discrete
time instants or over the full real time axis. Altogether, the combination of dis-
crete/continuous state space with discrete/continuous time parameter yields four
types of stochastic processes.

Another, more intricate, classification is based on the stochastic dependence be-
tween the random variables at different time instants. In general, a complete
characterisation of a stochastic process would need to specify the joint distribu-
tions

FX1,...,Xn(x1, . . . , xn; t1, . . . , tn) = P [X(t1) ≤ x1, . . . , X(tn) ≤ xn]

for all n, for all x1, . . . , xn and for all t1, . . . , tn. This, of course, would be ex-
tremely tedious and is totally infeasible in practice. However, in most cases a
simpler description is sufficient. For instance, discrete state stochastic processes
may be characterised by two criteria:

• the probability pij that the next state will be state j, provided that the
current state is state i.

• the time spent in state i (the state holding time), characterised by its dis-
tribution function Fi(.).

A very general class of stochastic processes, where both the pij and the Fi(.) can
be arbitrary, is the class of semi-Markov processes [71, 138]. Other classes of
interest are, for example, random walks and renewal processes.

Of particular interest for the area of performance and dependability modelling is
the class of Markov processes, since Markov processes have proved to be a suitable
means for describing many phenomena in computer and communication systems,
and because their mathematical analysis is well understood. We will restrict our
attention to Markov processes with discrete state space, i.e. to Markov chains.
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Depending on the properties of the time parameter, one obtains either Discrete
Time Markov Chains (DTMC) or Continuous Time Markov Chains (CTMC).
As their distinguishing feature, Markov processes enjoy the property of memory-
lessness, which greatly simplifies their analysis, compared to general stochastic
processes. Roughly speaking, memorylessness means that the behaviour of the
process in the future only depends on the current state, and not on the past
history of the process. One can express this formally by:

P [X(tn+1) = xn+1 | X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0]
= P [X(tn+1) = xn+1 | X(tn) = xn]

for any set of time instants t0 < t1 < . . . < tn+1. As a consequence, the time
already spent in a state has no influence on the time until that state will be left,
from which it follows directly that for DTMCs the holding time of a state is geo-
metrically distributed, and for CTMCs the holding time in a state is exponentially
distributed1 [314].

2.1.1 Continuous time Markov chains

While the behaviour of DTMCs is characterised in terms of transition probabil-
ities between states, transitions of CTMCs are determined in terms of rates, as
formalised in the following definition.

Definition 2.1.1 Continuous Time Markov Chain (CTMC)
A Continuous Time Markov Chain is defined by a tuple C = (S, R) where S is a
(finite or infinite) set of states, and R : S × S → IR≥0 is the matrix of transition
rates satisfying R(s, s) = 0 for all s.

Sometimes a uniquely defined initial state of the CTMC or an initial state prob-
ability distribution is included in the definition. Note that the above definition
does not allow self-loops, i.e. transitions leading back to the same state, since
such transitions would not have any influence on the state probabilities of the
CTMCs. In a compositional context, however, where transitions are labelled by
action names (as is the case for SLTSs, see Sec. 2.2), self-loops may be allowed
and are a decisive factor for the behaviour of the system.

The rate matrix R characterises the transitions between the states of the CTMC.
If R(s, s′) > 0 then it is possible that a transition from state s to state s′ takes

1The geometric (exponential) distribution is the only discrete (continuous) distribution
which enjoys the memoryless property.
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Figure 2.1: Example CTMC and corresponding transition rate matrix R

place. Conversely, if R(s, s′) = 0 then no such transition is possible. If state s
has only a single possible successor state s′, then the probability of moving from
state s to s′ within t time units (for positive t) is given by 1 − e−R(s,s′)·t. This
expression is the cumulative probability distribution function of an exponential
distribution with rate R(s, s′).

In the case where R(s, s′) > 0 for more than one state s′, a competition between
the transitions exists, also called a race. Let E(s) =

∑

s′∈S R(s, s′), the total
rate at which any transition emanating from state s is taken (E(s) is also called
the exit rate of state s). This rate is the reciprocal of the mean sojourn time (also
called mean holding time) in s. More precisely, E(s) specifies that the probability
of leaving s within t time units is 1−e−E(s)·t, due to the fact that the minimum of
exponential distributions (competing in a race) is again exponentially distributed,
and characterised by the sum of their rates. Consequently, the probability of
moving from state s to s′ by a single transition, denoted p(s, s′), is determined
by the probability that the delay of going from s to s′ finishes before the delays
of other outgoing edges from s; formally, p(s, s′) = R(s, s′)/E(s) (except if s is
an absorbing state, i.e. if E(s) = 0; in this case we define p(s, s′) = 0).

Figure 2.1 shows an example CTMC and its rate matrix R. Note that from
states 1 and 2 all other states are reachable. However, once state 3 is entered,
the Markov chain will remain within the subset of states {3, 4, 5} forever. We call
such a subset (which cannot be left and whose states are all mutually reachable)
a bottom strongly connected component (BSCC). Whenever state 6 is entered,
the next transition will inevitably lead to state 7 which does not possess any
outgoing transitions. Such a state which cannot be left is called absorbing. An
absorbing state can also be viewed as a BSCC containing only a single state.
States which do not belong to a BSCC are called transient. A CTMC consisting
of a single BSCC is called irreducible.

A CTMC is called homogeneous if the rates are time-independent, and in the
sequel we will assume homogeneity, since this assumption simplifies analysis
considerably. An infinitesimal generator matrix Q is derived from R by set-
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ting Q(s, s′) = R(s, s′) for s 6= s′ and replacing the diagonal elements of R by
Q(s, s) = −E(s) = −

∑

s′ 6=s R(s, s′).

2.1.2 Transient analysis

Given a CTMC C = (S, R), one of the main goals is the computation of its state
probabilities at a fixed time [314]. The vector ~π(t), whose length is |S| and whose
elements are such that

∑

s∈S πs(t) = 1, denotes the probability distribution on
S at time instant t. Of course, the probability distribution at time t depends on
the initial state, i.e. on the distribution ~π(0) at time instant t = 0. The state
probability distribution at time t is obtained by solving the following Kolmogorov
system of differential equations

d~π(t)

dt
= ~π(t) ·Q

The unique solution of this system (given boundary condition ~π(0)) is given in
closed form by

~π(t) = ~π(0) · eQt

In this equation, the matrix exponential is defined by its series expansion as
eQ·t =

∑∞
k=0(Q · t)

k/k! . For the practical computation of ~π(t) one constructs
the stochastic matrix P = Q ·∆t + I, where 1/∆t = q must be larger than the
maximum exit rate of the CTMC (a common choice is q = 1.02 ·maxs∈S{E(s)}
[322]) and I is an identity matrix of the appropriate size. This construction
is called uniformisation [205, 143], and we call 1/∆t = q the uniformisation
constant. Substituting Q = P · q − I · q, we obtain eQ·t = eP ·q·t · e−I·q·t =
eP ·q·t · I · e−q·t = eP ·q·t · e−q·t, which yields the following expression for π(t):

~π(t) = ~π(0) · eQ·t

= ~π(0) · eP ·q·t · e−q·t

= ~π(0) ·
∑∞

k=0 P k · (q·t)k

k!
· e−q·t

In this expression, the weight factors (q·t)k

k!
·e−q·t are known as the Poisson probabil-

ities (the discrete probabilities of the Poisson distribution). In practice it suffices
to evaluate a finite number of terms of this infinite sum, i.e. the infinite summa-

tion
∑∞

k=0 P k · (q·t)
k

k!
·e−q·t is replaced by the finite summation

∑R
k=L P k · (q·t)

k

k!
·e−q·t,

where the left and right truncation points (L and R) depend on q · t (the product
of the uniformisation constant and the time instant) and on a pre-specified preci-
sion ǫ. For details on this and the efficient evaluation of the Poisson probabilities
we refer to [126].



26 2. Preliminaries

2.1.3 Steady-state analysis

Of particular interest is the behaviour of the Markov chain in the long run, i.e.
for t→∞, given by the so-called steady-state (or stationary) probability vector
~π = limt→∞ ~π(t). The steady-state probabilities exist for arbitrary homogeneous
CTMCs with finite state space S, but they are known to depend on the initial
behaviour of the chain if the latter is not irreducible. Remember that a chain is
irreducible if its state graph is strongly connected, i.e. if there is a directed path
of transitions with positive rates between each ordered pair of states in S.

In the case of a reducible Markov chain, the picture is quite complicated: After
an infinite time, the CTMC is certainly no longer in any transient state, but will
be in one of its BSCCs and remain there forever. The probability of reaching a
particular BSCC can be calculated easily. For example, in the CTMC depicted
in Figure 2.1, the probability of reaching BSCC {3, 4, 5}, provided that the initial
state is state 1, is given by 1

2
+ 1

2
· 1
3
· 1
2
+(1

2
· 1
3
)2 · 1

2
+. . . = 1

2

∑∞
k=0(

1
6
)k = 3

5
. Likewise

it can be established that the probability of reaching BSCC {7} is given by 2
5
.

Within each given BSCC one can compute the steady-state distribution by solving
a linear system of equations as described above. Altogether, the probability that
the CTMC is in state i after an infinite time is equal to the probability of reaching
the corresponding BSCC, multiplied by the steady-state probability of state i
within that BSCC.

In the case of an irreducible chain, the picture is simpler. Therefore, in the
sequel, we only consider finite, homogeneous, irreducible CTMCs, so we can
assume the existence and uniqueness of the steady-state distribution. The steady-
state probability vector ~π = (πs)s∈S is obtained by solving the linear system of
equations

~π ·Q = 0

under the additional constraint that
∑

s∈S πs = 1. This system may be solved
by direct methods (such as Gaussian elimination, LU (or LDU) decomposition,
inverse iteration, etc.) or by iterative methods2 [314]. Iterative methods can be
obtained by transforming the former equation into the following common fixed
point equation with appropriate iteration matrix M :

~π = ~π ·M

This equation is then used in the iteration scheme

~π(k+1) = ~π(k) ·M
2An iterative method improves a given initial estimate in a step-by-step fashion until either

convergence is achieved or some other termination criterion (such as exceeding of the maximum
number of iterations) holds.



2.1. Stochastic processes 27

starting from an initial approximation ~π(0). We now briefly recall the most basic
iteration schemes.

Power method: In element-wise notation, the well-known power method can
be written as follows:

π(k+1)
s = π(k)

s +
∑

s′∈S

π
(k)
s′ Q(s′, s) ·∆t

which corresponds to the following matrix notation:

~π(k+1) = ~π(k) · (Q ·∆t + I)

where I is the identity matrix of appropriate size and the scaling factor ∆t must
be chosen such that ∆t < (maxs∈S{E(s)})−1 in order to ensure that the iteration
matrix Mpower = Q ·∆t+I is a stochastic matrix3. Note that the iteration matrix
for the power method is identical (if the same ∆t is chosen) with the stochastic
matrix used in the uniformisation method for calculating transient solutions.

Jacobi method: The iteration scheme of Jacobi can be written in element-wise
notation as follows:

π(k+1)
s =

−1

Q(s, s)
·
∑

s′∈S
s′ 6=s

π
(k)
s′ Q(s′, s)

The method of Jacobi stems from a decomposition of the generator matrix in the
form of Q = R − D, where D refers to a diagonal matrix whose entries are the
row sums of the rate matrix R. The corresponding matrix formulation is

~π(k+1) = ~π(k) · R ·D−1.

i.e. the iteration matrix M is defined as MJacobi = R ·D−1.

Gauss-Seidel method: The method of Gauss-Seidel stems from a decomposi-
tion of the generator matrix in the form of Q = D − L− U , where L and U are
the negative lower (upper) triangular portions of the rate matrix R, and D is the
diagonal of the generator matrix Q (note that this is not the same D as in the
method of Jacobi, but its negative). The matrix formulation of the scheme of
Gauss-Seidel is

~π(k+1) = ~π(k) · L · (D − U)−1 (forward GS)
~π(k+1) = ~π(k) · U · (D − L)−1 (backward GS)

3Note that in practice ∆t should be chosen very close to (maxs∈S{E(s)})−1, for instance
(maxs∈S{E(s)})−1 · (1− ǫ) for a small value of ǫ, in order to achieve good convergence [314, p.
31 and p. 124]. In [323], the value ǫ = 0.01 is recommended.
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It is important to note that in practice the method of Gauss-Seidel is not usually
performed by a vector-matrix multiplication but by a computation of the new
probability vector ~π(k+1) in an element-wise, sequential fashion, which in the case
of forward GS amounts to

π(k+1)
si

=
−1

Q(si, si)
·









∑

sj∈S
j<i

π(k+1)
sj

Q(sj , si) +
∑

sj∈S
j>i

π(k)
sj

Q(sj , si)









From this equation we observe that the iteration scheme of Gauss-Seidel is similar
to the method of Jacobi, apart from the fact that for computing the new iterate
π

(k+1)
si the already updated values for π

(k+1)
sj , j < i are used immediately, instead

of at the next iteration. If one wished to perform Gauss-Seidel using the straight-
forward matrix multiplication scheme, one would have to explicitly calculate the
iteration matrix MGS forward = L ·(D−U)−1. This is usually not done in practice
for the following reason: The inverse of the triangular matrix D−U is also upper
triangular. However, for the average Markov chain whose rate matrix is very
sparse, the inversion step causes a lot of fill-in which destroys the efficiency of
sparse matrix storage techniques.

SOR method: Another well-known iterative method for the solution of the
linear system of equations ~π · Q = 0 is the method of successive over-relaxation
(SOR), an extrapolation technique for accelerating the convergence of the method
of Gauss-Seidel. Its element-wise formulation is as follows (note that the expres-
sion in parenthesis is similar to the Gauss-Seidel case):

π(k+1)
si

= (1−ω)·π(k)
si

+ω ·









−1

Q(si, si)
·









∑

sj∈S
j<i

π(k+1)
sj

Q(sj, si) +
∑

sj∈S
j>i

π(k)
sj

Q(sj , si)

















The matrix formulation of the SOR scheme is

~π(k+1) = ~π(k) · [(1− ω) ·D + ω · L] · [D − ω · U ]−1 (forward SOR)
~π(k+1) = ~π(k) · [(1− ω) ·D + ω · U ] · [D − ω · L]−1 (backward SOR)

The main problem of SOR consists of finding a good value for the relaxation
parameter ω, which must be chosen such that 0 < ω < 2 in order for the iteration
to converge. Since no general method is known for determining the optimal value
of ω, most implementations use heuristic parameter estimation, adjusting the
value of ω every few iterations, depending on the rate of convergence.

Projection methods: All iterative methods mentioned so far work with an
iteration matrix which does not change from iteration to iteration. In other
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words, the current approximation is always multiplied by the same, unmodified
iteration matrix. Therefore these methods are also called stationary iterative
methods4.

There is, however, a whole class of iterative methods which do not work with an
iteration matrix at all. These are the so-called projection methods, in particular
the Krylov subspace methods, which approach the solution by a sequence of
approximations taken from small dimension subspaces. Krylov methods often
converge faster (i.e. within fewer iterations) than stationary methods, but they
also consume more memory, because they require the storage of several vectors
(of the size of the number of unknowns, i.e. the size of the state space). The
most well understood Krylov methods (which enjoy optimality properties) are
conjugate gradient and GMRES, but there are several other Krylov methods
applicable to different scenarios [314, 23, 211]. It is beyond the scope of this thesis
to elaborate on the mathematical theory of projection methods, but in Sec. 7.1.2
we will discuss some implementation considerations of the Bi-CGSTAB method.

2.2 Labelled transition systems (LTS)

Informally, a transition system consists of states and transitions between states.
The transitions are labelled with symbols from a set L which may correspond, for
example, to the set of actions Act of a process algebra5. A LTS can be graphically
interpreted as a directed graph (with a distinguished initial node) whose edges
are labelled with labels from L. Fig. 2.2 shows an example LTS.

Definition 2.2.1 Labelled Transition System (LTS)
Let S be a finite set of states. Let s ∈ S be the initial state. Let L be a finite set
of labels. Let 99K be a relation

99K ⊆ S × L× S

We call T = (S, L, 99K, s) a Labelled Transition System. If (x, l, y) ∈ 99K, we

write x
l

99K y.

4Kelley [211, p. 5] states: “Iterative methods of this form are called stationary methods
because the transition from ~π(k) to ~π(k+1) does not depend on the history of the iteration”.

5In the context of process algebras, it is often useful to have a special internal (unobservable)
action denoted by the symbol τ , see Sec. 3.7.
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s2

s1 s4

s3

a b

ac

Figure 2.2: Example of a labelled transition system (LTS)

Note that in our definition the set of states S is assumed to be finite. Finiteness of
the state space is a prerequisite for the symbolic encoding of states and transitions
which is described below in Sec. 4.1.

2.3 Stochastic extensions of LTS

In a stochastic LTS each transition is associated with a stochastic delay, i.e. each
transition is labelled both with an (action) label as in the LTS case, and in ad-
dition with a real number, referred to as the transition rate. Such stochastic
LTSs (SLTS) appear during performance evaluation and performability analysis
of distributed systems. For example, stochastic LTSs are generated during the
analysis of Markovian stochastic process algebra (SPA) models, stochastic au-
tomata networks (SAN) or stochastic Petri nets (SPN). Abstracting from their
functional information, SLTSs can be interpreted as Markov chains and analysed
by numerical methods.

2.3.1 Stochastic LTSs

In case of stochastic transition systems, each transition has — in addition to the
labelling with an element from the set of labels L — as a second attribute a
positive real number, the rate of the transition, i.e. edges are labelled with tuples
from L× IR, as shown in Fig. 2.3.

a, λ

a, δc, δ

s2
b, µ

s1 s4

s3

Figure 2.3: Example of a stochastic labelled transition system (SLTS)
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Definition 2.3.1 Stochastic Labelled Transition System (SLTS)6

Let S, s and L be defined as for LTSs. Let −→ be defined as follows:

−→ ⊆ S × L× IR>0 × S

We call T = (S, L,−→, s) a Stochastic Labelled Transition System. If (x, a, λ, y) ∈
−→, we say that there is an a-transition from state x to state y with rate λ and

write x
a,λ
−→ y.

For practical reasons and in view of the following symbolic representation, we
merge multiple a-transitions between a given pair of states into a single transition.

For instance, two separate transitions x
a,λ
−→ y and x

a,µ
−→ y will be merged into

x
a,λ+µ
−→ y.

The real-valued rates determine the time T spent in a particular state x, which
is a random value drawn from an exponential distribution, i.e. Prob(T ≤ t) =
1 − e−E(x)·t where E(x) is the exit rate of state x, defined as E(x) =

∑

x
a,λ
−→y

λ,

as in the case of CTMCs. The mean of this distribution is thus given by 1/E(x),
the inverse of the sum of all rates of transitions leaving state x. For example, in
Fig. 2.3, the mean time spent in state s1 is 1/λ, and the mean time spent in state
s2 is 1/(µ + δ).

The Continuous Time Markov Chain (CTMC) corresponding to an SLTS is ob-
tained by abstracting from the action labels. The arcs of the CTMC are given
by the union of all the transitions joining the LTS nodes (regardless of their la-
bels), and the transition rate is the sum of the individual rates. This is justified
by the properties of the exponential distribution, in particular the fact that the
minimum of two exponentially distributed random variables with rates λ1 and λ2

is again exponentially distributed, namely with rate λ1 +λ2. Note that self-loops
(transitions leading back to the same state) are allowed in an SLTS. When mov-
ing from an SLTS to a CTMC by abstracting from the action labels and summing
up “parallel” rates, self-loops can be simply deleted, since they are only relevant
in a compositional context, but irrelevant for the state probabilities of the CTMC
(since they have no effect on the balance equations of the CTMC).

2.3.2 Extended Stochastic LTSs

In case of extended stochastic transition systems, there are two transition rela-
tions: One for Markovian transitions and one for immediate (action) transitions.

6The term “Action-labelled Markov Chain” (AMC) is sometimes used instead of “Stochastic
Labelled Transition System”, e.g. in [170].
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a

a, δ

s2
b, µ

s1 s4

s3

c

Figure 2.4: Example of an extended stochastic labelled transition system (ESLTS)

Figure 2.4 shows an example ESLTS, where Markovian transitions are drawn as
solid arrows and immediate transitions as dashed arrows.

Definition 2.3.2 Extended Stochastic Labelled Transition System (ESLTS)
Let S, s and L be defined as for LTSs.
Let 99K be defined as follows:

99K ⊆ S × L× S

Let −→ be defined as follows:

−→ ⊆ S × L× IR>0 × S

We call T = (S, L, 99K,−→, s) an Extended Stochastic Labelled Transition Sys-
tem. If (x, a, y) ∈ 99K, we say that there is an immediate a-transition from state

x to state y and write x
a

99K y. If (x, a, λ, y) ∈ −→, we say that there is a

Markovian a-transition from state x to state y with rate λ and write x
a,λ
−→ y.

Immediate transitions are sometimes defined as Markovian transitions with the
special rate value∞ which, in the limit, yields a zero delay. However, this would
imply that several immediate transitions, which are enabled at the same time,
occur with the same probability. Since we do not wish to associate a particu-
lar probability with an immediate transition, but consider the choice between
several immediate transitions as purely non-deterministic, we prefer to describe
immediate transitions in a separate transition relation.

Immediate transitions lead to the existence of vanishing (instable) states. These
are states which are left as soon as they are entered, i.e. their sojourn time is zero.
Conversely, tangible (stable) states are states in which no immediate transitions
are enabled. The sojourn time of a tangible state has an exponential distribution.
In a compositional framework, e.g. in the context of stochastic process algebras,
the notions of tangible and vanishing states may be refined in the following way:
A state is called compositionally vanishing if it has at least one outgoing internal
immediate transition, but no outgoing visible immediate transition. The idea is
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that even an immediate transition may be delayed if it is visible, since it may be
kept waiting by a synchronisation partner which is not yet ready to participate
in the synchronisation. Since synchronisation on internal τ -transitions is not
allowed, one can be sure that internal immediate transitions will not be delayed.
For a precise definition of the notions of vanishing states and compositionally
vanishing states, we refer to Def. 3.7.8 and Def. 5.2.1.

2.4 Binary Decision Diagrams (BDD)

BDDs are graph-based representations of Boolean functions which, during the
recent years, have received a lot of attention. Their success is due to the fact that
in many instances from different areas of application, such as hardware verifica-
tion and model checking of concurrent systems, they enable a compact symbolic
representation of Boolean functions. In particular, they are known to enable ef-
ficient encodings of very large state spaces and transition systems. Building on
early work by Lee [237] and Akers [3, 4], Bryant has been the main advocate of
the BDD data structure [45, 46, 47, 48].

The BDD data structure is very well suited for applications from the areas of
model based verification (and — as we will see in this thesis — potentially per-
formance analysis) for the following reason: When representing state-transition
systems, the parallel composition of components can be realised directly on their
BDD representations. This “symbolic parallel composition” has the potential to
avoid the usually observed exponential blow-up [118]. This feature is actually
one of the main strengths of the BDD approach. Parallel composition on BDDs
will be discussed in detail in Chap. 5.

In the following sections, we introduce the BDD data structure and basic oper-
ations thereon. Sec. 4.1 explains how LTSs can be encoded as BDDs. Chap. 4
also discusses ways to include the rate information of (E)SLTS into this data
structure. In Chap. 5 we will discuss compositional model construction on BDDs
as well as BDD-based reachability analysis and BDD-based implementation of
bisimulation algorithms. Chaps. 6 and 7 deal with further aspects of BDD-based
modelling, namely the issues of compact symbolic representations and symbolic
numerical analysis.



34 2. Preliminaries
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Figure 2.5: (a) Binary decision tree, (b) reduced BDD and (c) simplified graphical
representation for the Boolean function (a ∧ t) ∨ (a ∧ s ∧ t)

2.4.1 Definition

We denote by IB = {0, 1} the set of Boolean values. A Binary Decision Diagram
(BDD) [45, 12] is a symbolic representation of a Boolean function f : IBn 7→
IB. Its graphical interpretation is a rooted directed acyclic graph with one or
two terminal vertices. Each non-terminal vertex x is associated with a Boolean
variable var(x) and has two successor vertices, denoted by then(x) and else(x).
The graph is ordered in the sense that on each path from the root to a terminal
vertex, the variables are visited in the same order. A reduced BDD is essentially
a collapsed binary decision tree in which isomorphic subtrees are merged and
“don’t care” vertices are skipped (a vertex is called “don’t care” if the truth
value of the corresponding variable is irrelevant for the truth value of the overall
function).

As a simple example, Fig. 2.5 (a) shows the full binary decision tree for the func-
tion (a∧ t)∨ (a∧ s∧ t). We use the convention that all vertices drawn at one level
are labelled by the same Boolean variable, as indicated at the left of the graph.
The edge from vertex x to then(x) represents the case where var(x) is true; con-
versely, the edge from x to else(x) the case where var(x) is false. (In the graphical
representation, then-edges are drawn solid, else-edges dashed. Furthermore, the
direction of the edges is usually from top to bottom and therefore not shown
in the graphical representation.) Part (b) of the figure shows the corresponding
reduced BDD which can be obtained from the decision tree by merging isomor-
phic subgraphs and leaving out don’t care vertices. For instance, in the diagrams
shown in Fig. 2.5, if a = 0 then s is a don’t care variable. As shown in Fig. 2.5 (c),
in the graphical representation of a BDD, for reasons of simplicity, the terminal
vertex 0 and its adjacent edges are usually omitted. So, for a non-terminal vertex
with only one outgoing edge drawn, the other outgoing edge leads to the terminal
0 vertex. In all three graphs shown in Fig. 2.5, the function value for a given
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truth assignment can be determined by following the corresponding edges from
the root until a terminal vertex is reached.

Next, we give a formal definition of BDD:

Definition 2.4.1 Ordered Binary Decision Diagram (BDD)
An Ordered Binary Decision Diagram (BDD for short) over 〈V ars,≺〉 is a rooted
directed acyclic graph B = (V ert, var, then, else) defined by

• a finite set of vertices V ert = T ∪ NT , where T (NT ) is the set of terminal
(non-terminal) vertices, |V ert | ≥ 1, T ⊆ IB,

• a function var : NT 7→ V ars, where V ars = {v1, . . . , vn} is a set of Boolean
variables with a fixed ordering relation ≺ ⊂ V ars× V ars,

• a function then : NT 7→ V ert and a function else : NT 7→ V ert,

with the following constraints:
∀x ∈ NT : then(x) ∈ T ∨ var(then(x))≻var(x)
∀x ∈ NT : else(x) ∈ T ∨ var(else(x)) ≻ var(x)

The function var defines the labelling of the non-terminal vertices with Boolean
variables, and the functions then and else define the edges of the graph. The
constraints ensure that the ordering relation among the Boolean variables is re-
spected. For x, y ∈ V ert we write x ≺ y either if x, y ∈ NT and var(x) ≺ var(y),
or if x ∈ NT and y ∈ T . A BDD B over 〈{v1, . . . , vn},≺〉, where v1 ≺ . . . ≺ vn,
we also call a BDD over (v1, . . . , vn).

A BDD as defined by Def. 2.4.1 is ordered, but not necessarily reduced. This
motivates the need for the following definition:

Definition 2.4.2 Reducedness of a BDD
A BDD B is called reduced iff

1. ∀x ∈ NT : else(x) 6= then(x)

2. ∀x, y ∈ NT : var(x) 6= var(y)
∨ else(x) 6= else(y)
∨ then(x) 6= then(y)

The first condition states that redundant (don’t care) vertices must be skipped
(i.e. not explicitly present in the BDD), and the second condition states that
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no pair of isomorphic vertices exists. Bryant [45] described an algorithm for
transforming a BDD into a reduced BDD. The operations which we will describe
in Sec. 2.4.2 make sure that the resulting BDD is always in reduced form, provided
that the operand(s) were in reduced form. Note that unless otherwise stated, from
here on we will simply use the term “BDD” instead of “reduced BDD”, i.e. we
will always assume that we work with BDDs which are reduced.

Each BDD vertex unambiguously defines a Boolean function. The definition
is based on the so-called Shannon expansion which states that for an arbitrary
Boolean function f that depends on k variables v1, . . . , vk we have

f(v1, . . . , vk) = if v1 then f(1, v2, . . . , vk) else f(0, v2, . . . , vk),

or, in terms of Boolean operators ∧ and ∨

f(v1, . . . , vk) = (v1 ∧ f(1, v2, . . . , vk)) ∨ (v1 ∧ f(0, v2, . . . , vk))

The terms f(0, v2, . . . , vk) and f(1, v2, . . . , vk) are called the cofactors of the
Boolean function f with respect to the variable v1. It is, of course, possible
to expand f not only with respect to v1, but with respect to any one of the
Boolean variables v1, . . . , vk.

Definition 2.4.3 Boolean function fx represented by a BDD-vertex
The Boolean function fx represented by a BDD-vertex x ∈ V ert is recursively
defined as follows:

• if x ∈ T then fx = x, i.e. either 0 or 1,

• else (if x ∈ NT )

fx =
(

var(x) ∧ fthen(x)

)

∨
(

var(x) ∧ felse(x)

)

Most times one is interested in the case where x corresponds to the BDD root.
In that case we will write fB instead of fx, where x is the root vertex of BDD B.

It is known that BDDs provide a canonical representation for Boolean functions,
i.e. a given Boolean function has a unique BDD representation (assuming a fixed
ordering of the Boolean variables) [45]. For this reason, some computationally
hard problems (e.g. satisfiability of Boolean functions, test-for-tautology, equiv-
alence of two Boolean functions, . . . ) can be solved in constant or linear time,
once the BDD representations of the Boolean functions involved are known [12].

It should be noted that, given a Boolean function, the size of the resulting BDD
is highly dependent on the chosen variable ordering. This issue will be discussed
further in Chaps. 4, 5 and 6.
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2.4.2 Operations on BDDs

We now introduce the basic operations on BDDs and provide some informal
explanation of how they can be implemented. In general, algorithms for BDD
construction from a Boolean expression and algorithms for BDD manipulation,
such as the Apply algorithm (see below) for performing Boolean operations on
BDD arguments, all follow a recursive descent scheme according to the above
Shannon expansion.

Negation: Let B be a BDD over (v1, . . . , vn), representing the Boolean function
fB. The BDD representing the negation of this function, denoted B, is obtained
from B by simply swapping the terminal vertices.

The general Apply algorithm: Let B1 and B2 be two BDDs over the set
of Boolean variables {v1, . . . , vn} with ordering relation ≺. If op is a binary
Boolean operator (e.g. conjunction ∧, disjunction ∨, implication →, . . . ) then
Apply(B1, B2,op) returns the BDD B over (v1, . . . , vn) where fB = fB1 op fB2 .
The basic idea of the algorithm is as follows: Apply(B1, B2,op) calls a recursive
procedure Aop(r1, r2), where r1 (r2) is the root vertex of B1 (B2). In general,
procedure Aop(x1, x2) takes a vertex x1 of B1 and a vertex x2 of B2 as its input
and returns a vertex x that is obtained according to the following rules:

– If both x1 and x2 are terminal vertices then Aop(x1, x2) returns the terminal
vertex x = x1 op x2.

– If x1, x2 are non-terminal vertices and var(x1) = var(x2) = v then var(x) = v,
else(x) = Aop(else(x1), else(x2)) and then(x) = Aop(then(x1), then(x2)).

– If x1 ≺ x2 then var(x) = var(x1), else(x) = Aop(else(x1), x2) and then(x) =
Aop(then(x1), x2).
Conversely, if x2 ≺ x1 then var(x) = var(x2), else(x) = Aop(x1, else(x2)) and
then(x) = Aop(x1, then(x2)).

Furthermore, in order to achieve efficient implementation, procedure Aop may
check for the presence of special “controlling” values [45] (which depend on the
instantiation of the operator op) which can receive special treatment and thereby
avoid the initiation of recursive calls. For instance, if op is disjunction and x1 is
the terminal vertex x1 = 1, then x2 can be immediately returned as the result.

As a small example to illustrate the principle of Apply, Fig. 2.6 shows three
BDDs B1, B2 and B over Boolean variables (a, s, t). B1 represents the function
(a∧t)∨(a∧s∧t), B2 represents (a∧s∧t)∨(a∧s) and B represents their conjunction
which is a ∧ s ∧ t. Note that some vertices appear in more than one of the three
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Figure 2.6: Example for Apply where op is instantiated by conjunction

A∧(x4, 0) ❀ 0

A∧(x1, x5) ❀ x8

A∧(x4, x6) ❀ x6 A∧(x2, x7) ❀ 0

A∧(x3, 0) ❀ 0A∧(x4, x4) ❀ x4 A∧(0, 1) ❀ 0

Figure 2.7: Call tree for the Apply example from Fig. 2.6

BDDs. For instance, vertices 0 (not drawn), 1 and x4 appear in both B1 and B2

since they represent the same Boolean functions in both BDDs and are there-
fore stored only once in memory (for this issue cf. the discussion on the unique
table below). Fig. 2.7 shows the call tree associated with Apply(B1, B2,∧).
At the top level, procedure A∧ (an instance of Aop) is called with the ar-
guments x1 and x5, the root vertices of the operand BDDs. Since x1 and x5

are both non-terminal and var(x1) = var(x5) = a, this causes the two recursive
calls A∧(else(x1), else(x5)) = A∧(x4, x6) and A∧(then(x1), then(x5)) = A∧(x2, x7)
which in turn cause further recursive calls. In Fig. 2.7, solid (dashed) edges de-
note recursive calls which will determine the then (else) successor of a node, and
the notation A∧(x, y) ❀ z denotes the fact that as a result of the call A∧(x, y)
a vertex z is eventually returned. For instance, the top-level call to A∧ eventu-
ally returns vertex x8 with var(x8) = a. In the call tree, one can also observe
how the recursion terminates either because both operands are terminal (e.g.
A∧(0, 1) ❀ 0) or because controlling values take effect (e.g. A∧(x4, 0) ❀ 0 or
A∧(x4, x4) ❀ x4).

We now discuss some important implementation considerations [41]. In order to
make sure that the BDD returned by Apply(.) is in reduced form, the algorithm
uses a “unique table” which contains all currently existing BDD vertices. A
unique table entry for a non-terminal vertex x consists of the vertex identifier,
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the vertex’s variable labelling var(x) and the two references to the children vertices
then(x) and else(x). (In addition, a reference counter is usually maintained for
each non-terminal vertex in order to keep track of the number of references to
that vertex.) A unique table entry for a terminal vertex consists of the vertex
identifier and the vertex’s value. As a result of procedure Aop(x1, x2), a new
vertex is inserted into the unique table, if an isomorphic vertex was not yet in
the table. Otherwise a reference to the already existing vertex is returned.

In order to minimise the number of recursive calls to procedure Aop, a second
table is maintained by most BDD packages [41]. This is called the “computed
table” which contains entries of the form (x, y,op, z), where z is the identifier
of the vertex which had been previously obtained when computing Aop(x, y).
Whenever Aop is called, the algorithm checks whether there exists a matching
entry in the computed table, and if this is the case simply returns the vertex found
there. Proper use of the computed table ensures that the same computation will
not be repeated during recursive descent of the decision graph.

For efficiency reasons, both the unique table and the computed table are usu-
ally implemented with the help of hashing functions, and the computed table is
realised as a finite size cache [41].

The Restrict operation: Let B be a BDD depending on Boolean variables
v1, . . . vn. Let the Boolean vector (b1, . . . , bk) ∈ IBk, where k ≤ n, be a fixed
assignment for a subset of the Boolean variables vi1 , . . . , vik ∈ {v1, . . . vn}. The
Boolean function represented by vertex x ∈ V ert under this assignment is denoted

by fx

∣

∣

∣

(vi1
=b1,...,vik

=bk)
. For the constant Boolean value b ∈ IB we define

Restrict(B, vi, b) := B

∣

∣

∣

vi=b

which is called the restriction of B to the case vi = b. Note that Restrict(B, vi, b)
is a BDD which depends only on Boolean variables v1, . . . , vi−1, vi+1, . . . , vn. If
B represents Boolean function fB(v1, . . . , vn), then Restrict(B, vi, b) represents

the Boolean function fB(v1, . . . , vn)
∣

∣

∣

vi=b
, i.e. the cofactor of fB with respect to

Boolean variable vi.

Restricting with respect to more than one variable at a time is defined recursively
as

Restrict(B, (vi1, . . . , vin, vin+1), (b1, . . . , bn, bn+1))

:= Restrict(B, (vi1, . . . , vin), (b1, . . . , bn))
∣

∣

∣

vin+1
=bn+1
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Restrict(B1, s, 1) = B1
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Figure 2.8: Example for Restrict

The BDD Restrict(B, vi, b) can be obtained from B by replacing any edge from
a vertex x to a vi-labelled vertex y by an edge from x to then(y) if b = 1 (else(y)
if b = 0), and afterwards removing all vi-labelled vertices.

In Fig. 2.8, a small example for the application of the Restrict operation is
shown. BDD B1, shown on the left, represents the function (a∧t)∨(a∧s∧t). The
BDD on the right is obtained by restricting B1 to the case s = 1 and represents
the function (a ∧ t) ∨ (a ∧ t).

The general Abstract operation: Let B be a BDD depending on Boolean
variables v1, . . . vn. For an associative binary Boolean operator op we define

Abstract(B, vi,op) := B

∣

∣

∣

vi=0
op B

∣

∣

∣

vi=1

which is called the abstraction of B with respect to Boolean variable vi and
operator op.

As an example, consider Abstract(B, vi,∨) = B

∣

∣

∣

vi=0
∨ B

∣

∣

∣

vi=1
which corresponds

to the existential quantification on Boolean functions, since

∃vi. f(v1, . . . , vi, . . . , vn) = f(v1, . . . , vi−1, 0, vi+1, . . . , vn)
∨ f(v1, . . . , vi−1, 1, vi+1, . . . , vn)

Abstracting with respect to more than one variable is defined as

Abstract(B, (vi1, . . . , vin),op)

:= B

∣

∣

∣

(vi1
,...,vin)=(0,...,0)

op . . . op B

∣

∣

∣

(vi1
,...,vin)=(1,...,1)

i.e. all possible restrictions of B with respect to the Boolean variables vi1, . . . , vin

are combined by operator op. It now becomes obvious that associativity of the
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operator op is required in order to ensure that the ordering of the variables and
the order in which the cofactors are chosen do not influence the outcome [18].

Variable renaming: Let B be a reduced BDD over (v1, . . . , vn). Let w /∈
{v1, . . . , vn} and i ∈ {1, . . . , n} with vi−1 ≺ w ≺ vi+1. Then, B{vi ← w} denotes
the BDD over (v1, . . . , vi−1, w, vi+1, . . . , vn) that results from B if one changes the
variable labelling of any vi-labelled vertex into w. To implement this, one sets
var(x) = w for any vi-labelled vertex x in B.

If 1 ≤ i1 < . . . < im ≤ n and w1, . . . , wm /∈ {v1, . . . , vn}, then we write
B{vi1 ← w1, . . . , vim ← wm} as a shorthand for B{vi1 ← w1} . . .{vim ← wm}.
For {w1, . . . , wn}, where w1 ≺ . . . ≺ wn, we write B{~v ← ~w} to denote the BDD
where each v variable has been renamed into the corresponding w variable.

Variable reordering: There exist algorithms for the dynamic reordering of
the variables in a BDD, see e.g. [35, 36]. In general, variable reordering can
lead to a decrease of the size of a BDD. However, it is known that finding the
optimal ordering is an NP-complete problem [36], and therefore one has to resort
to heuristics. We do not discuss variable reordering algorithms in detail, since we
will not make use of them in our applications.
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Chapter 3

Formalisms for “high-level”
model specification

Stochastic models, in many cases Markov models, have a long history in appli-
cation fields such as economics, physics, biology and medicine. For many years
they have also been successfully used for the purpose of performance and depend-
ability analysis of computer and communication systems. When constructing a
performance model, the human modeller usually does not describe the behaviour
of the model directly at the level of individual states and state-to-state transi-
tions, since this would be much too tedious and error-prone. Instead, he or she
employs some sort of “high-level” model specification formalism which assists him
in precisely describing the behaviour he has in mind. Such a model specification
formalism may provide graphical, textual or algebraic features, and typical ex-
amples are queueing networks, stochastic Petri nets, stochastic process algebras
or specialised modelling languages.

In this chapter, we give a brief overview of high-level formalisms for describ-
ing stochastic performance models. We first briefly survey the main features of
stochastic graph models, queueing networks, stochastic Petri nets and specialised
modelling languages. We emphasise the importance of structuring concepts since
these are a prerequisite for handling complex models. This argument leads our
discussion to stochastic automata networks, in which context we review the Kro-
necker approach, and from there to the concept stochastic process algebras. In
our opinion, stochastic process algebras quite ideally support the specification
and analysis of complex performance models, and for that reason the section on
stochastic process algebras (Sec. 3.7) takes up most of this chapter.

43
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3.1 Stochastic graph models

In the area of project planning, where the aim is to accomplish certain sequences
of activities with limited resources under critical time constraints, network-based
planning methods of various form have been developed [115]. Classical project
networks are represented by acyclic weighted graphs, as realised in the so-called
program evaluation and review technique (PERT) and the critical path method
(CPM). A more general class of projects, containing several different node types
and also cycles, can be described and analysed with the graphical evaluation and
review technique (GERT) [260]1. Job shop scheduling problems [287] are among
the typical application areas of such networks.

In the sequel, we focus on stochastic graph models (SGM) (also called stochastic
task graphs) which are less general but amenable to efficient analysis. A SGM is a
directed acyclic graph where every node is equipped with a stochastic distribution
representing its execution time. Nodes represent tasks and the directed edges
represent ordering relations between tasks. The standard interpretation of a
SGM is that a task is causally dependent of its predecessor tasks, i.e. it starts
execution when all its predecessor tasks are finished. Other interpretations, for
instance that a task may start execution once at least one predecessor is finished,
are also possible. SGMs are very well suited for modelling the execution of parallel
programs [309, 151, 320, 241, 240] or business processes (workflows) [321]. The
primary aim of analysis is to determine the mean or distribution of the overall
execution time of the graph model.

For series-parallel graph models, efficient analysis, based on the series-parallel
reduction of the graph to a single node is possible. For instance, the tool PEPP
implements, among other analysis algorithms, a numerical series-parallel reduc-
tion algorithm [154, 152], which is based on discretised distributions and therefore
works on SGMs with generally distributed task execution times.

Generally structured graph models may be analysed by exact or approximate
state space analysis [308], methods which suffer from the state space explosion
problem, especially if the graph model has a high degree of parallelism or if the
node distributions are of phase type with many phases. From the point of view
of Markovian state space analysis, only transient analysis (as opposed to steady-
state analysis) is of interest with SGMs, since they have one absorbing state,
namely the state where all tasks have finished execution. Therefore, determining
the mean execution time of a SGM is a special case of determining the mean time
to absorption (MTTA) for a general CTMC (which could have more than one
absorbing state).

1GERT networks are also called stochastic project networks.
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Bounds for the mean execution time of a generally structured SGM can be ob-
tained by modifying the graph structure, such that it becomes series-parallel
[153], and afterwards performing series-parallel reduction of the modified graph.
In many instances, the bounding methods yield good approximations to the ex-
act result at very low computational cost. So, to summarise, one can say that
the analysis of SGMs is well understood and in many cases very efficient, but
that SGMs are suitable only for a limited range of applications and therefore not
sufficient as a universal modelling formalism.

3.2 Queueing networks

The development of queueing networks (QN) started already in the 1950ies, ini-
tiated by problems from the area of operations research [202, 203, 204]. It con-
tinued in the 1960ies with the modelling of closed networks [140], polling systems
(e.g. the machine interference model [95]) and time-sharing systems (e.g. the
well-known central server model [66]) and has since been a very active field of
research with a plethora of applications. A QN describes customers moving be-
tween stations where they receive service after possibly waiting for a service unit
to become available. The aim of analysis is typically the mean or distribution of
the number of customers at a station, the customer throughput at a station, or
the waiting time. The success of queueing networks stems mainly from the fact
that for the class of product form networks [24] (which was already mentioned
in Sec. 1.5.2) very efficient analysis algorithms, such as Buzen’s algorithm [67]
or mean-value analysis [277], are known, and that software tools for the speci-
fication and analysis of QN models were available at an early stage [285, 319].
Although QN have been extended in various directions, e.g. in order to model the
forking and synchronisation of jobs (fork-join QNs, [188, 189, 16, 15, 215, 259]),
the formalism of QNs is not suitable for the modelling of arbitrary systems, but
specialised to the application area of shared resource systems where individual
customers may be considered independent of each other.

3.3 Stochastic Petri nets

Stochastic Petri nets (SPN) were developed in the 1980ies for modelling complex
dependences and synchronisation schemes which cannot easily be expressed by
queueing models [258]. The modelling primitives of Petri nets (places, transitions,
markings) are very basic and do not carry any application-specific semantics. For
that reason, Petri nets are universally applicable and very flexible, which is shown
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by the fact that they have been successfully applied to many different areas of
application. In the class of Generalised SPN (GSPN) [1, 2], transitions are either
timed or immediate. Timed transitions are associated with an exponentially dis-
tributed firing time, while immediate transitions fire as soon as they are enabled.
During the analysis of a GSPN, the reachability graph is generated and vanish-
ing (instable) markings, which are due to the firing of immediate transitions, are
eliminated. The result is a Markov chain (CTMC) which can be analysed by
numerical algorithms, yielding (steady-state or transient) state probabilities, i.e.
the probabilities of the individual net markings2.

