
It sometimes works:
A lifting algorithm for repair

of Stochastic Process Algebra models

Amin Soltanieh and Markus Siegle

Universität der Bundeswehr München, 85577 Neubiberg, Germany,
{amin.soltanieh|markus.siegle}@unibw.de

Abstract. The paper presents an algorithm for lifting rate modification
information from a flat Markovian model to its high-level modular de-
scription, specified with the help of a Stochastic Process Algebra (SPA).
During the lifting, a specific set of transition rates in the model com-
ponents is changed, and – if necessary – also the interaction between
the components will be modified, in order to realise context-dependent
rate modifications. It is shown that the proposed algorithm cannot al-
ways find a suitable lifting, but if such a lifting exists, the algorithm is
guaranteed to find one. Furthermore, the paper shows that for a certain
class of SPA product form models, the lifting algorithm will always find
a solution.

Keywords: Markov Chains, Stochastic Process Algebra, Probabilistic
Model Checking, Compositional Model Repair, Product Form

1 Introduction

For the specification of performance and dependability models, Stochastic Pro-
cess Algebra (SPA) such as PEPA [1], EMPA [2] or CASPA [3], are often used,
since they allow users to specify complex models in a modular and hierarchical
way. Probabilistic model checking, implemented in tools such as PRISM [4] and
STORM [5], is a powerful technique to reason about the properties of a system
which is modelled, for example, with the help of an SPA. Although those spec-
ifications are compositional, model checking usually takes place at the level of
the flat state space, i.e. at the level of a monolithic Continuous-Time Markov
Chain (CTMC), labelled with atomic state properties. (In this paper, we focus
on fully probabilistic systems, as opposed to, say, Markov Decision Processes.)

In case a model does not satisfy a given requirement, the user may want to
modify it, such that the modified model will indeed satisfy the requirement. This
process is referred to as model repair. While different strategies exist for carrying
out model repair (see e.g. [6–8]), we focus on model repair by rate modification.
This means that during model repair, the structure of the model is preserved,
only some of the transition rates of the Markov chain are modified in such a
way that the probabilities of the satisfying paths will be affected in a positive

Fig. 1: Processes A and B and the resultant flat model

way. Earlier work on model repair by rate modification has been published in [9]
for time-unbounded CSL [10] and asCSL [11] requirements, and in [12] for CSL
Until requirements with upper or lower time bound. Those works addressed the
problem of model repair at the level of a flat state-labelled Markov chain.

In this paper, we do not deal with the question of how to modify the transition
rates of a Markovian model in order to satisfy a given requirement. We rather
assume that the rate modification factors for the low-level flat Markov chain are
already given. The question we address is the following: How, and under which
conditions, is it possible to lift the information about rate modification