In the basic formalism, a (G)SPN model is monolithic, i.e. it consists of a single
net which models the whole system to be studied. Therefore, SPN models of com-
plex systems tend to become very large and confusing. Moreover, such complex
SPNs suffer from the state space explosion problem which can make state space
generation and analysis prohibitively expensive. In Sec. 1.7.4 we had already
mentioned the formalism of stochastic well-formed coloured Petri nets [76, 127]
which enables a reduction of the state space, based on marking symmetries. In
the 1990ies, some work has been published which is concerned with building SPNs
in a structured way, basically by synchronising subnets via common transitions
[51, 53, 52, 61, 107, 108], and exploiting the structure during analysis. These ap-
proaches are all related to the Kronecker approach described below in Sec. 3.6.1.
A different approach to the structuring of SPNs, namely through the sharing of
places between subnets, lead to Stochastic Activity Networks [283, 94]. In sum-
mary, one can safely say that such structuring techniques for stochastic Petri nets
are mandatory for successfully combating the state space explosion problem.

3.4 Tool-specific model specification languages

Some software tools for performance modelling implement their own specialised
model description languages. We mention the tools USENUM [288], MARCA
[313], MOSEL [32, 33] and DNAmaca [223] which support the specification and
analysis of Markov models. Such languages provide constructs for specifying
states (usually described as tuples of discrete state variables) and state-to-state
transitions (usually described by enabling conditions, transition rate functions
and state variable changing functions). In addition to the actual model specifi-
cation, these languages also contain constructs for specifying the measures to be
calculated, the kind of experiment to be carried out, the solution method to be
used and other control parameters.

2Another line of research is concerned with non-Markovian Petri nets, i.e. SPNs where some
transitions may have generally distributed firing times [136, 239, 135].
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It is, of course, difficult for tool-specific languages to achieve wide-spread propa-
gation and acceptance. A further problem of the languages mentioned above is
the fact that the models thus specified are monolithic, i.e. consisting of a single
component, and state space explosion is a serious problem. As a first step to-
wards compositional model specification, in [233] the DNAmaca input language
and state space generation component were extended, such that it is possible to
specify and analyse structured models consisting of several interacting compo-
nents.

3.5 The need for structured models

In their standard form, queueing models, stochastic Petri nets and the tool-
specific modelling languages mentioned above do not offer the possibility of com-
posing an overall model from components which can be specified in isolation.
Some proposals for modular extensions of these formalisms have been made, but
no general concept exists. Modular composition of submodels, however, is a
highly desirable feature when modelling complex systems, since it enables human
users to focus on manageable parts from which a whole system can be con-
structed. As a specific example, suppose one wished to model a communication
system where a sender communicates with a receiver over some communication
medium. The model should reflect this structure, i.e. it should consist of three
interacting submodels, one for the sender, one for the receiver and one for the
medium, and the user should be able to specify these three submodels more or
less independently of each other and then simply specify the way in which the
submodels interact. As another, more general example, we mention the very
fundamental concept of separating aspects related to the machine from aspects
related to the load, a concept that had been developed already in [218, 184, 186].
Following this approach, a so-called system model is constructed from two inter-
acting submodels, namely a machine model and a load model3.

As mentioned already in Chap. 1, and as we shall see in the sequel, modularity
and structuredness do not only help to make the construction of complex models
easier and more convenient, but can also be exploited for efficient representa-
tion, compositional state-space reduction and efficient analysis. Prominent ex-
amples for such structure-based efficient modelling techniques are the Kronecker
approach (discussed briefly in Sec. 3.6.1) and the symbolic approach (which is
the main focus of this thesis).

3Similar ideas are applied in stochastic rendezvous networks [324] and layered queueing
networks [281].
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Stochastic automata networks (SAN) and stochastic process algebras (SPA) are
formalisms which provide operators for constructing large models from small
components, i.e. they explicitly support the construction of structured models.
We shall discuss these formalisms in the following sections. We also point out
the structured modelling framework described in [293], which allows the user to
construct models consisting of interacting submodels, and where symmetries in
the model structure are exploited in order to construct a reduced state space.

3.6 Stochastic automata networks

Stochastic Automata Networks (SAN) 4 were developed in the 1980ies and 1990ies
[271, 273, 272, 312]. A SAN consists of several stochastic automata, basically
CTMCs whose transitions are labelled with event names, which run in parallel and
may perform certain synchronising events together. Thus, the SAN formalism is
truly structured, since it allows the user to specify an overall model as a collection
of interacting submodels. The major achievement of SANs was the formulation
of the infinitesimal generator matrix of the Markov chain underlying the overall
model as a so called tensor descriptor, as described below in Sec. 3.6.1. The
potentially very large generator matrix of the overall model therefore never needs
to be explicitly generated and stored. The SAN modelling approach is supported
by the tool PEPS [274] and by the toolbox described in [62].

3.6.1 The Kronecker approach

The Kronecker approach was originally developed for the SAN framework [271],
which is a rather low-level modelling formalism since its submodels are basically
labelled CTMCs. However, the Kronecker approach has since been adapted to
queueing networks [54], stochastic Petri nets [51, 107, 61], stochastic process
algebras [56] and the structured modelling framework of [293].

The Kronecker approach realises an “implicit”, space-efficient representation of
the transition matrix of a structured Markov model, which also carries over to the
generator matrix and to the iteration matrices for some of the common stationary
iterative methods. Suppose we have two independent CTMCs C1 and C2 which

4The acronym “SAN” is also used for Stochastic Activity Networks (cf. Sec. 1.7.4 and
Sec. 3.3), an extension of GSPNs, which has been developed by Sanders et al. [283, 94] and also
offers structuring concepts and symmetry exploitation. In this thesis, unless otherwise stated,
we will use “SAN” for Stochastic Automata Network.
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are given by their transition rate matrices R1 and R2 (of size d1 and d2). Let
us consider the combined stochastic process C whose state space is the Cartesian
product of the state spaces of C1 and C2. Process C possesses the transition rate
matrix R which is given by the Kronecker sum of R1 and R2:

R = R1 ⊕ R2 (= R1 ⊗ Id2 + Id1 ⊗ R2)

where ⊗ denotes Kronecker product, ⊕ denotes Kronecker sum and Id denotes
an identity matrix of size d [101]. If, however, C1 and C2 are not independent, but
perform certain transitions synchronously, the expression for the overall transition
rate matrix changes to

R = R1,i ⊕ R2,i +
∑

a∈Sync

λa · R1,a ⊗ R2,a

where R1,i and R2,i contain those transitions which C1 and C2 perform indepen-
dently of each other, and R1,a and R2,a contain those transitions which are caused
by an event a from the set of synchronising events Sync. Here it is assumed that
the resulting rate of the synchronising event a is given by λa, i.e. it is a predeter-
mined rate, and matrices R1,a and R2,a are indicator matrices which contain only
zeroes and ones. (It is also possible that R1,a and R2,a contain rates, in which case
in the above subexpression λa ·R1,a⊗R2,a has to be replaced by R1,a⊗R2,a. This
would mean that the resulting rate of a synchronising event is equal to the prod-
uct of the rates of the participating processes.) For the general case, where the
overall model consists of K submodels, the expression for the overall transition
rate matrix is given by

R =
K
⊕

k=1

Rk,i +
∑

a∈Sync

λa ·
K
⊗

k=1

Rk,a

The strength of the Kronecker approach lies in its memory-efficiency and in the
fact that for performing numerical analysis, the overall transition matrix never
needs to be constructed explicitly. Rather, iterative numerical schemes which
rely on matrix-vector multiplication as their basic operation, can be performed
directly on the tensor descriptor of the iteration matrix (which can be derived
from the tensor descriptor of the transition rate matrix). Plateau [271] used
the power method, and Buchholz [50] describes Kronecker-based power, Jacobi,
modified Gauss-Seidel, JOR (extrapolated Jacobi method) and modified SOR
methods. Efficient algorithms for the multiplication of a vector with a Kronecker
descriptor are analysed in depth in [59, 60], where, however, the authors state
that “. . . all Kronecker-based algorithms are less computationally efficient than
a conventional multiplication where [the matrix] R is stored in sparse format
. . . ” and “This suggests that, in practice, the real advantage of Kronecker-
based methods lies exclusively in their large memory savings”. Efficient numerical
solution based on Kronecker representation is also the focus of [312] and [120].
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When working with the Kronecker approach, the set of states reachable from
the initial state may be a strict subset of the Cartesian product of the involved
submodel state spaces. This is known as the “potential versus actual state space”
problem. If the actual state space is not known before numerical analysis starts, a
probability vector of the size of the potential state space must be allocated, which
can waste a considerable amount of memory space and even make the whole
analysis impracticable. For that reason, Kronecker-based reachability analysis
has been developed [213, 81] which may be performed as a preprocessing step
before numerical analysis, at the cost of extra execution time.

3.7 Stochastic process algebras

Stochastic process algebras (SPA) [141, 192, 28] were developed in the 1990ies as
a formal approach to performance evaluation. They are based on classical process
algebras such as CSP [196], CCS [252] and LOTOS [37] and make it possible to
carry out the modelling of distributed systems in a compositional fashion.

According to [26], a process algebra is a formal description technique for complex
computer systems, especially those with communicating, concurrently executing
components. A process algebra can be seen as a formal language for specifying
the behaviour of processes in a structured way. This is achieved by defining the
possible sequences of actions which a process may perform, and by specifying
the interaction between processes. In addition to the formal language, a calculus
that allows one to establish the equivalence between processes is an integral part
of a process algebra.

In a stochastic process algebra, actions are associated with quantifiable stochastic
delays, such that it is possible to model the passage of time as needed, for example,
for the purpose of performance evaluation. The most popular stochastic distribu-
tion used for SPAs is the exponential distribution, and therefore the mathematical
analysis of the resulting Markovian SPAs does not pose any specific problems.
In some instances, timeless (immediate) actions are added [181, 278, 279], which
raises some semantical questions but does not pose problems with respect to nu-
merical analysis. In addition to the Markovian case, SPAs with general distribu-
tions have been developed, see e.g. [187, 98, 99]. One interesting branch of current
SPA research combines performance analysis with model checking [161, 170, 172],
a topic which we will discuss in more detail in Chap. 9.
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3.7.1 Syntax and semantics

The basis of a process algebra is a formal language, which allows one to specify
the behaviour of processes and their interaction. The underlying semantic model
is usually a labelled transition system, whose transitions are labelled by actions,
and which is generated with the help of a structural operational semantics (SOS).
In general, process algebras offer the following features:

1. Complex models are built by composing small-size components in a hierar-
chical fashion.

2. An abstraction operator can be used in order to make a component’s in-
ternal behaviour invisible to the environment. This feature may also be
exploited for the reduction of the state space through “weak” bisimulation
relations.

3. A calculus, i.e. a set of axiomatic rules, establishes the equivalence (w.r.t. a
given bisimulation equivalence) between two specifications. The equivalence
is the basis for state space reduction (also called state space aggregation).

These three features, which are also present in stochastic process algebras, are
often summarised by the term “constructivity”.

The LTS generated from a stochastic process algebra specification carries addi-
tional labels concerning the stochastic timing behaviour of the process. In the
case of Markovian SPAs, those labels are in the form of transition rates. From
such an SLTS the underlying CTMC can be derived by abstracting from all action
names, and analysed by standard numerical methods.

On the level of the underlying labelled transition system, the equivalence be-
tween two specifications can be established through the concept of bisimulation
relations [267]. Examples of such relations are Milner’s strong and weak bisimilar-
ity [252], strong equivalence [192], (strong and weak) Markovian bisimilarity [167]
and extended Markovian bisimilarity [28]. These relations have been shown to be
congruences (with some limitations), which fact can be used in order to minimise
the state space of an SPA model in a compositional fashion. Thus, the struc-
ture of a system consisting of several interacting components can be exploited
during Markov chain generation. Any component can be replaced by an equiv-
alent but smaller one before it is used in a composition with other components,
which ensures that the state space is kept minimal at any intermediate level of
model construction. This strategy, known as compositional aggregation helps to
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circumvent the state space explosion problem, and has been applied successfully
in many applications, see for instance [174].

We now introduce an example stochastic process algebra language that will be
considered in the sequel, and define its operational semantics.

Definition 3.7.1 Stochastic process algebra language L
Let Act be the set of valid action names and Pro the set of process names. We
distinguish the action τ ∈ Act as an internal, invisible activity. Let P, Pi ∈ L,
a ∈ Act, S ⊆ Act \ {τ}, and X ∈ Pro. The set L of valid expressions is defined
by the following language elements:

stop inaction
a ; P action prefix (a, λ) ; P Markovian prefix
P1 [] P2 choice P1 |[S]| P2 parallel composition
hide a in P hiding X process instantiation

A set of process definitions (of the form X := P ) constitutes a process environ-
ment.

The operational semantic rules shown in Fig. 3.1 (formulated in the style of [275])
define a transition system which contains action transitions (also called immediate

transitions),
a

-----➤, and Markovian transitions,
a,λ
−−−−−➤. The semantic model is a

multi-transition system, i.e. a transition system where the number of instances of
a Markovian transition is recognised. This multi-transition system is defined as
the tuple (L, Act, ----➤, =⇒, P 0), where L is the set of derivable process terms, Act
is the set of actions, P 0 ∈ L is the initial process, ----➤ is the ordinary transition
relation for action transitions and =⇒= {|(P, a, λ, Q) |P, Q ∈ L, a ∈ Act, λ ∈
IR>0|} is the multi-relation for Markovian transitions ({| and |} denote multi-set
brackets). The multiplicity of a certain Markovian transition is defined as the
number of its distinct derivations according to the semantic rules in Fig. 3.1. For
more details see for instance [141, 192]. It is possible to flatten the multi-relation
to an ordinary transition relation as follows: Transitions with multiplicity greater
than one can be amalgamated into a single transition whose rate is the sum of
the individual rates, and such a cumulation preserves the behaviour with respect
to Markovian bisimulation. Therefore, from now on, we can safely assume that
multiple transitions are already cumulated and that the semantic model is an
ESLTS (with two ordinary transition relations, one for action transitions and one
for Markovian transitions).

Note that the semantic rule for synchronisation of Markovian transitions is para-
metric in a function φ determining the rate of synchronisation, in response to the
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a; P
a

-----➤ P

P
a

-----➤ P
′

P [] Q
a

-----➤ P
′

Q
a

-----➤ Q
′

P [] Q
a

-----➤ Q
′

P
a,λ

−−−−−−➤ P
′

P [] Q
a,λ

−−−−−−➤ P
′

Q
a,λ

−−−−−−➤ Q
′

P [] Q
a,λ

−−−−−−➤ Q
′

(a, λ); P
a,λ

−−−−−−➤ P

P
a

-----➤ P
′

P |[S]| Q
a

-----➤ P
′
|[S]| Q

a 6∈ S
Q

a
-----➤ Q

′

P |[S]| Q
a

-----➤ P |[S]| Q
′

a 6∈ S
P

a
-----➤ P

′
Q

a
-----➤ Q

′

P |[S]| Q
a

-----➤ P
′
|[S]| Q

′
a ∈ S

P
a,λ

−−−−−−➤ P
′

P |[S]| Q
a,λ

−−−−−−➤ P
′
|[S]| Q

a 6∈ S
Q

a,λ
−−−−−−➤ Q

′

P |[S]| Q
a,λ

−−−−−−➤ P |[S]| Q
′

a 6∈ S
P

a,λ
−−−−−−➤ P

′
Q

a,µ
−−−−−−➤ Q

′

P |[S]| Q
a,φ(λ,µ)

−−−−−−−−−−➤ P
′
|[S]| Q

′

a ∈ S

P
a

-----➤ P
′

hide a in P
τ

-----➤ hide a in P
′

P
b

-----➤ P
′

hide a in P
b

-----➤ hide a in P
′

a 6= b
P

a
-----➤ P

′

X
a

-----➤ P
′

X := P

P
a,λ

−−−−−−➤ P
′

hide a in P
τ,λ

−−−−−−➤ hide a in P
′

P
a,λ

−−−−−−➤ P
′

hide b in P
a,λ

−−−−−−➤ hide b in P
′

a 6= b
P

a,λ
−−−−−−➤ P

′

X
a,λ

−−−−−−➤ P
′

X := P

Figure 3.1: Semantic rules for the language L

fact that different synchronisation policies (minimum, maximum, product, . . . )
are possible. In the process algebra TIPP [178, 179, 180], φ is instantiated by
multiplication, since strong bisimilarity is a congruence with respect to parallel
composition and abstraction, provided that φ is distributive over summation of
real values, see [162, 167]. Note, also, that the apparent rate construction of
PEPA [192] requires a function φ(P, Q, λ, µ) instead of φ(λ, µ).

3.7.2 Bisimulation equivalences

In this and the subsequent sections we discuss the important concept of bisimu-
lation. The discussion follows [183], further details may be found in [162].

Bisimulation relations are important since they allow one to compare the be-
haviour of different processes. Two processes (two expressions of a process alge-
bra language, two states of a transition system) exhibit the same behaviour, if
they are bisimilar. For the practical work with transition systems, bisimulation
equivalences make it possible to reduce the state space of a process in the follow-
ing way: Each class of (potentially many) equivalent states is replaced by a single
macro state, thereby reducing the size of the state space. In the case where a
bisimulation relation is not only an equivalence, but also a congruence, processes
may be replaced by equivalent but smaller ones before they are composed with
other processes, thereby preserving the behaviour of the overall process.

In the sequel, we consider the language L and two distinct sub-languages thereof,
for which we define strong and weak bisimulation relations. The first sub-
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language, L1, arises by disallowing Markovian prefix. This sub-language is an
ordinary, non-stochastic process algebra, a subset of Basic LOTOS [37], where
only action transitions appear in the underlying LTS. On this language, strong
and weak bisimilarity coincide with Milner’s strong and weak bisimilarity [252].
The complementary sub-language, L2, is obtained by disallowing action prefix.
The resulting language is a Markovian process algebra (called MTIPP [179] if φ is
instantiated with multiplication), for which (strong) Markovian bisimilarity can
be defined (the notion of weak bisimilarity has no parallel in this purely Marko-
vian context). Note that Markovian bisimilarity agrees with Hillston’s strong
equivalence [192]. The semantics of L2 contains only Markovian transitions, so
the semantics of an L2-specification is a stochastic LTS (SLTS). The complete
language, where both prefixes coexist, involves both types of transitions, so the
semantics of an L-specification in the general case is an extended SLTS (ESLTS).
For this general case we define strong and weak Markovian bisimilarity.

The non-stochastic case L1: We now recall the notions of strong and weak
bisimilarity for the language L1.

Definition 3.7.2 Strong bisimulation on LTS
An equivalence relation B on the set of states of an LTS is a strong bisimulation,
if (P, Q) ∈ B implies that

if P
a

-----➤ P ′, then Q
a

-----➤ Q′, for some Q′ with (P ′, Q′) ∈ B
Two expressions P and Q are strongly bisimilar if they are contained in a strong
bisimulation.

Weak bisimilarity is obtained from strong bisimilarity by basically replacing
a

-----➤

with a
----------➤. Here, a

----------➤ denotes an observable a transition that is preceded and

followed by an arbitrary number (possibly zero) of invisible
τ

-----➤ activities, i.e.
a

----------➤ :=
τ∗

------➤
a

-----➤
τ∗

------➤. In the case where a is internal (a = τ), a
----------➤ abbrevi-

ates
τ∗

------➤.

Definition 3.7.3 Weak bisimulation on LTS
An equivalence relation B on the set of states of an LTS is a weak bisimulation,
if (P, Q) ∈ B implies that

if P a
----------➤ P ′, then Q a

----------➤ Q′, for some Q′ with (P ′, Q′) ∈ B
Two expressions P and Q are weakly bisimilar if they are contained in a weak
bisimulation.

The purely Markovian case L2: The equivalence relation on which we fo-
cus now is known as Markovian bisimulation [179]. Informally, two states are
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x2

x1

a, λ

SC1

C2
a, µ

a, δ

C3

Figure 3.2: Partitioning of the state space S of an SLTS

Markovian bisimilar (members of the same equivalence class) if from both states
the same equivalence classes can be reached in one step by the same actions and
with the same “cumulative rate” (defined below). There is a strong connection
between Markovian bisimulation and classical Markov chain lumpability [212, 55].
Informally, Markovian bisimulation is a refinement of lumpability, by distinguish-
ing between different action names. Fig. 3.2 illustrates how the state space S of
an SLTS is partitioned into three disjoint subsets, C1 . . .C3, also called classes.

Definition 3.7.4 Cumulative rate γ
The cumulative rate from a state P by action a to a set of states C is denoted by
the function γ : L ×Act × 2L 7→ IR which is defined as

γ(P, a, C) =
∑

λ∈E(P,a,C) λ

where E(P, a, C) := {| λ | P
a,λ
−−−−−➤ P ′ ∧P ′ ∈ C |}. In this expression, {| and |}

denote multi-set brackets.

For example, in Fig. 3.2, γ(x1, a, C2) = λ and γ(x2, a, C2) = µ + δ.

We can now give the formal definition of Markovian bisimulation on SLTS (de-
fined in a style similar to that of probabilistic bisimulation in [234]).

Definition 3.7.5 (Strong) Markovian bisimulation on SLTS
An equivalence relation B on the set of states of an SLTS is a (strong) Markovian
bisimulation, if (P, Q) ∈ B implies that for all equivalence classes C of B and
all actions a it holds that

γ(P, a, C) = γ(Q, a, C)
Two expressions P and Q are strong Markovian bisimilar if they are contained
in a strong Markovian bisimulation.
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We do not define a weak bisimulation equivalence for the case L2, since in this

setting all internal transitions
τ,λ
−−−−−➤ are associated with a strictly positive (ex-

ponentially distributed) delay, which cannot be ignored, and which cannot be
“merged” with another such delay. For instance, the delay associated with a

sequence
τ,λ1
−−−−−➤

τ,λ2
−−−−−➤ has a different (non-exponential!) distribution than the

delay of a single transition
τ,λ
−−−−−➤, for whatever choice of λ1, λ2 and λ.

The general case L: We now recall the notions of strong and weak Markovian
bisimilarity for ESLTSs, again using the function γ, the cumulative rate.

Definition 3.7.6 Strong Markovian bisimulation for ESLTS
An equivalence relation B on the set of states of an ESLTS is a strong Markovian
bisimulation, if (P, Q) ∈ B implies that

(i) if P
a

-----➤ P ′, then Q
a

-----➤ Q′, for some Q′ with (P ′, Q′) ∈ B ,

(ii) for all equivalence classes C of B and all actions a it holds that
γ(P, a, C) = γ(Q, a, C).

Two expressions P and Q are strong Markovian bisimilar if they are contained
in a strong Markovian bisimulation.

As in the non-stochastic case, weak bisimilarity is obtained from strong bisimi-

larity by replacing
a

-----➤ with a
----------➤, which denotes an observable a transition that

is preceded and followed by an arbitrary number (possibly zero) of invisible
τ

-----➤

activities. As discussed in [167], the extension from strong to weak Markovian
bisimilarity has to take into account the interplay of Markovian and immedi-
ate transitions. Priority of internal immediate transitions leads to the following
definition [162].

Definition 3.7.7 Weak Markovian bisimulation for ESLTS
An equivalence relation B on the set of states of an ESLTS is a weak Markovian
bisimulation, if (P, Q) ∈ B implies that

(i) if P a
----------➤ P ′, then Q a

----------➤ Q′, for some Q′ with (P ′, Q′) ∈ B ,

(ii) if P τ
----------➤ P ′ 6

τ
-----➤ then there exists Q′ such that Q τ

----------➤ Q′ 6
τ

-----➤, and
for all equivalence classes C of B and all actions a

γ(P ′, a, C) = γ(Q′, a, C).
Two expressions P and Q are weak Markovian bisimilar if they are contained in
a weak Markovian bisimulation.
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In this definition, P 6
τ

-----➤ denotes that P does not possess an outgoing inter-
nal immediate transition. We call such a state tangible, as opposed to vanishing
states which may internally and immediately evolve to another behaviour (de-

noted P
τ

-----➤). Formally:5

Definition 3.7.8 Vanishing and tangible states
A state P of an ESLTS is called vanishing if it possesses an outgoing internal

immediate transition (written P
τ

-----➤). Otherwise it is called tangible.

It can be shown that strong Markovian bisimilarity is a congruence with respect
to the language operators, provided that φ is distributive over summation of
real values. The same result holds for weak Markovian bisimilarity except for
congruence with respect to choice, see [162].

3.7.3 Bisimulation in non-stochastic process algebras

Practical applicability of compositional aggregation relies on efficient algorithms
for computing minimised components. In this section, we introduce the general
idea of iterative partition refinement, working with the non-stochastic language
L1. Algorithms for the the purely Markovian case (language L2) and for the
general case (language L) will be discussed in the next two sections (Sec. 3.7.3 –
Sec. 3.7.5 have been adapted from [183]). BDD-based implementations of these
algorithms will be described in Chap. 5.

To illustrate the key ideas, we use as an example a queueing system, consisting
of an arrival process and a finite queue, which we specify using the language
L1. The arrival process is modelled as an infinite sequence of incoming arrivals
(arrive), each followed by an enqueue action (enq).

Arrival := arrive; enq; Arrival

The behaviour of the queue is described by a family of processes, one for each
value of the current queue population.

Queue0 := enq; Queue1

Queuei := enq; Queuei+1 [] deq; Queuei−1 1 ≤ i < max
Queuemax := deq; Queuemax−1

5This characterisation of tangible and vanishing states is slightly less restrictive than the
one which will be given in the definition of compositionally vanishing states (see Def. 5.2.1),
since the latter is devised for a compositional context.
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arrive arrive arrive arrive

Queue0 Queue1 Queue2 Queue3

deq deq deq

deq deq deq

τ τ τ

arrivearrivearrive

deq deq deq

deq

arrive

Figure 3.3: LTS of the queueing system example, before and after applying weak
bisimilarity

These separate processes are combined by parallel composition in order to de-
scribe the whole queueing system. Hiding is used to internalise action enq, since
it is not needed for further synchronisation.

System := hide enq in
(

Arrival |[enq]| Queue0

)

Fig. 3.3 (top) shows the LTS associated with the System specified above for the
case that the maximum queue population is max = 3. The LTS has 8 states,
the initial state being emphasised by a double circle. Fig 3.3 (bottom) shows
an equivalent representation, minimised with respect to weak bisimilarity. The
reduced LTS is obtained from the original one by replacing every class of weakly
bisimilar states by a single (macro) state.

The bisimulation algorithms to be discussed in the sequel are variants of the
well-known partition refinement algorithm [266, 121, 207]. (TIPPtool [217,
164, 176, 165], for instance, contains implementations of such algorithms.) The
basic idea is as follows: For a given finite state space, partitions of equivalent
states are computed by the method of iterative refinement, until a fixed point
is reached. This means that starting from an initial partition of the state space
(which consists of a single class containing all states), classes are refined until the
resulting partition corresponds to a bisimulation equivalence. The result thus
obtained is the largest existing bisimulation, in a sense the “best” bisimulation,
since it has a minimal number of equivalence classes. We only explain the basic
concepts of the algorithms, which can be optimised in several ways [121, 266, 57,
162, 183].

For the refinement of a partition, the notion of a “splitter” is very important. A
splitter is a pair (a, Cspl), consisting of an action a and a class Cspl. During re-
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finement, a class C is split with respect to a splitter, which means that subclasses
C+ and C− are computed, such that subclass C+ contains all those states from
C which can perform an a-transition leading to class Cspl, and C− contains all
remaining states.

In the following, an algorithm for strong bisimulation is sketched, which uses
a dynamic set of splitters, denoted by Splitters. We mention that, by a clever
treatment of splitters, it is possible to obtain a time complexity O(m log n), where
n is the number of states and m is the number of transitions [121].

1. Initialisation
Partition := {S}
/* the initial partition consists of a single class which contains all states */
Splitters := Act× Partition
/* all pairs of actions and classes have to be considered as splitters */

2. Main loop

while (Splitters 6= ∅)
choose splitter (a, Cspl) ∈ Splitters
forall C ∈ Partition

split(C, a, Cspl, Partition, Splitters)
/* all classes (including Cspl itself) are split */

Splitters := Splitters− (a, Cspl)
/* the processed splitter is removed from the set of splitters */

It remains to specify the procedure split. Its task is to split a class C, using
(a, Cspl) as a splitter. If splitting actually takes place, the input class C is split
into subclasses C+ and C−.

procedure split(C, a, Cspl, Partition, Splitters)

C+ := {P | P ∈ C ∧ ∃ Q : (P
a

-----➤ Q ∧ Q ∈ Cspl)}
/* the subclass C+ is computed */
if (C+ 6= C ∧ C+ 6= ∅)

/* only continue if class C actually needs to be split */
C− := C − C+

/* C− is the complement of C+ with respect to C */
Partition := Partition ∪ {C+, C−} − {C}
Splitters := Splitters ∪ (Act× {C+, C−})−Act× {C}
/* the partition and the set of splitters are updated */
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Figure 3.4: Initialisation, first and second refinement step of the algorithm

We illustrate the algorithm by means of the above queueing example. However,
we will compute weak instead of strong bisimilarity. The only change required for

this purpose is to replace the transition relation
a

-----➤ (used in procedure split)
by the weak relation a

----------➤. This, of course, requires the computation of a
----------➤

during the initialisation phase. It is known that this computation dominates the
complexity of partition refinement, basically because the reflexive and transitive

closure
τ∗

------➤ of internal moves has to be computed in order to build the weak
transition relation. The usual way of computing a transitive closure has cubic
complexity. (Some slight improvements are known for this task, see for instance
[91]. In any case, this is the computationally expensive part.)

The LTS is depicted in Fig. 3.4 (top) where we use a particular shading of states in
order to visualise the current partition. At the beginning all states are assumed
to be equivalent, and hence, all states are shaded with the same pattern. We
use

���
���
���

���
���
���

to refer to the set of states shaded like
��
��
��
��. So, Partition := {

���
���
���

���
���
���}, and

Splitters is initialised accordingly.

After computing the weak transition relation --------➤, we start partition refinement
by choosing a splitter, say (deq,

���
���
���

���
���
���

) and computing split(
���
���
���

���
���
���

, deq,
���
���
���

���
���
���

). The initial

state has no possibility to perform a deq
--------------➤ transition in contrast to all other

states. Therefore
���
���
���

���
���
���+ =

���
���
���
���

���
���
���
���

and
���
���
���

���
���
���− = . As a consequence, Partition becomes

{ ,
���
���
���
���

���
���
���
���} and new splitters are added to Splitters while the currently processed

one, (deq,
���
���
���

���
���
���), is removed. This completes the first iteration and leads to the



3.7. Stochastic process algebras 61

arrive, λ arrive, λ arrive, λ
enq, η enq, η enq, η

Queue0 Queue1 Queue2 Queue3

arrive, λ

deq, δ deq, δ

deq, δdeq, δ

deq, δ

deq, δ

Figure 3.5: Semantic model of the Markovian queueing system, isomorphic to a
CTMC

situation depicted in Fig. 3.4 (middle).

By choosing a different splitter, say (deq, ), we start the next iteration. Since
Partition now contains two elements, we compute both split( , deq, ) and
split(

���
���
���
���

���
���
���
���, deq, ). cannot be split any further, while splitting of

���
���
���
���

���
���
���
��� returns

���
���
���
���

���
���
���
���+ =

���
���
���

���
���
���

and
���
���
���
���

���
���
���
���− =

�����
�����
�����

�����
�����
�����

. Updating Partition to { ,
���
���
���

���
���
���

,
�����
�����
�����

�����
�����
�����} and adding new

splitters leads to the situation depicted in Fig. 3.4 (bottom). Subsequent itera-
tions of the algorithm will divide

�����
�����
�����

�����
�����
����� further, leading to five partitions in total.

The algorithm terminates once the set Splitters is empty.

3.7.4 Bisimulation in Markovian process algebras

In this section, we consider the MTIPP-style language L2 where all actions are
associated with an exponential delay. The semantic model of a process from the

language L2 is an SLTS, which only contains transitions of the form
a,λ
−−−−−➤.

We return to the example of a queueing system. The arrival process is now mod-
elled as follows, employing the Markovian action prefix:

Arrival := (arrive, λ); (enq, 1); Arrival

Action arrive occurs with rate λ, whereas for action enq we specified the (pas-
sive) rate 1, the neutral element of multiplication. The queue process determines
the actual rate of enq, occurring as a result of synchronisation via enq.

Queue0 := (enq, η); Queue1

Queuei := (enq, η); Queuei+1 [] (deq, δ); Queuei−1 1 ≤ i < max
Queuemax := (deq, δ); Queuemax−1

Fig. 3.5 depicts the SLTS obtained from the parallel composition of processes
Arrival and Queue0 synchronised over action enq.
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. . .

split tree

γ1 γk

Cγ1 Cγk

Figure 3.6: split tree used by procedure split′

For the refinement of a partition in the Markovian case, again the notion of a
“splitter”, defined by a pair (a, Cspl), is very important. When, during refinement,
a class Ci is split with respect to a splitter, now possibly more than two (!)
subclasses Cγ1 , Cγ2 , . . . , Cγk

are computed (k ≥ 1).

The basic bisimulation algorithm is the same as in Sec. 3.7.3, only the procedure
split needs to be replaced by a new procedure split′, whose task it is to split a
class Ci, using the combination (a, Cspl) as a splitter. Procedure split′ works on
a data structure split tree shown in Fig. 3.6. It essentially sorts states according
to their γ-values. Input class C is split according to the cumulative rate of a-
labelled transitions from a state P ∈ Ci to class Cspl, such that the cumulative rate
γ(P, a, Cspl) = γj is the same for all the states P belonging to the same subclass
Cγj

. Each branch of the split tree corresponds to one particular subclass.

procedure split′(C, a, Cspl, Partition, Splitters)
forall P ∈ C

γ := γ(P, a, Cspl)
/* the cumulative rate from state P to Cspl is computed */
insert(split tree, P, γ)
/* state P is inserted into the split tree */

/* now, split tree contains k leaves Cγ1 , . . . , Cγk
*/

if (k > 1)
/* only continue if C has been split into k > 1 subclasses */
Partition := Partition ∪ {Cγ1 , Cγ2, . . . , Cγk

} − {C}
Splitters := Splitters ∪ (Act× {Cγ1 , Cγ2, . . . , Cγk

})− Act× {C}
/* the partition and the set of splitters are updated */

In the forall loop of procedure split′, the cumulative rate γ is computed for every
state P in class C, and state P is inserted (by procedure insert) into the split tree
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such that states with the same cumulative rate fall into the same branch. The
split tree finally has k leaves, i.e. k different values of γ have appeared. If splitting
has taken place (i.e. if k > 1), the partition must be refined and the set of splitters
has to be updated.

It can be shown that such an algorithm for computing Markovian bisimilarity on
a given SLTS can be implemented in time complexity O(m log n) and in space
complexity O(m + n), where n is the number of states and m is the number of
transitions. The proof is given in [162].

Note that, since Markovian bisimulation corresponds to Markov chain lumpabil-
ity, the algorithm can be used to efficiently compute lumpable partitions of an
SPA description as well as a CTMC in isolation. Note further that the SLTS
from Fig. 3.5 does not contain any pair of states which are Markovian bisimilar,
i.e. each of its 8 states forms its own equivalence class.

3.7.5 Bisimulation with Markovian and immediate tran-

sitions

We now consider the complete language L with both immediate and Markovian
actions. The semantic model of such a specification is an ESLTS with two types

of transitions: Markovian transitions
a,λ
−−−−−➤ and action transitions

a
-----➤.

Again, we return to the queueing system example. In the arrival process, action
arrive now has an exponential delay, whereas action enq is immediate.

Arrival := (arrive, λ); enq; Arrival

The specification of the Queue is modified such that action enq is immediate and
action deq has exponential delay.

Queue0 := enq; Queue1

Queuei := enq; Queuei+1 [] (deq, δ); Queuei−1 1 ≤ i < max
Queuemax := (deq, δ); Queuemax−1

The overall queueing system is again given by the composition of Arrival and
Queue0, where enq is hidden after synchronisation. Fig. 3.7 (top) depicts the
resulting ESLTS, whose equivalence classes are indicated at the bottom of the
figure, in order to illustrate the effect of weak Markovian bisimilarity.

In the context of the complete language L, the notion of weak Markovian bisim-
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deq, δ
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Figure 3.7: ESLTS of the queueing system example, before and after applying
weak Markovian bisimilarity

ilarity allows one to derive a CTMC from a given specification. Immediate tran-
sitions do not have a counterpart on the level of the CTMC but weak Markovian
bisimilarity justifies to eliminate internal immediate transitions such that a SLTS,
i.e. an (action labelled) CTMC is obtained. We emphasise that elimination of
immediate transitions requires abstraction of immediate actions before applying
weak Markovian bisimilarity. In other words: Visible immediate actions cannot
be eliminated. Therefore, in order to construct a CTMC, it is mandatory to hide
all immediate actions before applying weak Markovian bisimulation. Further-
more, a unique CTMC exists only if non-determinism is absent after applying
weak Markovian bisimilarity.

We now discuss an algorithm to compute weak Markovian bisimilarity which is
based on the ones given in the two previous sections, but proceeds in a differ-
ent way. In general, the algorithm needs to distinguish between convergent and
divergent states. A divergent state is a vanishing state which has no possibil-
ity to internally and immediately evolve to a tangible state. All other states
are called convergent. The algorithm for the general case is quite involved, see
[174, 162, 183], therefore we restrict the present discussion to the divergence-
free case. We use the notation P ցτ P ′ to indicate that P may internally and
immediately evolve to a tangible state P ′, i.e. to a state P ′ where no further in-
ternal immediate transition is possible. The following algorithm computes weak
Markovian bisimilarity for divergence-free ESLTS.

1. Initialisation as before in Sec. 3.7.3.
In addition, weak transitions --------➤ are computed from ----➤.
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2. Main loop

while (Splitters 6= ∅)
choose splitter (a, Cspl)
forall C ∈ Partition split(C, a, Cspl, Partition, Splitters)
/* all classes are split with respect to weak transitions */
forall C ∈ Partition split′′(C, a, Cspl, Partition, Splitters)
/* all classes are split with respect to Markovian transitions */
Splitters := Splitters− (a, Cspl)
/* the processed splitter is removed from the set of splitters */

The main loop calls two different procedures, split and split′′ requiring further
explanation. The first, split, refines with respect to clause (i) of Def. 3.7.7,
which is achieved using procedure split from Sec. 3.7.3, but applied on weak
transitions (as in the example of Sec. 3.7.3). The second procedure, split′′, is
more complicated. It refines with respect to the clause (ii) of Def. 3.7.7. The
details are as follows:

procedure split′′(C, a, Cspl, Partition, Splitters)

forall P ∈ C ∧ P 6
τ

-----➤

/* P is a tangible state */
γ := γ(P, a, Cspl)
/* the cumulative rate to Cspl is computed */
insert(split tree, P, γ)
/* state P is inserted into the split tree */

/* now, split tree contains k leaves Cγ1 , . . . , Cγk
*/

forall P ∈ C ∧ P
τ

-----➤

/* P is a vanishing state */
if (∃ γj : P ցτ Q ⇒ Q ∈ Cγj

)
/* P can internally and immediately reach tangible states of class Cγj

only */
insert(split tree, P, γj)

Partition := Partition ∪ {Cγ1 , Cγ2 , . . . , Cγk
} − {C}

Splitters := Splitters ∪ (Act× {Cγ1, Cγ2 , . . . , Cγk
})−Act× {C}

/* the partition and the set of splitters are updated */

if (C 6=
⋃k

1 Cγj
)

/* some vanishing states have not been covered yet */

Partition := Partition ∪ {C −
⋃k

1 Cγj
}

Splitters := Splitters ∪ (Act× {C −
⋃k

1 Cγj
})

/* all remaining vanishing states form a new class, since they can internally
and immediately evolve to tangible states belonging to different classes */
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Figure 3.8: Initialisation and first refinement step of the algorithm

Fig. 3.7 (bottom) shows the result obtained when this algorithm is applied to
the ESLTS in Fig. 3.7 (top) (tangible states are highlighted by bold circles in the
figure). In order to illustrate the algorithm on a nontrivial example, where all
the distinctions between different types of vanishing states occur, we consider a
different example, depicted in Fig. 3.8 (top).

The initialisation proceeds as usual: After computing the weak transition relation

--------➤, the algorithm chooses a splitter, say (a,
���
���
���

���
���
���

) and computes split(
���
���
���

���
���
���

, a,
���
���
���

���
���
���

).
Two states may perform a a

----------➤ transition in contrast to all other states. There-
fore

���
���
���

���
���
���+ =

���
���
���
���

���
���
���
���

and
���
���
���

���
���
���− = . Partition and Splitters are updated accordingly,

leading to the situation depicted in Fig. 3.8 (middle).

The subsequent invocation of split′′( , a,
���
���
���

���
���
���

) is most interesting (as opposed to
split′′(

���
���
���
���

���
���
���
���, a,

���
���
���

���
���
���)). First, the three tangible markings (indicated by bold circles)

in class are inserted into split tree, according to their cumulative rates of
moving into (former) class

���
���
���

���
���
���

. This leads to a tree with two leaves, C2λ and Cλ,
containing two, respectively one state. Now the three remaining vanishing states
are considered: The rightmost vanishing states can internally and immediately
evolve only to tangible states of class Cλ (note that according to Def. 3.7.3 the

transition
a,3λ
−−−−−➤ is irrelevant since it originates in a vanishing state). For the

same reason, the left vanishing state is inserted into class C2λ. Only the initial
state is not covered yet, since it has an internal, non-deterministic choice of
behaving as a member of either of the classes. Hence, this state forms a new
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class,
���
���
���
���

���
���
���
��� . In total, split′′( , a,

���
���
���

���
���
���) has split into

���
���
���

���
���
���,

�����
�����
�����

�����
�����
����� (representing C2λ

and Cλ), and
���
���
���
���

���
���
���
���

, leading to the situation depicted in Fig. 3.8 (bottom) (the
Partition and Splitters are updated accordingly). This situation incidentally
coincides with the classes of weak Markovian bisimilarity, because subsequent
refinement steps do not reveal any distinction in one of these four classes. The
algorithm terminates once the set Splitters is emptied.

This algorithm computes weak Markovian bisimilarity on a given ESLTS. Its
implementation, based on [198, 144, 38, 20] requires O(n3) time and O(n2) space,
where n is the number of states. The proof is given in [162] for the divergence-free
as well as the general case. As in the non-stochastic case, the time complexity of
weak bisimulation is due to the fact that a transitive closure operation is needed
to compute weak transitions in either case.

For the moment, this concludes our discussion of efficient algorithms for com-
puting bisimulation equivalences. Their BDD-based implementation will be dis-
cussed in Chap. 5. As an important result, we have seen that the computational
complexity of computing bisimulation equivalences does not increase when mov-
ing from a non-stochastic to a stochastic setting. For Markovian bisimilarity this
fact is also mentioned (in similar settings) in [198] and in [28]. We also mention
that, in principle, minimisation with respect to a given bisimulation relation can
be carried out directly on a process algebraic specification by purely syntactic
transformations, using a complete axiomatisation (as given for weak Markovian
bisimulation in [175]).
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The symbolic approach
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Chapter 4

Symbolic representation of
transition systems

In this chapter, we describe how labelled transition systems (LTS) and their
stochastic extensions, that is SLTSs and ESLTSs, can be represented with the
help of decision diagrams. We first consider the symbolic representation of LTSs
by binary decision diagrams (BDD), the data structure which was introduced
already in Sec. 2.4. Then we introduce Decision Node BDDs and Multi Terminal
BDDs as extensions of BDDs which are capable of representing the numerical
information within an SLTS or ESLTS. The chapter concludes with some consid-
erations concerning the size of decision diagrams and the complexity of operations
thereon. While this chapter focuses on the techniques to represent transition sys-
tems symbolically, the following chapters will demonstrate how manipulations
and analyses of various sort can be carried out efficiently on the basis of symbolic
representations.

4.1 Representing LTSs with the help of BDDs

We first define how elements from finite sets (e.g. actions, states) are encoded as
Boolean vectors.

Definition 4.1.1 Encoding function E(.)
Let S = {s1, . . . , sm} be a finite set. An encoding function is an injective mapping
E :S 7→ IBn where n ≥ ⌈log2 m⌉.

71
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For s ∈ S, E(s) = (b1, . . . , bn) is a Boolean vector of length n. For convenience,
we introduce the following notation which we shall need later (in Chap. 5):

Definition 4.1.2 Minterm functionM(.)
Given n distinct Boolean variables a1, . . . , an and a Boolean vector (b1, . . . , bn)
of length n, we denote by M(a1, . . . , an; b1, . . . , bn) the minterm consisting of the
conjunction of n literals (a literal is either a Boolean variable or its negation),
i.e. M(a1, . . . , an; b1, . . . , bn) = a∗1 ∧ . . .∧ a∗n where a∗i = ai if bi = 1 and a∗i = ai if
bi = 0.

As an example, we have M(a1, a2, a3; 0, 1, 1) = a1 ∧ a2 ∧ a3.

We now discuss how a given LTS can be represented symbolically by a BDD.
The idea is to encode states and transition labels by Boolean vectors. Each

transition s
a

99K t of the LTS corresponds to a Boolean vector of length na + 2ns,
whose positions correspond to Boolean variables a1 . . . ana, s1 . . . sns, t1 . . . tns . This
vector encodes the action label, the source and the target state of the transition.
(We assume that the number of distinct actions to be encoded is less than 2na +1,
so that na bits are suitable to encode them, and similarly for the number of states).
The next definition states in which way an LTS is represented by a BDD.

Definition 4.1.3 Symbolic Representation of an LTS by a BDD
Let T = (S, L, 99K, s) be a LTS. Let B = (V ert, var, then, else) be a BDD and
V ars = {a1, . . . , ana , s1, . . . , sns, t1, . . . , tns}, such that na ≥ ⌈log2 |L|⌉ and ns ≥
⌈log2 |S|⌉. We say that B is the symbolic representation of T iff

x
a

99K y ⇔ fB

∣

∣

∣

(a1,...,ana )=E(a),(s1,...,sns )=E(x),(t1,...,tns )=E(y)
= 1

In this case, we write B ⊲ T for short.

Note that by this definition, the BDD B, which is the symbolic representation
of LTS T , does not encode the information about the initial state s of the LTS.
This is not a problem, since the identity of the initial state can easily be stored
in memory as a separate data item.

As a first example, Fig. 4.1 shows a simple LTS, the way transitions are encoded
and the corresponding BDD B. Since there are only two distinct action labels
(a and b), one Boolean variable (a) suffices to encode that label, and we set
E(a) = 0 and E(b) = 1. The number of state variables ns is also equal to one,
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a
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t

1

Figure 4.1: Simple LTS, transition encoding and corresponding BDD
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deq deq deq
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a2

s1

t1

s2

t2

(a1, a2, s1, t1, s2, t2)

0
enq
99K 1 (0, 1, 0, 0, 0, 1)

1
enq
99K 2 (0, 1, 0, 1, 1, 0)

2
enq
99K 3 (0, 1, 1, 1, 0, 1)

1
deq
99K 0 (1, 0, 0, 0, 1, 0)

2
deq
99K 1 (1, 0, 1, 0, 0, 1)

3
deq
99K 2 (1, 0, 1, 1, 1, 0)

Figure 4.2: Queue LTS, transition encoding and corresponding BDD

since there are only two states. Note that this is the same BDD as in Fig. 2.5
which represents the Boolean function fB(a, s, t) = (a ∧ t) ∨ (a ∧ s ∧ t).

As a second example, Fig. 4.2 shows the LTS corresponding to a simple queue
process, the way transitions are encoded and the resulting BDD. Here we deliber-
ately choose to encode the action labels enq and deq with the help of two Boolean
variables1 a1 and a2, i.e. we choose na = 2. In particular, we set E(enq) = (0, 1)
and E(deq) = (1, 0). The LTS has four states, therefore two bits are needed to
represent the state, i.e. we can set ns = 2. Note that in this BDD we use a special
“interleaved” ordering of the Boolean variables encoding the source and target
state, which leads us to the following discussion.

1Since there are only two distinct actions in the LTS, one bit would actually be enough to
encode the action. However, the encoding 0 is often reserved for the special internal action τ ,
and in any case it is not mandatory to use the smallest possible number of bits.
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s1
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1

s1

t1

s2

t2

s3

t3

1

Figure 4.3: The BDD Stab for n = 3 pairs of s and t variables. Non-interleaved
(left) and interleaved variable ordering (right).

As already mentioned, the size of a BDD, i.e. its number of vertices, is highly
dependent on the chosen variable ordering. As a prominent example, consider
the function

fStab(s1, . . . , sn, t1, . . . , tn) =

n
∧

i=1

(si ↔ ti)

Under the näıve non-interleaved ordering s1 ≺ . . . ≺ sn ≺ t1 ≺ . . . ≺ tn the
number of vertices for BDD Stab would be 3·2n−1, i.e. exponential in the number
of state variables. On the other hand, it is possible to represent this function by
a very compact BDD, whose number of vertices is only 3 · n + 2, i.e. linear in the
number of state variables, provided that the following “interleaved” ordering of
Boolean variables is employed: s1 ≺ t1 ≺ . . . ≺ sn ≺ tn. Figure 4.3 shows the
BDD Stab for a process with n = 3 state variables, using the non-interleaved and
the interleaved orderings.

In the context of transition systems, experience has shown that the following
variable ordering yields small BDD sizes [118]:

a1 ≺ . . . ≺ ana ≺ s1 ≺ t1 ≺ . . . ≺ sns ≺ tns

i.e. the variables encoding the action come first, followed by the variables for
source and target state interleaved. As we shall see, this ordering is also advanta-
geous in view of the parallel composition operator discussed below (see Sec. 5.1).
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4.2 BDD extensions for representing real-valued

functions

Clearly, pure BDDs are not capable of representing the numerical information
within a stochastic LTS, where transitions between states are labelled not only
by an action label, but also by a transition rate, i.e. by a non-negative real
number. In order to represent a SLTS with a fixed finite number of different
values of the transition rates, one could encode these values as Boolean vectors,
as has been done in [221]. However, this approach is impractical in most cases,
since computations on the numerical values have to be performed, whereby new
values are generated whose encoding is undefined.

In the literature, several modifications and augmentations of the BDD data struc-
ture have been proposed for representing functions of the type f : IBn 7→ ID,
where ID denotes an arbitrary set (we are particularly interested in the case where
ID is a finite subset of IR) [284]. Most prominent among these are multi-terminal
BDDs (MTBDD) [86, 17], edge-valued BDDs (EVBDD) [232] and Binary Mo-
ment Diagrams (BMD) [47]. Another BDD extension with the same capability
are decision-node BDDs (DNBDD) [298]. These data structures can capture not
only functional, but also numerical information, a feature which is needed for
representing the information about the transition rates of SLTSs. In this thesis,
we concentrate on the DNBDD and MTBDD data structures, since the former is
a new approach developed by ourselves, and the latter offers very good support
for linear algebra operations which we shall employ for numerical analysis based
on symbolic representations (cf. Chap. 7).

For the sake of completeness, we mention some other data structures which are
related to BDDs and also have the capability of representing numerical informa-
tion. Ciardo and Miner developed matrix diagrams [79, 80, 254, 255, 253] for the
space-efficient representation of structured Markov models. This graph-based
data structure is based on multi-valued decision diagrams that were originally
used for hardware verification [310, 206]. Bozga and Maler developed proba-
bilistic decision graphs [40] as a concise representation formalism for probability
vectors and probabilistic transition system. They employ this data structure for
the simulation of large probabilistic systems by successive calculation of next-
state probabilities, which amounts to symbolic vector-matrix multiplication.
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4.3 Decision Node BDDs (DNBDD)

In this section, the data structure DNBDD, developed by the author at the
University of Erlangen [294, 296, 295, 297, 298], is introduced. DNBDDs are
tailored for the symbolic representation of SLTSs and in many instances allow a
very compact representation.

When moving from an LTS to an SLTS encoding, with the MTBDD, BMD and
EVBDD approaches there is less sharing of subgraphs compared to the original
BDD, which means that the compactness of the representation is diminished.
Therefore, when developing the DNBDD data structure, it was our aim to use
the unmodified BDD (which represents the functional information of the LTS)
and decorate it with the additional rate information in a fully orthogonal fashion.
DNBDDs are the only type of decision diagram where the basic graph structure
remains unmodified when moving from an LTS to an SLTS encoding. The ad-
dition of the rate information does not alter the basic structure of the decision
diagram. Rather, additional information is superimposed on it.

In the sequel, we define the DNBDD data structure and explain how it is em-
ployed for the symbolic representation of SLTSs. In Sec. 5.1.3, we will discuss
a DNBDD-based procedure for the parallel composition of submodels which can
be used for efficiently building complex models from small components, without
inducing the problem of state space explosion. Also, the MTBDD-based min-
imisation algorithm for stochastic LTSs which we describe in Sec. 5.3.2, based
on the concept of Markovian bisimulation, can be implemented on the DNBDD
data structure, as has been realised in the tool DNBDDtool [43]. In this thesis,
we do not describe DNBDD-based numerical analysis, since efficient algorithms
and tool support for linear algebra operations on this data structure have not yet
been developed. Therefore, for numerical analysis we switch to MTBDDs, where
such support is already available.

4.3.1 Definition of DNBDDs

As we have seen, BDDs represent functions of the type IBn 7→ IB. As we shall
see in Section 4.4, MTBDDs can represent functions of the type IBn 7→ IR (note
that the image of function f is of course a finite subset of IR). The following
consideration led to the development of DNBDDs: When extending BDDs in
order to represent SLTS, they must associate a real value (a rate) with exactly
those Boolean vectors which are valid encodings of a transition, i.e. they must
actually be capable of representing functions of the type f : IBn 7→ {(0, 0)} ∪
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({1} × IR). The first component of the image determines whether a certain
Boolean vector is a valid transition encoding. This information can be captured
by the terminal vertex of a conventional BDD. The second component of the
image is only meaningful if the first component is equal to 1, and represents the
transition rate. For those Boolean vectors (b1, . . . , bn) which are mapped to a
tuple of the form (1, λ), where λ ∈ IR, the question is where to store the value λ,
without changing the basic BDD-structure.

Based on our original definition of a BDD (cf. Def. 2.4.1), we next provide the
definition of a path through a BDD:

Definition 4.3.1 Path
A path through a BDD (over Boolean variables v1, . . . , vn) is a vector of vertices
(x1, . . . , xk), 1 ≤ k ≤ n + 1, where xi ∈ V ert, x1 is the BDD root vertex, xk ∈ T
(xk is a terminal vertex) and ∀i < k : (xi+1 = else(xi)) ∨ (xi+1 = then(xi)).
A path is called a true-path iff xk = 1, otherwise it is called a false-path. We
denote the set of all (true-) paths through a BDD by Paths (True-Paths). For
a given Boolean assignment (b1, . . . , bn) ∈ IBn, the function path(b1, . . . , bn) =
(x1, . . . , xk) returns the corresponding path through the BDD. We define the length
of a path by length(x1, . . . , xk) = k.

We use the following notation: Boolean vectors are written as (b1, . . . , bn), paths
(i.e. vectors of BDD vertices) are written as (x1, . . . , xk), and rate lists (see below)
are written as [λ1, . . . , λ2n+1−k ].

If a given path (x1, . . . , xk) has length k = n + 1, which is the maximal possible
length for a path, that path contains a vertex for every Boolean variable, formally
∀ 1 ≤ i ≤ n : var(xi) = vi. This means that the path corresponds to exactly
one Boolean assignment (b1, . . . , bn). In this case, we say that the path does not
contain any don’t cares. If a path is of length k < n+1, it contains n+1−k = d
don’t cares. Such a path corresponds to 2d different Boolean assignments (because
for every don’t care two Boolean values are possible). Every Boolean assignment
is mapped onto exactly one path. Several Boolean assignments (always a power
of 2) may be mapped onto the same path, in which case the path has one or more
don’t cares. Therefore we assign to each true-path a list of real numbers (rates),
also called a rate list, whose length (a power of 2) is determined by the number of
don’t cares of the path. Formally, we introduce the function rates(x1, . . . , xk) =
[λ1, . . . , λ2n+1−k ]. Thus, the correspondence of Boolean assignments to rates is
one to one, uniquely defined by the lexical ordering of the Boolean assignments.
We illustrate this concept in Fig. 4.4.
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(x1, . . . , xk) [λ1, λ2, λ3, λ4]

...

(x1, . . . , xk) [λ1]

Figure 4.4: Correspondence between Boolean assignments, paths and rate lists

So far, we decided that every true-path is mapped onto a real-valued list whose
length is given by the number of Boolean assignments corresponding to the path.
Next we must find a practical method for attaching that information to the BDD.
Thinking about the way a path is characterised, we find that a subset of the BDD
vertices, the so-called Decision Nodes play a key role in this consideration.

Definition 4.3.2 Decision Node
A non-terminal BDD-vertex x ∈ NT is called decision node iff else(x) 6= 0 ∧
then(x) 6= 0, i.e. iff the terminal vertex 1 can be reached via both outgoing edges
of vertex x. The set of decision nodes is denoted DN .

Let (x1, . . . , xk) ∈ True-Paths. Let xj be the “last” decision node on that
path, i.e. xj ∈ DN ∧ ∀ j < l ≤ k : xl 6∈ DN . We then attach the rate list
rates(x1, . . . , xk) = [λ1, . . . , λ2n+1−k ] to the edge (xj , xj+1). (In the special (triv-
ial) case where the path (x1, . . . , xk) does not contain any decision node, the rate
list is attached to the edge (x1, x2).) We can now give the definition for the
DNBDD data structure:
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a s t f(a, s, t)
0 0 1 (1, λ)
0 1 1 (1, µ)
1 0 1 (1, α)
1 1 0 (1, β)

else (0, 0)

a

s

t

1

[λ, µ]

[β][α]

Figure 4.5: A function f and the corresponding DNBDD

Definition 4.3.3 Decision Node BDD (DNBDD)
A Decision Node BDD (DNBDD) is a BDD extended by a function

rates : True−Paths 7→ (IR)+

(where (IR)+ is the set of finite lists over IR), such that for any true-path p,

rates(p) ∈ IR2d

if d is the number of don’t cares on path p. The list rates(p) is
attached to the outgoing edge of the last decision node on path p, i.e. the decision
node nearest to the terminal vertex 1. (In the special case where path p does
not include any decision node, the list rates(p) is attached to the first edge of the
path.)

Note that in this definition, the length of the list rates(p) is not a global constant
but depends on the number of don’t cares d (i.e. on the length k) of the individual
true-path p.

The concept of DNBDDs is illustrated in Fig. 4.5 (in the figure, decision nodes
are drawn solid black). In this example, there are four Boolean vectors mapped
to a tuple (1, x), where x is the numeric (rate) value (as shown in the left part
of the figure). The first two assignments are mapped onto the same path, a path
which has a don’t care in the Boolean variable s. Therefore, the corresponding
rate list [λ, µ] has length two.

The fact that DNBDDs are a canonical representation of functions of the type
f : IBn 7→ {(0, 0)} ∪ ({1} × IR) follows from the following considerations: The
decision graph of a DNBDD is a standard BDD; it is uniquely determined since
BDDs are canonical for functions of the type f : IBn 7→ IB. The additional
association of true-paths with rate lists, the length and contents of the rate lists,
and their attachment to certain edges of the graph are also well-defined and
uniquely determined.

The practical realisation of the DNBDD concept introduced so far induces the
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Figure 4.6: Two true-paths sharing their last decision node, DNBDD with rate
tree

following problem: There are situations, where several true-paths share their last
decision node. This is the case if and only if there exists a decision node which
can be reached from the root by more than one path. As an example, see Fig. 4.6
(left), where a decision node has two incoming edges. In such a case, several rate
lists will be attached to the same edge. From the point of view of canonicity this
would not be a problem, since the one-to-one correspondence between true-paths
and rate lists is preserved based on lexicographical ordering. However, in the
algorithms for manipulating the data structure this would result in a confusion,
since during recursive descent it would not be clear any more which rate list
corresponds to which path. In order to overcome this problem, we introduce a
pointer structure, the so-called rate tree, as illustrated in Fig. 4.6 (right). The
rate tree is an unbalanced binary tree which makes it possible to access rate lists
during recursive descent through the BDD [296, 298]. The terminal vertices of
the rate tree contain the rate lists. Its internal vertices are associated with the
decision nodes of the BDD as indicated in the figure (right). The rate tree is
built and maintained as a separate data structure from the BDD. The standard
algorithms for BDDs (e.g. Apply) can be adapted and enhanced for DNBDDs
such that the rate tree is manipulated simultaneously with the BDD, i.e. the rate
tree is traversed (and possibly modified) in a recursive fashion by an appropriate
extension of the procedures which manipulate the BDD data structure.

In our current prototypical implementation of DNBDDs, the rate tree is im-
plemented in a rather straight-forward manner as an actual binary tree. This
implementation has the drawback that it requires the explicit storage of one rate
for each encoded transition which is basically against the grain of BDDs and
may cause considerable overhead, especially in those cases where the same rate
appears multiple times in the encoded SLTS. In order to avoid such redundan-
cies, an efficient data structure to represent rate trees might itself be a decision
diagram. However, this issue is currently still under investigation.
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[µ, ν]

[α] [β]a, ν

Figure 4.7: Simple SLTS, mapping of Boolean assignments to rates and corre-
sponding DNBDD

4.3.2 Representing SLTSs with the help of DNBDDs

The concept of representing an SLTS by a DNBDDs is illustrated in Fig. 4.7 (note
that it is the same DNBDD as in Fig. 4.5). Since the SLTS has four transitions,
there are four Boolean vectors mapped to a tuple of the form (1, λ).

In order to formally define how an SLTS is represented by a DNBDD, in addition
to the Boolean function fx represented by a BDD vertex x (which can remain
unchanged as defined before for BDDs), we now define a function Num, which,
given a DNBDD and a Boolean assignment, computes the numerical result.

Definition 4.3.4 Numeric result value Num
Let r be the root vertex of DNBDD D over Boolean variables v1, . . . , vn, and let

(b1, . . . , bn) be a fixed assignment to these variables. If fr

∣

∣

∣

v1=b1,...,vn=bn

= 0 then

the function Numr

∣

∣

∣

v1=b1,...,vn=bn

is undefined. Else let (x1, . . . , xk) = path(b1, . . . , bn)

and rates(x1, . . . , xk) = [λ1, . . . , λ2n+1−k ]. Then Numr

∣

∣

∣

v1=b1,...,vn=bn

= λi, where i

is determined unambiguously by those positions of (b1, . . . , bn) which correspond
to don’t care variables.

In other words, each of the 2n+1−k Boolean assignments sharing path (x1, . . . , xk)
corresponds to exactly one element of the rate list [λ1, . . . , λ2n+1−k ], and this
correspondence is according to the lexicographical ordering of the Boolean as-
signments. We are now able to define how to represent a SLTS by a DNBDD:
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Figure 4.8: SLTS, mapping of Boolean assignments to rates and corresponding
DNBDD

Definition 4.3.5 Symbolic Representation of a SLTS by a DNBDD
Let T = (S, L,−→, s1) be a SLTS. Let D = (V ert, var, then, else, rates) be a
DNBDD with V ars = {a1, . . . , ana, s1, . . . , sns, t1, . . . , tns}, such that na ≥ ⌈log2 |L|⌉
and ns ≥ ⌈log2 |S|⌉. Let r be the root vertex of D. We say that D is a symbolic
representation of T iff

x
a,λ
−→ y ⇔ fr

∣

∣

∣

(a1,...,ana)=E(a),(s1 ,...,sns )=E(x),(t1,...,tns )=E(y)
= 1

∧ Numr

∣

∣

∣

(a1,...,ana )=E(a),(s1 ,...,sns)=E(x),(t1,...,tns )=E(y)
= λ

In this case, we write D ⊲ T for short.

Note that again, the initial state of the SLTS is not encoded in the symbolic
representation. Fig. 4.8 shows another example SLTS and its DNBDD repre-
sentation. There are four different actions which are encoded by two Boolean
variables (a1 and a2). In this example, the BDD contains five true-paths, two of
which have a don’t care in the Boolean variable a2. Therefore, two rate lists have
length two. The other three true-paths do not contain any don’t cares, therefore
the remaining three rate lists have length one.

4.4 Multi Terminal BDDs (MTBDD)

Multi Terminal BDDs (MTBDDs) are a graph-based representation of functions
from a multidimensional Boolean domain to an arbitrary finite range ID, i.e.
functions of the type f : IBn → ID. For instance, ID can be a finite subset of the
real numbers, or the set IB. (In the latter case the MTBDD reduces to a BDD,
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representing a Boolean function.2) Thus, MTBDDs can be seen as an extension
of BDDs such that they can represent functions with an arbitrary finite range.

MTBDDs [132] have been developed by Clarke et al. in the early 1990ies [86,
89, 131]. Among others, Hachtel et al. [17, 147], who use the term “algebraic
decision diagrams (ADD)” for the same data structure, have made important
contributions to this field.

The facts that MTBDDs are very well suited for matrix representation [86, 131],
and that MTBDD-based algorithms for the manipulation and analysis of matrices
are known, make this data structure very attractive to applications in the area
of model-based performance evaluation. In particular, MTBDDs are capable of
representing the matrices associated with discrete and continuous time Markov
chains.

Similarly to BDDs, the main idea behind the MTBDD representation of ID-valued
functions is the use of rooted directed acyclic graphs as a more compact repre-
sentation of the binary decision tree which results from the Shannon expansion

f(v1, . . . , v2) = if v1 then f(1, v2, . . . , vn) else f(0, v2, . . . , vn),

or, in terms of arithmetics, if the operations + and · are defined on ID and denote
ordinary addition and multiplication,

f(v1, . . . , v2) = v1 · f(1, v2, . . . , vn) + (1− v1) · f(0, v2, . . . , vn).

Note that in this expression, either v1 or (1− v1) is zero, while the other is one.

Definition 4.4.1 Multi Terminal Binary Decision Diagram (MTBDD)
An (ordered) Multi Terminal Binary Decision Diagram over 〈V ars,≺, ID〉 is a
rooted directed acyclic graph M = (V ert, var, then, else, value) defined by

• a finite set of vertices V ert = T ∪ NT , where T (NT ) is the set of terminal
(non-terminal) vertices, |V ert | ≥ 1,

• a function var : NT 7→ V ars, where V ars = {v1, . . . , vn} is a set of Boolean
variables with a fixed ordering relation ≺ ⊂ V ars× V ars,

• a function then : NT 7→ V ert and a function else : NT 7→ V ert,

• a function value : T 7→ ID,

with the following constraints:
∀x ∈ NT : then(x) ∈ T ∨ var(then(x))≻var(x)
∀x ∈ NT : else(x) ∈ T ∨ var(else(x)) ≻ var(x)

2We also use the expression “0-1-MTBDD” for an MTBDD whose terminal vertices are from
the set IB, i.e. for an MTBDD which is actually a BDD.
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s1 t1 s2 t2 value

0 1 0 0 3
0 1 0 1 3
0 1 1 1 1
1 0 0 0 4
1 0 1 0 2
1 0 1 1 2

else 0 3 1 0 4 2

t2

s2

s1

t1

M

Figure 4.9: A function fM : IB4 7→ {0, . . . , 4} and its representation by an
MTBDD M

A BDD is an MTBDD with value(x) ∈ IB for all terminal vertices x. Each
MTBDD M over (v1, . . . , vn) represents a function fM : IBn 7→ ID and has two
cofactors Mthen and Melse, resulting from a top-level Shannon expansion, i.e. Mthen

(Melse) represents fM(1, v2, . . . , vn) (fM(0, v2, . . . , vn)), respectively. Note that an
MTBDD over 〈V ars,≺〉 is also an MTBDD over 〈V ars′,≺′〉 for any superset
V ars′ of V ars and ordering ≺′ on V ars′ such that v1 ≺ v2 iff v1 ≺

′ v2 for all v1,
v2 ∈ V ars. An MTBDD over 〈{v1, . . . , vn},≺〉, where v1 ≺ . . . ≺ vn, we also call
an MTBDD over (v1, . . . , vn).

Fig. 4.9 shows a simple MTBDD M over (s1, t1, s2, t2) together with the function
fM it represents. In the graphical representation, vertices are grouped into four
levels, and all vertices on the same level are assumed to be labelled with the
variable denoted on the left. Furthermore, we again adopt the convention that
edges from vertex x to then(x) are drawn solid, while edges to else(x) are drawn
dashed.

Definition 4.4.2 Reducedness of an MTBDD
A MTBDD M is called reduced iff

1. ∀x ∈ NT : else(x) 6= then(x)

2. ∀x, y ∈ NT : var(x) 6= var(y)
∨ else(x) 6= else(y)
∨ then(x) 6= then(y)

3. ∀x, y ∈ T : x 6= y ⇒ value(x) 6= value(y)

The first two conditions are identical with the ones given in Def. 2.4.2 for BDDs,
and the third condition states that each terminal vertex x has a distinct label
value(x). The recursive procedure proposed by Bryant [45] for reducing BDDs
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can be applied to MTBDDs as well. From now on, unless otherwise stated, we
will assume that we work with MTBDDs which are reduced.

Similarly to the Boolean function represented by a BDD vertex (cf. Def. 2.4.3)
we now define the ID-valued function represented by an MTBDD vertex.

Definition 4.4.3 ID-valued function fx represented by an MTBDD vertex
The ID-valued function fx represented by a MTBDD vertex x ∈ V ert is recursively
defined as follows:

• if x ∈ T then fx = value(x), i.e. an element from ID,

• else (if x ∈ NT )
fx = (1− var(x)) · felse(x) + var(x) · fthen(x)

Again, as in the BDD case, most times one is interested in the case where the
vertex x corresponds to the MTBDD root. In that case we will write fM instead
of fx, where x is the root vertex of MTBDD M.

For a fixed ordering of Boolean variables, reduced MTBDDs form a canonical
representation of ID-valued functions, i.e. if M, M′ are two reduced MTBDDs over
the same ordered set V ars such that fM = fM′, then M and M′ are isomorphic.

MTBDD M of Fig. 4.9 satisfies Def. 4.4.2, it is reduced. Note that the valuations
of some variable levels are irrelevant on certain paths through the MTBDD. For
instance, for function fM to return the values 3 or 2, the truth value of variable
t2 is irrelevant. Hence the vertices on these paths are skipped, a consequence of
the first clause of Def. 4.4.2. Thus, variable t2 is a don’t-care variable for the
respective paths.

4.4.1 Operations on MTBDDs

In this section, we describe how standard logical and arithmetic operations can
be realised on MTBDDs. Let M, M1, M2 be reduced MTBDDs over (v1, . . . , vn).
In what follows, we write x1 ≺ x2 if either x2 is a terminal vertex while x1 is non-
terminal or both x1, x2 are non-terminal vertices and var(x1) ≺ var(x2). From
here on, unless otherwise stated, we assume that ID = IR.

Variable renaming, restriction (Restrict) and abstraction (Abstract) work
similarly as on BDDs. The operator op used in abstraction can be any associative
binary operator defined on IR (such as addition +, or multiplication ·).
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Converting an MTBDD to a BDD: The function MTBDDtoBDD con-
verts an MTBDD M(v1, . . . , vn) to a BDD B(v1, . . . , vn) by abstracting from the
numerical information. The resulting BDD is obtained by replacing the value of
every nonzero terminal vertex of M by the value 1 and afterwards reducing the
decision diagram, for instance by applying Bryant’s reduction algorithm.

Maximum terminal value: Let {x1, . . . , xk} be the terminal vertices of M.
Maxval(M) is the MTBDD consisting of a single terminal vertex labelled with
max1≤i≤k{ |value(xi)| }, the maximum absolute value of the function fM. This
requires a simple traversal of the terminal vertices of M.

Combining two MTBDDs via binary arithmetic operators: If op is a
binary operator (e.g. addition +, or multiplication ·) then Apply(M1, M2,op)
returns the MTBDD M over (v1, . . . , vn) where fM = fM1 op fM2. The algo-
rithm behind this operator is exactly as in the BDD case, see Section 2.4.2, i.e.
Apply(M1, M2,op) calls a recursive procedure Aop(x1, x2) which works accord-
ing to the following rules:

– If x1 and x2 are terminal vertices then Aop(x1, x2) returns just the single
terminal vertex x labelled by value(x1) op value(x2).

– If x1, x2 are non-terminal vertices and var(x1) = var(x2) = v then var(x) = v,
else(x) = Aop(else(x1), else(x2)) and then(x) = Aop(then(x1), then(x2)).

– If x1 ≺ x2 then var(x) = var(x1), else(x) = Aop(else(x1), x2) and then(x) =
Aop(then(x1), x2).
Conversely, if x2 ≺ x1 then var(x) = var(x2), else(x) = Aop(x1, else(x2)) and
then(x) = Aop(x1, then(x2)).

As in the BDD case, the algorithm may check for the presence of special “control-
ling” values which can receive special treatment and thereby avoid the initiation
of recursive calls. For instance, if op is multiplication and x1 is a terminal vertex
with value(x1) = 1, then x2 can be immediately returned as the result.

As in the BDD case, the Apply algorithm uses a “unique table” which contains all
currently existing MTBDD vertices. A unique table entry for a terminal vertex
now consists of the vertex identifier and the vertex’s value labelling value(x).
Proper use of the unique table again ensures that the MTBDD resulting from an
Apply-operation is in reduced form. The use of the “computed table” is also
similar to the BDD case.

Scalar multiplication: If T just consists of a terminal vertex x labelled with
value(x), then Smult(M, T) returns the unique reduced MTBDD over (v1, . . . , vn)
representing the function value(x)·fM. Even though this operation could be easily
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realised using Apply, it may be more efficient to implement as an update of the
terminal vertices y of M (provided the particular implementation at hand enables
direct access to the terminal vertices), changing the value of each terminal vertex
y into value(x) · value(y).

Matrix multiplication: We first describe how (real-valued) matrices are rep-
resented by MTBDDs. For simplicity we assume square matrices whose size is a
power of 2, i.e. 2n. Rectangular matrices of general sizes can be represented with
the same basic scheme by padding them with an appropriate number of columns
and rows of zeroes. By construction, these additional entries do not contribute to
the size of the MTBDD representing the matrix. A 2n×2n matrix M can be seen
as a function from {0, . . . , 2n− 1}×{0, . . . , 2n− 1} to IR. If the row position r is
encoded by Boolean variables ri and the column position c by Boolean variables
ci (where in both cases i = 1, . . . , n) then the MTBDD M over 〈V ars,≺〉 where
fM(r1, . . . , rn, c1, . . . , cn) = M(r, c) is a canonical representation of matrix M

Concerning the variable ordering, it turns out that an interleaving of the Boolean
variables encoding row and column position, i.e. the ordering r1 ≺ c1 ≺ . . . ≺
rn ≺ cn, is usually the best choice for the following reasons.

– The cofactors of the MTBDD correspond to block submatrices of the matrix.

For instance, Melse corresponds to the upper half of matrix M , Mthenelse
(to be

read as (Mthen)else) corresponds to the lower left quadrant of matrix M , etc..

– The identity matrix, corresponding to the function fId =
∏n

k=1(rk ≡ ck), which
is nothing else but the matrix equivalent of the function fStab introduced in
Sec. 4.1, can be represented in a number of vertices which is logarithmic in the
size of the matrix. More precisely, the number of vertices needed to represent
an identity matrix of size 2n × 2n is 3n + 2. In contrast, using the straight-
forward ordering r1 ≺ . . . ≺ rn ≺ c1 ≺ . . . ≺ cn the size of the MTBDD
would be 3 · 2n − 1 vertices. The MTBDDs representing function fId under
the two variable orderings are similar to the BDDs shown in Fig. 4.3 (for
the case n = 3). Since identity matrices play an important role during the
parallel composition of transition systems (see Section 5.1), their compact
representation is an essential feature of MTBDDs.

As an example, consider the simple CTMC C = ({0, 1, 2, 3}, R) with transition
rate matrix R as shown on the left of Fig. 4.10. Since the size of this matrix is
2n = 4, we need n = 2 bits for addressing its rows and 2 bits for addressing its
columns. We use Boolean variables r1, r2, (c1, c2) for encoding the row (column)
position.

Based on this encoding scheme for matrices, we now discuss a (näıve) realisation of
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04 3 2 1

R =









− 4 − −
3 − 3 −
− 2 − 2
− − 1 −









transition r1 c1 r2 c2 value

0
4
−→ 1 0 0 0 1 4

1
3
−→ 0 0 0 1 0 3

1
3
−→ 2 0 1 1 0 3

2
2
−→ 1 1 0 0 1 2

2
2
−→ 3 1 1 0 1 2

3
1
−→ 2 1 1 1 0 1

else 0

R

c2

r2

r1

c1

Figure 4.10: Rate matrix R, transition encoding and MTBDD R for a simple
CTMC

matrix multiplication. Consider two square matrices M1 and M2, represented as
MTBDDs M1 and M2 over variables (r1, c1 . . . , rn, cn) and (c1, c

′
1 . . . , cn, c

′
n). Let us

for the moment assume that M1 and M2 are not fully reduced, since this assump-
tion makes the algorithm much more straight-forward. In particular, we assume
that don’t care variables are not skipped but explicitly present. Mmult(M1, M2)
produces an MTBDD M over (r1, c

′
1 . . . , rn, c

′
n), representing the matrix product

M = M1 ·M2. This MTBDD is generated by recursive descent. The four quad-

rants of M corresponding to the cofactors Melseelse, Melsethen
, Mthenelse

, and Mthenthen

are computed on the basis of the cofactors of M1 and M2. For instance:

Melseelse = Apply

(

Mmult(Melse

1

else
, Melse

2

else
),Mmult(Melse

1

then
, Mthen

2

else
), +

)

is the MTBDD reformulation of the fact that the upper left quadrant of M1 ·M2

equals the sum of (1) the product of the upper left quadrants of M1 and M2, and
(2) the product of the upper right quadrant of M1 and the lower left quadrant

of M2. The products Mmult(Melse
1

else
, Melse

2
else

) and Mmult(Melse
1

then
, Mthen

2
else

)
are recursively computed in the same way. The recursion terminates when the
operands of Mmult are terminal vertices x1 and x2, in which case a terminal
vertex labelled by value(x1) · value(x2) is returned.

Vector-matrix (and matrix-vector) multiplication VMmult (MVmult) can be
performed by the same basic strategy. If M1 is as above, and P over vari-
ables (r1, . . . , rn) represents a row vector ~p, then VMmult(P, M1) computes an
MTBDD Q over variables (c1, . . . , cn) representing ~q = ~p ·M1 by means of the
cofactors of its arguments. The left half of the vector ~q is, for instance, obtained
from

Qelse = Apply

(

VMmult(Pelse, Melse

1

else
),VMmult(Pthen, Mthen

1

else
), +

)

Note that Q does not depend on the same variables as P, since the common
variables, ~r, are abstracted from during multiplication. Nevertheless, Q and P

both represent row vectors, as is obvious from standard linear algebra.
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







6 6 7 7
6 6 7 7
8 8 9 9
8 8 9 9









M1 =









2 2 3 3
2 2 3 3
4 4 5 5
4 4 5 5









M = M1 · M2 =









72 72 82 82
72 72 82 82
128 128 146 146
128 128 146 146









M1

c2

r2

r1

c1

M2

c
′
2

c2

c1

c′1

Figure 4.11: Example where the näıve matrix multiplication algorithm produces
wrong results

This näıve approach to matrix multiplication is not sufficient (it does not work
correctly) if M1 and M2 are reduced MTBDDs where variable levels may be
skipped (as is the case, for example, when representing regularly structured ma-
trices with repeated submatrices). As a very simple example for such a situation
consider the multiplication of the two matrices shown in Fig. 4.11. Their MTBDD
representations are also shown in the figure. Due to the fact that the same entry
is repeated within each 2 × 2 block, variables r2 and c2 (c2 and c′2) are skipped
in the first (second) MTBDD, i.e. these are don’t care variables. If the above
recursive scheme was applied without modification, all entries of the resulting
matrix would be too small by a factor of 2, i.e. a scaling factor of 2 would be

missing in all the entries of the result matrix. For instance, Melseelse
would be

computed as 2 · 6 + 3 · 8 = 36 instead of 2 · 6 + 2 · 6 + 3 · 8 + 3 · 8 = 72. Note that

the smaller size matrices M ′
1 =

[

2 3
4 5

]

and M ′
2 =

[

6 7
8 9

]

are represented by

the same MTBDDs as M1 and M2 (without depending on the above don’t care
variables) and their multiplication by the described basic scheme would of course
yield a correct result.

The literature on MTBDDs describes matrix multiplication algorithms which
overcome this shortcoming of the given simple scheme. Their implementations
work on reduced MTBDDs and return MTBDDs that are reduced (and hence
canonical) by construction. The general idea is to pass additional integer pa-
rameters to function Mmult (MVmult, VMmult), basically to take care of
variable levels that are skipped (don’t care variables) .
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An early algorithm of Clarke et al. [89] (commonly referred to as the CMU
method) uses the operation Apply and an “Abstract” operation to symboli-
cally calculate the matrix product in a rather straight-forward fashion. It sepa-
rates multiplication and summation and therefore requires two recursive descents:
One through the operand MTBDDs, and one through an MTBDD which repre-
sents an intermediate result (the latter MTBDD may become very large).

Another algorithm of Clarke et al. [86] (resp. Fujita et al. [131]) (called the Berke-
ley method) is based on a rigorous splitting on all Boolean variables, even if one
(or both) of the operands does not depend on certain variables. It uses an integer
variable to keep track of the set of Boolean variables that is used at the current
level of recursion.

The algorithm of Bahar et al. [18] (called the Boulder method) aims at minimising
the number of microoperations needed and is probably the most sophisticated one
published up to now. It keeps track of missing variables in the two operands by
computing a scaling factor (a power of 2) which depends on the current level of
recursion and the current ‘top-level” variable. This algorithm highly relies on
the computed table for bookkeeping of functions whose MTBDDs are already
computed, thereby avoiding the recomputation of the same arithmetic or logic
operation with the same arguments (even if the scaling factor had previously
been different). When the terminal case is encountered or when the result is
found in the computed table, the result value is multiplied by the appropriate
scaling factor before it is returned.

Inversion of triangular matrices: Inversion of triangular matrices, denoted
Invtri, can be performed on their MTBDD-based representation by a recursive
algorithm similar to matrix multiplication, as described in [86]. Let U be an
upper diagonal matrix, represented by an MTBDD U. Again, for simplicity,
let us assume that U is not fully reduced. Invtri(U) produces an MTBDD V

representing the inverse V = U−1. This MTBDD is also created by recursive
descent. From the following decomposition of the matrices into quadrants

(

U00 U01

0 U11

)

·

(

V00 V01

V10 V11

)

=

(

I 0
0 I

)

it follows that

U00V00 + U01V10 = I
U00V01 + U01V11 = 0

U11V10 = 0
U11V11 = I
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From these four equations one can easily derive that

V10 = 0
V11 = U−1

11

V00 = U−1
00

V01 = −V00U01V11

which translates into the following MTBDD operations

Vthenelse
= 0

Vthenthen
= Invtri(Uthenthen

)

Velseelse
= Invtri(Uelseelse

)

Velsethen
= Smult(Mmult(Velseelse

,Mmult(Uelsethen
, Vthenthen

)),−1)

In the algorithm, the smaller size inverses Invtri(Uthenthen
) and Invtri(Uelseelse

)
are recursively computed in the same way. The recursion terminates when the
operand is a terminal vertex x, in which case value(x)−1 is returned.

Matrix diagonal: Let M be an MTBDD over (v1, . . . , vn). For Boolean variables
v′1, . . . , v

′
n, Diag(M(~v),~v′) is the MTBDD over (v1, v

′
1, . . . , vn, v

′
n) representing fM

if vi = v′i for 1 ≤ i ≤ n and 0 otherwise. So, it turns a vector into a diagonal
matrix of the same size. For non-reduced MTBDDs, where don’t care variables
are not skipped, the algorithm for Diag takes a vertex x of M and introduces
new vertices x1 and x2 with var(x1) = var(x2) = var(x)′, else(x1) = else(x),
then(x2) = then(x), and then(x1) = else(x2) = 0. Afterwards it sets else(x) =
x1 and then(x) = x2, and (recursively) proceeds by taking the vertices else(x1)
and then(x2). For reduced MTBDDs the same algorithm may be used, but the
intermediate result thus obtained needs to be multiplied with the MTBDD Id

representing the identity matrix, in order to obtain the correct final result.

Inversion of a diagonal matrix: A diagonal matrix is inverted by individually
inverting its elements (which, of course, must be all non-zero). For an MTBDD
M representing a diagonal matrix, InvDiag(M) returns an MTBDD representing
the inverse of the matrix. The MTBDD operation InvDiag is implemented by
means of a single update of each terminal vertex x of the argument MTBDD,
replacing each non-zero value(x) by value(x)−1.
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4.4.2 Representing SLTSs with the help of MTBDDs

In this section, we discuss how SLTS and ESLTS can be encoded as MTBDDs.

The encoding of non-stochastic transition systems has been already described in
Sec. 4.1, and the encoding of matrices has already been described in Sec. 4.4.1.
These techniques are now combined.

We use the encoding function E(.) to encode states and action labels. Each tran-

sition s
a,λ
−→ t of the SLTS is mapped to a Boolean vector of length na + 2ns,

whose positions correspond to Boolean variables a1, . . . , ana, s1, . . . , sns , t1, . . . , tns.
This vector encodes the action label, the source and the target state of the tran-
sition, but not the transition rate. The transition rates are stored in the terminal
vertices of the MTBDD. The following definition states in which way an SLTS is
represented by an MTBDD.

Definition 4.4.4 Symbolic Representation of an SLTS by an MTBDD
Let T = (S, L,−→, s) be a SLTS. Let M = (V ert, var, then, else, value) be an
MTBDD with V ars = {a1, . . . , ana, s1, . . . , sns , t1, . . . , tns}, such that na ≥ ⌈log2 |L|⌉
and ns ≥ ⌈log2 |S|⌉. We say that M is the symbolic representation of T iff

s
a,λ
−→ t ⇔ fM

∣

∣

∣

(a1,...,ana )=E(a),(s1,...,sns)=E(s),(t1,...,tns)=E(t)
= λ

In this case, we write M ⊲ T for short.

Note that again, the initial state of SLTS T is not encoded by the MTBDD.
Fig. 4.12 depicts two example SLTSs represented by MTBDDs. The example
at the top of the figure is the same as in the section on DNBDDs (cf. Fig 4.8).
It shows clearly the advantages of DNBDDs, namely their feature of optimal
subgraph sharing in the case where there are many different rates. Obviously,
MTBDDs do not allow a compact encoding if all transitions of the SLTS carry
different rate labels, since this causes a large number of terminal vertices and
allows only little sharing of subgraphs. The example at the bottom of Fig. 4.12
shows the Queue-process from Fig. 4.2 enhanced with rate information. MTBDDs
are obviously well-suited for this example, since it has a regular structure and
only two different rates are involved, leading to two terminal vertices.
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Figure 4.12: SLTSs and corresponding MTBDDs

4.4.3 Representing ESLTSs with the help of MTBDDs
and BDDs

In this section, we discuss how ESLTSs can be represented symbolically. Re-
member that an ESLTS contains two transition relations: Immediate (action)

transitions, denoted by
a

99K, and Markovian transitions, denoted by
a,λ
−→. Basi-

cally, one has two options when representing an ESLTS T .

1. The first option is to employ two separate data structures, i.e. a BDD B

which encodes all immediate transitions, and an MTBDD M which encodes
all Markovian transitions. In this case we write (B, M) ⊲ T , i.e. the ESLTS
is represented by a pair, consisting of a BDD and an MTBDD.

In certain situations, one may wish to associate immediate transitions with
numerical values different from 1, for instance in order to associate imme-
diate transitions with weights or probabilities. This feature may be needed
when resolving non-determinism between several concurrently enabled in-
ternal immediate transitions, cf. Sec. 5.2.2. To support this feature, an
MTBDD MI can be employed instead of BDD B for representing imme-
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diate transitions, while Markovian transitions are still represented by an
MTBDD as before, but now called MM . In this case we write (MI , MM)⊲T .

2. The second option is to work with a single MTBDD M which comprises
Markovian as well as immediate transitions. If this option is chosen, it
must be ensured that the two types of transitions can be properly distin-
guished. The potential problem is the following: The terminal vertex with
value 1 would represent both a logical one and the numerical rate value
1, i.e. a Markovian transition with rate 1 would be indistinguishable from
an immediate transition. One solution in order to avoid such confusion is
to store the rates of Markovian transitions as negative real values3. Using
this option, immediate transitions can also be easily associated with val-
ues different from 1, for instance to associate immediate transitions with
probabilities.

Figure 4.13 contains a very simple ESLTS example and its encoding following the
two options just mentioned. While the second option allows additional sharing of
the vertices of the decision diagram, the first option is conceptually simpler, since
there is no “mixing” of immediate and Markovian transitions within the same
decision diagram. For this reason, in the implementation of the tool Im-Cat

[128, 129], we followed the first approach4.

For the sake of completeness, we now provide the formal definitions for both
alternatives. The first alternative leads to the following definition:

Definition 4.4.5 Symbolic Representation of an ESLTS by a BDD and an MTBDD
Let T = (S, L, 99K,−→, s) be an ESLTS. Let B = (V ert, var, then, else) be a BDD.
Let M = (V ert, var, then, else, value) be an MTBDD. Both B and M are decision
diagrams over 〈V ars,≺〉 = 〈{a1, . . . , ana, s1, . . . , sns, t1, . . . , tns},≺〉, where na and
ns must be chosen such that na ≥ ⌈log2 |L|⌉ and ns ≥ ⌈log2 |S|⌉. We say that the
tuple (B, M) is the symbolic representation of T iff

1. s
a

99K t ⇔ fB

∣

∣

∣

(a1,...,ana )=E(a),(s1,...,sns)=E(s),(t1,...,tns )=E(t)
= 1

2. s
a,λ
−→ t ⇔ fM

∣

∣

∣

(a1,...,ana)=E(a),(s1 ,...,sns )=E(s),(t1,...,tns )=E(t)
= λ

In this case, we write (B, M) ⊲ T for short.

3Another solution could be to use a special value, e.g. ∞ or Maxfloat, in the terminal
vertex representing the immediate transitions. We specifically do not choose this option, since
it would implicitly assign equal probabilities to simultaneously enabled internal immediate
transitions, while the intended semantics is that of a non-deterministic choice.

4Im-Cat does indeed use an MTBDD (and not a BDD) for immediate transitions because
it can associate a probability with each immediate transition.
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Figure 4.13: Encoding of an example ESLTS. Left: separation of immediate and
Markovian transitions. Right: encoding by a single MTBDD.

The second alternative leads to the following definition:

Definition 4.4.6 Symbolic Representation of an ESLTS by a single MTBDD
Let T = (S, L, 99K,−→, s) be an ESLTS. Let M = (V ert, var, then, else, value)
be an MTBDD with V ars = {a1, . . . , ana , s1, . . . , sns, t1, . . . , tns}, such that na ≥
⌈log2 |L|⌉ and ns ≥ ⌈log2 |S|⌉. We say that M is the symbolic representation of
T iff

1. s
a

99K t ⇔ fM

∣

∣

∣

(a1,...,ana)=E(a),(s1 ,...,sns)=E(s),(t1,...,tns )=E(t)
= 1

2. s
a,λ
−→ t ⇔ fM

∣

∣

∣

(a1,...,ana)=E(a),(s1 ,...,sns )=E(s),(t1,...,tns )=E(t)
= −λ

In this case, we write M ⊲ T for short.



96 4. Symbolic representation of transition systems

4.5 Complexity considerations

When working with decision diagrams, it is very difficult to predict the size of
the resulting data structures or the computation time needed to generate or
manipulate them. As we shall see for instance in Chap. 6, some large problem
instance may be encoded as a surprisingly small BDD, while another, almost
identical problem leads to a much larger BDD. Similar observations can be made
concerning BDD construction times and computation times: In Chap. 10, for
instance, we will see that the construction times for the MTBDDs representing
iteration matrices vary considerably, even if the resulting MTBDDs are of about
the same size. Furthermore, for two matrices represented by MTBDDs of almost
the same BDD size, matrix-vector multiplication with one may take much longer
than with the other.

We also stress the important point that the size of the decision diagram resulting
from some computation is only part of the picture. One should always be aware of
the fact that an intermediate BDD that occurs in the course of the computation
may be larger by orders of magnitude, which can be a crucial factor for both
memory and time.

When encoding a transition system, the size of the resulting BDD, DNBDD or
MTBDD depends on many different factors, such as the size and the structure of
the transition system, the chosen encoding of states and actions and the ordering
of the Boolean variables. In the best case, the decision diagram has constant size
(it may even consist of a single vertex), as we observed for the MTBDD-based
encoding of regularly structured matrices in Sec. 4.4.1. In the worst case, the
size of the decision diagram will be exponential in n, where n is the number of
Boolean variables, as we observed for the encoding of the identity matrix with
non-interleaved variable ordering. As we shall see in Chap. 5, the size of a decision
diagram becomes predictable if it is built in a structured way from components
whose size is already known. We shall prove that the size of the decision diagram
resulting from the composition of two components is linear in the sizes of the
components.

The cost of BDD operations is of course dependent of the size of the BDD. Bryant
stated the following important complexity result for BDDs [45]: The worst case
time complexity of Apply(B1, B2,op) is O(|B1| · |B2|), where |Bi| is the number
of vertices of BDD Bi. Bryant argues that no Apply algorithm can have better
worst case time complexity, since there exist cases where the resulting BDD
actually has O(|B1| · |B2|) vertices. It can be shown that this worst case time
complexity carries over to DNBDDs and MTBDDs.
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We shall see in Chaps. 8 and 10 that MTBDD-based matrix multiplication and
vector-matrix multiplication is a serious bottleneck for symbolic numerical anal-
ysis. Basically, MTBDD-based matrix multiplication algorithms have the same
time complexity as their conventional sparse-matrix counterparts which is cubic5

in the size of the matrix. However, we are not aware of any complexity analy-
sis of these symbolic algorithms that is based on the number of vertices of the
MTBDDs by which the matrices involved in the multiplication are represented.

5A slight improvement over cubic complexity is possible by Strassen’s algorithm [315].
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Chapter 5

Working with symbolic
representations

In this chapter, we describe how complex models can be built from small compo-
nents in a stepwise fashion, based on the symbolic model representations intro-
duced in Chap. 4. Since the composition of submodels may lead to unreachable
states, we also discuss symbolic reachability analysis. Furthermore, we address
special issues concerning the combination of Markovian and immediate transi-
tions: Apart from parallel composition of ESLTSs, we discuss symbolic techniques
for the hiding of actions and for the elimination of compositionally vanishing
states in such transition systems. In addition to the composition of submodels
and hiding, we address symbolic techniques for state space minimisation which
are based on bisimulation equivalences between states.

5.1 Compositional state space construction

In this section, we describe how BDDs are constructed from a given LTS and
how the parallel composition of components can be carried out at the level of
their BDD-based representation. We observe that this composition can be im-
plemented on BDDs in such a way that the size of the data structure only grows
linearly in the number of parallel components. This compares very favourably to
the exponential growth caused by the usual interleaving of causally independent
transitions (as resulting, for instance, from the operational semantics of process
algebras). This feature is actually so strong that one can safely state that sym-
bolic representations are only beneficial if they are used in the context of parallel

99
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composition of components (or in a context where similar information about the
inherent system structure is exploited). Although not explicitly stated, this ob-
servation can be deduced, for instance, from the findings of Enders et al. [118],
who considered the parallel composition of BDDs generated from CCS terms and
showed that the symbolic representation is proportional to the sum of the sizes of
its components, provided that the components are loosely coupled and provided
that the interleaved variable ordering is used.

5.1.1 BDD construction

We first introduce the following notation for vectors of Boolean variables: Un-
less otherwise stated, we will write ~a = (a1, . . . , ana), ~s = (s1, . . . , sns) and
~t = (t1, . . . , tns).

The algorithm for constructing the BDD representation from a given LTS is
straight-forward and works as follows: Transitions from the LTS are processed
one by one, each transition being encoded in a simple BDD which is subsequently
combined by a Boolean “or” operation with the BDD representing all the previ-
ously processed transitions. The algorithm can be sketched like this:

(1) B := 0

(2) for each transition x
a

99K y of the LTS do
(3) Newtrans :=M(~a; E(a)) ∧M(~s; E(x)) ∧M(~t; E(y))
(4) B := B ∨ Newtrans
(5) od

On line (1), the BDD to be constructed, B, is initialised as 0. i.e. it does not
represent any transition. On line (3), one transition of the SLTS is encoded in
BDD Newtrans (which consists of a single path from the root to the terminal
vertex 1, encoding action label a and source and target states x and y). Remember
that the Boolean functionM yields the minterm corresponding to a given Boolean
vector. On line (4), the “or” between the previous result and the new transition
is computed, i.e. the new transition is added to the previous result.

The construction of a DNBDD or MTBDD from an SLTS follows the same ba-
sic algorithm. When generating a DNBDD from a given SLTS, transitions are
processed one by one. Each transition is first translated into a DNBDD which
is then combined by an or-operation with the previously obtained intermediate
result (the or-operation now also takes care of manipulating the rate tree). When
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working with MTBDDs, addition is used instead of disjunction on line (4) of the
algorithm when combining the encoding of a new transition with the previous
result.

5.1.2 Parallel composition on BDDs

Consider the parallel composition of two LTSs T1 and T2 where actions from the
set S ⊆ Act shall take place in a synchronised way. Using process algebraic
notation, we can express this as T = T1 |[S]| T2, where T is the resulting LTS
generated from the two components T1 and T2. Now assume that the BDDs which
correspond to LTSs T1 and T2 have already been generated and are denoted B1

and B2. The set of actions S can also be encoded1 in the standard way as a BDD,
say S. The BDD B which corresponds to the resulting process T can then be
obtained from B1, B2 and S according to the following theorem:

Theorem 5.1.1 BDD-based parallel composition of LTSs
Let T1 and T2 be two LTSs, and for i ∈ {1, 2}, let Bi over (a1, . . . , ana, s

(i)
1 , t

(i)
1 , . . . ,

s
(i)
ni , t

(i)
ni ) be two BDDs, such that Bi ⊲ Ti. Let S ⊆ Act be a set of action labels

encoded by BDD S over (a1, . . . , ana). Let BDD B be constructed as follows

B = (B1 ∧ S) ∧ (B2 ∧ S)

∨ (B1 ∧ S ∧ Stab2)

∨ (B2 ∧ S ∧ Stab1)

Then B ⊲ T , where T = T1 |[S]| T2.

The meaning of Stab2 (Stab1) is a BDD which expresses stability of the non-
moving partner of the parallel composition, i.e. the fact that the source state of
process T2 (T1) equals its target state. Such a BDD Stabi actually represents the

function fStabi
=
∧ni

j=1(s
(i)
j ↔ t

(i)
j ), where ni is the number of state variables of

LTS Ti and variables s
(i)
j (t

(i)
j ) encode the source (target) state of a transition.

Remember that this BDD is actually very compact; its number of BDD vertices
is only 3 · ni + 2, i.e. linear in the number of state variables, provided that the
interleaved ordering of Boolean variables is employed.

Note that we have fixed the variable ordering within BDDs B1 and B2 (such that
Boolean variables encoding source and target states are interleaved), although

1Although we do not define this formally, it goes without saying that a particular action
label a has to be encoded by Boolean variables a1, . . . , ana

in the same way in both B1 and B2.
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the theorem holds for any variable ordering. However, unless otherwise stated,
when performing BDD-based parallel composition, we will always assume the
following overall variable ordering:

Definition 5.1.1 Standard interleaved variable ordering
Let Boolean variables a1, . . . , ana be used to encode elements from a set of actions

Act. Let Boolean variables s
(i)
1 , . . . , s

(i)
ni (t

(i)
1 , . . . , t

(i)
ni ) be used to encode the source

(target) state of LTS Ti, where i = 1, 2. The standard interleaved variable ordering
is defined by

a1 ≺ . . . ≺ ana ≺ s
(1)
1 ≺ t

(1)
1 ≺ . . . ≺ s(1)n1

≺ t(1)n1
≺ s

(2)
1 ≺ t

(2)
1 ≺ . . . ≺ s(2)n2

≺ t(2)n2

This overall ordering has the advantage that it is compatible with parallel com-
position, i.e. plugging in two BDDs with the standard interleaved ordering will
yield a BDD which also obeys the standard interleaved ordering.

Instead of a formal proof, we now explain the expression for B in Thm. 5.1.1.
The term on the first line is for the synchronising actions (actions from the set
S) in which both T1 and T2 participate. The conjunction B1 ∧ S selects that part
of LTS T1 which corresponds to actions from the set S, and similarly for B2 ∧ S.
By then taking the conjunction of these two terms one obtains the encoding of
those transitions where both partners simultaneously make a move with an action
from S. The term on the second (third) line is for those actions which T1 (T2)
performs independently of T2 (T1) — these actions are all from the complement
of S, encoded by S — and the conjunction with Stab2 (Stab1) ensures that T2
(T1) remains stable, i.e. does not change its state.

We now illustrate parallel composition by means of a simple queueing example,
consisting of the parallel composition of an arrival process Arrival and a queue
process Queue. The arrival process has only 2 states, while the queue process,
which describes the behaviour of an (initially empty) queue with 3 buffer places,
has 4 states. The two transition systems together with their BDD-representations
are shown in Fig 5.1. Fig. 5.2 shows the intermediate and final BDDs when
performing BDD-based parallel composition of processes Arrival and Queue. In
the second (third) BDD one can observe the parts which express stability of
process Queue (Arrival). Even in this small example we observe the general
tendency that the size of the resulting BDD (25 vertices, including the terminal
vertex 0 which is not shown) is in the order of the sum of the sizes of the two
partner BDDs (8 vertices for Arrival and 15 vertices for Queue). Thus, using
BDD-based parallel composition, the typically observed exponential growth of
the memory requirement can be avoided.



5.1. Compositional state space construction 103

1

a1

a2

s
(2)
1

t
(2)
1

s
(2)
2

t
(2)
2

1

a1

a2

s
(1)

t
(1)

enq enq enq

deqdeq deq

Queue

arrive

enq

Arrival

Figure 5.1: LTS and BDD for processes Arrival and Queue

1

action arrive
Arrival moves,

a1

a2

s(1)

t(1)

s
(2)
1

t
(2)
1

s
(2)
2

t
(2)
2

1

action enq
synchronising,

1

overall result,
disjunction of previous three

1

action deq
Queue moves,

Figure 5.2: Intermediate and final BDD results for parallel composition of Arrival
and Queue, synchronised over action enq



104 5. Working with symbolic representations

Queue1 Queue2

Arrival

Scheduler

Server Server

Server

Queue1

Scheduler

Arrival

Queue2

Server

2
2

4
4
7
12

2
2

7
12

2
2

14
25

14
25

8
10

196
700

1586
4760

states
transitions

Server 9

Queue1

Scheduler

Arrival

Queue2

Server

27

16

7

27

9

30

184

51

51

BDD nodes

127

Figure 5.3: Example process model (left), corresponding number of states and
transitions (top right) and corresponding number of BDD vertices (bottom right)

Extending this example, Fig. 5.3 (left) shows the block diagram of a queueing
model, consisting now of an arrival process, a scheduler (which assigns incoming
jobs to queues in a simple alternating fashion) and two queue-server pairs. The
model was specified as the parallel composition of six sequential processes, using
the (stochastic) process algebra TIPP. The numbers of states and transitions for
the six component processes, as well as for all intermediate processes which one
obtains by performing parallel composition in a step by step manner, are given in
the top right portion of the figure. For this model, the operational semantics of
the process algebra generates an overall (S)LTS with 1568 reachable states and
4760 transitions. In general, when performing parallel composition of SLTSs, the
size of the resulting SLTS is exponential in the number of parallel components.
Note that in this example all states of the product state space are reachable,
which is often not the case.

The bottom right portion of Fig. 5.3 illustrates the use of BDD-based parallel
composition. The LTSs for the six sequential processes were generated by the
process algebra semantics and then translated into their corresponding BDDs.
The BDD for the overall model was then generated by applying the BDD-based
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parallel composition algorithm in a stepwise manner. The figure gives the number
of BDD vertices at every composition step. This example demonstrates well the
main advantage of symbolic parallel composition, namely the fact that the BDD
size is roughly linear in the number of parallel components. In this example, the
BDD for the overall model has only 184 BDD vertices. (This, by the way, is the
same number of vertices which the DNBDD for the stochastic system would have
if it were constructed in a similar compositional way). Note that the number of
vertices for Arrival and Queuei is not exactly the same in Fig. 5.1 and in Fig. 5.3
since a) the action labels are encoded differently, and b) Queuei now has capacity
6 instead of 3.

We now focus our attention on the size of the BDD resulting from parallel compo-
sition of two LTSs. First recall that parallel composition of two transition systems
T1 and T2 with state sets S1 and S2 yields an overall transition system T with up
to |S1| · |S2| states, i.e. in the worst case the state space grows multiplicatively.
The fact that the BDD representation only grows linearly can be established
as follows on the base of theoretical reasoning, which will be confirmed by the
application case studies presented in Chap. 10.

Theorem 5.1.2 Size of the BDD resulting from parallel composition
Let T1 and T2 be two LTSs represented by BDDs B1 and B2, i.e. Bi ⊲ Ti (i =
1, 2), using the standard interleaved variable ordering. For S ⊆ Act, let B be
the BDD representing the parallel composition T1|[S]|T2 (constructed according to
Thm. 5.1.1), written B ⊲ T1|[S]|T2. Then the number of vertices of BDD B is
bounded by |Act | · (|B1|+ |B2|+ |Stab1|+ |Stab2|).

Proof: We now sketch a proof. The chosen (standard interleaved) variable

ordering for BDD Bi is a1 ≺ . . . ≺ ana ≺ s
(i)
1 ≺ t

(i)
1 ≺ . . . ≺ s

(i)
ni ≺ t

(i)
ni , i.e. the

variables encoding the action name are at the top, followed by an interleaving of
the variables for source and target state. For the BDD B resulting from parallel
composition the variable ordering is a1 ≺ . . . ≺ ana ≺ s

(1)
1 ≺ t

(1)
1 ≺ . . . ≺ s

(1)
n1 ≺

t
(1)
n1 ≺ s

(2)
1 ≺ t

(2)
1 ≺ . . . ≺ s

(2)
n2 ≺ t

(2)
n2 . The proof considers three cases:

1. We consider first the case of parallel composition with maximal synchronisa-
tion, i.e. the case S = Act , which means synchronisation on all actions. Let
|Bi| be the number of vertices of Bi, and for an action a ∈ Act , let Aa be the
BDD encoding that action. Bi,a = Bi∧Aa is the “restriction” of Bi to action
a, i.e. the subgraph of Bi which corresponds to action a (as highlighted in
Fig. 5.4, top). To obtain the subgraph of the resulting BDD B which corre-
sponds to action a one has to build Ba = B1,a∧B2,a = (B1 ∧Aa)∧ (B2 ∧Aa)
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whose number of vertices can be bounded as (cf. Fig. 5.4, bottom left).

|Ba| ≤ |B1,a|+ |B2,a|
≤ |B1|+ |B2|

Summing up over all actions we obtain |B| ≤ |Act | · (|B1| + |B2|). Note
that |Act | is usually a small value and that this is a rather coarse worst
case bound which assumes that there is no sharing of the subgraphs which
correspond to different action labels.

2. In the case where action a is non-synchronising the picture is as follows:
Ba = (B1,a∧Stab2)∨(Stab1∧B2,a) = ((B1∧Aa)∧Stab2)∨(Stab1∧(B2∧Aa))
whose number of vertices can be bounded by (cf. Fig. 5.4, bottom right,
where the zig-zag structures symbolise the parts corresponding to Stabi).

|Ba| ≤ |B1,a|+ |Stab2|+ |B2,a|+ |Stab1|
≤ |B1|+ |Stab2|+ |B2|+ |Stab1|
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In the case of pure interleaving, i.e. the case S = ∅, which means that all
actions are non-synchronising, the overall size can thus be bounded by |B| ≤
|Act | · (|B1|+ |Stab2|+ |B2|+ |Stab1|). Remember that Stabi is represented
in a compact manner with only |Stabi| = 3ni +2 = 3⌈log2 |Si|⌉+2 vertices,
i.e. |Stabi| is usually much smaller than |Bi|.

3. In the general case where there is only partial synchronisation, i.e. the case
S ⊂ Act , which means that there is synchronisation on a subset of the
actions and interleaving of the remaining actions, the two extremal results
from above can be combined, resulting in the overall bound

|B| ≤ |Act | · (|B1|+ |Stab2|+ |B2|+ |Stab1|)

This concludes the proof.

5.1.3 Parallel composition on DNBDDs

In this section, we describe how parallel composition can be performed symboli-
cally in a stochastic setting with the help of DNBDDs. The basic procedure is as
for the BDD case. Let (similarly as before) Di be the DNBDD representing SLTS
Ti (i = 1, 2), and let S and Stabi be BDDs defined as before. The DNBDD D

which corresponds to the combined SLTS T = T1|[S]|T2 is obtained by evaluating
the following expression:

D = (D1 ∧ S) ∧ (D2 ∧ S)

∨ (D1 ∧ S ∧ Stab2)

∨ (D2 ∧ S ∧ Stab1)

Note that this expression is structurally similar to the one given in Theorem 5.1.1.
Note further that in this expression the ∧ and ∨ operations are used both to
combine a DNBDD with a BDD (as for instance in D1 ∧ S), and to combine two
DNBDDs (as for instance in (D1 ∧ S) ∧ (D2 ∧ S)). So, ∧ and ∨ are now not just
Boolean operators but in addition must be capable of manipulating the rate trees
if one or both of the operands are DNBDDs.

An important question is about the result rate of synchronising actions. Suppose

transition x1
a,λ
−→ y1 in SLTS T1 synchronises with transition x2

a,µ
−→ y2 in SLTS

T2. This yields a transition (x1, x2)
a,φ(λ,µ)
−→ (y1, y2) in the combined SLTS T .

Depending on the application, different expressions for the result rate φ(λ, µ)
may apply, cf. Sec. 3.7.1. Typical examples are the maximum, minimum, sum or
product of the two partner rates (when using PEPA’s concept of apparent rate
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[192], the definition and calculation of the function φ becomes more involved).
Using DNBDDs, the result rate is calculated from the two partner rates during
the ∧ operation at the centre of the first line of the above equation. This ∧
operation is flexible enough to realise any of the above alternatives (maximum,
minimum, . . . ), i.e. DNBDDs are able to cover any of those cases.

Concerning the size of the DNBDD D resulting from the parallel composition of
two SLTSs, its number of vertices can be bounded in a similar way as stated in
Thm. 5.1.2 for the BDD case. We do not give a bound on the size of the rate
tree of D, since such a bound depends on the actual implementation of the rate
tree, which issue, as mentioned in Sec. 4.3.1, is still under investigation.

To illustrate parallel composition on DNBDDs, we return to the simple queueing
example. Fig. 5.5 shows the DNBDDs associated with processes Arrival, Queue
and Arrival |[enq]| Queue (in the figure, decision nodes are drawn black). In
order to keep the figure clear, the rate trees are omitted, only the rate lists are
shown beside their corresponding BDD edges. On the left, rates λ and 1 are
attached to the outgoing edges of the (single) decision node of the BDD. In the
middle, six individual rates are attached to the appropriate edges. On the right
hand side, up to three rate lists, each consisting of a single rate, are attached
to BDD edges. For instance, the rate lists [δ][δ] specify the rates of the two
transitions encoded as Boolean vectors (1, 0, 1, 1, 0, 0, 1, 0) and (1, 0, 0, 0, 0, 0, 1, 0)
whose paths share the last decision node.
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5.1.4 Parallel composition on MTBDDs

In this section, we consider the parallel composition of SLTSs represented by
MTBDDs as described in Section 4.4.2.

Theorem 5.1.3 MTBDD-based parallel composition of SLTS
Let T1 and T2 be two SLTSs, and for i ∈ {1, 2}, let Mi over (a1, . . . , ana, s

(i)
1 , t

(i)
1 , . . . ,

s
(i)
ni , t

(i)
ni ) be two MTBDDs, such that Mi ⊲Ti. Let S ⊆ Act be a set of action labels

encoded by BDD S over (a1, . . . , ana). Let MTBDD M be constructed as follows

M = (M1 · S) · (M2 · S)
+ M1 · (1− S) · Id2

+ M2 · (1− S) · Id1

Then M ⊲ T , where T = T1|[S]|T2.

One immediately recognises the similarity with the expressions given for the
BDD- and DNBDD-cases in the two previous sections. Since we are now working
with MTBDDs, disjunction ∨ and conjunction ∧ (resp. the extensions of these
operations to the DNBDD data structure) are replaced by addition + and mul-
tiplication · . The set of synchronising actions is encoded by MTBDD S, which
is actually a BDD, since its terminal vertices are 0 and 1. In order to obtain its
complement, i.e. the set of non-synchronising actions, instead of using Boolean
negation S as before, we now use the expression 1− S, which turns a terminal 0
into a 1 and vice versa. Instead of BDD Stabi we now use the MTBDD Idi, which
represents an identity matrix of appropriate size. Note, however, that Stabi and
Idi are actually identical.

Note that for the synchronising transitions, calculated by the first line in the
above expression, the resulting rate φ(λ, µ) is now given by the product λ · µ,
which is in accordance with the stochastic process algebra TIPP and ensures
important congruence properties [179, 162, 167]. Should one wish to employ a
different function φ(λ, µ), for instance the maximum function, one would simply
have to replace the first line of the above expression by Max(M1 ·S, M2 ·S), where
Max is the maximum function on MTBDDs which can be realised with the help
of a particular instance of the standard Apply algorithm.

We now consider the size of the MTBDD resulting from the parallel composition
of two SLTSs and derive a similar bound as we did before for the BDD case.
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Theorem 5.1.4 Size of a MTBDD resulting from parallel composition
Let T1 and T2 be two SLTSs represented by MTBDDs M1 and M2, i.e. Mi ⊲ Ti

(i = 1, 2), using the standard interleaved variable ordering. For S ⊆ Act, let
M be the MTBDD representing the parallel composition T1|[S]|T2 (constructed
according to Thm. 5.1.3), written M ⊲ T1|[S]|T2. Then the number of vertices of
MTBDD M is bounded by |Act | ·η · (|M1|+ |M2|+ |Id1|+ |Id2|) where η depends on
the number of distinct rate values that are associated with a particular action.

Proof: We analyse the size of the resulting MTBDD in a similar fashion as we
did for BDDs in Section 5.1.2. There are, however, some important modifications
to the bounds, since the number of terminal vertices of the partner MTBDDs has
to be taken into account. We know that SLTS Ti is represented by MTBDD Mi,
i.e. Mi ⊲Ti, and that, as above, the standard interleaved variable ordering is used.
The proof again considers three cases:

1. Again, we consider first the case of parallel composition with maximal syn-
chronisation. Let |Mi| be the number of vertices of Mi, and for an action
a ∈ Act , let Aa be the BDD encoding that action. Mi,a = Mi · Aa is
the “restriction” of Mi to action a. To obtain the subgraph of the re-
sulting MTBDD M which corresponds to action a one has to build Ma =
M1,a ·M2,a = (M1 ·Aa) · (M2 ·Aa) whose number of vertices can be bounded
as

|Ma| ≤ |M1,a|+ η1,a · |M2,a|
≤ |M1|+ η1,a · |M2|
≤ η1,a · (|M1|+ |M2|)

In the latter equation, η1,a denotes the number of terminal vertices of M1,a

which is usually a small value. Summing up over all actions we obtain
|M| ≤ |Act | · η1 · (|M1|+ |M2|), where η1 = maxa∈Act{η1,a}. As for the BDD
case, |Act | is also usually a small value.

2. In the case where action a is non-synchronising the picture is as follows:
Ma = M1,a · Id2 + Id1 ·M2,a = (M1 · Aa) · Id2 + Id1 · (M2 · Aa) whose number
of vertices can be bounded by

|Ma| ≤ |M1,a|+ η1,a · |Id2|+ |M2,a|+ |Id1|
≤ |M1|+ η1,a · |Id2|+ |M2|+ |Id1|

In the case of pure interleaving, the overall size can thus be bounded by
|M| ≤ |Act | ·(|M1|+η1 · |Id2|+|M2|+|Id1|). Remember that Idi is represented
in a compact manner with only |Idi| = 3ni +2 = 3⌈log |Si|⌉+2 vertices, i.e.
|Idi| is usually much smaller than |Mi|.



5.1. Compositional state space construction 111

3. For the general, mixed case, where there are both synchronising and non-
synchronising transitions, we can combine the bounds for the two extremal
cases and obtain the overall bound: |M| ≤ |Act |·η1·(|M1|+|Id2|+|M2|+|Id1|).

This concludes the proof.

5.1.5 Reachability analysis

The BDD B resulting from the parallel composition of two partners B1 and B2

describes all transitions which are possible in the product space of the two part-
ner processes. Given a pair of initial states for LTSs T1 and T2, however, only
part of this product space may be reachable due to synchronisation constraints.
Therefore, B potentially includes transitions emanating from unreachable states.

For example, consider the two transition systems T1 and T2 shown in Figure 5.6
(top). Their parallel composition, starting from the initial state (1, 1) and syn-
chronising over action set S = {a}, yields the LTS T ′ shown at the bottom left
of the figure. On the other hand, if state (1, 2) were the initial state, parallel
composition would yield the LTS T ′′, as shown at the bottom right. Since BDD-
based parallel composition does not take into account the information about the
initial state, the LTS T resulting from BDD-based parallel composition is the
“union” of the two previous results. (If we were building T from T ′ and T ′′,
we could obtain its state space and its transition relation by ST = ST ′ ∪ ST ′′

and 99KT =99KT ′ ∪ 99KT ′′ , whereas the initial state of T would be ambiguous.
However, since T is generated directly from T1 and T2, the initial state is of
course given by (1, 1) and the portion of T which corresponds to T ′′ is simply
unreachable.)

This situation is the same, whether we use BDDs for the parallel composition of
LTSs, or whether we use DNBDDs or MTBDDs for the parallel composition of
SLTSs. The reason is that the basic approach to building the symbolic represen-
tation of the combined process with these data structures works according to the

following scheme: For a synchronising action a, each a-transition x1
a

99K y1 of the

first partner is combined with each a-transition x2
a

99K y2 of the second partner,
regardless whether the state (x1, x2) is reachable or not. For non-synchronising

action b, each b-transition x1
b

99K y1 of the first partner is supposed to be enabled

in any state (x1, x2), i.e. (x1, x2)
b

99K (y1, x2), regardless whether the state (x1, x2)
is reachable or not.
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Figure 5.6: Parallel composition of two LTSs

In this situation, reachability analysis is an important tool for reducing the size
of the underlying (S)LTS. Reachability analysis can be performed directly on the
BDD representation of the resulting process, as has been described, for instance,
by [39]. The following general reachability algorithm computes a BDD which
represents all states which are reachable from a given initial state. At every
step of the algorithm, new states reachable by a single transition from states
previously found are added to this BDD. This is repeated until a fixed point is
reached.

(1) Reach(~t) :=M(~t; E(s1))
(2) Unex(~s) :=M(~s; E(s1))
(3) do while (Unex(~s) 6= 0)

(4) New(~t) := Abstract
(

(Trans(~s,~t) ∧ Unex(~s)),~s,∨
)

∧ Reach(~t)
(5) Reach(~t) := Reach(~t) ∨New(~t)
(6) Unex(~s) := New(~t){~t←~s}
(7) od
(8) return Reach(~t)
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The algorithm assumes that the transition relation is encoded in a BDD Trans
which depends on the two vectors of Boolean variables ~s and ~t. (Trans can be
easily obtained from B by abstracting from the action variables.) In lines (1) and
(2), the BDDs Reach (encoding the set of reachable states) and Unex (encoding
the set of yet unexplored states), are initialised such that they both contain the
encoding of the starting state s1. The main loop of the algorithm starts in line
(3) and ends when the set of unexplored states is empty (when the BDD Unex is
simply the 0-vertex). The core operation within every iteration is performed in
line (4), where the increment New to the set of reachable states is computed: The
conjunction Trans ∧ Unex restricts the transition relation to source states from
the set Unex. The Abstract-operation abstracts from the vector of s-variables,
i.e. from all variables encoding the source state of a transition. Therefore the
result Abstract ((Trans ∧ Unex),~s,∨) encodes all states which are reachable
from the set Unex. The conjunction with Reach is needed in order to restrict
the set New to states not previously in Reach. In line (5), the set of reachable
states is incremented, and in line (6), the set of unexplored states is set to New.
Note how renaming of Boolean variables is used in line (6), since New depends
on the vector of Boolean variables ~t while Unex has to depend on vector ~s, in
order to fit properly into the conjunction in line (4).

After the BDD Reach encoding the set of reachable states has been determined,
the BDD (DNBDD, MTBDD) B representing the overall (S)LTS can be restricted
to those transitions which originate in reachable states. This can be easily realised
by a single conjunction: B(~a,~s,~t)reach := B(~a,~s,~t)∧Reach(~s), where Reach must
now be a BDD depending on the vector of Boolean variables~s, i.e. on the variables
s1, . . . , sns encoding the source state.

We now mention a very interesting issue concerning the sizes of the BDDs before
and after reachability analysis: Contrary to what one might expect, it can often be
observed that the BDD Breach, representing the reachable part of the combined
(S)LTS, is larger than the original BDD B encoding all transitions within the
product space. In a way, this is against the intuition, since one would expect
that the BDD becomes bigger if it encodes more transitions, but as we shall
see, BDD sizes are often counter-intuitive. In the example from Figure 5.6, the
number of BDD vertices for T is 36, while the number of BDD vertices for T ′

is 38, although the former encodes 10 and the latter only 6 transitions2. The
reason is that the restriction to the reachable part often destroys the regularity
of the BDD-based representation. Therefore it may often be better to keep the
unreachable states and transitions.

2Actually, T encodes 12 transitions, since there are extra phantom states which stem from
the fact that 2 bits are used to encode the state of either partner, but the systems have only 3
states.
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Another effect that can often be observed, and which may also seem surprising, is
the following: Suppose a BDD B has been generated as the parallel composition
of two partners B1 and B2 which depend on n1 resp. n2 state variables (thus, B

depends on n1 + n2 state variables). Suppose further that symbolic reachability
analysis has been performed on B, resulting in a BDD Breach (which also depends
on the same n1 + n2 state variables). In the case where the number of reachable
states is substantially smaller than the number of states in the product space of
the two partner state spaces, one could rename and re-encode the states, such
that less than n1 + n2 variables would suffice in order to characterise a state.
However, although the re-encoded BDD then has fewer variable levels, its size,
i.e. its number of vertices, is often larger than before the re-encoding. Again, the
reason for this “strange” behaviour is loss of regularity.

5.2 Issues related to Markovian and immediate

transitions

In this section, we discuss issues related to ESLTSs, i.e. transition systems which
have both Markovian and immediate transitions, which are represented symbol-
ically by MTBDDs as discussed in Sec. 4.4.3. For reasons of brevity, we restrict
this discussion to the case of MTBDDs, although in principle DNBDDs could be
employed as well as the underlying data structure.

5.2.1 Parallel composition

We now consider symbolic parallel composition for the ESLTS case. Note that
in accordance with the semantics of stochastic process algebras such as TIPP
and PEPA, synchronisation between two a-transitions is only possible if they are
either both immediate transitions or if they are both Markovian transitions, i.e.
synchronisation between an immediate and a Markovian transition is not allowed
(cf. the SPA semantics given in Sec 3.7.1). As a result, the concepts for parallel
composition developed in Sections 5.1.2 through 5.1.4 can be applied without
modification to the ESLTS case.

To describe this formally, suppose that the immediate transitions of ESLTS Ti

are represented by BDD MI
i and that the Markovian transitions of ESLTS Ti are

represented by MTBDD MM
i , where i = 1, 2 (i.e. we follow the second option de-

scribed in Sec. 4.4.3, where Markovian and immediate transitions are represented
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by two separate MTBDDs). Let S encode the set of synchronising actions. Then

MI = (MI
1 ∧ S) ∧ (MI

2 ∧ S)

∨ (MI
1 ∧ S ∧ Stab2)

∨ (MI
2 ∧ S ∧ Stab1)

represents the immediate transitions of the combined process T = T1|[S]|T2, and

MM = (MM
1 · S) · (MM

2 · S)
+ MM

1 · (1− S) · Id2

+ MM
2 · (1− S) · Id1

represents the Markovian transitions of the combined process T . Therefore, al-
together we have (MI , MM) ⊲ T .

5.2.2 Symbolic hiding and elimination of compositionally

vanishing states

Process algebras provide the concept of hiding, i.e. making visible actions invis-
ible. Hiding a (visible) action b in a transition system T causes all b-transitions
within T to be relabelled by the special internal action τ . The action τ is invisible
from the environment; therefore synchronisation on τ -transitions is not possible.

Hiding is important for several reasons:

• In the context of LTSs, internal transitions may be eliminated through the
concept of weak bisimulation. It is possible to reduce the size of an LTS by
finding a weakly bisimilar one with fewer states.

• In the context of ESLTSs, internal immediate transitions may be eliminated
through the concept of weak Markovian bisimulation, which again can be
employed in order to reduce the state space. Furthermore, internalising
immediate transitions and eliminating them (thereby eliminating the van-
ishing states, see below), is mandatory for transforming the ESLTS into a
CTMC which can then be analysed by numerical methods.

Within a purely Markovian framework, making certain transitions internal has
the sole effect that the system may no longer synchronise via these. A reduction
of the state space is not possible in this case, since τ -transitions still have a
strictly positive (to be precise: exponential) delay from which one cannot abstract
without modifying the underlying stochastic process.
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We now describe symbolic hiding formally for the case of an LTS T represented
by a BDD M. Although this is the simplest case, it is general enough, since for
SLTS or ESLTS represented by DNBDDs or MTBDDs symbolic hiding works in
a similar fashion. So, let M ⊲ T , let a1, . . . , ana be the Boolean variables encoding
the action label, and let b be an action label. The hiding of action b can then be
achieved at the level of the symbolic representation by the following operation

Mhide b in T =

(

M

∣

∣

∣

~a=E(b)
∧ M(~a; E(τ))

)

∨
(

M ∧ ¬M(~a; E(b))
)

In this equation, the cofactor M

∣

∣

∣

~a=E(b)
represents all transitions which correspond

to b-actions (note that such a cofactor does not depend on Boolean variables
a1, . . . , ana). These transitions are relabelled by τ through the conjunction with
the term M(~a; E(τ)). The part of the BDD M not corresponding to action b,
which is given by the conjunction M ∧ ¬M(~a; E(b)), remains unmodified.

We now consider the case of ESLTS. In particular, we describe how vanishing
states, which are a result of internal immediate transitions, can be eliminated,
thereby reducing the size of the state space3. We remark that the concept of van-
ishing states and their elimination has been studied extensively in the context of
Generalised Stochastic Petri Nets (GSPN) [1, 75]. However, in a compositional
framework as considered in this thesis, the definition and treatment of vanishing
states is somewhat more complicated than in the monolithic GSPN case, as ex-
plained in the sequel. We now refine the concept of a vanishing state as defined
in Def. 3.7.8, leading to the notion of a compositionally vanishing state [299].

Definition 5.2.1 Compositionally vanishing state
A state s of an ESLTS is called compositionally vanishing if there is at least one

internal immediate transition emanating from s (written s
τ

99K s′), but no visible

immediate transition emanating from s (written s 6
a

99K s′′, where a 6= τ).

A vanishing state is left as soon as it is entered via one of its (possibly several)
τ

99K -transitions. Note that a necessary condition for a state to be composition-
ally vanishing is that it may not be left via visible immediate transitions. At
a first glance, this condition may seem to be unjustified, its meaning only be-
comes clear in a compositional scenario: This condition is introduced in order

to delay the elimination of states with both emanating
τ

99K -transitions and
a

99K

-transitions, thereby preserving the possibility to perform a visible immediate

3Vanishing (tangible) states are sometimes also called instable (stable) states.
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Figure 5.7: Role of visible immediate transitions during parallel composition

transition together with a partner process. An example for such a situation is
shown in Fig. 5.7 which shows two ESLTSs, T1 and T2, which are composed in
parallel, synchronising on action c. The resulting ESLTS, T , is shown at the
bottom of the figure. State 2 in ESLTS T1 must not be eliminated before parallel
composition takes place (and therefore state 2 must not be considered a com-
positionally vanishing state), since its elimination would disable any c-transition
in the combined transition system T . In the resulting ESLTS, state (2, 1) is
a compositionally vanishing state which can be eliminated, whereas state (2, 2)
is not. However, if action c is hidden in ESLTS T (since further synchronisa-
tion on c is not required), state (2, 2) becomes compositionally vanishing and
can be also eliminated (its elimination, however, requires a proper treatment of
non-determinism as explained below).

Note also that there may be one or several Markovian transitions emanating from
a vanishing state, but they are never taken, since internal immediate transitions
have priority over them (they always win the race). As an example, in Fig. 5.7

the transition (2, 1)
b,µ
−→ (2, 2) will never be taken, since the competing internal
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Figure 5.8: Simple redirection of transitions

immediate transition (2, 1)
τ

99K (4, 1) will always take place first. Therefore tran-

sition (2, 1)
b,µ
−→ (2, 2) can safely be deleted without changing the behaviour of

the ESLTS.

With Def. 3.7.8 and Def. 5.2.1 we have defined the important notions of vanishing
states and compositionally vanishing states. In order to complete the picture, we
also classify the remaining states: A state s is called compositionally tangible
if there is no immediate transition (i.e. neither visible nor internal) emanating
from s. In the remaining case (where there is at least one visible immediate
transition, but no internal immediate transition emanating from s) the state is
called inconclusive.

Since compositionally vanishing states are left as soon as they are entered (via
an internal immediate transition, which cannot be prevented from the environ-
ment), the idea is to eliminate them, in order to reduce the state space. The
basic strategy of elimination is to redirect transitions leading to a composition-
ally vanishing state to its successor state, as shown in Fig. 5.8. In the case where
a compositionally vanishing state has more than one outgoing internal immediate
transitions, it is not specified which of them will be taken. This is an instance
of non-determinism. In order to resolve such non-determinism, one may assign
probabilities or weights to internal immediate transitions, as exemplified by the
two transitions emanating from state 2 in the ESLTS shown in Fig. 5.9 (left),
where the probabilities p and q = 1 − p have been assigned to those two imme-
diate transitions in order to resolve the non-deterministic choice between them.
Transitions leading to the compositionally vanishing state can then be redirected
to its successor states, taking into account the probabilities, as shown in Fig. 5.9
(right). Note in the figure how the probabilities of the two internal immediate
transitions are ‘inherited’ by the redirected transitions.

The following is a sketch of a general algorithm for eliminating the composition-
ally vanishing states of an ESLTS:
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Figure 5.9: Resolving non-determinism by probabilities

1. Identify the compositionally vanishing states. For those compositionally

vanishing states which have more than one emanating
τ

99K -transition, as-
sign probabilities to those transitions4.

2. Delete Markovian transitions emanating from those states which have at

least one outgoing
τ

99K -transition5 (since these Markovian transitions would
never be taken).

3. Step 2 may have rendered some states unreachable. Determine the un-
reachable states and delete them and all transitions (regardless of their
type) emanating from them. This is an optional step.

4. While there are still compositionally vanishing states, select one of them
(let it be called state y) and do the following: Redirect transitions leading
to y (regardless of their type) to the successor states of y, thereby taking

into account the probabilities. (More precisely, if x
a,λ
−→ y and y

τ,p
99K z then

modify the former transition as x
a,pλ
−→ z; if x

a,q
99K y and y

τ,p
99K z then modify

the former transition as x
a,pq
99K z.) Afterwards, delete y and all transitions

emanating from it. This step may lead to the existence of immediate loops

of the kind x
τ,pq
99K x. Such loops can be eliminated by deleting them and

multiplying all other
τ

99K -transitions emanating from x with the factor
1/(1− pq).

We emphasise that this algorithm is suitable for a symbolic realisation, i.e. it
can be implemented, for example, with the help of MTBDDs and the operations
thereon (as realised in the tool Im-Cat). To begin with, consider step 1 of
the algorithm. Suppose that MI is the (MT)BDD which encodes all immediate

4These probabilities may be specified explicitly by the modeller. A software tool may also
provide the default option to assign equal probabilities, as is indeed the case with the tool
Im-Cat [128, 129].

5Note that this condition does not only apply to compositionally vanishing states, but also
to vanishing states.
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transitions of an ESLTS. The following symbolic computation determines a BDD

Sτ encoding those states which have emanating
τ

99K -transitions,

Sτ (~s) = Abstract
(

(MI ∧M(~a; E(τ))), (~a,~t),∨
)

The conjunction MI ∧M(~a; E(τ)) selects the τ -transitions, and the Abstract-
operation abstracts from the Boolean variables encoding the action type and
the target state of a transition, which yields a (MT)BDD that encodes only the
source state of immediate τ -transitions. Similarly, states which have emanating
immediate transitions labelled with actions other than τ are determined by

SO(~s) = Abstract
(

(MI ∧ ¬M(~a; E(τ)), (~a,~t),∨
)

The BDD SV encoding the set of compositionally vanishing states can then be
computed as

SV (~s) = Sτ (~s) ∧ SO(~s)

The computation in step 2 of the algorithm is realised by

MMrelevant(~a,~s,~t) = MM(~a,~s,~t) ∧ Sτ (~s)

i.e. only those Markovian transitions are selected, which do not originate in states

that also have emanating
τ

99K -transitions. Symbolic reachability analysis, needed
for step 3, has already been discussed in Section 5.1.5. The symbolic realisation
of step 4 is the most complicated. We only sketch how it can be done: One first
computes

MI,τ (~t,~u) =
(

Restrict(MI(~a,~s,~t) ∧ SV (~s),~a, E(τ))
)

{~u←~t,~t← ~s}

which is the MTBDD representing the internal immediate transitions emanat-
ing from compositionally vanishing states. The renaming of Boolean variables
{~u ← ~t,~t ← ~s} has the effect that the source state is encoded by Boolean vari-
ables ti and the target state by ui. Redirecting Markovian transitions leading to
compositionally vanishing states is then achieved simply by

MMredir(~a,~s,~u) = Abstract(MMrelevant(~a,~s,~t) ∧MI,τ(~t,~u),~t, +)

The redirection of immediate transitions leading to compositionally vanishing
states is done in a similar way, namely by computing

MIredir(~a,~s,~u) = Abstract(MI(~a,~s,~t) ∧MI,τ(~t,~u),~t, +)

It should be emphasised, that the hiding of actions and the symbolic elimination
of compositionally vanishing states can be employed as part of a compositional
model construction procedure. Starting from small size submodels, these can be
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composed in parallel, where synchronisation takes place on some actions. After
each composition step, the actions which will not be needed for further synchro-
nisation can be hidden. The compositionally vanishing states which may have
resulted from this hiding can then be eliminated as discussed, before the current
submodel is composed further with other submodels.

At this point, we have to mention an interesting phenomenon concerning the
size of the symbolic data structures. Although the transition system which re-
sults from the elimination of compositionally vanishing states has fewer states
(and fewer transitions) than the original transition system, its symbolic repre-
sentation is typically less compact than the original one, i.e. typically we have
|MIredir(~a,~s,~t)| > |MI(~a,~s,~t)| and |MMredir(~a,~s,~t)| > |MM(~a,~s,~t)|. The increase of
the size of the symbolic representation is generally due to some loss of regularity.
We shall take up this issue again in Sec. 5.3.5, and also in the context of the
application case studies in Chap. 10.

Concerning the point in time when non-determinism is resolved, we wish to point
out the following: The implementation in the tool Im-Cat offers the possibility to
detect and resolve non-determinism at any point of time. Therefore the decision
is left to the modeller, whether to resolve non-determinism as soon as possible
(i.e. before further parallel composition), or to postpone the resolution (and the
necessary assignment of probabilities to the non-deterministic internal immediate
transitions) until the current system is composed further. Contrary to this, the
SPA tool TIPPtool does not offer such a flexibility. It always builds the com-
plete model (thereby obeying a maximal progress assumption which says that

Markovian transitions emanating from states with emanating
τ

99K -transitions
can be disregarded [162]). When constructing a CTMC, which is needed for per-
formance evaluation, TIPPtool automatically hides all immediate transitions
and in all cases of non-deterministic choice assigns equal probabilities.

5.3 Symbolic bisimulation and state space min-

imisation

As we have seen in Sec. 3.7, state space reduction based on bisimulation equiv-
alences is an important concept when working with stochastic process algebra
models. The basic idea is to reduce the state space by representing states which
are equivalent (in the sense of a given bisimulation relation) by a single macro
state. In particular, if the bisimulation is a congruence, reduction may be ap-
plied in a compositional manner by reducing intermediate models after every



122 5. Working with symbolic representations

construction step, before further composition is carried out.

In this section, we discuss how bisimulation algorithms can be realised symbol-
ically, using BDDs and their extensions as the underlying data structures. We
describe bisimulation algorithms which are entirely based on BDD operations,
both for non-stochastic and for stochastic scenarios.

Before we actually discuss symbolic bisimulation algorithms, we mention some
related work (all of which concerns bisimulation in non-stochastic systems). A
symbolic minimisation algorithm for networks of parallel processes has been de-
scribed in [39]. The algorithm, which is implemented in a prototype tool, is
capable of calculating strong and weak bisimulation relations and works accord-
ing to the principle of iterative refinement. In [65], symbolic model checking for
a powerful version of the mu-calculus is described. Both strong and weak equiv-
alence are expressed in this calculus, and thus an efficient decision procedure for
these equivalences is provided. Likewise, [118] also considers symbolic bisimilar-
ity checking, but this paper focuses on BDD construction from elementary finite
transition systems by applying CCS operations.

5.3.1 Symbolic non-stochastic bisimulation

We now describe how the basic non-stochastic bisimulation algorithm introduced
in Sec. 3.7.3 can be realised using BDD-based data structures. For convenience,
let the transition relation be represented not by a single BDD B(~a,~s,~t), but by
a set of BDDs Ba(~s,~t), one for each action label a. These BDDs can be easily
obtained by restricting B(~a,~s,~t) as follows:

Ba(~s,~t) = Restrict(B(~a,~s,~t),~a, E(a))

The current partition {C1, C2, . . .} is stored as a set of BDDs {C1(~s), C2(~s), . . .},
one for each equivalence class. The dynamic set of splitters, Splitters, whose
elements are pairs (a, C) consisting of an action a and a class C, can be realised
by a pointer structure as shown in Fig. 5.10, i.e. for each action a there is a linked
list of pointers to the roots of those BDDs representing the relevant classes.

In procedure split, when splitting of class C takes place, the subclasses C+ and
C− are also represented by BDDs, namely C+(~s) and C−(~s). The core operation,
i.e. the computation of the subclass C+ in procedure split is carried out with the
help of conjunction and existential quantification

C+(~s) := C(~s) ∧ ∃~t :
(

Ba(~s,~t) ∧ Cspl(~t)
)
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Figure 5.10: Pointer structure which realises the dynamic set of splitters

(note that existential quantification is also performed as a BDD operation6). The
subsequent check whether class C actually needs to be split is decided based on
the Boolean expression

C+(~s) 6= C(~s) ∧ C+(~s) 6= 0

which can be checked in constant time since the equivalence check on BDDs only
takes constant time. The computation of C−(~s) is achieved by

C−(~s) := C(~s) ∧ C+(~s)

Having pointed out these details, we now give a symbolic version of procedure
split:

procedure split(C, a, Cspl, Partition, Splitters)
C+(~s) := C(~s) ∧ ∃~t :

(

Ba(~s,~t) ∧ Cspl(~t)
)

/* the subclass C+(~s) is computed */
if (C+(~s) 6= C(~s) ∧ C+(~s) 6= 0)

/* only continue if class C(~s) actually needs to be split */

C−(~s) := C(~s) ∧ C+(~s)
/* C−(~s) is the complement of C+(~s) with respect to C(~s) */
Partition := Partition ∪ {C+(~s), C−(~s)} − {C(~s)}
Splitters := Splitters ∪ (Act× {C+(~s), C−(~s)})−Act× {C(~s)}
/* the partition and the set of splitters are updated */

For weak bisimulation, the algorithm is similar, but the weak transition rela-
tion must be calculated first (which, as already mentioned in Sec. 3.7.3, is the

6Existential quantification of Boolean functions is defined in terms of disjunction of cofactors
(i.e. as a special instance of abstraction) as ∃vi : f(. . . , vi, . . .) := f(. . . , 0, . . .) ∨ f(. . . , 1, . . .).
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computationally most expensive part). We now sketch how this can be done
symbolically.

The first step is to calculate the transitive closure B∗
τ (~s,~t) of τ -transitions, i.e. the

transitive closure of internal transitions. Näıvely this can be done by computing
a series of relations

B
(0)
τ (~s,~t) := Bτ (~s,~t) ∨ (~s =~t)

B
(i+1)
τ (~s,~t) := B

(i)
τ (~s,~t) ∨ ∃~u :

(

B
(i)
τ (~s,~u) ∧ Bτ (~u,~t)

)

until convergence, i.e. until B
(i)
τ (~s,~t) = B

(i+1)
τ (~s,~t), in which case we have B

(i+1)
τ (~s,~t)

= B∗
τ(~s,~t). In order to reach the fixed point in fewer steps, the method of iterative

squaring [317] may be employed, which means that B
(i+1)
τ (~s,~t) is computed by

B
(i)
τ (~s,~t) ∨ ∃~u :

(

B
(i)
τ (~s,~u) ∧ B

(i)
τ (~u,~t)

)

instead of the above expression (note the

subtle difference). However, as already observed in [65], iterative squaring may
not be beneficial in practice if the BDDs needed to represent the intermediate
relations become too large.

The second step consists of the actual calculation of the BDDs Ba,weak(~s,~t) for

all action labels a, encoding weak transitions a
----------➤ (defined by τ

----------➤

a
-----➤ τ

----------➤).
This can be achieved by conjunction and existential quantification:

Ba,weak(~s,~t) := ∃~u : ∃~v :
(

B∗
τ (~s,~u) ∧ Ba(~u,~v) ∧ B∗

τ (~v,~t)
)

Note that this requires renaming of Boolean variables within BDDs B∗
τ (twice!)

and Ba. This renaming does not cause any problems if the overall variable order-
ing, including the additional variables ~u and ~v, is as follows:

s1 ≺ u1 ≺ v1 ≺ t1 ≺ . . . ≺ sns ≺ uns ≺ vns ≺ tns

5.3.2 Symbolic Markovian bisimulation

We now discuss aspects of a symbolic algorithm which computes Markovian bisim-
ulation on SLTSs. Concerning the use of symbolic data structures, we basically
proceed as in Sec 5.3.1, i.e. the current partition is stored as a set of BDDs
{C1(~s), C2(~s), . . .}, and the realisation of the dynamic set of splitters is by a pointer
structure similar to the one shown in Fig. 5.10.

As we have seen in Sec. 4.3.2 and Sec. 4.4.2, the transition relation of the SLTS —
now including information about the transition rates — can be represented by a
DNBDD D(~a,~s,~t) or by an MTBDD M(~a,~s,~t). Since the bisimulation algorithms
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for these two data structures proceed in a similar way, we will restrict our further
discussion to the MTBDD case only. As in the previous section, the decision
diagram encoding the transition relation is again broken up into several parts,
such that there is one MTBDD per action label, denoted by Ma(~s,~t).

The basic algorithm for Markovian bisimulation is as in Sec. 3.7.4, but some
essential modifications are necessary within procedure split′. An important issue
within procedure split′ is the calculation of the cumulative rate γ(P, a, Cspl) of
a-transitions from an individual state P (being a member of the class C to be
split) to class Cspl. Using non-symbolic data structures, these calculations must
be carried out in a state by state manner. In contrast to that, using MTBDDs,
the calculation can be performed at the same time for all states of a given class,
involving only a few basic MTBDD operations. This is done as follows: In a first
step, an MTBDD, encoding all a-transitions which originate in C and lead to
Cspl, is calculated by selecting the appropriate transitions from Ma(~s,~t):

7

M
C

a
→Cspl

(~s,~t) := C(~s) ∧Ma(~s,~t) ∧ Cspl(~t)

The cumulative rates are now computed for all states P ∈ C by a single abstrac-
tion operation:

Mcum rates(~s) := Abstract(M
C

a
→Cspl

(~s,~t),~t, +)

The resulting MTBDD Mcum rates(~s), a sketch of which is shown in Fig. 5.11 (top),
encodes a real-valued function, which maps the encoding E(P ) of a state P to its
cumulative rate. Formally this can be written as

fMcum rates

∣

∣

∣

~s=E(P )
= γ(P, a, Cspl)

The information contained in Mcum rates(~s) is almost the same as the informa-
tion that was contained in the split-tree in the non-symbolic version of procedure
split′ (one can view Mcum rates(~s) as an upside-down version of the split tree).
Therefore, the split-tree as such is not needed in the symbolic algorithm. In-
stead, subclasses are extracted directly from Mcum rates(~s) by a procedure called
extract subclasses(), which generates from Mcum rates(~s) a finite number of BDDs,
denoted by Cγ1(~s), . . . , Cγk

(~s), one for each nonzero terminal vertex of the MTBDD.
The effect of procedure extract subclasses() is depicted in the lower part of
Fig. 5.11.

The symbolic version of procedure split′ can now be formulated as follows:

7Here and in some other instances we use the conjunction operator ∧ to combine a BDD
with an MTBDD. Strictly speaking, the BDD argument should be considered as an MTBDD
and the multiplication operator · should be used.
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Figure 5.11: Sketch of MTBDD Mcum rates(~s) (top), and effect of procedure
extract subclasses()

procedure split′(C(~s), a, Cspl(~t), Partition, Splitters)
M

C
a
→Cspl

(~s,~t) := C(~s) ∧Ma(~s,~t) ∧ Cspl(~t)

/* all a-transitions from C(~s) to Cspl(~t) are selected */
Mcum rates(~s) := Abstract(M

C
a
→Cspl

(~s,~t),~t, +)

/* all cumulative rates are computed by a single abstraction */
extract subclasses(Mcum rates(~s))
/* k BDDs, corresponding to the subclasses, are extracted from Mcum rates(~s) */
if (k > 1)

/* only continue if C(~s) has been split into k > 1 subclasses */
Partition := Partition ∪ {Cγ1(~s), . . . , Cγk

(~s)} − {C(~s)}
Splitters := Splitters ∪ (Act × {Cγ1(~s), . . . , Cγk

(~s)})− Act × {C(~s)}
/* the partition and the splitter set are updated */

We mention at this point that our prototype tool DNBDDtool [43], a tool for
SLTS construction and analysis based on DNBDDs, contains an implementation
of Markovian bisimulation whose basic strategy, however, follows more closely
the non-symbolic algorithm given in Sec. 3.7.4. Our MTBDD-based tool Im-

Cat does currently not include bisimulation algorithms, since so far its focus
has been more on compositional model construction, handling of ESLTSs, and
numerical analysis.
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5.3.3 Symbolic weak Markovian bisimulation

In this section we consider a symbolic algorithm that realises weak Markovian
bisimulation for ESLTSs. Remember that an ESLTS, comprising both immediate

transitions
a

-----➤ and Markovian transitions
a,λ
−−−−−➤, can be represented by means of

two separate data structures: An (MT)BDD MI to encode immediate transitions
and an MTBDD MM to encode Markovian transitions8. (Of course, one could
also work with DNBDDs instead of MTBDDs.) For simplicity, as in Sec. 3.7.5,
we assume that the ESLTS is divergence-free.

As a preprocessing step, the BDDs encoding the transitive closure of immediate
τ -transitions, encoded by B∗

τ (~s,~t), and the weak transition relation a
----------➤, encoded

by a set of BDDs Ba,weak(~s,~t), must be calculated. This can be done symbolically
as described in Sec. 5.3.1.

The basic bisimulation algorithm is the same as in Sec. 3.7.5, where in the main
loop the following is done for each splitter: Firstly, all classes are split by proce-
dure split with respect to weak transitions. Since we already discussed a symbolic
version of split in Sec. 5.3.1, we do not have to describe this step again. Secondly,
all classes are split with respect to Markovian transitions by means of procedure
split′′. So it remains to discuss a symbolic version of procedure split′′:

Since procedure split′′ distinguishes between vanishing9 and tangible states, two
BDDs encoding these sets have to be calculated:

Van(~s) := ∃~t : MI
τ (~s,~t)

Tan(~s) := Van(~s)

Since BDDs Van(~s) and Tan(~s) are the same in every invocation of procedure
split′′, it is best to carry out these calculations during the initialisation of the
algorithm.

At the beginning of procedure split′′, tangible states of class C are classified
according to their cumulative rates in a similar way as in procedure split′. The
result of this step is an MTBDD MTan

cum rates(~s), whose terminal vertices carry
the values γ1, . . . , γk. The tricky part is then to associate vanishing states with

8Here, contrary to Sec. 5.2.2, we are not interested in resolving non-determinism by proba-
bilities, but follow the concept of weak Markovian bisimulation as in Sec. 3.7.5. Therefore, MI

is a BDD and not an MTBDD.
9In this section we are concerned with bisimulation and not with the elimination of instable

states as in Sec. 5.2.2. Therefore we return to the original notions of vanishing and tangible
states as defined in Def. 3.7.8, as opposed to the notion of compositionally vanishing states as
defined in Def. 5.2.1.
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cumulative rates. Each vanishing state must either be associated with one of the
cumulative rates γj which were found while processing the tangible states, or —
if the cumulative rate is ambiguous — must be associated with the undefined
cumulative rate ⊥. In order to support this decision, we define a binary operator
∇ on the set of reals. For r1, r2 ∈ IR, let

r1∇r2 :=

{

r1 if r1 = r2

⊥ otherwise

i.e. if both values agree then ∇ returns that value, otherwise undefined ⊥ is
returned. This ∇-operator is used within an Abstract-operation which essen-
tially classifies vanishing states according to the cumulative rate of those tangible
states which they can reach via internal immediate transitions. The result of this
abstraction is an MTBDD MV an

cum rates(~s) whose terminal values are from the set
{γ1, . . . , γk+1}, where γk+1 = ⊥.

Once the cumulative rates have been determined both for the tangible and
the vanishing states of class C, the information contained in MTan

cum rates(~s) and
MV an

cum rates(~s) is merged into a single MTBDD Mcum rates(~s), and (as in procedure
split′) procedure extract subclasses() is called in order to extract the BDDs en-
coding the subclasses. The rest of procedure split′′ is as in procedure split′. The
complete symbolic version of procedure split′′ is as follows:

procedure split′′(C(~s), a, Cspl(~t), Partition, Splitters)

/* first process tangible states: */
MTan

C
a
→Cspl

(~s,~t) := C(~s) ∧ Tan(~s) ∧MM
a (~s,~t) ∧ Cspl(~t)

/* all a-transitions from tangible states within C(~s) to Cspl(~t) are selected */
MTan

cum rates(~s) := Abstract(MTan

C
a
→Cspl

(~s,~t),~t, +)

/* k ≥ 1 distinct cumulative rates for the tangible states are computed */

/* next process vanishing states: */
BV an→Tan(~s,~t) := C(~s) ∧ Van(~s) ∧ B∗

τ (~s,~t) ∧ Tan(~t)
/* weak transitions from vanishing to tangible states are computed */
MV an→Tan(~s,~t) := BV an→Tan(~s,~t) ·MTan

cum rates(~t)
/* cumulative rate information is added to BDD BV an→Tan(~s,~t) */
MV an

cum rates(~s) := Abstract(MV an→Tan(~s,~t),~t,∇)
/* vanishing states are classified with respect to “reachable” cumulative rates */

/* then combine both results in one MTBDD: */
Mcum rates(~s) := MTan

cum rates(~s) + MV an
cum rates(~s)
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/* from hereon proceed as in procedure split′: */
extract subclasses(Mcum rates(~s))
/* l = k (or l = k + 1) BDDs, corresponding to the subclasses, are extracted */
if (l > 1)

/* only continue if C(~s) has been split into l > 1 subclasses */
Partition := Partition ∪ {Cγ1(~s), . . . , Cγl

(~s)} − {C(~s)}
Splitters := Splitters ∪ (Act × {Cγ1(~s), . . . , Cγl

(~s)})− Act × {C(~s)}
/* the partition and the splitter set are updated */

5.3.4 Constructing the minimised transition system

In the last three sections, we have described symbolic bisimulation algorithms
for non-stochastic, Markovian and mixed transition systems. As a result of these
algorithms, it is known which states are equivalent with respect to a certain
bisimulation relation. The algorithms return this information in the form of m
BDDs, denoted by C1(~s), . . . , Cm(~s), each of which encodes the states belonging
to one of the m equivalence classes.

As already mentioned, one aim of bisimulation is to construct a minimised transi-
tion system where every class of equivalent states is represented by a single macro
state. The state space of the minimised transition system is often dramatically
smaller than the original one. In this section, we describe how the minimised
transition system can be obtained, working on symbolic data structures.

Strong bisimulation: We consider first strong bisimulation for a given LTS
T . Let B(~a,~s,~t) be a BDD (using the standard interleaved variable ordering),
such that B ⊲ T . Let C1(~s), . . . , Cm(~s) be m BDDs (calculated as the result of a
symbolic bisimulation algorithm like the one described in Sec. 5.3.1), encoding
the equivalence classes C1, . . . , Cm.

As a first step, from each equivalence class Cj, where 1 ≤ j ≤ m, one state has
to be chosen to be the representative state10. This choice could be made ran-
domly or deterministically (following some heuristic strategy). For example, the
lexicographically smallest (or largest) state within each equivalence class could
be chosen. While all possible choices are functionally equivalent, it is clear that
the choice will affect the size of the resulting BDD (in a way that is rather hard

10Note that we choose one of the states from equivalence class Cj to stand as representative
for that class. We do not recommend to generate a new, “artificial” representative state per
class, which could possibly be encoded by less than ns bits, since our experiments with symbolic
Markovian bisimulation in the tool DNBDDtool suggested that such a reencoding of macro
states does not usually decrease the (DN)BDD size.
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to predict in general). However, we assume that the choice has been made in
some way or other and that {r1, . . . , rm} are the m representative states. We
then construct

Rep(~s) :=M(~s; E(r1)) ∨ . . . ∨M(~s; E(rm))

which is a BDD encoding the set of representative states.

As a second step, only the transitions emanating from representative states are
selected from the overall transition relation (which is encoded by B(~a,~s,~t)). Note
that all other transitions may simply be dropped, since they only describe bisim-
ilar behaviour. This selection can be realised by a single conjunction:

B′(~a,~s,~t) := B(~a,~s,~t) ∧ Rep(~s)

The following third step is the most complicated and the most expensive one:
BDD B′(~a,~s,~t) encodes transitions which emanate from representative states,
but which may lead to any state of the original state space. Therefore, within
B′(~a,~s,~t) the target states have to be replaced by the corresponding representative
states. This is done as follows:

Bred(~a,~s,~t) :=
m
∨

j=1

(

(∃~t : (B′(~a,~s,~t) ∧ Cj(~t))) ∧M(~t; E(rj))
)

The inner conjunction selects transitions leading to class Cj, and the existential
quantification then abstracts from the original target state (i.e. altogether deletes
the information on the target state). The outer conjunction sets the target state
to be the representative state of class Cj (i.e. state rj , encoded by the minterm
M(~t; E(rj)). Note that this third step requires m − 1 disjunctions at the outer
level, where m can be very large in practice.

Weak bisimulation: For non-stochastic weak bisimulation, the construction of
the minimised transition system works in a similar way as for strong bisimula-
tion, but the weak transition relation (encoded by BDD Bweak(~a,~s,~t)) must be
employed instead of the original transition relation (encoded by BDD B(~a,~s,~t)).

Markovian bisimulation: In the case of Markovian bisimulation on an SLTS,
whose transition relation is represented by MTBDD M(~a,~s,~t), the basic proce-
dure for constructing the minimised transition system is also similar. First, an
MTBDD representing transitions emanating from representative states is calcu-
lated as

M′(~a,~s,~t) := M(~a,~s,~t) ∧ Rep(~s)

and then the target states are replaced by the corresponding representative states
as follows:

Mred(~a,~s,~t) :=

m
∑

j=1

(

Abstract(M′(~a,~s,~t) ∧ Cj(~t),~t, +) ∧M(~t; E(rj))
)
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i.e. abstraction is now used instead of existential quantification, and at the outer
level summation is used instead of disjunction. Note how this abstraction oper-
ation, in addition to deleting the information on the target state, includes the
calculation of the cumulative rate.

Weak Markovian bisimulation: When constructing the minimised transition
system for an ESLTS (from the known equivalence classes of weak Markovian
bisimulation), one can follow the same basic strategy as in the previous cases,
but some fine issues must be considered. The first issue concerns the choice of the
representative states: For those equivalence classes which contain at least one tan-
gible state, one of the tangible states should be chosen as the representative state
(in order to make sure that the Markovian transitions are not lost when selecting
the transitions emanating from the representative state). For classes which do
not contain any tangible state, any state may be chosen as the representative
state. The BDD encoding the weak transition relation of the minimised transi-
tion system, Bred

weak(~a,~s,~t), is obtained by proceeding as described above for weak
bisimulation in the non-stochastic case. The MTBDD encoding the Markovian
transition relation of the minimised transition system, Mred(~a,~s,~t), is obtained
by proceeding as described above for Markovian bisimulation in the SLTS case.

5.3.5 The role of symbolic state space reduction

The basic complexity of the described bisimulation algorithms remains the same
when moving from an explicit to a symbolic representation of the transition re-
lation. In the case of procedure split′, where the cumulative rates have to be
calculated for all states of a class, we have seen that a single MTBDD abstrac-
tion operation suffices to carry out this calculation for all states simultaneously.
In many cases, this will be substantially faster than the non-symbolic algorithm,
where the calculation of the cumulative rate is carried out in a state-by-state
fashion. A similar argument applies to procedure split′′, both concerning the
calculation of the cumulative rates for the tangible states, and concerning the
classification of the vanishing states.

Together with BDD-based compositional state space construction, as discussed
in Sec. 5.1, BDD-based state space reduction algorithms realise the concept of
compositional reduction in a totally symbolic manner. The advantages for per-
formance analysis seem to be obvious, since the transition system of a complex
system can be built from small components by applying the BDD-based parallel
composition operator step by step, where after every parallel composition step
the intermediate model can be minimised without leaving the BDD world. This
procedure guarantees that the size of the state space is kept at a minimum at any
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time. Joined with BDD-based algorithms for numerical analysis (cf. Chap. 7),
this yields a totally BDD-based framework for the construction and analysis of
stochastic models.

Note, however, that unfortunately a reduction of the underlying state space does
not usually coincide with a reduction of the BDD sizes. In practice, the opposite
is often the case, i.e. one typically observes that BDD sizes grow when the state
space is reduced. At a first glance this seems to be totally counter-intuitive. How-
ever, remember that a similar phenomenon had been observed when we discussed
reachability analysis in Sec. 5.1.5, where it was found that the symbolic repre-
sentation of a transitions system with unreachable transitions is often smaller
than the representation of the reachable part. As a further example for such a
counter-intuitive behaviour, we saw that symbolic elimination of compositionally
vanishing states (discussed in Sec. 5.2.2), which also reduces the state space of
the underlying ESLTS, often increases the BDD size. Generally speaking, we
argue that in all these cases the increase of the BDD size is due to the same basic
reasons, which may be stated as follows: Symbolic representations work best if
they are constructed in a compositional fashion, such that the underlying tran-
sition system has a lot of regularity (and possibly redundancy). Deleting certain
transitions, redirecting certain transitions, or deleting certain states (all states
of an equivalence class, except the representative state), are all operations which
to a certain extent destroy the regularity of the transition system and therefore
diminish the efficiency (i.e. the compactness) of the symbolic representation.

Therefore, we have to ask the question whether symbolic bisimulation is really
useful, and whether symbolic reachability analysis and symbolic elimination of
compositionally vanishing states are useful. It is obvious that one cannot blindly
recommend to replace a transition system by its minimised version when using
BDDs as the underlying data structure. However, we argue that it is certainly
advantageous to have efficient symbolic bisimulation algorithms at one’s disposal,
which can provide users with valuable information about the equivalence of states,
even if in many cases one will prefer to work with the symbolic representation of
the non-minimised transitions system instead of the minimised one.



Chapter 6

Compact encodings

In this chapter, we will discuss issues related to the size of a decision diagram.
This discussion will confirm the important role of symbolic parallel composition
and emphasise the implications of our findings concerning the size of BDDs re-
sulting from parallel composition, as stated in Thm. 5.1.2 and Thm. 5.1.4.

The size of BDDs has been the object of study in several published works: In
[46] and [243], lower and upper bounds for the size of BDDs representing digital
circuits are given. In these works, the structure of the circuits, which consist of
“blocks” with limited interaction, plays a key role for determining the bounds.
As already mentioned in Chap. 5, [118] developed bounds for the size of BDDs
constructed from CCS terms. Here, again, the structure of the underlying model,
i.e. the way the CCS process is composed of subprocesses, determines the BDD
size. Our own findings, which have been partly summarised as “rules of thumb”
in [177], also confirm this point: The structure of the system to be modelled —
and the way in which that structure is exploited during the modelling process —
is the main factor which determines the size of a decision diagram.

Many of the statements and observations made in the following sections are
equally valid for BDDs, DNBDDs, MTBDDs and other types of decision dia-
grams. Therefore, we will use the term “BDD” in a broader sense, referring to
all of these types.

133
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6.1 Factors influencing the size of a BDD

We already mentioned in Sec. 2.4 that the size of a BDD representing a Boolean
function is highly dependent on the chosen ordering of the Boolean variables.
It is known that the problem of finding the optimal variable ordering is NP
complete [316, 35, 36, 109, 110]. Therefore, determining the optimal ordering is
only feasible for very small problems in practice.

When representing transition systems or matrices with the help of decision dia-
grams, the modeller or developer of a software tool has many degrees of freedom.
Several crucial decisions have to be made, each of which may have a strong in-
fluence on the size of the decision diagram:

1. The encoding of the state identifiers by Boolean vectors (whose length is
ns ≥ ⌈log2 |S|⌉, where S is the state space) has to be defined.

2. In the case of action-labelled transition systems, the encoding of the action
labels by Boolean vectors (of length na ≥ ⌈log2 |Act |⌉, where Act is the set
of actions) has to be defined.

3. It is necessary to define a total ordering on the Boolean variables involved.

For the first and the second issue, there is no commonly accepted heuristics for
finding good mappings from states and actions to Boolean vectors, such that the
resulting BDD is small. In most cases, states are numbered from 1 to |S| (or
from 0 to |S| − 1) and the state number is simply encoded as a bit vector, while
action labels are simply encoded in the order in which they are encountered in the
model. However, the first and second issue often do not have a strong influence
on the BDD size, the third issue is usually more important.

Concerning the third issue, the most commonly accepted heuristics has already
been introduced in Def. 5.1.1, namely the use of the standard interleaved variable
ordering, which is given by

a1 ≺ . . . ≺ ana ≺ s1 ≺ t1 ≺ . . . ≺ sns ≺ tns

where s1, . . . , sns (t1, . . . , tns) encode the source (target) state of the transition
system, and (if applicable) a1, . . . , ana encode the action. The benefits of this
rule can be visualised by an inspection of the (by now well-known) function
fI = fStab =

∏n
i=1(ti · si + (1− ti)(1− si)) that can be interpreted as the iden-

tity matrix of size 2n. Using the variable ordering (s1, t1, . . . , sn, tn) leads to an
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MTBDD with 3 · n + 2 vertices, whereas the näıve ordering (s1, . . . , sn, t1, . . . , tn)
blows up exponentially in n, it requires 3 · 2n − 1 vertices, cf. Fig. 4.3.

In a matrix setting, this phenomenon implies that everything that “happens” on
the main diagonal, or between states whose encodings are “close” to each other,
enables a lot of subgraph sharing and therefore helps to keep the size of the
decision diagram small. Furthermore, the interleaved ordering fits in perfectly
well with the structure of high-level formalisms and parallel composition, as we
had already observed in Sec. 5.1.2.

In the following sections, we exemplify that high-level structure can be turned
into space-efficient MTBDD encodings.

6.2 Observations concerning the BDD size

6.2.1 Effect of structure and reducedness of the state space

In this section, we consider a simple failure-repair model taken from [314, p.
135]. The model describes two classes of subsystems, each class consisting of
two identical components that are subject to failures and repairs. A component
in class i ∈ {1, 2} fails with rate λi and is subsequently repaired with rate µi.
Taking into account that equally behaving components can be lumped [212], we
obtain a CTMC with state space S = {0, . . . , 8} and the following transition rate
matrix R:

R =





























− 2λ2 − 2λ1 − − − − −
µ2 − λ2 − 2λ1 − − − −
− 2µ2 − − − 2λ1 − − −
µ1 − − − 2λ2 − λ1 − −
− µ1 − µ2 − λ2 − λ1 −
− − µ1 − 2µ2 − − − λ1

− − − 2µ1 − − − 2λ2 −
− − − − 2µ1 − µ2 − λ2

− − − − − 2µ1 − 2µ2 −





























The nine states can be encoded in the straight-forward way, mapping them onto
bit vectors of length 4, such that 0 7→ 0000,. . . , 8 7→ 1000. Using interleaved
variable ordering, the MTBDD R based on this encoding, which is shown in
Fig. 6.1, has 66 vertices in total.
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Figure 6.1: MTBDD R for the unstructured encoding of the failure-repair model

It turns out, however, that this straight-forward encoding of states is not the
best choice. It is better to exploit the information that the above system consists
of two subsystem classes, and that each class has two components that may fail
independently. We may view the states as tuples (w1, w2), where each of the
elements of this tuple ranges from 0 to 2 and indicates how many components of
each class are currently operational. Note that this is reflected by the fact that
matrix R can be written as R = R1 ⊕R2 (Kronecker sum of two matrices of size
3), where Ri is given by

Ri =





− 2λi −
µi − λi

− 2µi −





We need two bits to encode each of the elements of the state tuple, and choose
to encode these elements in the straight-forward way. For instance, state (1, 2)
(corresponding to state 3) is encoded as a bit vector 0110. The resulting MTBDD
is depicted in Fig. 6.2. It has fewer vertices than the one in Fig. 6.1, namely 59
vertices in total (instead of the previous 66 vertices).

We emphasise that in general such a structured encoding may be beneficial even if
the sum of the number of bits needed to encode the individual elements of a state
tuple were greater than the number of bits needed to encode the unstructured
state identifiers1.

1In the present example, the number of bits is 2+2 for encoding the state tuple (w1, w2) ∈
{0, 1, 2}×{0, 1, 2} and 4 for encoding the states {0, . . . , 9}, so the effect of increasing the depth
of the MTBDD does not show.
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Figure 6.2: MTBDD R for the structured encoding of the failure-repair model

The next observation is particularly interesting: We observe that established
techniques for compressing the state space, such as lumping (or its refinement,
bisimulation reduction), can be counterproductive in a symbolic setting, since
structure gets lost. To illustrate this rule, we consider the above example without
applying lumpability beforehand, i.e. we model four independent subsystems,
each of which is either operational or failed. As a consequence, we now deal
with a CTMC with 24 = 16 states, which is nearly twice the number of states
as before. The states may now be viewed as tuples (w1, w2, w3, w4), where each
of the elements is either 0 or 1. The value 1 is used to represent an operational
component, and 0 for a failed component. The rate matrix R′ of this CTMC
contains more non-zero entries than the lumped variant, but only four distinct
values, taken from the set {λ1, λ2, µ1, µ2}, appear in this matrix. Again, R′ can
be written as a Kronecker expression, namely the Kronecker sum R′ = R1⊕R1⊕
R2 ⊕R2, where Ri is now defined as

Ri =

(

− λi

µi −

)

As a consequence, we obtain an MTBDD representation which is more compact
than the previous ones. It is depicted in Fig. 6.3, and has only 39 vertices,
although the underlying state space is much bigger. The encoding used for this
example is simple. Each of the four state variables represents the status of one
of the components. The first two represent the components of class 1, the third
and fourth represent the components of class 2.

One may argue that a compression of the state space, even if it does increase
the memory requirements, results in a reduction of the solution effort in time,
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Figure 6.3: MTBDD R for the non-lumped failure-repair model

since less computations have to be performed. However, if we consider strict
lumpability (as in the above failure-repair example), and provided that the start
vector for the iterative numerical method is chosen appropriately, lumpable states
will be involved in exactly the same arithmetic operations during the course of
the numerical computation. Assuming that by means of an efficient use of the
computed table virtually every operation has its result remembered for later re-
use, the solution effort is not substantially increased by keeping lumpable states
distinct. Thus, quite surprisingly, working with reduced state spaces can be
counterproductive, as it destroys the structure of the MTBDD without saving
solution time.

6.2.2 Modelling formalisms with parallel composition op-
erator

Stochastic process algebras possess a parallel composition operator with whose
help complex models can be built from small components. Parallel composition is
also implicitly featured by networks of stochastic automata (SAN), where the in-
dividual automata interact by synchronising over common events. Furthermore,
composition of submodels is also a growing topic of research in the area of stochas-
tic Petri nets, where subnets may be superposed by synchronised transitions or
shared places.

Models which are built with the help of a parallel composition operator are an
excellent source for structure, and therefore well-suited to be used together with
BDDs. In Chap. 5 we have shown that symbolic parallel composition causes only
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linear growth of the BDD-size. We saw that this result carries over from the
non-stochastic to the stochastic setting, a fact that had already been observed
(in different contexts) in [295, 183, 177, 102].

Since symbolic parallel composition thus alleviates the explosion of the state
space, it is wise to invest into an optimal encoding of the lowest level component
state spaces. One may optimise the component encodings either by means of the
exact algorithm2 or by means of an adaption of Rudell’s sifting algorithm [282]
or other heuristic methods for BDDs, e.g. [130, 27]. We strongly recommend to
stick to these encodings from there on, i.e. never to change the encodings which
result from the parallel composition, since from the previous section we know that
the structure gained by applying composition operators should not be sacrificed,
even though it might be tempting to shorten the bit vector encoding the states.

It is important to mention that if one composes an overall model from several
submodels, the ordering of the sets of Boolean variables which encode the states of
the individual submodels deserves special attention, since this ordering can have
a strong effect on the size of the resulting BDD. In a sense, this ordering reflects
the encoding of the states of the overall model (which states are actually tuples
of submodel states). As a general rule, it is our experience that the sets of state
variables of submodels which synchronise with each other should be placed closely
together in the overall ordering in order to obtain a compact representation.

In the context of parallel composition, where synchronisation constraints may im-
ply that considerable parts of the composed state space are actually unreachable
(cf. Sec. 5.1.5), we recommend as a general rule not to explicitly construct the
BDD corresponding to the reachable part (even though it might be tempting to
restrict the BDD to its reachable parts and even to introduce new state encod-
ings over a smaller dimension Boolean space). Our experience has shown that
it is usually much more space efficient to keep the unrestricted BDD and leave
the state encoding of the composed MTBDD unchanged, and to construct an
additional BDD that encodes a reachability predicate (which has been computed
via BDD-based reachability analysis).

At this point, a brief comparison of the BDD-based approach and the Kronecker
approach is in order. As mentioned in Sec. 3.6.1, the main strength of the Kro-
necker approach is also its memory-efficiency, which is achieved by avoiding the
explicit enumeration of all possible interleavings of actions in the participating
submodels. When composing submodels, the Kronecker approach features the
same additive growth characteristics as the BDD-based approach (as opposed to

2Since the lowest level components are usually quite small, so are their BDD representations,
and therefore NP-completeness of the minimisation problem is not a problem in practice.
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the the usually observed multiplicative growth which is due to the interleaving
of independent moves). However, with the Kronecker approach, the matrix rep-
resenting the overall model is never explicitly constructed, which has the effect
that rates need to be computed “on the fly” whenever they are needed, for in-
stance during numerical analysis. In contrast, with the BDD-based approach,
every transition between two states of the composed model is explicitly encoded
by a path leading to a non-terminal vertex, where in the case of MTBDDs the
rate is stored3. Both, the Kronecker approach and the BDD-based approach are
faced with the problem that a large portion of the product space of the com-
ponents (of the “potential state space”) may be unreachable. In the context of
the Kronecker approach, it has been shown that this problem can be dealt with
by performing Kronecker-based reachability analysis as a preprocessing step and
taking the reachability information into account during numerical analysis. In
the context of the BDD-based approach, the situation is more subtle: Under
certain conditions, the unreachable states may not hurt at all, i.e. they may not
require extra memory and may not slow down the computation. These conditions
are: All unreachable states must receive initial probability zero and the numerical
method must be such that this zero probability is preserved during the course
of the computation. In that case, since MTBDDs require only a single terminal
vertex for storing all identical (zero-)values, the actual size of the matrix and the
vector do not matter.

6.2.3 Compact encodings for networks of queues

In this section, we study a particular class of queueing networks and show the
effect which structurings of the state space can have on the size of the MTBDD
representation.

We start with a simple M/M/1 queue with finite capacity c. For simplicity, we
assume that c = 2k− 1 for some natural k, since this implies that the state space
size is a power of two. Enumerating the states in the usual way from 0 to 2k− 1,
we obtain that the rate matrix R is non-zero at R(i, i + 1) = δ, R(i + 1, i) = ξ,
for 0 ≤ i ≤ 2k − 2, where δ is the arrival rate, and ξ is the departure rate. For
k = 2 we obtain the rate matrix R as

3In consequence, with MTBDDs, the look-up of a matrix entry can be done in (worst-case)
logarithmic time in the size of the matrix, without involving arithmetic operations.
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Figure 6.4: MTBDD R of the M/M/1 example with queue capacity 3 and 7

R =









− δ − −
ξ − δ −
− ξ − δ
− − ξ −









For this queue, the MTBDD R over (sm
1 , tm1 , sm

2 , tm2 ) is shown in Fig. 6.4, together
with the MTBDD for the case k = 3, i.e. for an M/M/1 queue with capacity 7 (the
superscript m is used to distinguish the Boolean variables from other variables
that will be introduced later). The encoding of states as bit vectors is done in
the “natural” way, where 0 is encoded as a vector of all zeroes, and 2k − 1 is
encoded as a vector of all ones (both of length k). The crucial observation from
Fig. 6.4 is that doubling the state space size (and hence essentially the queue
capacity) does not double the memory requirements of the MTBDD needed to
symbolically represent the rate matrix. In contrast, the MTBDD increases only
linearly, by a constant of 7 non-terminal vertices. This is true in general, the
M/M/1 with queue capacity 2k − 1 requires 7 · k − 1 vertices to be represented
as an MTBDD. This striking feature is of course due to the perfect regularity of
the M/M/1 queue, but as far as we know, it is not present in any other method
to store Markov chains explicitly.

This observation confirms our general statement, namely that structure exploita-
tion is the key to obtaining compact BDD representations. In general, one may
say that if repetitive sub-blocks of a matrix are encoded “close” to each other,
there may be exponential savings in memory space.

Since the M/M/1 system is the simplest of all queueing systems, its efficient
encoding is not yet a convincing argument. We will now show that the same
effect, an increase of the memory requirements which is only logarithmic in the
size of the queue lengths, can be obtained for more complex queueing models
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Figure 6.5: MTBDD R of the M/Cox2/1 example with queue capacity 3 and 7

as well. To illustrate this fact, we extend the above result to the broad class of
single queues with phase-type arrival and service time distributions. Consider,
for instance, an M/Coxp/1 queue with finite capacity c = 2k − 1 and p = 2l

phases4. Assuming k = 2 and l = 1, i.e. a queue capacity of c = 3 and a Coxian
distribution with two phases, we end up with an example discussed in [314, p.
237] (see there for the special treatment of the “double” empty state). The rate
matrix for this queue is given by

R =









− A − −
B C A −
− B C A
− − B C









where A =

(

λ −
− λ

)

, B =

(

b1µ1 −
µ2 −

)

and C =

(

− a1µ1

− −

)

.

Obviously, the matrix possesses a block tridiagonal structure, and again, for larger
values of the queue capacity c, or the number of phases p the matrix is simply
extended in a regular fashion. In terms of k and l, the matrix R has size 2k+l, and
hence it is quite natural to encode the global (diagonal) structure with 2k Boolean
variables (sg

1, t
g
1, . . . , s

g
k, t

g
k), and to represent the block matrices with 2l variables

(sb
1, t

b
1, . . . , s

b
l , t

b
l ). For our example, we get the MTBDD shown in Fig. 6.5 (left).

Note how the bottom variable levels (sb
1, t

b
1) directly encode the block matrices

A, B and C. In Fig. 6.5 (right) we have also depicted the representation of
the M/Cox2/1 queue with capacity c = 7, in order to illustrate the logarithmic
growth of the MTBDD. It turns out that the MTBDD corresponding to capacity

4If the number of phases is not a power of 2, the same encoding applies, but some dummy
rows and columns in the block matrices are filled with zero entries. The MTBDD representation,
however, has the same characteristics.
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Figure 6.7: MTBDD for the simple tandem queueing network

(2k − 1) has 9 · k + 7 vertices, and a similar bound, linear in l, can be derived for
an exponential increase of the number of phases of the Coxian distribution.

The same basic principle applies to any queue with block-structured rate or gen-
erator matrix, and we will now show that it is not restricted to single queues. Let
us, for instance, combine the two previous queues in a tandem network as shown
in Fig. 6.6. In this network, customers which have completed their service in the
upstream (Coxian) queue are routed to the downstream (Markovian) queue. In
the case where the downstream queue is fully occupied, the upstream queue is
blocked. This means that the second phase of the Coxian server is blocked and
that the “bypass” of the second phase (which is taken with probability b1) is also
blocked. In other words, while blocked, the Coxian server may only be active in
its first phase with rate a1 · µ1.

We can, of course, consider this tandem queueing system as a system consisting
of two components (the two queueing stations) which are composed in parallel.
Their synchronisation is such that the departure event of the upstream station
is synchronised with the arrival event of the downstream station. From this
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consideration, it follows directly that the MTBDD encoding the rate matrix of the
tandem queueing system can be constructed from the MTBDDs encoding the rate
matrices of the two components, following MTBDD-based parallel composition
as discussed in Sec. 5.1.4. From Thm. 5.1.4 it further follows that the logarithmic
growth which we observed for both the Markovian and the Coxian queue carries
over to the tandem queueing system. This is indeed the case: The resulting
MTBDD for the case where both queues have a finite capacity of c = 7 is shown
in Fig. 6.7. The state space for this model contains 16 · 8 = 128 states, and
the MTBDD has 93 vertices. It is easy to verify that, in general, if each of the
two queueing stations has a capacity of c = 2k − 1, the state space size is 22k+1

while the MTBDD representation only requires 30 ·k+3 vertices. So the tandem
queueing system is another example where, for exponentially growing state space,
the growth of the MTBDD is linear.

In order to give an impression of the memory requirements of such an MTBDD,
assume that the size of an MTBDD vertex is 16 byte5. Using just 1 MB of
memory, MTBDDs with up to 65536 vertices could be stored. For the tandem
queueing network example, we have seen that 30 · k + 3 vertices are needed to
represent a state space of size 22k+1. For the 1 MB limit, the maximum value for
k is thus 2184, which corresponds to 24369 = 101315 states, generated by queue
lengths of capacity 10657 for each of the two queueing stations. Mind, however, as
already stressed in Sec. 4.5, that one has to keep in mind that the given sizes are
for the resulting MTBDD, and that intermediate MTBDDs may be larger than
the final ones.

There obviously exists a large class of queueing networks which have MTBDD
representations that are logarithmic in the size of the state space. These networks
consist of queues with finite capacity, phase-type service time distributions, and
blocking6. The interarrival times of customers arriving from the environment
may have phase-type distribution. The example tandem queueing network has a
particularly compact MTBDD representation, since its state space size is a power
of 2 and its rate matrix has a perfectly regular structure. But even for networks of
queues with arbitrary capacity, non-trivial routing between stations and possibly
cyclic structures, one can find very space-efficient symbolic encodings.

5The size of a vertex within the decision diagram package CUDD [307] is indeed 16 byte.
A vertex in CUDD comprises two half words (containing the variable index and the reference
counter) and three pointers (two pointing to the children and one pointing to the next vertex
in the hash-collision list).

6Here, the term “blocking” is defined in the following sense: The handover of a customer
from one station to another may only take place if the capacity of the receiving station is not
yet exhausted. Otherwise, the activity leading to the handover event is blocked, i.e. disabled.
For an in-depth study of queueing networks with blocking see, for instance, [270].



Chapter 7

Numerical analysis based on
symbolic representations

The previous chapters have dealt with the symbolic representation of transition
systems, where the emphasis of our discussion was on heuristics for achieving
compact representations. We have also already covered some symbolic analysis
techniques, such as reachability analysis and symbolic bisimulation reduction.
The present chapter covers symbolic numerical analysis, which is an important
cornerstone within a fully symbolic modelling and analysis methodology. In par-
ticular, we will describe how the numerical analysis of a CTMC can be carried
out completely on the basis of MTBDD operations1. Note that the MTBDD rep-
resentation of the CTMC (i.e. of its rate matrix R) underlying an SLTS T can
be obtained easily from the MTBDD representation of T (denoted M), by simply
abstracting from the action variables of M. In case of an ESLTS, vanishing states
must be eliminated before numerical analysis can start, which can be achieved
with the help of the technique described in Sec. 5.2.2.

7.1 Steady-state analysis based on MTBDDs

The idea of carrying out the numerical analysis of Markov chains based on a
symbolic representation, i.e. by using decision diagrams as the principal data
structure, is not new. The work of Hachtel et al. [146, 145, 147] contains an inves-

1We restrict this discussion of numerical analysis to MTBDDs, since efficient algorithms for
DNBDD-based linear algebra operations — though feasible in principle — are currently not
available.
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tigation of the benefits when representing discrete time Markov chains (DTMCs),
derived from digital circuits, by MTBDDs. It describes how steady-state proba-
bilities of DTMCs of up to 1027 states can be computed by applying iterative nu-
merical solution methods, namely the power method and a variant of the method
of Jacobi.

Direct solution methods, as opposed to iterative methods, can — in principle —
be realised on symbolic data structures. For instance, recursive formulation of
LU-decomposition is possible and can be implemented in a straight-forward way
with the help of MTBDDs [264]. However, it turns out that direct methods are
not well-suited for large Markov chains in general, and for the MTBDD framework
in particular, for the following reasons: First of all, direct methods are not suitable
for large state spaces since they cause a lot of fill-in of the coefficient matrix (which
is usually very sparse at the beginning). The storing of large, non-sparse matrices
may cause the system to run out of memory. Using MTBDDs, the fill-in would
blow up the MTBDD during the elimination process. In addition to this general
memory problem, when using BDD-based data structures the following problem
occurs: Each step of the direct method modifies the structure of the coefficient
matrix and thus the MTBDD structure, and hence causes serious overhead to
keep the representation canonical [18]. For these reasons, in the sequel we will
describe iterative methods for the analysis of large Markov chains, based on their
symbolic representation.

7.1.1 Stationary iterative methods

In this section, we discuss the MTBDD-based realisation of some iterative meth-
ods for computing steady-state probabilities of CTMCs. The algorithms use the
operations on MTBDDs which were described in Sec. 4.4.1. MTBDDs are par-
ticularly well suited for matrix operations, but not so well suited for elementwise
operations. Therefore, the central operation on which we build our symbolic
implementation is vector-matrix multiplication, and we will discuss the power,
Jacobi and Gauss-Seidel methods in the framework of a general matrix power-
ing algorithm in which the new iterate is calculated according to the scheme
~π(k+1) := ~π(k) ·M . In this general algorithm only the iteration matrix M de-
pends on the particular method. We will elaborate on the problems which such
a procedure causes for Gauss-Seidel-type iteration schemes.

The general matrix powering algorithm: We assume for the moment that
the MTBDD M(~s,~t), representing the iteration matrix M , has already been con-
structed. M(~s,~t) is an MTBDD over (s1, t1, . . . , sns, tns). The algorithm uses two
vectors ~π and ~π′, represented by MTBDDs P(~s) and P′(~t), which contain the state
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algorithm IterativeSolve (M(~s,~t), ns, diffmax)

(1) Initialise(P(~s))
(2) repeat

(3) P′(~t) := VMmult(P(~s), M(~s,~t))

(4) P′(~s) := P′(~t){~t←~s}

(5) T := Maxval(Apply(P(~s), P′(~s),−))

(6) P(~s) := P′(~s)

(7) until value(T) < diffmax

(8) return P(~s)

Figure 7.1: Symbolic matrix powering algorithm

probabilities before and after each iteration step. Note that we do not assume
that the number of states of the underlying CTMC is a power of 2. Therefore,
some assignments to the Boolean vectors ~s and ~t may correspond to non-existent
“phantom” states, a circumstance which must be kept in mind during initialisa-
tion and normalisation of the probability vectors. Another related issue is the
structure of the CTMC: If the CTMC, represented by M(~s,~t), is irreducible (i.e. if
it has only a single BSCC), then the long-run probability distribution is indepen-
dent of the initial state (or the initial probability distribution). If, on the other
hand, the CTMC contains more than one BSCCs, then the initial state matters,
as explained in Sec. 2.1.3.

The symbolic matrix powering algorithm is given in Fig. 7.1. The algorithm has
three parameters: The MTBDD M(~s,~t) representing the iteration matrix, the
length of the state encoding ns, and the maximally tolerated elementwise dif-
ference between successive iterates, diffmax. In line (1), procedure Initialise is
called in order to set P(~s) to the initial estimate. Lines (2) - (7) constitute the
main loop of the algorithm. In line (3), the multiplication of the current estimate
with the iteration matrix M is performed. The result vector of this multiplica-
tion, P′, depends on Boolean variables ~t, since the multiplication abstracts from
variables ~s which are common to P and M. The variable renaming in line (4)
makes P′ dependent on ~s instead of~t, as required for the Apply operation in line
(5) (note that the ordering of variables respects the precondition required by the
renaming operation, cf. Sec. 2.4.2). In line (5), the maximal absolute elementwise
difference between the old and the new iterate is calculated, in order to be used
in line (7) as a termination criterion2. In line (6), the old iterate is overwritten

2Mind that, in general, the fact that two successive iterates are reasonably close is no
guarantee that the correct solution has been approximated. For a discussion on termination
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by the new one. Line (7) checks whether the difference lies within the tolerated
bound diffmax, in which case the algorithm terminates, returning the probability
vector ~π, represented as the MTBDD P. Of course, other termination criteria,
such as the exceeding of a pre-specified maximum number of iterations, should
be added in practice.

In procedure Initialise, there are several possibilities of how to choose the initial
estimate:

• One possibility is to make all 2ns states (including phantom states and
unreachable states) equiprobable. In this case the MTBDD P(~s) represent-
ing the probability vector initially consists of only a single terminal vertex
whose value is 1/2ns. With this initialisation, if phantom states exist or if
the CTMC contains more than one BSCC, restriction of the solution vector
to the set of relevant states and normalisation have to be performed after
convergence has been reached. A minor advantage of this initialisation pol-
icy is that the steady state solutions within all BSCCs of the Markov chain
are actually computed simultaneously.

• (a) One may make all reachable states equiprobable and assign probability
zero to the unreachable and phantom states, or (b) if a unique initial state
is known it can be assigned initial probability one (and all other states, be
they phantom or not, reachable or unreachable, receive initial probability
zero). These two initialisations avoid unnecessary calculations related to the
unreachable states and have the advantage that during iteration, phantom
states or unreachable states always keep their initial probability zero.

• If an estimate to the solution is already known, for instance from a previous
solution of a related problem, this can serve as the initial probability vector.
Such a choice, if available, may drastically reduce the number of iterations
until convergence.

Depending on the particular choice of the iteration matrix M , depending on the
initial probability vector, and depending on the existence of phantom or unreach-
able states, there may be a need to normalise the result vector returned by the
above matrix powering algorithm, such that the sum of the entries corresponding
to relevant states is equal to one. Normalisation can easily be carried out with
the help of MTBDD operations as follows: First, all entries of the result vector
which correspond to unreachable states are set to zero by a single multiplication

P(~s) := Apply(P(~s), Reach(~s), ·)

criteria for iterative methods see [314, p. 156].
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Then the sum of the relevant entries is calculated as

Sum := Abstract(P(~s),~s, +)

and finally, the vector is scaled as follows:

P(~s) := Smult(P(~s), 1/Sum)

It remains to describe how the MTBDD-representation of the iteration matrix M
is constructed for the different iteration schemes. We assume that the transition
relation of an SLTS is stored as an MTBDD M(~a,~s,~t). As a first step, it is
necessary to abstract from the action names in order to obtain the rate matrix
R of the underlying CTMC. This can be achieved by the assignment R(~s,~t) :=
Abstract(M(~a,~s,~t),~a, +).

Power method: The iteration matrix for the power method is given by Mpower =
Q ·∆t+ I. As a first step towards building the symbolic iteration matrix Mpower,
the symbolic infinitesimal generator matrix Q must be derived from the rate
matrix R. We first compute the MTBDD D containing the row sums of R (which
will be the negative diagonal elements of Q) as

D(~s) := Abstract(R(~s,~t),~t, +)

From MTBDDs R(~s,~t) and D(~s) one can then construct the MTBDD Q, using
the operator Diag in order to turn a vector into a matrix (see Sec. 4.4.1):

Q(~s,~t) := Apply
(

R(~s,~t),Diag(D(~s),~t),−
)

Next, a suitable value for ∆t must be chosen. It can be obtained, for instance,
by taking ∆t = Maxval(D(~s))−1 · 0.99. Let T be the MTBDD consisting of only
a single terminal vertex labelled with ∆t. The actual scaling of the generator
matrix, i.e. calculating the product Q · ∆t amounts to a simple scalar multipli-
cation. Afterwards, as the last step, the identity matrix is added. Summarising
these steps, the MTBDD Mpower representing the iteration matrix is obtained by

Mpower(~s,~t) := Apply(Smult(Q(~s,~t), T), Id(~s,~t), +)

where Id(~s,~t) is a 0-1-MTBDD representing the identity matrix of size 2ns.

For the CTMC example from Fig. 4.10, the MTBDD Q is shown on the left
of Fig. 7.2. In this example, the biggest row sum of matrix R is fD(0, 1) = 6.
Therefore, for simplicity, we choose ∆t = 1/7. The resulting symbolic iteration
matrix Mpower is shown in Fig. 7.2 on the right3.

3A reduction of the number of terminal vertices when moving from Q to Mpower, as observed
in this example, is not typical.
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Figure 7.2: MTBDD representation of matrices Q and Mpower for the CTMC of
Fig. 4.10

Jacobi method: Using D to refer to the diagonal matrix of the row sums of R,
the iteration matrix for the Jacobi methods is MJacobi = R ·D−1. Let MTBDD R

represent the rate matrix R, and let D be the MTBDD encoding the row sums of R
(as above). The inversion of D can be achieved by performing operation InvDiag

(which realises elementwise inversion) on MTBDD Diag(D(~s),~t) 4. Overall, the
symbolic representation of the iteration matrix MJacobi, is calculated as follows:

MJacobi(~s,~t) := Mmult(R(~s,~t), InvDiag(Diag(D(~s),~t)))

Note that for (time) efficiency reasons, an MTBDD-based algorithm for matrix
multiplication can be devised for the special case where the right argument is a
diagonal matrix. This multiplication simply amounts to column-wise scaling of
the matrix R.5

Gauss-Seidel and Successive Over-relaxation: The iteration scheme of
Gauss-Seidel is similar to the method of Jacobi, but for computing the new iterate
π

(k+1)
si the already updated values for π

(k+1)
sj , j < i are used. The specific strength

of the symbolic computation is the simultaneous computation of common parts
of a matrix-vector product. Therefore, at first sight, the strategy of Gauss-Seidel
does not seem to be well-suited for symbolic implementation. But in principle it
is of course possible to perform Gauss-Seidel by straight-forward matrix multipli-
cation. One can explicitly calculate the iteration matrix L · (D − U)−1 where L
and U are the negative lower (upper) triangular portions of R and D is now the
negative diagonal matrix of the row sums of R. A recursive MTBDD-based algo-
rithm Invtri for inverting triangular matrices has been sketched in Sec. 4.4.1. In

4Of course, the terminal vertices of MTBDD D could also be inverted before D is turned
into a diagonal matrix.

5A matrix column of R is addressed with the help of restriction R

∣

∣

∣

t1=b1∧...∧tns=bns

of the

t-labelled vertices, where the vector (b1, . . . , bns
) encodes the column index.
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general, the inversion of the triangular matrix causes a lot of fill-in, and therefore
this approach is counterproductive in the setting of sparse matrices. However,
in the MTBDD setting, the fill-in can be tolerated as long as many of the newly
computed entries of (D − U)−1 are identical, because this induces a sharing of
subgraphs in the resulting MTBDD. For specific cases, such as a simple M/M/1
queue with finite capacity c, this is the case indeed: Its matrix D − U possesses
2 ·c+1 non-zeroes. The inverse has (c+1) ·(c+2)/2 non-zeroes (fill-in). However,
the number of distinct non-zeroes is only 2 · c. Therefore, in specific cases, the
straight-forward vector-matrix realisation of Gauss-Seidel might turn out to be
rather efficient in a symbolic setting.

Having said this, the symbolic iteration matrix for the Gauss-Seidel scheme can
be calculated as follows:

MGauss−Seidel(~s,~t) := Mmult(L(~s,~t), Invtri(Apply(Diag(D(~s),~t), U(~s,~t),−)))

where D is obtained as

D(~s) := Smult(Abstract(R(~s,~t),~t, +),−1)

and L and U are obtained from R by setting all elements on or above (below)
the diagonal to zero. In the tool Im-Cat, this latter step is realised by a special
procedure which works its way recursively through the MTBDD.

A symbolic version of the successive over-relaxation method (SOR) raises es-
sentially the same issues as with Gauss-Seidel: Performing SOR by a simple
matrix-vector multiplication scheme (which is not what is usually done) involves
the inversion of a triangular matrix which incurs the above mentioned fill-in.

7.1.2 Projection methods

In this section, we discuss the Bi-CGSTAB (Bi-Conjugate Gradient Stabilised)
method as an example projection method. Bi-CGSTAB [104] is an algorithm
from the class of Krylov subspace methods for the solution of non-symmetric
linear systems of equations (which is the type of system to which our problem
~π ·Q = 0 belongs). Bi-CGSTAB features attractive convergence speed and stable
convergence behaviour. It is a suitable candidate for MTBDD-based realisation
because it uses vector-matrix multiplication as its central operation6.

6GMRES, for instance is not suitable for MTBDD-based implementation, because it uses
too many scalar (column-wise) accesses.
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algorithm Bi-cgstab (~π, Q)

Initialisation

(1) ~r := ~r0 := −~π ·Q
(2) ρ := α := ω := 1
(3) ~v := ~p := 0

Iteration

(4) repeat
(5) ρold := ρ

(6) ρ := ~r0
T · ~r

(7) β := ρ
ρold
· α

ω

(8) ~p := ~r + β · (~p− ω · ~v)
(9) ~v := ~p ·Q
(10) α := ρ/(~r0

T · ~v)
(11) ~s := ~r − α · ~v
(12) ~t := ~s ·Q
(13) ω := ~t T · ~s/(~t T · ~t )
(14) ~π := ~π + α · ~p + ω · ~s
(15) ~r := ~s− ω · ~t
(16) until convergence of ~π (or breakdown)
(17) return ~π

Figure 7.3: The Bi-CGSTAB algorithm for solving the system ~π ·Q = 0

Fig. 7.3 shows the basic Bi-CGSTAB algorithm (adapted to the problem of solving
the system ~π · Q = 0). The algorithm has two arguments: An initial approxi-
mation to the solution (~π) and the generator matrix (Q). Note that for practi-
cal implementation the algorithm in Fig. 7.3 must be augmented by additional
details (such as normalisation of the vector ~π and restarting of the algorithm
after a certain number of iterations, a proper convergence check and checking
for breakdown). During one iteration, Bi-CGSTAB performs two vector-matrix
multiplications with the generator matrix Q (lines (9) and (12) of the algorithm)
and four inner products of vectors of the size of the state space (lines (6), (10)
and twice in (13)). The storage requirements are quite substantial: Bi-CGSTAB
needs to store seven vectors (namely ~π, ~r, ~r0, ~p, ~v, ~s and ~t).

The tool Im-Cat contains a prototypical MTBDD-based realisation of the Bi-
CGSTAB algorithm, which is an adaptation from a sparse matrix implementation
by Buchholz [58]. The vector-matrix multiplications (and actually also the inner
products) are implemented by a general MTBDD-based matrix multiplication
algorithm.
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In our experiments, this implementation of Bi-CGSTAB was not notably faster
than for example the method of Jacobi. It is expected, though, that Krylov
subspace methods such as Bi-CGSTAB outperform stationary methods if used
with appropriate preconditioners. The question whether preconditioning (which
improves the spectral properties of the coefficient matrix) can be beneficially
employed in a symbolic scenario has not been studied yet. Explicit calculation
of the product of the generator matrix Q and a preconditioning matrix M is
problematic, though, since the non-zero structure of M ·Q (or Q ·M) is different
from the non-zero structure of Q (sparsity is lost) and therefore the compactness
of the MTBDD representation is likely to be destroyed.

7.2 Transient analysis based on MTBDDs

In Sec. 2.1.2, we briefly described the uniformisation method for determining
the probability distribution of a CTMC at a fixed time instant t. The vector of
time-dependent state probabilities, denoted by ~π(t), can be calculated as follows:

~π(t) = ~π(0) ·
R
∑

k=L

P k ·
(q · t)k

k!
· e−q·t

(where, as described in Sec. 2.1.2, an infinite sum has been replaced by a finite
sum, dropping those terms which are sufficiently small).

Fig. 7.4 shows an algorithm which is based on the above formula. The algorithm
has the following parameters: The initial probability distribution ~π(0), the time
instant t, the stochastic matrix P , and the left (L) and right (R) truncation points

for the summation. Within the algorithm, the vector ~h is used for storing the
products ~π(0) ·P k (for k = 0, 1, 2, . . .), and the precomputation part is needed to
calculate ~π(0) ·P L−1. Note that the stochastic matrix P = Q ·∆t + I is identical
to the iteration matrix Mpower for the power method (the same uniformisation
constant q = 1/∆t can be used), so its MTBDD representation can be constructed
as described in Sec. 7.1.1. Note further that the algorithm in Fig. 7.4 assumes

that L and R, as well as the Poisson probabilities, denoted by ProbP (k) = (q·t)k

k!
·

e−q·t (which are needed in line (8)), have already been calculated. These are
all scalar calculations which do not involve any MTBDDs, therefore we do not
give further details here. We emphasise that the algorithm shown in Fig. 7.4
is rather rudimentary. In practical implementations, additional details such as
steady-state detection7, need to be added.

7Steady state is reached if ~h remains (approximately) the same in line (4) or line (7) of the
algorithm.
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algorithm Uniformisation (~π(0), t, P, L, R)

Initialisation

(1) ~π(t) := 0

(2) ~h := ~π(0)
Precomputation

(3) for k = 1, . . . , L− 1

(4) ~h := ~h · P
Iteration

(5) for k = L, . . . , R
(6) if k > 0

(7) ~h := ~h · P

(8) ~π(t) := ~π(t) + ~h · ProbP (k)
(9) return ~π(t)

Figure 7.4: The uniformisation algorithm for calculating the time-dependent
probability distribution ~π(t)

From this description of the uniformisation method, one may observe that the
only operations necessary are vector-matrix multiplication, multiplication of a
vector with a scalar, and the summation of vectors. These operations are realised
on MTBDDs with the help of VMmult, Smult and Apply, as introduced in
Sec. 4.4.1. Thus, the uniformisation method can be implemented without diffi-
culty by using MTBDDs as its underlying data structure. One such implemen-
tation is described in [209].

7.3 Discussion of symbolic numerical analysis

In this chapter, we have pointed out that well-known methods for the numeri-
cal analysis of Markov chains can readily be implemented on the MTBDD data
structure. We mention at this point, that apart from the calculation of steady-
state or transient state probabilities of CTMCs, some optimisation problems can
also be solved on the basis of MTBDDs (for instance in the context of concurrent
probabilistic systems, where the problem is to find minimal or maximal prob-
abilities associated with sets of paths, assuming that the system’s behaviour is
governed by a scheduler of a certain type [230]). In Chap. 5 we have already
shown that the MTBDD representations of the rate matrix of a CTMC can be
extremely memory-efficient, provided that it is constructed in a compositional
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fashion. This memory-efficiency carries over to the generator matrix and (for
some stationary iteration schemes) also to the iteration matrix, see the examples
considered in Chap. 8 and Chap. 10.

In the previous sections, we always assumed that the vectors used within the
numerical methods (probability vectors, residual vector, . . . ) are also represented
by MTBDDs. It is clear that the MTBDD representation of a probability vector,
for instance, may in the worst case become a full binary tree, namely in the case
where all its 2ns entries are distinct, i.e. when no sharing of leaves or subgraphs is
possible. For large ns, the memory requirements for the vectors may thus become
prohibitive.

The most serious problem of MTBDD-based numerical analysis is its CPU time
consumption. It has been observed that MTBDD-based matrix multiplication
and vector-matrix multiplication are about two orders of magnitude slower than
sophisticated sparse-matrix implementations [18, 128, 102]. Basically, this has
to do with the nature of the symbolic algorithms, which involve a possibly huge
number of recursive calls. In principle, the number of recursive calls can be kept
at a minimum with the help of the computed table, but this is only beneficial
if the same computation (up to a scaling factor) is repeated several times and if
the cache size is sufficiently large, which is not the case, for instance, if one of
the operands is a large vector whose entries are all distinct. Therefore, even if a
large matrix can be represented in a very compact way, its multiplication with a
vector may require a lot of time. The fact that the involved MTBDDs are kept
in canonical form at every step of the computation is another reason for the slow
speed, since the maintenance of the unique table is costly [250].

From the above discussion, it is obvious that more research is needed in order to
speed up (MT)BDD algorithms. Some approaches towards this aim are sketched
in Chap. 8.
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Chapter 8

Speeding up BDDs

We have shown that symbolic representations of stochastic labelled transition
systems can be extremely space-efficient, in particular if the structure of the
underlying system is taken into account during construction of the decision di-
agram. But unfortunately some of the algorithms for analysis, especially those
for numerical analysis, may be slow. In this chapter, we present the results of
some performance analysis studies, and discuss possible strategies for speeding
up BDD-based algorithms.

8.1 Performance analysis of BDD algorithms

8.1.1 Measurement of iteration times

We start this section with some illustrative examples, studying the effect which
structuredness of stochastic models (more precisely: SLTSs) and their MTBDD
representations has on the time needed for numerical analysis. We compare the
following three medium size models of approximately the same size:

• The model of a multiprocessor mainframe, taken from the literature [190,
166, 97, 170], and to be discussed in more detail in Sec. 10.3. This model
is scalable (by adjusting the size of the multiprocessor’s job queues), but
here we only consider a fixed model size of 2,640 states, which has 12,295
transitions. On purpose, we did not consider the inherent structure of

157
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the model1, but simply encoded the monolithic transition system (which
resulted from breadth-first search state space generation2 and is very ir-
regular) as an MTBDD. Note further that this model does not have any
symmetrical states.

• The failure-repair model introduced in Sec. 6.2.1 with different numbers of
components: 5 components of each type result in 1,024 states, 6 components
of the first and 5 components of the second type result in 2,048, and 6
components of each type result in 4,096 states (note that a model with n
components has n · |S| transitions, where |S| is the size of the state space).
We chose the non-lumped versions of these models, since this had shown
to yield the most compact MTBDD representations. The models were
generated in a compositional fashion by applying MTBDD-based parallel
composition of the n components. As a result, the models are very regular
and possess symmetric (lumpable) states.

• The M/M/1 - K queue introduced in Sec. 6.2.3 with state space size ranging
from 1,024 to 4,096 (note that an M/M/1 - K queue with n states has 2n−2
transitions). These models are also very regular and have very compact
MTBDD representations, but they do not possess symmetric (lumpable)
states.

Neither of these three models has unreachable states. However, we still performed
reachability analysis, which in all cases took only a fraction of a second3.

Tab. 8.1 shows some experimental results for these three models which were
obtained with our tool Im-Cat [128, 129]. The table shows the number of states
and transitions, the number of MTBDD vertices for the rate and the iteration
matrix, as well as the time needed to construct the iteration matrix from the
rate matrix (the power iteration scheme was used). The last two columns give
the number of iterations until convergence and the mean computation time per
iteration step4.

We first have a closer look at the construction times for the iteration matrix: For
the two scalable models, the construction time is proportional to the model size,
which is as expected. For the mainframe model, although its MTBDD represen-
tation is about two orders of magnitude larger than those of the other models,

1The mainframe model was originally specified as a Stochastic Process Algebra model whose
structure could of course be exploited during MTBDD construction, see Sec. 10.3.

2State space generation was carried out by TIPPtool [165].
3Note that the M/M/1 - K example constitutes the worst case for the reachability algorithm

(cf. Sec. 5.1.5), since only a single new state is found at each step.
4All measured times in this thesis were recorded on a SUN 5/10 workstation, equipped with

1GB of main memory and running at 300 MHz.
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model states transitions rate matrix iteration matrix iterations mean time
vertices vertices constr. time per iter.

[sec] [sec]

mainframe 2,640 12,295 12,896 16,241 1.63 11,050 0.344

failure- 1,024 10,240 98 406 0.37 90 0.045

repair 2,048 22,528 107 476 0.84 100 0.095

4,096 49,152 119 590 1.73 100 0.166

M/M/1 - K 1,024 2,046 69 107 0.33 6,010 0.034

queue 2,048 4,094 76 118 0.74 11,350 0.066

4,096 8,190 83 129 1.75 21,820 0.128

Table 8.1: Comparing performance characteristics for different models (results
obtained with the tool Im-Cat)

the construction time is very moderate. From this one can conclude that the op-
erations involved in building the power iteration matrix (1 Abstract operation,
1 Diag operation, 2 Apply operations, 1 Smult operation and 1 generation
of the identity matrix Id) do not constitute a major performance bottleneck of
MTBDDs.

When we look at the last column, the picture is different. The mean time per
iteration for the mainframe model is decisively longer than for the other two
models. Even compared to the largest of the three failure-repair models (which
has 55% more states and whose power iteration matrix has 49142+4096

12295+2640
= 3.56 times

as many non-zeroes), the mainframe model needs more than twice the time per
iteration. Since vector-matrix multiplication is the major operation during one
iteration step, we may conclude that this is the critical operation and that the
MTBDD sizes of the vector and matrix have a strong influence on the speed of
that operation.

Note that Tab. 8.1 only gives the mean time per iteration. It is important to
mention at this point that the time per iteration is not constant, but may vary
considerably from iteration to iteration. This is quite obvious, since the MTBDD
size of the probability vector may change considerably during iteration5 and since
the number of successful lookups of the computed table may vary. While we did

5For instance, in the M/M/1 - K case, suppose that all entries of the probability vector
are initialised with the same value 1/|S|, so the MTBDD representation is initially a single
vertex. Since in the general case all steady-state probabilities are different, the final MTBDD
representation of the probability vector is a full binary tree. However, in practise many of the
probabilities are extremely small, such that they fall below the smallest representable number
and become zero.
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indeed observe large variations in the time per iteration, we did not pursue this
phenomenon further, since it depends strongly on the particular case at hand and
is hard to generalise.

8.1.2 Profiling MTBDD and BDD applications

In this section we present some results which were obtained from the profiling6 of
two applications which are both based on the decision diagram package CUDD
[307].

The first application is the MTBDD-based tool Im-Cat whose behaviour was
already studied in the previous section. We consider the same three example
models as in the previous section, i.e. the mainframe model, the failure repair
model and the M/M/1 queueing model. Both, for the failure-repair model and
the M/M/1 model, the profile was obtained for the 2048 state instance.

The profiling results for these models are shown in Tables 8.2, 8.3 and 8.4. In
each table, the twelve most time-consuming functions are listed. For each func-
tion, the relative and absolute CPU time, as well as the number of calls, are
listed. The last column is introduced in order to categorise functions as follows:
“apply” means that the function directly realises part of an Apply operation,
“unique” means that the function performs unique table manipulation, “cache”
means that the function is associated with the computed table, and “GC” means
that the function is part of garbage collection. The functions “internal mcount”
and “ mcount” are responsible for collecting the measurement data. Therefore,
the first column contains corrected time percentages, which are obtained by nor-
malising the figures in the second column with respect to the “non-profiling”
times.

In all profilings of Im-Cat reported here, the measured execution comprised
model generation and subsequent steady-state analysis with the power method.
The profiling results for the mainframe model and for the M/M/1 queueing model
(shown in Tables 8.2 and 8.4) turn out to be very similar. In these two profiles,
the most time-consuming function is “addMMRecur” which is responsible for the
vector-matrix multiplication. It requires 30.95% resp. 27.39% of the total time.
In addition to this fact, one has to take into account that almost all calls to the
functions “cuddAddApplyRecur” and “Cudd addPlus”, which take 4.17%+3.51%
resp. 3.51%+2.48%, are invoked directly or indirectly by “addMMRecur”. The
function second from the top is “cuddUniqueInter” with 16.27% resp. 18.52%,

6We used the standard Unix utility “gprof” to obtain the profiling information.
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corr. time time time (self) no. of name type

[%] [%] [sec] calls

30.95 24.93 1187.21 12156 addMMRecur apply
– 18.47 879.40 internal mcount

16.27 13.11 624.39 398705479 cuddUniqueInter unique
14.14 11.39 542.35 1394 cuddGarbageCollect GC
10.85 8.74 416.30 805418550 cuddCacheLookup2 cache
7.32 5.90 280.80 206994095 cuddUniqueConst unique
5.99 4.83 229.99 639916819 Cudd RecursiveDeref
4.50 3.63 172.62 805186491 cuddCacheInsert2 cache
4.17 3.36 160.01 318977473 cuddAddApplyRecur apply
3.51 2.83 134.83 685066712 Cudd addPlus apply
1.85 1.49 71.12 171989955 cuddAllocNode
– 0.97 46.03 mcount

0.17 0.14 6.67 sum of other functions

Table 8.2: Profiling results (Im-Cat, mainframe example)

corr. time time time (self) no. of name type

[%] [%] [sec] calls

– 24.69 7.01 internal mcount
13.58 10.04 2.85 56 cuddGarbageCollect GC
12.10 8.95 2.54 2792127 cuddUniqueInter unique
10.43 7.71 2.19 111 addMMRecur apply
8.67 6.41 1.82 3594582 cuddCacheLookup2 cache
8.33 6.16 1.75 4766361 Cudd RecursiveDeref
6.19 4.58 1.30 1087581 cuddAddApplyRecur apply
4.76 3.52 1.00 1894256 cuddReclaim
4.00 2.96 0.84 3547670 Cudd addPlus apply
2.85 2.11 0.60 1146771 cuddUniqueConst unique
2.34 1.73 0.49 2633769 cuddCacheInsert2 cache
– 1.37 0.39 mcount

26.76 19.79 5.62 sum of other functions

Table 8.3: Profiling results (Im-Cat, 2048 state failure-repair model)

corr. time time time (self) no. of name type

[%] [%] [sec] calls

27.39 22.91 229.81 12486 addMMRecur apply
– 15.55 156.01 internal mcount

18.52 15.49 155.39 82013579 cuddUniqueInter unique
14.33 11.98 120.21 600 cuddGarbageCollect GC
11.09 9.28 93.07 71182957 cuddUniqueConst unique
8.35 6.98 69.97 131289527 cuddCacheLookup2 cache
6.39 5.34 53.61 97947456 Cudd RecursiveDeref
3.70 3.10 31.10 130716410 cuddCacheInsert2 cache
3.51 2.94 29.45 48366670 cuddAddApplyRecur apply
2.79 2.34 23.50 59086329 cuddAllocNode
2.48 2.08 20.90 114859297 Cudd addPlus apply
– 0.82 8.27 mcount

1.42 1.19 11.94 sum of other functions

Table 8.4: Profiling results (Im-Cat, M/M/1 - 2048 example)
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corr. time time time (self) no. of name type

[%] [%] [sec] calls

15.34 15.22 50.43 – cuddUniqueInter unique
10.16 10.08 33.38 – cuddCacheLookup cache
10.00 9.93 32.90 – cuddBddAndAbstractRecur apply
6.74 6.69 22.16 – ddClearFlag
5.27 5.23 17.33 – cuddCacheLookup1 cache
4.69 4.66 15.45 – cuddBddVarMapRecur
4.59 4.55 15.07 – ddCountMintermAux
4.41 4.38 14.50 – Cudd RecursiveDeref
3.39 3.37 11.18 – ddDagInt
3.37 3.34 11.08 – ddLeavesInt
3.33 3.30 10.92 – cuddBddAndRecur unique
2.96 2.94 9.73 – cuddCheckCollisionOrdering
. . .
– 0.78 2.59 – internal mcount

25.73 25.53 84.59 sum of other functions

Table 8.5: Profiling results (Nanotrav, “rcn25” circuit)

the function responsible for the lookup and manipulation of the unique table.
Garbage collection takes 14.14% resp. 14.33%, and the cache lookup and insert
functions also require substantial time (10.85% + 4.50% resp. 8.35% + 3.70%).
In Tab. 8.3, the picture is somewhat different, i.e. “addMMRecur” is on position
three with only 10.43%, but the set of the twelve topmost functions is almost
identical with the ones in Tables 8.2 and 8.4. The reason for this difference lies
mainly in the small number of iterations performed for the failure-repair model,
cf. Tab. 8.1.

The second application which we profiled is Nanotrav, a simple traversal (i.e.
reachability analysis) program for finite state machines that comes as part of the
CUDD distribution and works with BDDs. The profile obtained from the analysis
of the sequential circuit “rcn25” is shown in Tab. 8.5. Since Nanotrav is totally
different from Im-Cat, so are their profiles, and therefore it is hard to make a
comparison. Apart from the results shown in Tab. 8.5, we profiled several other
runs of Nanotrav. The results varied quite a bit, depending strongly on the type
of circuit to be analysed by the program and on the variable reordering options.
However, an observation common to all these measurements is that the apply-
type functions require a much smaller portion of the overall time (only 10.0%
in Tab. 8.5) than for the MTBDD application. The second observation is that
garbage collection plays only a minor role in Nanotrav. With Nanotrav, there
was never such a strong weight on one particular function, as we had observed
for the function “addMMRecur” in the above Im-Cat profiles.
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From these profilings, as well as from several other ones which we carried out,
it is clear that the numerical calculation dominates the execution time of the
Im-Cat application, which is our main focus of interest. Keeping in mind that
compositional model construction and other operations, such as abstraction from
action names or reachability analysis, are extremely fast, one can conclude that
numerical analysis, in particular the vector-matrix multiplication, is the main
performance bottleneck of MTBDD applications such as Im-Cat. Therefore, in
future, more time and effort will have to be spent in order to overcome, or at
least alleviate, this bottleneck.

8.2 Optimised representations, algorithms and

implementations

The results from Sec. 8.1 show that (as expected) the speed of BDD operations,
and in particular of MTBDD-based vector-matrix multiplication, is highly depen-
dent on the size of the operands. Therefore it is extremely important to keep the
decision diagrams as small as possible. In most cases, applying the heuristics de-
scribed in Chap. 6 results in compact representations. Of course, it would be pos-
sible to apply further techniques, such as the dynamic reordering of Boolean vari-
ables during the construction of the decision diagram, or even during its analysis.
These techniques have been widely studied for BDDs [130, 200, 282, 35, 34, 191],
but it is still an open question whether they could also be applied beneficially, i.e.
with reasonable cost-gain ratio, to problems which involve numerical calculations
on MTBDDs. Furthermore, it would also be interesting to investigate whether
other classes of decision diagrams, such as the class of K∗BMDs [111, 109, 110]
or modifications thereof, could be useful for problems involving real-valued func-
tions. These are open problems for future research.

Apart from minimising the size of the decision diagrams, one may work on improv-
ing the implementation of the time-critical algorithms. Sometimes, improvements
can be achieved by carefully adjusting some of the implementation’s parameters.
For instance, [128] experimented with the size of the cache (i.e. the computed
table) used during iterative numerical analysis. Quite against the intuition, it
turned out that, for certain combinations of problem size and iterative method,
a decrease of the cache size actually led to an acceleration of the computation.
However, the outcome of these experiments depended very much on the particular
problem at hand, and no general optimisation strategy could be found.

As described in Sec. 4.4.1, various MTBDD-based algorithms have been devel-
oped for matrix multiplication (and thus vector-matrix multiplication, which is
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our focus since it is the most time-critical part of our application), but it is
questionable whether these algorithms can be improved upon very much without
changing their basic strategy. Such a change of paradigm has been proposed by
Parker [268] and will be described in his forthcoming Ph.D. thesis [269]. The
basic idea is as follows: For the iterative solution of a linear system of equations,
the iteration matrix is represented by an MTBDD (which is somewhat modi-
fied7), but the solution vector is represented by a linear data structure, which
can lead to a dramatic reduction of the memory requirements for the vector (es-
pecially in problem instances with many unreachable states). Parker developed a
new, specialised vector-matrix multiplication algorithm for this so-called hybrid
approach, and experiments yielded considerable speedups compared to the fully
MTBDD-based algorithms.

When one considers the recursive nature of the BDD algorithms, and in particular
that of vector-matrix multiplication, another idea comes to the mind. It should
be possible to speed up the algorithms through parallel processing, i.e. executing
several recursive calls at the same time on different processors. This idea is
certainly worth an investigation, but it is clear that the use of common data
structures, such as the unique table and possibly the computed table, make the
parallelisation of apply-type algorithms non-trivial. Parallelisation is also an
attractive idea in combination with specialised, dedicated hardware, which is the
topic of the next section.

8.3 Specialised hardware

The high CPU-time consumption of some BDD and MTBDD algorithms is an
impeding factor for the success of symbolic methods, especially during the nu-
merical analysis of stochastic transition systems. The use of dedicated hardware
offers a substantial potential for speeding up BDD-based applications. Therefore,
in this section, we report on a project in which we designed a prototype of a BDD
coprocessor [250].

8.3.1 Design of a BDD coprocessor

The aim of this project was to design a coprocessor that performs certain time-
intensive functions for BDD manipulation, similar to the way an arithmetic co-
processor performs arithmetic operations.

7In this approach, the MTBDD vertices are augmented by integer offsets from which the
actual indices of matrix elements in terms of reachable states only can be computed [229].
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Since a hardware implementation of a comprehensive set of BDD and MTBDD
operations is quite a formidable task, it was decided at the outset to realise
only some functions in hardware and leave the remaining parts in software. We
decided to follow the design of the MTBDD package CUDD [307], in particular
to adopt its data structures, such that the newly developed hardware can easily
interact with existing CUDD applications (such as Im-Cat [128, 129] or Prism

[102, 231]).

Based on profiling results, such as the one shown in Tab. 8.2, a subset of the
CUDD functions was chosen for hardware implementation. The function “add-
MMRecur”, as well as other apply-type functions such as “cuddAddApplyRecur”,
are very complex, such that we did not find them suitable for immediate hardware
realisation. In addition, these functions make extensive use of the cache-type and
unique-type functions. If one wanted to realise one of the apply-type functions
in hardware, one would have to realise the cache-type and unique-type functions
as well, since otherwise the hardware would have to initiate calls to the software,
which does not make sense. Since the functions responsible for garbage collection
are also quite complex, we chose the unique-type function “cuddUniqueInter”
and the two cache-type functions “cuddCacheInsert2” and “cuddCacheLookup2”
for hardware realisation. This choice has the advantage that the hardware can
be extended by one or several apply-type functions at a later stage, since all
functions that are called by “apply” would then already be available in hardware.
It is obvious, that the overall performance gain that can be achieved by this choice
is rather modest, since the cumulated time percentage of the chosen functions is
quite small, e.g. only 31.62% for the profile shown in Tab. 8.2.

One problem that had to be overcome is the fact that the chosen functions contain
calls to other, lower-level functions8, some of which use services of the operating
system (e.g. memory allocation). The functions chosen for hardware implemen-
tation had to be modified in such a way that calls to other functions take place
either before or after — but never during — the hardware operation. While the
two cache-type functions required only little modification, the function “cudd-
UniqueInter” needed to be changed considerably: Garbage collection and the
resizing of a hash-table are delayed until after a new vertex has been inserted,
which requires a temporary reference to the new vertex. Another critical situa-
tion occurs if a new vertex has to be inserted, but the list of free vertices is empty.
In this case, the hardware terminates, signalling to the software that the list of
free vertices should be refilled (either by garbage collection or by allocation of
additional memory). When this has been done, the hardware is restarted.

8These are mostly functions for memory management, such as “reclaim”, “cacheResize”,
“rehash” and “garbageCollect”.



166 8. Speeding up BDDs

A

D

32

4

Memory

RW

BGT

BRQ

BGT

RW

CPU CoprocessorBus Arbiter

DIR EN
D

A D RW

32

INTACK INT# INTRQ

BRQ

INTACKINT#INTRQ
A

Figure 8.1: Overall configuration, consisting of CPU, coprocessor, bus arbiter
and memory

The hashing function employed by CUDD, which is needed both in “cuddUnique-
Inter” and in the two cache-type functions (albeit with different number of
operands), was analysed in detail. It turned out that it can be realised very
efficiently in hardware, based on the operations multiplication, masking (selec-
tion of the most significant bits) and shifting.

The overall configuration, including the CPU, the BDD coprocessor, as well as a
bus arbiter and the main memory, is shown in Fig. 8.1. A bus arbitration unit
is needed, since both the CPU and the coprocessor need access to the memory,
where the following access modes are possible:

1. The CPU is the bus master, while the memory and the ports9 of the copro-
cessors are the slaves.

2. The coprocessor is the bus master, while the memory is the slave.

For CPUs which are capable of isolating themselves from the bus by tristating
their bus lines, controlled by bus request (BRQ) and bus grant (BGT) signals,

9We use the term “port” to denote storage elements within the coprocessor to which both
the CPU and the coprocessor have access.
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Figure 8.2: Block diagram of the coprocessor

the bus arbitration unit may be omitted. In this case, the BRQ and BGT pins
of the CPU and the coprocessor can be directly connected, as indicated by the
dashed lines in Fig. 8.1.

The execution of a coprocessor command proceeds as follows: Initially, the CPU
is the bus master and therefore allowed to read and write data from/to memory
and from/to the coprocessor ports. Thus, operands can be written by the CPU to
the ports of the coprocessor. After the CPU has written the code of the command
to be performed by the coprocessor to the coprocessor’s command port, it puts
itself to sleep, waiting in a loop until the coprocessor is finished. The control unit
of the coprocessor listens to the address bus, such that it can recognise when a
command code is written to the command port. When a new command has been
issued, the coprocessor acquires the bus by pulling BRQ to high and waiting for
a high on BGT. Now the coprocessor can do its work and as bus master is able
to read and write to memory. When finished with its work, the coprocessor pulls
BRQ to low, thereby releasing the bus. Now the coprocessor sends an interrupt to
the CPU, which reads the interrupt number and sends back an acknowledgement.
The wires INTRQ, INT# and INTACK are used for this purpose. Afterwards the
CPU, being again the bus master, may read data necessary for further processing
from the ports of the coprocessor.

The block diagram of the coprocessor is shown in Fig. 8.2. Of its ports, only
the command port and the intNR port are shown explicitly. The control unit
realises the high-level interaction with the CPU. Its state machine, shown in
Fig. 8.3, works as follows: After a reset, the coprocessor is in state “idle”. When
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INTACK ?

BRQ := 1

commandEN ?

BGT ?

ready ?

sendINTRQ

running

startUnit

requestbus

idle

reset

1

1

1

1

0

0

0

0

start :=1

INTRQ := 1

intNr := INT#
BRQ := 0

Figure 8.3: State machine of the coprocessor’s control unit

a command has been written by the CPU to the command port, the control moves
to state “requestbus” where BRQ is pulled to high. When the bus is granted,
state “startUnit” is reached, and the main unit is told by the start signal that
it can execute the command. The control unit now remains in state “running”,
waiting for the main unit to complete execution, which is indicated by the ready
signal. Then the interrupt number is loaded into the intNr port, BRQ is reset
to low, and in the next state (“sendINTRQ”) signal INTRQ is pulled to high,
after which the control unit waits for the acknowledgement of the interrupt by
the CPU, indicated by signal INTACK. Once this signal is received, the control
unit returns to state “idle”. Note that the control components and the data path
within the main unit contain many details which are not shown in Fig. 8.2.
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The complete coprocessor was specified in VHDL [72, 134] and simulated with
the help of the standard tool SYNOPSIS. For testing the functionality of the
coprocessor, and for debugging purposes, a test-bench was written. The test-
bench plays the roles of both the CPU and the memory, and can be configured
via a command file.

Since the actual hardware realisation of the BDD coprocessor is not yet oper-
ational at this time, we cannot present measurement results. Instead, we con-
ducted a performance estimation, which is based on counting the number of
states which the coprocessor visits when executing a particular command. This
figure is compared to the number of assembler operations of the corresponding
software solution. The comparison is based on the assumption that the CPU
and the coprocessor work at the same clock frequency, and that the CPU is a
RISC processor which executes one assembler operation per clock cycle. These
are, of course, rather simplifying assumptions. Since the processing of a partic-
ular coprocessor command may contain numerous loops and branches (both in
the software and in the hardware realisation), the counting of assembler opera-
tions, resp. states, needed to distinguish between many different cases. Analysing
the function “cuddCacheInsert2” was simple, since it does not have loops or
branches. Here, the speedup achieved through the hardware realisation is 6.8.
When analysing the function “cuddCacheLookup2”, 14 different combinations
of branches had to be considered, and the speedup varied between 3.9 and 5.3.
Analysing the function “cuddUniqueInter” was the most complicated, since that
function contains a loop that can have different length, depending on the actual
data. Software and hardware execution times were thus calculated for different
measured parameters. For the relevant cases, the speedup was between 2.2 and
2.7.

We plan to realise the coprocessor by using an FPGA board. Today’s FPGAs
are large enough to accommodate not only a piece of specialised hardware of the
size of our coprocessor, but also additional logic, in some cases even a complete
microprocessor. This is our strategy indeed. We will employ the Altera Excal-
ibur Development Kit [9], which includes a configurable RISC processor (called
NIOS) that can be placed on the FPGA (an APEX EP20K200E device) together
with the coprocessor logic. The advantages of such a configuration are obvious:
The CPU executing the software code (in our case the CUDD-based tool Im-

Cat) and the specialised hardware (in our case the BDD coprocessor) actually
reside on the same chip, which means that communication between the CPU and
the coprocessor is very fast, and the overhead for activating the coprocessor is
minimised.
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8.3.2 Lessons learned and future research

The software/hardware realisation described in Sec. 8.3.1 resulted in a moderate
acceleration of the selected BDD operations. Considerable gain of speed for full
BDD and MTBDD applications would be achieved if a comprehensive set of BDD
operations, especially including functions such as “addMMRecur”, were realised
in hardware. This is feasible, but requires substantial effort.

However, it has become clear that, in order to achieve a real performance break-
through, one must not stick to conventional algorithms and should not use un-
modified data structures, as we had done. Reconsidering our software/hardware
realisation, note that at any point of time, either the CPU or the coprocessor is
active. The CPU and the coprocessor are never active concurrently, nor is there
substantial parallelism within the coprocessor (apart from low-level parallelism,
such as the concurrent calculation of subexpressions of the hashing function). In
principle, much higher speedups could be obtained if one were able to exploit the
concurrency which is inherent in the BDD algorithms of recursive nature. There-
fore, as we already mentioned in Sec. 8.2, one stream of research should aim
at developing new strategies for apply-type algorithms, in particular for matrix
multiplication and vector-matrix multiplication, which could exploit the power
of parallel hardware.



Part III

Beyond performance analysis
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Chapter 9

Verification of stochastic systems

In the previous chapters, we discussed performance and dependability analysis,
with a strong focus on compact symbolic representations and algorithms that
work on these representations. In the present chapter, we motivate the need to
widen the horizon of classical analysis, which will lead us to the formal specifi-
cation of measures in the form of temporal logic performability properties that
should hold for a given system, and algorithms for “checking” whether these
properties are indeed satisfied. In Sec. 9.3, we introduce the action-based logic
aCSL, a logic that is tailored for specifying properties of stochastic process algebra
models, and discuss algorithms for model checking this logic against stochastic
labelled transition systems. At the end of the chapter, in Sec. 9.5, we discuss the
strong relation between model checking and compact symbolic representations
based on BDDs, which brings us back to the main topic of this thesis.

9.1 From performance analysis towards the ver-

ification of performability properties

In classical performance evaluation, the system to be analysed is represented by a
stochastic model, be it a queueing network, a stochastic Petri net or a stochastic
process algebra specification. The aim of analysis, i.e. the measures of interest
which the modeller wishes to derive, is described informally or in a tool-dependent
way. For instance, the modeller may wish to obtain the mean waiting time of
customers at a particular station of a queueing network, the throughput of a
particular transition of a SPN, or the probability that at a certain instant of
time the sum of the number of tokens in a given subset of places does not exceed

173
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a particular value. In the SPA tool TIPPtool, for instance, it is possible to
specify three kinds of performance measures:

• State measures, which accumulate the (stationary or transient) state prob-
abilities of all states which match a given regular expression.

• Throughput measures, which yield the frequency with which a certain
(timed) action takes place.

• Mean values: In the presence of parameterised processes where one pa-
rameter represents a counter, the mean value of that parameter can be
determined.

In the area of performability modelling, where the aim is the combined analysis
of performance and dependability properties, it is common to work with Markov
reward models [158]. In such models, states are associated with reward rates and
transitions may be associated with impulse rewards. Typical measures of interest
for Markov reward models are the mean stationary reward rate, the accumulated
reward up to a certain time, or the accumulated reward up to a special event.

In many situations, the derivation of standard measures such as the ones men-
tioned above is not enough. Modellers may wish to ask more complicated ques-
tions, for example:

• “Once the system is in a state from subset T , what is the probability of
reaching a state from subset U , without passing through a state from subset
V in between?”

• “Starting from a state in subset T , is the probability to reach a state in
subset U within 6.5 time units at least 0.8?”

• “Once event a has taken place, what is the probability of event b taking
place after at most 13 time units, without event c taking place in between?”

• “What is the probability, that events a, b and c take place in that order
within at most 3.7 time units?”

• “Starting from state s, is the probability that an arbitrary number of a-
events followed by a single b-event take place within 39 time units greater
than 0.95?”

Such questions can neither be formulated nor answered using the above mentioned
classical techniques for measure specification in Markov models and Markov re-
ward models. Although it is, in principle, possible to compute the figures that
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characterise the outcome of these questions, this is usually a difficult and tricky
task which requires measure-dependent modification of the model and compli-
cated numerical calculations. In the past, such calculations could therefore only
be carried out manually by an experienced modeller.

These considerations motivate the use of temporal logics as an expressive speci-
fication mechanism for complex performance measures. The general idea of this
approach is to specify temporal logic properties (i.e. requirements) which the sys-
tem under investigation should satisfy, and to employ model checking techniques
in order to check whether a given property actually holds. This is the approach
which we will follow in this chapter. It leads us from the area of performability
evaluation to the area of verification of stochastic systems1 by means of model
checking.

9.2 Model checking of stochastic systems

In this section, we give an overview of model checking techniques for stochastic
systems. However, we first have a brief look at classical, i.e. purely functional
model checking.

Model checking is a successful technique to establish the correctness of a given
model, relative to a set of temporal logic properties which the model should
satisfy [87, 88]. The most efficient model checkers use the logics LTL (Linear
Temporal Logic, [276]) or CTL (Computation Tree Logic, [116]) which are in-
terpreted over Kripke structures, i.e. transition systems where states are labelled
with elementary properties, called atomic propositions, but transitions are un-
labelled. Though different in nature, both logics are state-oriented, their basic
building blocks being atomic propositions which characterise states. While the
model checking of LTL follows an automata-based approach [304], model checking
of CTL proceeds by induction on the parse tree of the formula [85].

Classical temporal logics specify purely functional properties that focus on the
temporal ordering of events, without taking into account quantified time or prob-
abilities. Real-time logics have been developed, for instance Timed CTL (TCTL)
[10], where the quantitative timing behaviour of timed automata [11] is charac-
terised, but these logics are tailored for the specification and verification of hard
real-time deadlines and do not comprise stochastic behaviour. Since we are in-

1We use the term “verification of stochastic systems” rather than “stochastic verification”,
since it is the system under investigation which has stochastic features, while the verification
methods as such are not stochastic or randomised, but rather deterministic.
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terested in performability properties of stochastic systems, we need to develop
logics that are extended accordingly.

Probabilistic real-time CTL (PCTL) is an extension of CTL for expressing prop-
erties that concern both real-time and probability [148]. PCTL is interpreted over
state-labelled DTMCs, a discrete time model where every transition requires one
unit of time. Typical examples of properties expressible in PCTL are “With
probability at least 0.5, property Φ1 will hold at some time within the next 20
time units” or “With probability at least 0.99, property Φ2 will hold continuously
for 20 time units”.

The Continuous Time Stochastic Logic (CSL) [21] adopts operators of PCTL,
but is used to express properties over state-labelled CTMCs where time is con-
tinuous. It is based on the equally named logic of Aziz et al. [14], extended with
an operator to reason about steady-state properties. A typical requirement that
can be formulated with the help of CSL is “The probability that an error state
will occur within 17.5 time units is less than 0.001”. In general, a time-bounded
until operator and a probabilistic operator are used to assert that the probability
for a certain event meets given bounds. For model checking time-bounded until-
formulas, a system of Volterra integral equations needs to be solved, which is the
computationally hardest part of CSL model checking. While the original paper
[21] suggested an approximate numerical solution technique which works on dis-
cretised distribution functions, it has since been shown that the solution can also
be computed by performing standard transient analysis (by means of uniformi-
sation) on a modified CTMC [19], and that the latter technique is numerically
superior [173].

We also briefly mention the work of de Alfaro et al. [102], where the probabilistic
branching-time temporal logic (PBTL), a derivative of CTL and PCTL, is used
for specifying requirements on Markov decision processes, also called concurrent
probabilistic systems. This model generalises DTMCs in the sense that there may
be a non-deterministic choice between several probability distributions emanating
from a given state. As a result, the model checking of such systems involves the
solution of a linear optimisation problem [230].

9.3 Action-based logics

Stochastic process algebras represent a formalism to carry out performance and
reliability modelling in a compositional way. As opposed to traditional perfor-
mance modelling techniques, their action-oriented style, where processes are char-
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acterised by the sequences of actions which they can perform, supports composi-
tion and abstraction in a natural way. However, even though in an action-oriented
setting the notion of a state is an auxiliary one, the analysis of stochastic process
algebra models is usually carried out in a state-oriented fashion, because standard
numerical analysis is based on the calculation of (transient or stationary) state
probabilities. This disturbing shift of paradigm, moving from action-oriented
specification to state-oriented analysis, hampers the acceptance of the process
algebraic approach.

It is therefore mandatory to develop an entirely action-oriented analysis tech-
nique for stochastic process algebras. We will do this by following a logic-based
approach, where sequences of actions are analysed by means of model checking
algorithms. Logics such as LTL, CTL or stochastic extensions thereof do not fit
in well with an action-based formalism, since they are based on state labellings.
Therefore, we develop an action-based temporal logic for describing behaviours
of interest, together with a model checking algorithm to derive the probability
with which a stochastic process algebra model exhibits such a behaviour.

In order to enable model checking within action-oriented formalisms, de Nicola
and Vaandrager developed an action-based variant of CTL, called aCTL [262,
263]2. Although aCTL is action-oriented, it naturally corresponds to CTL. There
even exists a translation from aCTL to CTL that allows one to perform action-
oriented aCTL model checking by means of state-oriented CTL model checking
on a transformed model, with only linear overhead. We mention, however, that
direct aCTL model checkers have become more popular [119, 242] than the trans-
lational approach.

In the remaining part of this chapter, we describe the action-based, branching-
time stochastic logic aCSL (action-based Continuous Stochastic Logic), that is
strongly inspired by CSL (see above, Sec. 9.2). Similar to CSL, aCSL provides
means to reason about CTMCs, but opposed to CSL, it is not state-oriented.
Its basic constructors are sets of actions, instead of atomic state propositions
(although, in principle, the latter could easily be added, thereby enabling a unified
action-oriented and state-oriented approach). The logic provides means to specify
temporal properties with quantified continuous time, and means to quantify their
probability. As a simple example, aCSL allows one to specify properties such as
“Once action send has been observed, there is at least a 30% chance that action
ack will be observed within at most 4.75 time units”.

The rest of this section, which is based on [170], is structured as follows: Af-

2The logic aCTL should not be confused with the logic ACTL, the restriction of CTL to
universal path quantifiers.
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ter defining syntax and semantics in Sec. 9.3.1, we develop a dedicated model-
checking algorithm for aCSL (Sec. 9.3.2). In Sec 9.3.3, we then show that Marko-
vian bisimulation, an equivalence which can be used to compress SPA specifi-
cations compositionally, preserves aCSL properties. Finally, in Sec. 9.3.4, we
discuss possible translations of aCSL to state-oriented formalisms.

9.3.1 Syntax and semantics of the logic aCSL

The aCSL model. In the sequel, we consider an SLTS, i.e. an action-labelled
Markov chain, T . Its set of states is denoted by S, Act is a set of action labels,
and →⊆ S × Act × IR>0 × S is the transition relation. A, B ⊆ Act are sets of
actions. We assume that T is finite, i.e., has a finite number of states and is
finitely branching. We use the following notation:

RA(s, s′) =
∑

a∈A

{ λ | s
a,λ
−−−−−➤ s′ }

E(s) =
∑

s′∈S

RAct(s, s
′)

pA(s, s′) = RA(s, s′)/E(s).

Stated in words, RA(s, s′) denotes the cumulative rate of moving from state s to s′

with some action from A, E(s) denotes the total rate with which some transition
emanating from s is taken, and pA(s, s′) is the probability of moving from state s
to s′ by an action in A. For absorbing s, E(s) = 0 and pA(s, s′) = 0 for any state
s′ and any set A. Further note that R∅(s, s

′) = p∅(s, s
′) = 0 for any states s, s′.

An infinite path σ is a sequence s0
a0,t0
−−−−−−➤ s1

a1,t1
−−−−−−➤ s2

a2,t2
−−−−−−➤ . . . with (for

i ∈ IN) si ∈ S, ai ∈ Act and ti ∈ IR>0, such that Rai
(si, si+1) > 0. Let σ[i] = si,

the (i+1)-st state of σ, and δ(σ, i) = ti, the time spent in σ[i]. For t ∈ IR≥0 and
i the smallest index with t ≤

∑i
j=0 tj , let σ@t = σ[i], the state in σ at time t.

A finite path σ is a sequence s0
a0,t0
−−−−−−➤ s1

a1,t1
−−−−−−➤ s2 . . . sl−1

al−1,tl−1
−−−−−−−−−➤ sl where

sl is absorbing, and R(si, si+1) > 0 for all i < l. For finite σ, σ[i] and δ(σ, i) are
only defined for i ≤ l; they are defined as above for i < l, and δ(σ, l) = ∞. For

t >
∑l−1

j=0 tj let σ@t = sl, otherwise σ@t is as above. We denote σ[i]
A
−−−−➤ σ[i+1]

whenever σ[i] can move to σ[i+1] by performing some action in A, i.e., if ai ∈ A.

Note that σ[i] 6
∅
−−−➤. Let Path(s) denote the set of paths starting in s. A Borel

space over Path(s) can be defined in a similar way as in [21] and is omitted here.

Syntax of aCSL. We now describe the action-based stochastic logic aCSL,
starting with its syntax.
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Definition 9.3.1 Syntax of aCSL
For p ∈ [0, 1] and ⊲⊳ ∈ {≤, <,≥, > }, the state-formulas Φ of aCSL are defined
by the grammar

Φ ::= tt
∣

∣

∣
Φ ∧ Φ

∣

∣

∣
¬Φ

∣

∣

∣
S⊲⊳p (Φ)

∣

∣

∣
P⊲⊳p (ϕ)

where path-formulas ϕ are defined for t ∈ IR>0 ∪ {∞} by

ϕ ::= Φ AU
<t Φ

∣

∣

∣
Φ AU

<t
B Φ.

Note that atomic propositions are absent. tt stands for the constant “true”, ∧
denotes conjunction, and ¬ denotes negation. The other Boolean connectives,
such as ∨ and ⇒, are derived in the obvious way. The probabilistic operator
P⊲⊳p (.) replaces the CTL path quantifiers ∃ and ∀. The state-formulas are directly
adopted from CSL: S⊲⊳p (Φ) asserts that the steady-state probability for a Φ-state
meets the bound ⊲⊳ p, and P⊲⊳p (ϕ) asserts that the probability measure of the
paths satisfying ϕ meets the bound ⊲⊳ p.

The path-formula Φ1 AU
<t Φ2 is fulfilled by a path if a Φ2-state is eventually

reached (after at most t time units) via intermediate states which all satisfy Φ1,
while taking only A-transitions. Slightly more discerning, the formula Φ1 AU

<t
B Φ2

is fulfilled by a path if a Φ2-state is eventually reached (after at most t time units)
via intermediate states which all satisfy Φ1, while taking an arbitrary number of
A-transitions, followed by a single B-transition. Note the following: Due to the
fact that the Φ2-state must be reached via a B-transition, the formula Φ1 AU

<t
B Φ2

is invalid in a (¬Φ1 ∧ Φ2)-state s: Although the state satisfies Φ2, it is not able
to move from a Φ1-state to a Φ2-state via a B-transition as it does not fulfil
Φ1. However, the formula Φ1 AU

<t Φ2 is valid in state s, since for the validity of
this formula it is not required that a transition into a Φ2-state is actually taken.
Thus, whereas for Φ1 AU

<t Φ2 it suffices to be currently in a Φ2-state, this is not
the case for Φ1 AU

<t
B Φ2.

The major differences with a standard, untimed until-formula Φ1 U Φ2 of linear
and branching temporal logics are that restrictions are put on the action labels
of transitions to be taken and on the amount of time that is needed to reach a
Φ2-state. The standard until-formula can be derived in the following way:

Φ1 U Φ2 = Φ1 ActU
<∞ Φ2.

We will use Φ1 AUB Φ2 as an abbreviation of Φ1 AU
<∞
B Φ2 and Φ1 AU Φ2 as an ab-

breviation of Φ1 AU
<∞ Φ2. These are the untimed versions of the until operators

AU
<t
B and AU

<t.
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Derived operators. In aCSL, the following set of next-operators are all derived
operators:

X<t
A Φ = tt ∅U

<t
A Φ

XA Φ = X<∞
A Φ

X Φ = XAct Φ.

The formula X<t
A Φ asserts that from the current state an A-transition can be

made to a Φ-state before time t. Note that the Φ-state must be reached by the
first transition, as — due to the empty set of actions — further transitions are
disallowed. XA is the action-labelled next-operator from aCTL, whereas X is the
traditional state-based next-operator.

In our logic, the next operator is derived from the until operator. In aCTL
the reverse is the case [262]. This stems from the special treatment of internal,
i.e., τ -labelled, transitions in aCTL. For instance in aCTL, X∅ Φ allows to reach
a Φ-state by an internal transition (but not any other). In our setting, internal
transitions are treated as any other transition, and accordingly, X∅ Φ is invalid for
any state. We have made this difference deliberately: whereas aCTL is aimed to
characterise branching bisimulation – a slight variant of weak bisimulation equiv-
alence – we focus on characterising a strong equivalence like lumping equivalence
(since exact weak equivalences on SLTS cannot be obtained [163]).

The temporal operator ✸, to be read “eventually”, and its variants are derived
in the following way:

A✸
<tΦ = tt AU

<t Φ

A✸ Φ = A✸
<∞ Φ

✸
<tΦ = Act✸

<t Φ

A path fulfils A✸
<tΦ if it reaches a Φ-state within t time units by only performing

A-actions. Formulas A✸ Φ and ✸
<tΦ denote the generalisations to infinite time

and arbitrary actions. Their combination, ✸ Φ, corresponds to the well-known
“eventually” operator. Even more discerning ✸-operators can be defined by

A✸
<t
B Φ = tt AU

<t
B Φ and A✸BΦ = A✸

<∞
B Φ

Here, the path leading to the Φ-state consists of an arbitrary number of A-actions,
followed by a single B-action. Dual to these ✸-operators is the set of ✷-operators,
of which we only mention the following:

P⊲⊳p (A✷
<tΦ) = ¬P⊲⊳p (A✸

<t¬Φ) and P⊲⊳p (A✷
<t
B Φ) = ¬P⊲⊳p (A✸

<t
B ¬Φ)

with the obvious generalisations to infinite time and/or arbitrary sets of actions.
Existential and universal quantification are introduced as

∃ϕ = P>0 (ϕ) and ∀ϕ = P≥1 (ϕ)
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but note that by this definition formula ∀ϕ holds even if there exists a path that
does not satisfy ϕ, if that path has zero probability mass. For the treatment
of such fairness issues see [22]. Finally, we consider the modal operators from
Hennessy-Milner logic [160] and the mu-calculus [227] as derived operators. They
are obtained as follows:

〈A〉Φ = P>0 (XA Φ) and [A] Φ = ¬〈A〉 ¬Φ.

The modal operator 〈A〉Φ states that there is some A-transition from the current
state to a Φ-state, whereas [A] Φ states that for all A-transitions from the current
state a Φ-state is reached.

Semantics of aCSL. aCSL state-formulas are interpreted over the states of an
SLTS (S, A,−−−➤)3. Before we are in a position to formally define the seman-
tics of aCSL state-formulas, we must first define when a given path satisfies a
path-formula. The meaning of the path-operators is defined by a satisfaction
relation, also denoted by |=, between a path and a path-formula. We define:
σ |= Φ1 AU

<t Φ2 if and only if:

∃k ≥ 0.

(

σ[k] |= Φ2 ∧ ∀i < k.
(

σ[i] |= Φ1 ∧ σ[i]
A
−−−−➤ σ[i+1]

)

∧ t >
k−1
∑

i=0

δ(σ, i)

)

where δ(σ, i) denotes the time spent in state σ[i]. Thus, Φ1 AU
<t Φ2 is valid for a

path if at some time instant before t a Φ2-state is reached — assume this is the
(k+1)-st state in the path so far — by visiting only Φ1-states, while taking only
A-transitions along the entire path. For the second form of the until-formula we
have: σ |= Φ1 AU

<t
B Φ2 if and only if:

∃k > 0.
(

σ[k] |= Φ2 ∧ (∀i < k−1. σ[i] |= Φ1 ∧ σ[i]
A
−−−−➤ σ[i+1])

∧σ[k−1] |= Φ1 ∧ σ[k−1]
B
−−−−➤ σ[k] ∧ t >

∑k−1
i=0 δ(σ, i)

)

Note the subtle difference with the first form of the until-formula: For Φ1 AU
<t
B Φ2

to be valid, there has to be at least one transition, namely the final B-transition
leading to a Φ2-state.

Next we define the steady-state probability π(s, S ′) of being in a state of set S ′,
provided that the system started in s, by means of a probability measure4 Pr on
the set of paths Path(s) emanating from s:

π(s, S ′) = lim
t→∞

Pr{ σ ∈ Path(s) | σ@t ∈ S ′ }

3The initial state of the SLTS is of no importance here and therefore omitted.
4The probability measure Pr is defined by means of a Borel space construction on paths, see

[21]. It can be shown that the sets of paths appearing in the next two equations are measurable.
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Similarly, the probability Prob(s, ϕ) which denotes the probability measure of all
ϕ-paths emanating from state s, is defined by

Prob(s, ϕ) = Pr{ σ ∈ Path(s) | σ |= ϕ }.

With these ingredients, we can now formally define the semantics of aCSL.

Definition 9.3.2 Semantics of aCSL
Let Φ, Φ1, Φ2 be aCSL formulas. Let π(s, S ′) denote the steady-state probability of
being in a state of set S ′ provided that the system started in s, and let Prob(s, ϕ)
denote the probability measure of all ϕ-paths emanating from state s. The satis-
faction relation |= between a state s and a given aCSL state-formula is defined
as follows:

s |= tt for all s ∈ S
s |= ¬Φ iff s 6|= Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= S⊲⊳p (Φ) iff π(s, Sat(Φ)) ⊲⊳ p
s |= P⊲⊳p (ϕ) iff Prob(s, ϕ) ⊲⊳ p

where Sat(Φ) = { s ∈ S | s |= Φ }.

9.3.2 Model checking aCSL

The general procedure for model checking aCSL is similar as for model check-
ing CTL or CSL: A parse tree is generated from the formula, and subformulas
are checked, starting at the leaves of the parse tree and finishing at the root.
Checking of the Boolean connectives is standard. Checking of steady-state prop-
erties requires the solving of one or more linear systems of equations for which
our tool ETMCC [168, 171, 173, 172] employs the iterative schemes of either
Jacobi or Gauss-Seidel. As a preprocessing step for steady-state calculation, the
strongly connected components of the CTMC are determined with the help of
a graph analysis algorithm. Model checking the probabilistic quantifier P⊲⊳p (ϕ)
is the crucial difficulty. It relies on the following characterisations of Prob(s, ϕ).
We discuss the characterisations by structural induction over ϕ. For the sake of
simplicity, we first treat the simple untimed until-formulas.

Untimed until. For ϕ = Φ1 AU Φ2 we have that Prob(s, ϕ) is given by the
following equation:

Prob(s, ϕ) =







1 if s |= Φ2
∑

s′∈S pA(s, s′) · Prob(s′, ϕ) if s |= Φ1 ∧ ¬Φ2

0 else



9.3. Action-based logics 183

For A = Act we obtain the equation for standard until as for DTMCs [148]. Let
now ϕ = Φ1 AUB Φ2. For s 6|= Φ1, the formula is invalid. As for s |= Φ1 the
situation is more involved let us, for the sake of simplicity, assume that A and B
are disjoint, i.e. A∩B = ∅. Then the only interesting possibilities starting from s
are (i) to directly move to a Φ2-state via a B-transition, in which case the formula
ϕ is satisfied with probability 1, or (ii) to take an A-transition leading to Φ1-state
s′ which satisfies ϕ with probability Prob(s′, ϕ). Accordingly, for A ∩ B = ∅ we
have

Prob(s, ϕ) =
∑

s′|=Φ2

pB(s, s′) +
∑

s′|=Φ1

pA(s, s′) · Prob(s′, ϕ).

In the general case, we have to take into account that A and B may not be
disjoint. One must ensure that an (A ∩ B)-transition into a state that satisfies
both Φ1 and Φ2 will not be counted twice. We therefore obtain that Prob(s, ϕ)
is the least solution of the following set of equations:

Prob(s, ϕ) =
∑

s′|=Φ2

pB(s, s′) +
∑

s′|=Φ1

pA(s, s′) · Prob(s′, ϕ)

−
∑

s′|=Φ1∧Φ2

pA∩B(s, s′) · Prob(s′, ϕ)

if s |= Φ1, and 0 otherwise. This last equation may also be written in the following
form

Prob(s, ϕ) =
∑

s′|=Φ2

pB(s, s′) +
∑

s′|=Φ1∧Φ2

pA\B(s, s′) · Prob(s′, ϕ)

+
∑

s′|=Φ1∧¬Φ2

pA(s, s′) · Prob(s′, ϕ)

which avoids subtraction. Note that

Prob(s, XB Φ) = Prob(s, tt ∅UB Φ) =
∑

s′|=Φ

pB(s, s′)

which coincides, for B = Act , with the characterisation of next for DTMCs [148].
Thus, the probability that s satisfies XB Φ equals the sum of the probabilities to
move to a Φ-state via a single B-transition. Note further that for B = ∅ there is
no state that satisfies Φ1 AUB Φ2 with positive probability.

Timed until. For ϕ = Φ1 AU
<t Φ2 we have that Prob(s, ϕ) is the least solution

of the following set of equations:

Prob(s, ϕ) =







1 if s |= Φ2
∫ t

0
e−E(s)·x ·

∑

s′∈S RA(s, s′) · Prob(s′, Φ1 AU
<t−x Φ2) dx if s |= Φ1 ∧ ¬Φ2

0 else
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For state s satisfying Φ1 ∧ ¬Φ2, the probability of reaching a Φ2-state within t
time units from s equals the probability of reaching some direct successor s′ of
s within x time units, multiplied by the probability of reaching a Φ2-state from
s′ within the remaining time t−x. Since there may be different paths from s
to Φ2-states, the sum is taken over all these possibilities. (Note that by taking
t = ∞ we obtain, after some straight-forward calculations, the characterisation
for untimed until AU given before). For ϕ = Φ1 AU

<t
B Φ2 we have that Prob(s, ϕ)

is the least solution of the following set of equations:

Prob(s, ϕ) =

∫ t

0

e−E(s)·x ·





∑

s′|=Φ2

RB(s, s′) +
∑

s′|=Φ1

RA(s, s′) · Prob(s′, Φ1 AU
<t−x
B Φ2)

−
∑

s′|=Φ1∧Φ2

RA∩B(s, s′) · Prob(s′, Φ1 AU
t−x
B Φ2)



 dx

if s |= Φ1, and Prob(s, ϕ) = 0 otherwise5. This characterisation can be justified
in the same way as for its untimed counterpart, i.e., Φ1 AUB Φ2, given the above
explanation for the simpler timed until variant. Let us consider what this yields
for X<t

B Φ:

Prob(s, X<t
B Φ) = Prob(s, tt ∅U

<t
B Φ) =

∫ t

0

e−E(s)·x ·
∑

s′|=Φ

RB(s, s′) dx

which, after some straight-forward calculations, leads to

∑

s′|=Φ

pB(s, s′) ·
(

1− e−E(s)·t
)

.

The first term of the product denotes the discrete probability to move via a
single B-transition to a Φ-state, whereas the second term denotes the probability
to leave state s within t time units.

The solution of the above integral equations can be obtained by two methods: (i)
numerical integration, working on discretised representations of distribution func-
tions, and (ii) transient analysis with the help of the uniformisation method, work-
ing on a modified CTMC. Both methods are implemented in our tool ETMCC,
but as described in [173] (and as we shall see in Chap. 10), transient analysis is
usually far superior both concerning the runtime and the accuracy of the results.

Example: We now discuss a small example that shows the various steps that
are carried out when checking an until-formula. We discuss the checking of the

5The previous formula may be written without the use of subtraction in a similar way as
for the untimed case above.
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¬Φ1 ∧ ¬Φ2

Φ1 ∧ ¬Φ2
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Φ1 ∧ Φ2

a, 7
a, 8

Figure 9.1: Example action-labelled CTMC

aCSL formula Φ = P>0.5

(

Φ1 {a}U
<t
{b} Φ2

)

for both the untimed case (i.e. t =∞)

and the time-bounded case (i.e. for finite t < ∞). For checking this formula on
the model shown in Fig. 9.1, the following steps are performed:

1. Determine the set of states E from which there originates a path that func-
tionally satisfies Φ1 {a}U{b} Φ2. The set E is initialised as ∅. First, Φ1-states
from which there is a b-transition to a Φ2-state are added to E (in the
example s1, s3, s5). Then those Φ1-states are added to E which possess an
a-transition to a state already in E (i.e. s2 and s8 are added to E). So finally
E = {s1, s2, s3, s5, s8}.

2. For the untimed case, determine the set of states A ⊆ E whose outgoing
paths all satisfy Φ1 {a}U{b} Φ2. Set A is computed by removing states from
E . In the example, s2 is removed first, since it can can make a c-transition
to s4. Afterwards, s1 is removed, since it can move to s2 which is no longer
in A. Furthermore, s8 is removed since it can make an a-transition to s7

which is not a Φ1-state. So finally A = {s3, s5}.

Next, for all states, we determine the probability with which the state
satisfies Φ1 {a}U

<∞
{b} Φ2, i.e. regardless of the time that passes until reaching

the Φ2-state. States not in E have probability 0. States from A have
probability 1.0. In general, the probabilities for the states from E \A (in the
example, E \ A = {s1, s2, s8}) are determined by solving a linear system of
equations (for which the tool ETMCC again uses Jacobi or Gauss-Seidel).
In the example, the probability for state s2 is simply 1/10 + 4/10 = 0.5,
the probability for state s8 is 2/10 = 0.2, and the probability for state s1

is 7/10 plus 3/10 times the probability which was just computed for s2, i.e.
7/10 + 3/10 ∗ 0.5 = 0.85.
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3. For the time-bounded case, one needs to determine the set of states that

satisfy the original formula Φ = P>0.5

(

Φ1 {a}U
<t
{b} Φ2

)

for finite t < ∞.

Firstly, states not in E cannot satisfy Φ, so no numerical calculations will
have to be performed for states s4, s6, s7, s9. The CTMC is now modified,
such that states which satisfy ¬Φ1 ∧¬Φ2 (that is states s4, s7) or ¬Φ1 ∧Φ2

(that is states s6, s9) are made absorbing, and states which satisfy Φ1 ∧
Φ2 are duplicated, such that if reached by a b-transition they are made
absorbing, while if reached by an a-transition they retain their original
outgoing transitions (in the example, s3 would be duplicated, which yields
s′3 and s′′3). All absorbing states which satisfy Φ2 are collected in a “success”
macro state, while those absorbing states which satisfy neither Φ1 nor Φ2 are
collected in a “failure” macro state. Then transient analysis is performed
on this modified model. The probability with which a state s satisfies
Φ1 {a}U

<t
{b} Φ2 is calculated as the probability of being in the “success”

macro state at time t, provided that the system started in state s at time 0.
Note that by a clever cumulation of intermediate results [209] it is possible
to calculate these time-dependent probabilities for all states by a single
execution of transient analysis, as implemented in our tool ETMCC. Note
further, that in case step 2 has been performed before step 3, those states
from E \ A whose probability found in step 2 was less or equal than the
margin 0.5 (in the example that is states s2 and s8) have no chance of
reaching a Φ2-state in finite time t with high enough probability, so no
further calculations need to be performed for them.

9.3.3 Invariance under Markovian bisimulation

In this section, we show that aCSL is invariant under the application of Marko-
vian bisimulation, which (as we mentioned in Sec. 3.7) is a congruence for the
stochastic process algebras TIPP [142] and PEPA [192]. In the context of pro-
cess algebraic composition operators, a congruence relation can be used to com-
press the state space of components before composition, in order to alleviate the
state space explosion problem, under the condition that the relation equates only
components obeying the same properties. Hence the question arises whether a
Markovian bisimulation B can be applied to compress models (or model com-
ponents) prior to model checking aCSL-formulas. In general, this requires that
the validity of aCSL-formulas is preserved when moving from an SLTS T to its
quotient SLTS T / B . In the following we write |=T for the aCSL satisfaction
relation |= on T , and use [s] B to denote the equivalence class of state s.
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Theorem 9.3.1 Invariance of aCSL under Markovian bisimulation
Let B be a Markovian bisimulation on SLTS T and s a state in T . Then:

(a) For all aCSL state-formulas Φ: s |=T Φ iff [s] B |=T / B Φ

(b) For all aCSL path-formulas ϕ: ProbT (s, ϕ) = ProbT / B ([s] B , ϕ).

In particular, Markovian bisimilar states satisfy the same aCSL formulas.

The proof of Thm. 9.3.1, which proceeds by structural induction on Φ, is sketched
in the appendix of [170] and a detailed proof can be found in [169]. This result
allows to verify aCSL-formulas on the potentially much smaller SLTS T / B
rather than on T . Remember from Sec. 3.7.4 that the quotient with respect to
Markovian bisimilarity can be computed by a modified version of the partition
refinement algorithm for ordinary bisimulation without an increase of complex-
ity. In addition, due to the congruence property of Markovian bisimilarity, a
specification can be reduced in a compositional way.

9.3.4 Translating aCSL to CSL

The design of aCSL closely follows the work of De Nicola and Vaandrager on
aCTL [262]. For what concerns model checking, they propose a translation K
from aCTL into CTL, and a transformation (also denoted K) from action-labelled
to state-labelled transition systems in such a way that for an arbitrary aCTL
formula Φ and arbitrary action-labelled transition system T (with the obvious
notation):

s |=
T ,aCTL

Φ iff K(s) |=
K(T ),CTL

K(Φ)

In this way, aCTL model checking can be reduced to CTL model checking, by
checking a translated formula K(Φ) on a transformed model K(T ). The bypass
via K blows up the model and the formula, but only by a factor of 2, whence
it follows that model checking aCTL has the same worst case complexity as
CTL. The key idea of this transformation is to break each transition of T in two,
connected by a new auxiliary state. The new state is labelled with the action label
of the original transition, playing the role of an atomic state proposition. (The
original source and target states are labelled with a distinguished symbol ⊥).
Formula Φ is manipulated by K in such a way that starting from some state
K(s) essentially all the labellings of original states (⊥) do not matter, while the
ones of auxiliary states do. Unfortunately, this approach does not carry over
to the Markov chain setting, because splitting a Markovian transition in two
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Figure 9.2: Transformation example from an SLTS (left) to an IMC (middle) and
a state-labelled CTMC (right)

implies splitting an exponential distribution in two. However, no sequence of two
exponential distribution agrees with an exponential distribution. Since aCSL is
powerful enough to detect differences in transient probabilities, this approach is
infeasible.

Even though a translation in the style of De Nicola and Vaandrager does not
allow one to reduce aCSL to CSL, this does not imply that such a reduction is
generally infeasible. For the sake of completeness, we remark that it is indeed
possible to reduce model checking aCSL to model checking (slight variants of)
CSL. We briefly sketch two possibilities:

• Apply the transformation of [262, 263] and map SLTS to Interactive Markov
chains (IMC) [162]. This transformation is exemplified in Figure 9.2 (from
left to middle), where state labellings appear as sets, and dashed transitions
are supposed to be immediate. In general, IMC allow for non-determinism,
but this phenomenon is not introduced by the translation. Therefore, the
model checking algorithm of [21] can be lifted to this subset of IMC.

• Transform SLTS to state-labelled CTMCs, using a transformation inspired
by Emerson and Lei [117]. The main idea is to split each state into a
number of duplicates, given by the number of different incoming actions it
possesses, and label each duplicate with a different action, and distribute
the incoming transitions accordingly. (In order to track the first transition
delay correctly, one additional ⊥-labelled duplicate per state is needed.) To
give an intuitive idea, this transformation is depicted in Figure 9.2 (from
left to right). A mapping K from aCSL to a minor variant of CSL exists
that ensures s |=T φ to hold if and only if (s,⊥) |=K(T ) K(φ) holds. (The
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satisfaction relation |=K(T ) on CSL requires a subtle – but straight-forward
to implement – modification.) Details can be found in [169]. In the worst
case, the state space is blown up by a factor given by the maximal number
of distinct actions entering a state.

Notice that both translations sketched above require a small modification of the
model checking algorithm for CSL [19, 21]. Furthermore, both approaches induce
a blow up of the model by a linear factor. To avoid these drawbacks, we decided
to develop and implement a direct model checking algorithm, as sketched in
Section 9.3.2. This decision was also motivated by the fact that despite the
aforementioned translations from aCTL to CTL, dedicated model checkers for
aCTL are more popular by now [119, 242].

9.4 Developing more general logics

In this chapter, we have described an action-oriented analysis approach for stochas-
tic process algebras which is based on model checking. This approach closes a
disturbing gap in the process algebraic methodology for performance and depend-
ability modelling, because performance engineers are no longer forced to switch
from an action-oriented to a state-oriented view when it comes to model analysis.

As we shall see in the application examples in Chap. 10, our logic aCSL allows one
to specify a wide range of performability properties. However, there still remain
many interesting properties which cannot be expressed by aCSL. For example,
with aCSL it is not possible to specify the following requirement: “Starting from
a Φ1-state, the probability that a Φ2-state is reached within 12 time units, by
performing the action sequence a; b; c arbitrarily often, should be at least 0.99?”.
Note that the only types of action sequences over which aCSL is able to quantify
time and probability may be written as regular expressions over the set of actions
Act as a∗ and a∗; b, corresponding directly to the two forms of the until operator.
It is, of course, highly desirable to describe more general sequences of actions,
such as (a; b; c)∗ or a; b∗; c.

To this aim, we are currently working on a stochastic extension of propositional
dynamic logic (PDL) [125], which we call SPDL [251]. Apart from the capability
of specifying complex action sequences, PDL offers a testing operator that can be
employed to check whether certain properties are satisfied at intermediate points
of the action sequence. In addition to action-oriented properties, PDL also offers
state-oriented properties on the basis of atomic propositions, thereby opening
the way for combined state-based and action-based model checking. We mention
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a related approach in this direction that was described by Sanders et al. [265],
which however does not employ temporal logics or model checking techniques.
They propose a technique to specify so-called path-based reward variables with
the help of a path automaton, which enables the specification of measures over
state sequences and avoids the manual tailoring of the model.

9.5 Symbolic model checking

Model checking and the use of symbolic, i.e. BDD-based, techniques for model
representation are closely related topics. There has been a lot of successful work
on symbolic model checking [243], although mostly for the verification of purely
functional, i.e. non-stochastic, systems. In fact, most of the experience with
BDDs, including the existing tools and software libraries, has its roots in such
areas as the verification of digital circuits [49, 64], the verification of commu-
nication protocols [31], or the model checking of concurrent systems in general
[84, 210, 243]. As early as 1992, using symbolic techniques, model checking was
applied to industrial designs with more than 1020 states [65].

BDD-based representation of the model to be checked, and BDD-based repre-
sentations of satisfaction predicates (i.e. encodings of sets of states that satisfy a
given property), are attractive for two reasons: (i) BDDs offer a compact repre-
sentation, thereby enabling the storage of very large models, and (ii) the various
algorithms needed during verification (such as Boolean operations on satisfaction
predicates, transition relations and closure operations thereon, etc.) are excellent
candidates for efficient BDD-based implementation.

It is therefore obvious that our approach to the compact symbolic representation
of Markov chains and their BDD-based analysis, as described in the previous
chapters, is an ideal basis for the verification of performability properties by
means of model checking. As a general observation, the operations that we used
during compositional model construction (namely reachability analysis, hiding of
action labels, selection, restriction, abstraction, etc.) are also needed as the basic
operations for implementing the model checking algorithms. More specifically, the
operations needed for the model checking of stochastic systems as discussed in
Sec. 9.3, involving numerical calculations, in particular linear algebra operations,
can be realised conveniently with the help of MTBDDs.

However, in this chapter we did not elaborate on the specific BDD-related issues
when implementing the model checking algorithms, because the main intention of
this chapter is to illustrate the use of model checking as an extension of classical



9.5. Symbolic model checking 191

performability evaluation, and because we do not yet have practical experience
with symbolic model checking of stochastic systems. In fact, our model checker
ETMCC [168, 171, 173, 172] does not currently employ BDDs or MTBDDs,
but is based on sparse storage schemes, although we are planning to develop a
symbolic engine for ETMCC in the future. To our knowledge, the tools Prob-

Verus [155] and Prism [102, 231, 228], which are based on MTBDDs, are the
first symbolic model checkers for stochastic systems (cf. Sec. 11.3).
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Chapter 10

Analysing complex
communication systems

In this chapter, we present three non-trivial case studies: A hospital commu-
nication system, a cyclic server polling system and a multiprocessor mainframe
system with failures. For each of these, we provide a system description, describe
the MTBDD-based state space construction, present some performance measures
and use model checking in order to verify some performability properties.

All experiments which involve MTBDDs were carried out with the help of our
tool Im-Cat [128, 129]. Im-Cat supports compositional model generation, hiding
of actions, elimination of compositionally vanishing states, reachability analysis
and calculation of steady-state probabilities. Since Im-Cat does not currently
support the specification and computation of performance measures, we used
TIPPtool [165] to carry out the performance evaluation experiments in this
chapter. The checking of performability properties was done with the help of our
tool ETMCC [168, 171, 173, 172].

All experimental results reported in this thesis were obtained on the same ref-
erence machine, a SUN 5/10 workstation, equipped with 1GB of main memory
and running at 300 MHz.

195
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10.1 A hospital communication system

In this section, we describe the specification and analysis of the hospital commu-
nication system (HCS) operated by the University of Erlangen-Nürnberg. The
“Universitätsklinikum Erlangen” is a large hospital, spatially distributed over the
town of Erlangen, with approximately 1.600 beds, 60.000 in-patients and 140.000
out-patients per year. The study reported here is part of an ongoing perfor-
mance measurement and modelling project which is being conducted jointly by
the computing centre of the hospital and the department of computer science of
our University [13, 300, 301].

10.1.1 Global structure of the HCS

The hospital communication system provides a communication infrastructure
which is used by medical and administrative subsystems for exchanging infor-
mation such as patient data, observation results, medical images and accounting
data. The system consists of a large number of interacting subsystems, among
them the principal business application, the hospital’s central laboratory, an ob-
servations processing system, the operations documentation system and a great
variety of other subsystems associated with different departments and institu-
tions.

Due to historical reasons, these decentralised information processing systems are
mostly incompatible. In the past, communication between subsystems was based
on proprietary one-to-one relations. Integration efforts have led to the use of stan-
dardised message formats (e.g. the Health Level 7 message standard developed
for the healthcare sector [194, 195]) and the deployment of a central communica-
tion server. In Erlangen, the communication server e∗Gate (formerly DataGate)
from SeeBeyond Inc. (formerly STC Inc.) is used, whose tasks are the reception,
checking, processing, routing and forwarding of (standardised) messages between
medical subsystems. Among the subsystems in the Erlangen HCS, the patient
management system, a SAP R/3 IS-H product, is the central business applica-
tion. Beside the patient management system, there is a second large data base,
called the communication data base, which mirrors parts of the patient manage-
ment system and contains additional medical information. The communication
database serves as a fast data buffer which, from the point of view of the subsys-
tems, provides data access about 10 times faster than the patient management
system itself, and as a side effect also significantly reduces the load of the latter.

Here we only present a rudimentary model of the Erlangen hospital communica-
tion system which during our project has been extended and refined in various
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Figure 10.1: The hospital communication system model

directions. Fig. 10.1 shows the basic structure of the model. It consists of the
communication server (CS), the communication data base (CDB) and two medi-
cal subsystems, the main laboratory system (MLS) and an observations process-
ing system (OPS). Since almost all of the subsystems’ demands for data can be
satisfied by the CDB, we do not model the patient management system (PMS)
in the model presented here (therefore the PMS is drawn grey in the figure).
There is an “artificial” subsystem, representing an adjustable background load
(BL), caused by those subsystems which are not explicitly modelled (BL actually
consists of two subprocesses, a source and a sink which communicate with CS via
actions load in and load out).

The top-level specification, using the stochastic process algebra language intro-
duced in Sec. 3.7, is as follows:

hide request,response in

(MLS ||| OPS)

|[request,response]|

(

hide query,answer in

(

hide load_in,load_out in

BL |[load_in,load_out]| CS

)

|[query,answer]| CDB

)
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We mention that the synchronisation discipline for timed actions (where the prod-
uct of rates is implemented by the tools TIPPtool and Im-Cat) is irrelevant
for this case study, since all synchronisation is carried out over immediate actions.

10.1.2 Specification of components

We now describe a typical communication sequence in the system: The MLS,
after some internal processing, needs a patient data record from the CDB. It
sends a request message to the CS (action request) which is forwarded to the
CDB (action query). After completing the data base lookup, the CDB generates
an answer message which is sent back to the CS (action answer) and from there
on to the MLS (action response). Queries initiated by the OPS subsystem do not
request patient data records, they request observation results instead. Apart from
that, they follow the same basic pattern as queries initiated by MLS. However,
since the answer to a request for observations may consist of a number of different
observations, an OPS query does not result in a single answer message, but in
a random number of answer messages. Measurements on the real system have
shown that this number follows a geometric distribution.

Subsystems MLS and OPS communicate with CS via actions request and response.
In order for these communications to be distinguishable, we use value passing and
value matching, as in LOTOS [37, 201], which is supported by the input language
of TIPPtool [165]. All actions associated with communications initiated by
subsystem MLS carry the value 0, whereas those originating from OPS carry the
value 1. The following part of the specification illustrates how value passing and
value matching are employed between MLS and CS. Note that MLS is capable
of receiving a response at any time. This is used to ensure that CS may engage
in response even though MLS has just decided to induce the next request!0

(equivalently a sink could be used instead, that runs independently in parallel
and just consumes response!0 actions). Concerning the rate of timed actions
such as time mls or time cs, the basic time unit is 1 millisecond.

process MLS := (time_mls, lambda); MLS2 [] response!0; MLS

endproc

process MLS2 := request!0; MLS [] response!0; MLS2

endproc

The following portion of code specifies the behaviour of subsystem CS. In subpro-
cess CStodo a query is submitted to the CDB. Depending on the value x received
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through action request, this corresponds to a query for a patient data record
or for observation results. In subprocess CStransmit a response is sent back to
either MLS or OPS, again depending on the value x.

process CS := request?x:int; (time_cs, 0.02); CStodo(x) []

answer?x:int; (time_cs, 0.02); CStransmit(x) []

load_in; (time_cs, 0.02); load_out; CS

endproc

process CStodo(x) := query!x; CS

endproc

process CStransmit(x) := response!x; CS

endproc

Similar value passing mechanisms are employed for the communication between
the CS and the CDB. In order to perform the correct type of data base lookup,
the CDB has to recall the initiator of each query. To this end, queries are stored in
front of the CDB in a queue with multiple job classes. i.e. for each queue position
the type of the query is stored. Again, several equivalent ways are possible to
represent this data type inside a TIPP specification. The following fragment of
code illustrates the concept of a queue with three waiting positions and multiple
job classes.

process CDB(f,p1,p2,p3) :=

[f=0] -> (query?x:int; CDB(1,x,0,0)) []

[f=1] -> (query?x:int; CDB(2,p1,x,0) []

Lookup(1,p1,0,0)) []

[f=2] -> (query?x:int; CDB(3,p1,p2,x) []

Lookup(2,p1,p2,0)) []

[f=3] -> (query?x:int; full; CDB(3,p1,p2,p3) []

Lookup(3,p1,p2,p3))

endproc

Process CDB carries four parameters: Parameter f denotes the current queue
population. The remaining three parameters are used to store the class of the
job in the first, second and third queue position. The notation “[...]->” specifies
a conditional behaviour that is only possible if the condition inside the brackets
is true. Action query sets the next free position with the value passed from the
CS and increases parameter f. (If a query action meets a full queue, i.e. in the
case where f=3, an exception is raised by action full). The converse operation,
sending (one or several) answer(s) back to the CS and thereafter removing a job
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from the queue, is not shown in this fragment. It is part of the Lookup process
and its subprocesses which can be entered under the condition that the CDB
queue is not empty. If the Lookup process is processing a query originating
from the OPS, it generates a geometrically distributed number of answers. This
geometric distribution is modelled within subprocess Count (see below) by a loop
with a non-zero probability of reentry after an answer has been generated. The
probability of reentry depends on the ratio of the rates of the two p-actions and is
given by 80

80+20
= 4

5
, from which it follows that the mean number of answers sent

is five. Note that the rates of the p-actions are chosen in such a way that they
are more than two orders of magnitude larger than those of the time-consuming
actions in order to approximate a probabilistic choice.

process Count(f,p1,p2,p3) :=

(p,80); Send(f,p1,p2,p3) []

(p,20); CDB(f-1,p2,p3,0)

endproc

process Send(f,p1,p2,p3) :=

answer!2; Count(f,p1,p2,p3) []

[f=1] -> (query?x:int; Send(2,p1,x,0) []

[f=2] -> (query?x:int; Send(3,p1,p2,x) []

[f=3] -> (query?x:int; full ; Send(3,p1,p2,p3)

endproc

10.1.3 State space construction

We used our tool Im-Cat to construct the MTBDD representation of the HCS
model in a compositional fashion. We first generated the elementary transi-
tion systems for the subsystems CS, BL, CDB and (MLS ||| OPS) with TIPP-

tool and encoded them (in that order) as MTBDDs. Afterwards, we employed
MTBDD-based parallel composition in order to generate the overall system.
There are several alternative ways for constructing (and analysing) a compo-
sitional model such as our HCS model, as illustrated in Fig. 10.2: One may con-
struct the overall model, repeatedly using MTBDD-based parallel composition,
and afterwards hide all actions in one step, as indicated by the left branch from
the start. Alternatively, actions may be hidden as soon as they are not needed
any more for further synchronisation, i.e. hiding may be performed directly after
every parallel composition step, as indicated by the right branch from the start.
The numbers inside the nodes of Fig. 10.2 denote the size of the MTBDDs when
building the HCS model. Since Im-Cat uses two separate MTBDDs, one for
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Figure 10.2: Alternative ways for constructing and analysing the compositional
HCS model (cf. text)

representing Markovian transitions and one for representing immediate transi-
tions, two figures are given in each node. The case where MTBDD-based hiding
of immediate actions was employed immediately after every construction step is
shown in full detail in Fig. 10.3, which gives the number of MTBDD vertices
at every stage of the construction (again, two figures are given at every stage).
The resulting MTBDDs are the same, no matter whether hiding is delayed or
not, but by following the second alternative, the intermediate MTBDDs are kept
slightly smaller (in the HCS case by up to 13%). Note that hiding of actions that
are no longer needed for synchronisation is important; in particular, the hiding
of immediate actions is a prerequisite for the elimination of vanishing states and
construction of a CTMC.

There are different ways of how to proceed from this point:

1. Following the left branch from the middle of Fig. 10.2, one may first per-
form MTBDD-based reachability analysis. The number of reachable states
for the HCS model turned out to be 4951, and the number of transitions
is 11285. However, reducing the transition system to its reachable part
increases the MTBDD sizes to 1709 vertices for Markovian transitions and
645 vertices for immediate transitions. The next step is the elimination
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Figure 10.3: Compositional MTBDD construction for the hospital communica-
tion system

of vanishing states. Afterwards there are 2644 reachable states and 10178
transitions left, the MTBDD for the Markovian transitions has 5743 ver-
tices, and the MTBDD for the immediate transitions is empty.

2. Alternatively, following the right branch from the middle of Fig. 10.2, one
may delay reachability analysis and first eliminate vanishing states (which
yields an intermediate MTBDD with 5259 vertices), but the final result is
the same as in the first alternative.

In summary, one can say that compositional model construction yields reason-
ably compact MTBDDs (cf. Fig. 10.3), but that compactness greatly suffers from
reachability analysis and elimination of vanishing states. It should also be em-
phasised that compositional model construction is essential when working with
MTBDDs: Taking the overall transition system of the HCS model as generated
by TIPPtool (comprising 4951 states and 11285 transitions), and encoding it
symbolically, yields an MTBDD with 21240 vertices for representing Markovian
transitions, and an MTBDD with 6932 vertices for representing immediate tran-
sitions.

Once the full model has been generated and the vanishing states have been elim-
inated, MTBDD-based steady-state analysis can be performed, in order to de-
termine the steady-state probabilities, from which various performance measures
may be calculated in the usual way. Starting from the MTBDD which encodes
the reachable transitions of the HCS model, we employed the power method (as
indicated by the dashed arrow in Fig. 10.2), whose iteration matrix is represented
by an MTBDD with 6132 vertices that was constructed in 6 seconds. The solu-
tion was found after iteration step 840, and the mean CPU time consumption per
iteration step was 2.6 seconds, which is, of course, quite slow for solving a system
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with a mere 2644 states. As a second alternative, we also performed steady-state
analysis on the potential state space, i.e. without ever performing reachability
analysis (as indicated by the dotted arrow in Fig. 10.2). In this case, the iter-
ation matrix for the power method was represented by an MTBDD with 5905
vertices, whose construction took 7 seconds. The solution was found after itera-
tion step 460, and the mean CPU time per iteration step was 0.86 seconds. So,
working with the potential state space yielded better performance for the HCS
model (although still not comparable to state-of-the-art sparse linear solvers1),
and this reflects our general experience, i.e. that reachability analysis destroys
regularity, thereby increasing the size of the MTBDD representation and slowing
down the computation.

It is possible to construct an aggregated state space for the HCS model in a
compositional fashion, by applying stepwise aggregation with respect to bisimu-
lation equivalence. However, since our MTBDD-tool Im-Cat does not support
bisimulation algorithms at this stage, the following results were obtained with
the help of TIPPtool: As shown in Fig. 10.4, the state space of CDB could
be aggregated from 80 to 73 states, and the parallel composition of CS and BL
could be reduced from 22 to 20 states, after abstraction of load in and load out.
Combining these intermediate state spaces and hiding query as well as answer

we obtained 1132 states which, again, were aggregated to 764 states. Finally, we
obtained 3056 states for the overall system specification which could be aggre-
gated to an equivalent specification with 2294 states, instead of the original 4951
states2. All aggregations were based on the notion of weak Markovian bisimula-
tion.

10.1.4 Performance evaluation

We calculated a variety of performance measures for this model. There are no
queues in front of process CS, i.e. subsystems wishing to communicate via the CS
may have to wait until the CS is ready for synchronisation. This waiting time
can become quite significant if the CS is very heavily loaded. For instance, exper-
iments revealed that under heavy background load the subsystem MLS spends
up to 11% of total time waiting for the CS (cf. Fig. 10.5, left). In this as in other
experiments, the offered background load was increased exponentially, starting
with an initial value load0 = 1 request/sec which was doubled in every step.

1Using TIPPtool, building the generator matrix and solving the linear system took about
10 seconds (using the Gauss-Seidel iteration scheme).

2This very last aggregation step took more than 15 hours, indicating that the implementation
of TIPPtool’s bisimulation algorithms needs to be improved. Recently, the interface between
TIPPtool and aldebaran [122] has been successfully used to circumvent this bottleneck and
to compositionally analyse specifications with more than 107 states [174].
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Figure 10.4: Compositional aggregation of the state space of the hospital com-
munication system

This raises the question of the utilisation of CS which of course depends on the
offered load. The traffic generated by subsystems MLS and OPS is constant,
namely 1 request/sec for MLS and 0.25 requests/sec for OPS. The offered back-
ground load, as mentioned, is increased dramatically from load0 = 1 request/sec
to 1024 requests/sec. Fig. 10.5 (right) shows the proportion of time the CS is
idle, depending on the offered background load. It should be noted that due to
the average message processing time of 50 ms/message, a maximum of 20 mes-
sages/sec can be carried by the CS, no matter how much background load is
offered.

We now briefly discuss the size of the queue in front of the CDB and its implica-
tions. In the real system, an almost unlimited number of queries can be queued
in front of the CDB, the only limitation being the size of physical memory of
the machine. In order to avoid state space explosion, we can only model very
small queue sizes. The diagram in Fig. 10.6 (left) shows that for a queue size of
3 waiting positions the probability of the queue being full is between 5.9% and
8.3%, depending on the offered background load.

The rate at which (MLS and OPS) queries get lost is 0.077 to 0.097 queries/sec,
see Fig. 10.6 (right). This corresponds to a query loss probability of 6.3% (low
background load) to 8.6% (high background load). In real life such high loss
probabilities would of course not be acceptable. On the other hand, we observe
that even for modelling a queue size of 3 one already obtains quite reasonable
estimates for the performance measures.

The parameters used in the model were derived from measurements on the real
system. We found that exponential assumptions were justified for the request
inter-arrival times and even for the message processing time in the CS. The data
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base lookup times in the CDB were modelled as Erlang-2 distributions (as a
sequence of two exponential phases), with different mean, depending on whether
a query originated from the MLS or OPS subsystem.

As mentioned above, the model described in this section was our first rudimen-
tary model, which we extended in various directions. For instance, we explicitly
modelled the PMS and the fact that queries which cannot be satisfied by the
CDB have to be forwarded to the PMS (see Fig. 10.1, where it is indicated that
synchronisation between CDB and PMS is performed via actions ask and put).
We conducted experiments with varying CDB “hit rates”, i.e. varying probability
of forwarding a query form the CDB to the PMS. We also studied the question
whether it is beneficial to enable parallel queries to the CDB by employing a
separate “query” process for each subsystem generating queries. In some of these
investigations we dealt with state space sizes of several hundreds of thousands of
states.

10.1.5 Verification of performability properties

In this section, some performability properties, which are of interest for the HCS
model, are specified and checked with the help of the model checker ETMCC.

The HCS model was generated by TIPPtool from a SPA specification which
contains both Markovian and immediate actions. Since the model checker ETMCC

cannot deal with immediate transitions yet, we had to modify the specification,
replacing immediate actions by “fast” Markovian actions, i.e. Markovian actions
with large rate. As a consequence, the state space became larger; it now has 5548
states and 18584 transitions compared to the previous 4951 states and 11285 tran-
sitions3. Value passing, which had been employed in the original specification,
and which TIPPtool allows only for immediate transitions, could therefore not
be used any more. Instead, the values were coded explicitly into the action names,
e.g. we used request 1 instead of request!1. At the time when we conducted
this study, ETMCC only supported CSL model checking (as opposed to aCSL)4.
Therefore the aCSL properties given below had to be translated to equivalent CSL
properties. The state labelling information, specifying the atomic propositions
which hold in a given state, was generated from TIPPtool’s state-description
file.

3The larger state space for the purely Markovian model is due to the fact that TIPP-

tool implements a maximal progress semantics, i.e. does not generate Markovian transitions
emanating from states with outgoing internal immediate transitions.

4An aCSL extension of ETMCC has recently been developed [44].
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For each of the properties to be checked, a description in plain English, its aCSL
formulation and some explanation is given below. We specify some purely func-
tional requirements, as well as some performability requirements which the system
should satisfy. For a set of actions A ⊆ Act we use A to denote its complement,
i.e. Act \ A. We omit brackets for singleton sets. We use the following sets of
actions: Request = {request 0, request 1, . . .}, Query = {query 0, query 1, . . .},
etc.. We checked the following properties:

Φ1: Whenever a request occurs, no further request must be accepted by the
communication server before the query (corresponding to the request) oc-
curs.

[request x] ∀ (Request✸query xtt)

This property was found to hold for all states of the HCS model.

Φ2: With probability at least 0.95, a request will cause the corresponding query
within 70 ms.

[request x] P≥0.95

(

query x✸
<70
query xtt

)

This property was found to hold for all states of the HCS model.

Φ3: Once answer 1 (i.e. an answer to a query from the OPS) has occurred, with
probability at least 0.8 ·0.9 = 0.72 another answer 1 will occur within 55 ms
(note that the probability of generating another answer 1 is 0.8, according
to the geometric distribution).

[answer 1] P≥0.72

(

answer 1✸
<55
answer 1tt

)

This property was found not to hold for all states of the HCS model, since
there are situations where the generation of another answer 1 is slower than
required by property Φ3.

Φ4: In steady state, the probability of the CDB queue being empty is at least
40 percent.

S≥0.4 (Φempty)

where Φempty = ¬∃ (Query✸Answertt), i.e. the empty queue is characterised
by the fact that it is not possible to observe an answer without first observ-
ing a query. This property was found to hold for the HCS model. Since this
model consists of a single strongly connected component, the initial state
is irrelevant for steady-state properties. The actual steady-state property
of Φempty was calculated as 49.46 percent.

Φ5: In steady state, the probability of the CDB queue containing three queries
(and thus being full) is less than 8 percent.

S<0.08 (Φfull)
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property verification runtime
(in seconds)

Φ1 0.02

Φ2 43.03

Φ3 3.41

Φ4 4.47

Φ5 4.45

Φ6 4.41

Table 10.1: Verification runtimes for the HCS model

where Φfull = ∃ (Query✸Answer(∃ (Query✸Answer(∃ (Query✸Answer))))), i.e. the
full queue is characterised by the fact that it is possible to observer three
answers without ever observing a query. This property was found to hold
for the HCS model. The actual steady-state property of Φfull was found to
be 7.38 percent, which agrees with the results presented in Sec. 10.1.45.

Φ6: In steady state, the probability of OPS not being able to submit a request
because CS is busy is smaller than 1 percent.

S<0.01 (ΦOPS ready ∧ ΦCS busy)

where ΦOPS ready = ¬〈time ops〉tt and ΦCS busy = ¬〈Request〉tt. This
property was found not to hold for the HCS model. The steady-state prop-
erty for ΦOPS ready ∧ ΦCS busy was found to be 2.55 percent.

The runtimes for checking the above properties with the help of ETMCC are
given in Table 10.1. Checking property Φ2, involving the time-bounded until
operator, turns out to be by far the most time consuming. Property Φ3 also
involves a time-bounded until, but can be checked relatively quickly, since the
paths which functionally satisfy the property are very short6. Property Φ1 which
is purely functional, is checked extremely fast, while the three steady-state prop-
erties Φ4, Φ5 and Φ6 all require the same moderate amount of CPU time.

5The background load parameter used during model checking was 32 request/sec, which
corresponds to the point ld(load/load0) = 5 in Fig. 10.6.

6This is not obvious but requires quite a detailed analysis of the state space.
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Figure 10.7: A cyclic server polling system with 2 stations

10.2 Data networks with polling

Polling mechanisms play an important role in the area of data networks and
multiprocessor systems with shared communication medium. In general, polling
is used to operate multi-access channels, over which several users (terminals,
workstations, processors, mobile stations, . . . ) wish to transmit data packets. As
an early example for polling we mention multidrop telephone lines, where one
primary station polls a set of secondary stations in some pre-specified order. In
LANs and MANs, token passing mechanisms have evolved, which can be viewed
as an improved version of polling where the communication overhead for polling is
avoided by directly passing a token between stations. In today’s cellular networks,
polling also plays an important role. The currently active mobile stations, for
instance, may be polled in a cyclic fashion by the base station.

10.2.1 Description of the polling system

In this section, we consider a cyclic server polling system consisting of d stations
and a server, modelled as a GSPN7, since it is taken from [199]. For d = 2,
i.e. a two-station polling system, the GSPN model is depicted in Fig. 10.7. For
a d-station polling system, the Petri net is extended in the obvious way. Place
idlei represents the condition that station i is idle, and place busyi represents
the condition that station i has generated a request. The server visits the sta-

7We refer to [1, 2] for details on the semantics of GSPNs. In particular, immediate transitions
(drawn black in the figure) lead to so-called vanishing markings in the reachability graph.
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tions in a cyclic fashion. After polling station i (place polli) the server serves
station i (place servei), and then proceeds to poll the next station. The times
for generating a message, for polling a station and for serving a request are all
distributed exponentially with parameters λi, γi and µi, respectively. In case the
server finds station i idle, the service time is zero which is modelled by the imme-
diate transition skipi and the inhibitor arc from place busyi to transition skipi.
In this study we consider polling systems with d = 3, 5, 7 and 10 stations (like
in [199]). In addition, we consider the cases d = 15 and d = 20. The polling
systems are assumed to be symmetric, i.e. all λi have the same numerical values,
and the same is true for all γi = 200 and all µi = 1. For fixed d, we choose
λi = µi/d as the default value for λi. In Sec. 10.2.3, the parameter λi is varied
in a performance evaluation experiment.

10.2.2 State space construction

The MTBDD representation of the overall polling model was constructed com-
positionally from d+1 elementary transition systems8, one for the server and one
for each station, which were encoded as individual MTBDDs Server and Stationi

(i = 1, . . . , d). The order in which the component MTBDDs are generated turned
out to be of great importance concerning the resulting MTBDD size, since it de-
termines the ordering of the MTBDD variables. In particular, we considered two
orderings:

(1) The MTBDD for the server is generated first, followed by the MTBDDs for
the stations. This leads to an overall MTBDD where the server is closest
to the root.

(2) The d MTBDDs for the stations are generated first, followed by the server.
This leads to an overall MTBDD where the server is closest to the leaf
vertices.

In both cases, the MTBDD for the overall system was then computed by ap-
plying MTBDD-based parallel composition d times. In the case of ordering (1),
composition was performed according to the scheme

(. . . ((Server|[S1]|Station1)|[S2]|Station2) . . .)|[Sd]|Stationd

8The elementary transition systems were generated by TIPPtool. We used an equiva-
lent model without immediate transitions, since our model checker ETMCC, to be used in
Sec. 10.2.4, cannot deal with immediate transitions yet.
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d reach. states transitions MTBDD size MTBDD size MTBDD size
compositional monolithic

before reachability after reachability

3 36 84 169 203 351
5 240 800 387 563 1,888
7 1,344 5,824 624 1,087 9,056
10 15,360 89,600 1,163 2,459 69,580
15 737,280 6.144e+6 2,191 6,317 –
20 3.14573e+07 3.40787e+08 3,704 13,135 –

Table 10.2: Statistics for the polling system, ordering (1)

d MTBDD size MTBDD size
compositional

before reachability after reachability

3 163 200
5 386 623
7 658 1,734
10 1,281 10,598
15 2,641 297,942
20 4,632 9,507,435

Table 10.3: Statistics for the polling system, ordering (2)

with appropriate synchronisation sets Si, i.e. starting with MTBDD Server, the
overall system was obtained by adding the stations one by one. In the case of
ordering (2), composition was performed according to

(Station1||| . . . |||Stationd)|[S]|Server

i.e. an MTBDD Station representing all stations was generated first, and subse-
quently composed in parallel with Server9.

In Tab. 10.2, the sizes of the resulting MTBDDs are given for different values of
d, provided that ordering (1) is employed. The first column of the table contains
the number of stations d, the 2nd (3rd) column contains the number of reachable
states (the number of reachable transitions), and the remaining columns give
the number of vertices of the corresponding MTBDDs. The MTBDD generated
compositionally according to the above scheme represents all transitions which
are possible within the product of the d + 1 components’ state spaces. As can be
observed from the 5th column of Tab. 10.2, determining the set of reachable states
and “deleting” the transitions which originate in unreachable states considerably
increases the size of the MTBDDs (we had observed the same phenomenon for
the hospital communication system in Sec. 10.1). Therefore, in general, it is
recommended to work with MTBDDs which represent the “potential” rather than
the actual state space. The last column of Tab. 10.2 shows the number of MTBDD
vertices which one would obtain if one took the monolithic transition system of

9The symbol ||| abbreviates |[∅]|, i.e. denotes parallel composition without synchronisation.
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the overall model, i.e. the overall model as generated by TIPPtool which does
not contain unreachable states, and directly encoded it as an MTBDD. Clearly,
this method cannot be recommended: Apart from the fact that the transition
system of the overall model may not be available due to its size, the growth of the
MTBDD sizes is prohibitive. As expected from Thm. 5.1.4, the figures in column
4 grow linearly, whereas the ones in column 6 grow exponentially. Tab. 10.2
shows that even for an extremely large state space, the MTBDD representation
can be very compact, if it is constructed in a compositional fashion. The ”–
” entries in the last column denote that the numbers could not be determined
because the monolithic transition system of the overall model was never explicitly
constructed due to excessive runtime and memory requirements.

Tab. 10.3 contains the sizes of the MTBDDs which were constructed composi-
tionally according to ordering (2). This ordering obviously yields much larger
MTBDDs than ordering (1). In particular, it is interesting to observe that, while
the figures in the column “before reachability” are still close to the corresponding
ones in Tab. 10.2 (only up to 1.25 times larger), the figures in the column “after
reachability” are dramatically worse for ordering (2) (up to 724 times larger).
Unfortunately, it is by no means obvious a priori which of the two component
orderings yields smaller MTBDDs.

10.2.3 Performance evaluation

In this section, we briefly present the calculation of some typical performance
measures for the polling system. The probability of a particular station being idle
is of course strongly dependent on the rate λi at which messages are generated.
The higher that rate, the shorter the idle times will be. This is illustrated by the
graphs shown in Fig. 10.8 (left) for two instances of our polling model, namely
for d = 7 stations (solid line) and d = 10 stations (dotted line). In the case d = 7,
λi is varied between 0.1 and 1.5, while in the case d = 10, λi is varied between
0.07 and 1.05. The graphs on the right of the figure depict the probability of a
particular station having generated a message and being waiting for the server.
The waiting probability increases with increasing message generation rate, since
the generation of more messages causes more work to be done by the server,
which in turn increases the time for performing one service cycle.

Note that for carrying out an experiment with varying parameters, TIPPtool

only needs to explore the state space once, which took about 7 seconds for the
d = 7 stations case and about 95 seconds for the d = 10 stations case. For each
value of λi, the generation of the Gauss-Seidel iteration matrix, the calculation of
the steady-state probabilities and the computation of the measures took between
6 and 15 seconds for the d = 7 stations case, and between 55 seconds and 27
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Figure 10.8: Left: probability of station i being idle. Right: probability of station
i being waiting for the server.

minutes (!) for the d = 10 stations case. This large variation of the solution
times is mostly due to the convergence behaviour of the Gauss-Seidel method,
which depends heavily on the actual value of λi. As one specific instance, for
d = 7 and λi = 1/7, 105 Gauss-Seidel iterations were required, and one iteration
took 0.0013 seconds at the average.

As a comparison, for the d = 7 station model, λi = 1/7 and working on the
potential state space, the MTBDD representing the power iteration matrix, as
generated by our tool Im-Cat, has 806 vertices and takes 0.8 seconds to construct.
One iteration of the power scheme takes 0.122 seconds, but it takes a ridiculous
8070 power iterations to converge. The MTBDD representing the Jacobi iteration
matrix for the same system is larger, it has 1639 vertices and takes 18.94 second
to construct, but one Jacobi iteration takes only 0.101 seconds and convergence
is reached after 240 iterations. We also performed MTBDD-based steady-state
analysis for the d = 10 station model: The MTBDD representing the Jacobi
iteration matrix now has 4073 vertices but takes 4436 second to construct (!).
However, one Jacobi iteration takes only 0.181 seconds.

10.2.4 Verification of performability properties

In this section, we describe the model checking of some performability properties
of the polling system. In the context of GSPNs, it is natural to identify the set
of places that possess a token in a given marking — i.e. a state of the CTMC —
with the set of atomic propositions valid in this state. Therefore, for the polling
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system discussed in this section, we decided not to employ action-based model
checking, but state-based model checking, where properties are expressed in the
continuous stochastic logic CSL [21], a stochastic variant of CTL. Note that,
since CSL properties are based on states labelled by atomic propositions (and
not on transitions labelled by action names), its until-operator U and (derived)
eventually-operator ✸ are not indexed by sets of actions. Having said this, even
though we did not formally introduce CSL, the properties given below should be
understandable.

Based on the set of atomic propositions AP =
⋃d

i=1{idlei, busyi, servei, polli}, we
checked the following properties on the polling system:

Φ1: The server never polls two stations at the same time.

¬(polli ∧ pollj)

where i 6= j.

Φ2: With probability ⊲⊳ p, station i will be served before station j, where ⊲⊳∈
{≤, <,≥, >} and p ∈]0, 1[.

P⊲⊳p (¬servej U servei)

The execution time for model checking Φ2 is dependent on the instantiation
of i and j, and the verification result depends, of course, on the choice of
⊲⊳ and p.

Φ3: Once station i has become busy, it will eventually be polled, i.e. no station
will be starved.

busyi ⇒ P≥1 (✸polli)

Φ4: Once station i has become busy, with probability ⊲⊳ p it will be polled
within t time units (we let t = 1.5).

busyi ⇒ P⊲⊳p

(

✸
≤tpolli

)

The remaining two properties are steady-state formulas:

Φ5: In steady state, the probability of station i being waiting for the server is
⊲⊳ p.

S⊲⊳p (busyi ∧ ¬servei)

Φ6: In steady state, the probability of station i being idle is ⊲⊳ p.

S⊲⊳p (idlei)
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Φ1 = ¬(polli ∧ pollj) Φ2 = P⊲⊳p (¬servej U servei) Φ3 = busyi ⇒ P≥1 (✸polli)
d # states time (in sec) time (in sec) time (in sec)

3 36 0.002 0.031 0.005
5 240 0.002 0.171 0.009
7 1344 0.005 1.220 0.011
10 15360 0.037 16.14 0.080

Φ4 = busyi ⇒ P⊲⊳p

(

✸
≤1.5polli

)

Φ5 = S⊲⊳p (busyi ∧ ¬servei) Φ6 = S⊲⊳p (idlei)
numerical integration transient analysis

d # iter. time (in sec) time (in sec) # iter. time (in sec) # iter. time (in sec)

3 8 2.308 0.068 39 0.044 39 0.038
5 12 30.92 0.233 61 0.103 61 0.102
7 14 308.5 1.430 80 0.677 80 0.658
10 18 7090 17.67 107 11.28 107 11.29

Table 10.4: Verification runtimes for checking CSL-formulas on the polling system

The execution times for checking these properties with our tool ETMCC are
given in Tab. 10.4. All path-properties were checked with precision ε = 10−6,
and the steady-state properties were checked with precision ε = 10−8. As men-
tioned before, the tool ETMCC implements two different algorithms for checking
properties of type time-bounded until (such as property Φ4): One is an itera-
tive numerical integration algorithm which works on discretised representations
of distribution functions10, while the other is transient analysis (following the
well-known uniformisation method) of a Markov chain which has been modified
according to the particular formula at hand [19]. In general, as in the particu-
lar case of property Φ4, the latter method is far superior, both with respect to
numerical accuracy and to execution time [173].

10.3 Multiprocessor mainframe with software fail-

ures

10.3.1 System description

In this section, we consider a multiprocessor mainframe which was first intro-
duced in [190] and has since then served as a standard stochastic process algebra
example, see e.g. [166, 99]. Here we only briefly repeat the main features of the
model.

10For checking property Φ4, the number of interpolation points for numerical integration was
set to “only” 64.
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Figure 10.9: Mainframe model structure

The multiprocessor mainframe serves two purposes: It has to process database
transactions submitted by users, and it provides computing capacity to program-
mers maintaining the database. The system is subject to software failures which
are modelled as special jobs. On the top level, the system is composed of two
processes (cf. Fig. 10.9).

System := Load |[putUserJob, putProgJob, fail|] Machine

Process Load represents the system load caused by the database users, the pro-
grammers and the failures. The mainframe itself is modelled by the Machine
process.

The three different system load components are modelled as Markov modulated
Poisson processes, see [190]. The intensity of the load changes between different
levels. To realize a synchronous change of load level, a synchronising action c is
used.

Load := ProgLoad |[c]| UserLoad |[c]| FailLoad

The Machine component consists of two finite queues (Q and R), a failure han-
dling component (F ) and four identical processors. The queues buffer incoming
jobs. They are controlled by a priority mechanism to ensure that programmer
jobs have the lowest priority, while failures have the highest priority. The priority
mechanism is realised by appropriate synchronisation of the queue processes. For
instance, process Q can only deliver a job to a processor if queue R is empty and
no failure is present. Furthermore, the insertion of new jobs into the system is
prohibited once a failure has occurred, until the system is repaired.

Each of the four processors executes user or programmer jobs waiting in the
respective queues, unless a failure occurs. As failures have preemptive priority
over the other two job classes, all processors stop working once action fail has
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occurred and then wait until the system will recover (via action repair). The
actual repair is controlled by the failure handling component.

10.3.2 State space construction

In this section, we consider a multiprocessor mainframe model with 40 (10) pro-
grammer (user) buffer places (the number of buffer places of the finite queues
Q and R is the major factor influencing the size of the state space). With this
choice, the model has 110946 reachable states and 761989 transitions. Note that
this is a model where all transitions are Markovian, i.e. there are no immediate
transitions.

We generated the MTBDD representing the overall multiprocessor mainframe
system from 10 elementary components in a compositional fashion with the help
of our tool Im-Cat. As a preparation step, we used TIPPtool to generate
the transition systems for the three load components (UserLoad, ProgLoad and
FailLoad), for the two queues (Q and R), for the failure handling component (F ),
and for the four processors (P1, P2, P3 and P4). These 10 transition systems were
then encoded as MTBDDs (in that order). Afterwards, MTBDD-based parallel
composition was applied in a step by step fashion, as depicted in Fig. 10.10.
That figure gives the size of the MTBDDs at each step of the construction. In
contrast to Fig. 10.3, only one number is given at each stage, since the mainframe
model only contains Markovian transitions and thus the MTBDD representing
immediate transitions is always zero.

The resulting MTBDD representing the overall multiprocessor mainframe system
has 985 vertices, which number is increased to 1206 vertices after reachability
analysis (MTBDD-based reachability analysis took less than one second). Obvi-
ously, the MTBDD is very compact, considering that it encodes 110946 reachable
states and 761989 transitions.

We tried to calculate the steady-state probabilities for this model on the basis of
its reachable state space. The power iteration matrix has 2797 MTBDD vertices
but took 7.5 hours to generate. Iteration was slowed down severely by swapping
activities, such that after 16.5 hours, when not even 10 iterations had been per-
formed, the experiment was aborted. Next, we tried the power method on the
potential state space, which has more than 33 million states. The iteration matrix
now has 21153 MTBDD vertices and took almost 12 hours to generate. However,
in this case the iteration converged after only 10 steps, and one iteration took
only 30.63 seconds.
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Figure 10.10: Compositional MTBDD construction for the multiprocessor main-
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We also wish to remind the reader of the results presented earlier in Sec. 8.1.1,
where we considered a smaller instance of the multiprocessor mainframe model
featuring 2640 states and 12295 transitions. There we had used a space-inefficient
monolithic MTBDD encoding of the transition system, but had found that the
construction of the iteration matrix and the actual iteration had worked reason-
ably fast.

In summary, this example shows how unpredictably MTBDD-based numerical
analysis may behave. For instance, it is contrary to our general experience that
the power iteration matrix based on the actual state space is smaller than the one
based on the potential state space. Furthermore, it is astonishing that iteration
with the matrix of 2797 vertices is so slow, while iteration with the matrix of
21153 vertices is relatively fast.

10.3.3 Performance evaluation

We do not discuss the calculation of performance results for the multiproces-
sor mainframe model here, since a rather comprehensive set of such results has
already been presented before, and since our main concern is MTBDD-based
representation. The interested reader is referred to [190], where the derivation
of several performance measures, both of steady-state and transient type, is dis-
cussed in detail.
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10.3.4 Verification of performability properties

This section contains some example properties which are of interest for the mul-
tiprocessor mainframe model. For each property, a description in plain English,
its aCSL formulation and some explanation are given. We first introduce some
purely functional requirements to ensure that the priority mechanism is properly
realised by the model. Then we check some performance and reliability require-
ments which the system should satisfy. As before, for A ⊆ Act we let A denote
Act \ A, and we omit brackets for singleton sets. We use the following sets of
actions: Get := {getUserJob, getProgJob}, Put := {putUserJob, putProgJob},
Fin := {finishUserJob, finishProgJob} and FailRep := {fail, repair}.

Φ1: If there are user jobs waiting, the processors will not start programmer jobs.

ΦUserJobWaiting ⇒ ¬〈getProgJob〉 tt

where ΦUserJobWaiting is defined by ∃ (putUserJob✸getUserJob tt), characterising
at least one user job waiting in the queue.

Φ2: Whenever a failure occurs, no jobs can be inserted into the queues until the
system is repaired.

[fail] ∀ (Put✸repairtt)

Φ3: Whenever a failure occurs, the processors will be blocked until the system
is repaired.

[fail] ∀ (Get∪F in✸repairtt)

Φ4: After a repair, both queues are empty.

[repair] ( ¬ ΦUserJobWaiting ∧ ¬ ΦProgJobWaiting )

where ΦProgJobWaiting characterises at least one waiting programming job,
defined in a similar way as ΦUserJobWaiting. This is an example of a property
which is not true, since a failure does not cause the queues to be flushed.

Φ5: In steady state, the probability of low priority programming jobs having to
wait because of user jobs being served is smaller than 0.01.

S<0.01 (〈finishUserJob〉tt ∧ ΦProgJobWaiting)

Φ6: At least two processors are occupied by user jobs.

〈finishUserJob〉 〈finishUserJob〉 tt
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states (original) 3690 13530 110946
(compressed) 720 2640 21648

property verification runtimes (in seconds)

Φ1 0.012 0.037 0.268

Φ2 0.008 0.049 0.864

Φ3 0.008 0.039 0.319

Φ4 0.003 0.005 0.036

Φ5 0.642 2.371 18.750

Φ6 0.001 0.002 0.014

Φ7 0.558 2.122 18.814

Φ9 0.554 2.009 18.819

Φ10 0.387 1.570 11.603

Table 10.5: Verification runtimes for the multiprocessor mainframe system

Φ7: In steady state, the probability that at least two processors are occupied
by user jobs is greater than 0.002.

S>0.002 (Φ6)

Φ8: There is at least a 30% chance that some job will be finished within at most
4 time units.

P≥0.3

(

F in✸
<4
F intt

)

Φ9: In steady state, the probability of the system being unavailable (i.e. waiting
for repair) is at most 0.05.

S≤0.05

(

∃(FailRep✸repairtt)
)

Φ10: After a system failure, there is a chance of more than 90% that it will come
up again within the next 5 time units.

[fail] P>0.9

(

repair✸
<5
repairtt

)

The fact that the above property holds for all states can be expressed by
∀ ✷ Φ10. Slightly weaker, one might require the above property to hold on
the long run, formulated as S≥1 (Φ10).

We now report on our experience with the verification of the above properties.
As mentioned in Sec. 10.1.5, the aCSL model checking component of our tool
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ETMCC has only recently been completed [44] and was not yet available during
this case study. Therefore, the results presented here were obtained by translating
the above aCSL properties to CSL11.

The verification runtimes are given in Table 10.5. We checked three models: A
small model with 4 (2) programmer (user) buffer places, an intermediate model
with 10 (4) programmer (user) buffer places and a large model with 40 (10)
programmer (user) buffer places. The small model has 3690 states and 24009
transitions, the intermediate model has 13530 states and 91069 transitions and
the large model has 110946 states and 761989 transitions. However, we did not
perform model checking on the original models but on models with compressed
state spaces which we gained through the application of Markovian bisimilarity
(in the example multiprocessor system, the main potential for reduction stems
from the symmetry of the four identical processors). By Thm. 9.3.1, the com-
pressed models satisfy the same properties as the original ones. After bisimilarity
compression, the small model has 720 states and 3219 transitions, the intermedi-
ate model has 2640 states and 12295 transitions and the large model has 21648
states and 103471 transitions. All steady-state properties given in the table were
double checked with TIPPtool.

11We did not follow the translation procedure from aCSL to CSL which involves splitting
of states as described in Sec. 9.3.4, but simply translated the properties in an ad-hoc fashion
without modifying the structure of the model. For that reason, translation of property Φ8 was
not possible, and therefore Φ8 is not checked here.
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Chapter 11

Discussion and conclusions

11.1 Future role of performance analysis and

verification

Communication plays a vital role in our society, with communication systems
of increasing complexity penetrating virtually all areas of our daily life. The
development and management of such distributed systems, which are expected to
meet the highest quality standards, is difficult and poses many challenges. Model-
based performability analysis and verification of not only functional properties
are highly valuable methods which can help solving these problems, and it is
generally agreed on that the importance of these methods will increase in the
future. These considerations clearly justify the research into new methods for
performance analysis and verification.

11.2 Assessment of the BDD-based approach

State space explosion remains one of the most prominent problems of analytical
performance and dependability modelling, and it is also a major problem in the
areas of formal verification and model checking. In Chap. 1 we gave an overview
of techniques that have been developed in order to avoid or tolerate large state
spaces. Our own focus in this thesis was on symbolic techniques based on decision
diagrams, which we consider to be very promising to successfully alleviate the
state space explosion problem.

223
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We have shown that with the help of BDDs and related data structures it is possi-
ble in many instances to achieve extremely compact representations of enormous
state spaces. This usefulness of BDDs to encode transition systems had been ob-
served before. However, we have stressed the important point that a näıve encod-
ing of state spaces or transition systems usually does not lead to memory-efficient
representations. We showed that heuristics for encodings are needed, exploiting
the structure of the specification. In particular, we saw that the realisation of
parallel composition on BDDs is extremely successful, since an exponential blow-
up can be reduced to a linear growth. This leads us to the conclusion that the
use of BDDs is only beneficial if they are employed in a compositional framework,
where large models are constructed from small components.

All conventional algorithms for building, manipulating and analysing transition
systems (LTS, SLTS or ESLTS) have a corresponding symbolic algorithm which
works directly on the symbolic representation, such that the whole modelling
and evaluation process can be carried out in a symbolic setting. Most of these
symbolic algorithms are also time-efficient, provided that the size of the deci-
sion diagrams is kept reasonably small. However, as an exception to this general
rule, it turned out that numerical calculations based on symbolic representations
are slow. In particular, MTBDD-based matrix multiplication and vector-matrix
multiplication constitute a performance bottleneck in the symbolic performance
analysis process. Therefore, in the future we will need to accelerate these opera-
tions by techniques such as the ones suggested in Chap. 8.

11.3 Tools for BDD-based modelling

The current state-of-the-art of any approach or methodology is always reflected
and documented by the existing software tools that support the approach. It is
therefore worth mentioning the existing software implementations of the BDD-
based approach to performability modelling and verification which we described
in this thesis. Therefore, in this section, we briefly survey some software tools
which are related to the symbolic representation and analysis of stochastic models.

The tool DNBDDtool was developed from scratch at the University of Erlangen-
Nürnberg as a proof of concept of the DNBDD data structure [43]. Its main
capabilities are the representation of SLTS, DNBDD-based parallel composition
and reachability analysis, and the minimisation of the state space on the basis of
Markovian bisimulation.

Im-Cat is a tool for the MTBDD-based generation and analysis of ESLTSs. It
was developed at the University of Erlangen-Nürnberg [128, 129, 133] and uses
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the library CUDD [307] as its underlying MTBDD engine. Apart from model
representation, parallel composition, hiding and reachability analysis, Im-Cat

supports a flexible mechanism for the elimination of compositionally vanishing
states (cf. Sec. 5.2.2). Im-Cat also supports MTBDD-based numerical steady-
state analysis, where the power method, Jacobi method, different versions of the
Gauss-Seidel method and the Bi-CGSTAB method are realised.

The probabilistic model checker Prism [102, 231, 228], developed at the Uni-
versity of Birmingham, has its own module-based system description language
and uses MTBDDs as its underlying data structure. Prism supports modular
model generation, the checking of PCTL [148] properties of DTMCs or Markov
decision processes, and is currently being extended towards the checking of CSL
[21] properties on state-labelled CTMCs.

A tool-set for the symbolic performance analysis of GSPNs was developed at the
University of Cape Town [100]. It generates MTBDDs directly from the GSPN
specification, aims at compact representation without considering composition
of submodels (but taking into account structural properties of the Petri net at
hand) and performs MTBDD-based numerical analysis.

The latter two tools were developed as part of academic research projects sim-
ilar to our own (actually, close communication exists between our group and
the groups of Birmingham and Cape Town), and the general findings of these
projects, especially concerning the compactness of symbolic representations and
the unsatisfactory speed of linear algebra operations, are also similar to our own,
although the context of their work is somewhat different.

11.4 Future research

Although quite a lot has been achieved, there remain many open problems and
questions. Therefore, in this concluding section, we point out a few interesting
topics for future research.

Compact encodings: We have shown that the use of decision diagrams may
lead to extremely compact representations of transition systems, provided that
they are applied in a compositional context. We have not investigated techniques
for finding good or even optimal encodings for monolithic transition systems. In
[100], techniques for the compact representation of the reachability information of
GSPNs have been developed, by exploiting structural properties of Petri nets. It
would be interesting to develop similar heuristics for other modelling formalisms
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or specific fields of applications. A related topic is the problem of optimising the
variable ordering within a BDD by heuristic methods, based on information from
the high-level model specification.

Speeding up MTBDD-based numerical analysis: As we have pointed out,
the speed of the linear algebra operations on matrices represented as MTBDDs
is a major bottleneck of the symbolic approach. As already said in Sec. 8.3.2,
more effort should be put into the development of dedicated hardware for effi-
ciently performing these operations on MTBDDs. There is a high potential for
parallel processing which could help to speed up the operations. Parallelisation
(or distribution) of apply-type BDD algorithms should also be studied and could
also be implemented without dedicated hardware. Hybrid algorithms, such as the
one proposed in [268, 269], are a promising alternative to purely MTBDD-based
solutions, but the details of these techniques have not yet been published and
will certainly need to be investigated further.

Verification of stochastic systems using symbolic methods: In Chap. 9 we
presented an approach to the verification of performability properties by model
checking of stochastic systems. The logic we discussed, called aCSL, is currently
being extended such that it will be possible to specify a broader class of prop-
erties. The development of a general logic for performability is still a hot topic
for future research. Our model checker ETMCC, which is capable of checking
properties specified with the help of the logics CSL and aCSL, uses its own sparse
data structure for storing the model under investigation. It would certainly be
worth-while to realise a symbolic version of ETMCC which is based on MTB-
DDs as the underlying data structure, and compare its memory requirements
and performance to the current one. This could be combined with the direct
generation of MTBDD representations from process algebraic specifications as
described below.

BDD semantics for stochastic process algebras: We have seen that sym-
bolic parallel composition realises the semantics of the parallel composition op-
erator of (stochastic) process algebras. In Sec. 5.2.2, we have also described a
symbolic realisation of the hiding operator (which, by the way, could easily be
extended to a general renaming of actions). It would be interesting to develop a
semantics for SPA which is fully BDD-based, i.e. which generates MTBDDs di-
rectly from an SPA specification without the need to generate an SLTS or ESLTS
first. To this end, one would need to develop symbolic realisations of the other
SPA operators (namely choice, prefixing, recursion, process instantiation). There
already exists some work in this direction: The paper [118] describes operators on
BDDs which realise the CCS operators parallel composition, channel-hiding and
renaming. The papers [305] and [306] describe an algorithm for building BDD
representations from LOTOS specifications, also exploiting the compositionality
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of process algebras. The paper [112] describes a general method to efficiently gen-
erate reduced BDDs from (non-stochastic) process algebraic descriptions, where
the operational semantics of the process algebra is given by a so-called GSOS
system [29] (which is further constrained such that finiteness of the state space
is guaranteed). Its main idea is to symbolically encode the parse tree of the
process term at hand, as well as the current progress of the process. All of the
mentioned investigations consider only purely functional process algebraic mod-
els. In [280], however, a denotational matrix semantics is presented which —
although not being concerned with symbolic representations — realises a map-
ping from a restricted stochastic process algebra to matrices instead of the usual
transition systems. These matrices, of course, could be represented by MTBDDs.
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R. Muche, G. Büchele, D. Harder, and W. Gaus, editors, 42. Jahrestagung der
Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiolo-
gie (GMDS), pages 188 – 192, Ulm, September 1997 (in German). MMV Medien
& Medizin Verlag.

[302] M. Silva and J. Campos. Structural performance analysis of stochastic Petri
nets. In IEEE International Computer Performance and Dependability Sympo-
sium (IPDS’95), pages p. 61–70. IEEE Computer Society, 1995.

[303] H.A. Simon and A. Ando. Aggregation of Variables in Dynamic Systems. Econo-
metrica, 29:111–138, 1961.

[304] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi
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Petri net

GSPN, 11, 46, 116, 209, 225
SPN, 45

PFQN, see product form queueing net-
work

phantom, see state
phase-type distribution, 6, 44, 142,

144
Poisson probabilities, 25, 153

polling system, 45, 209
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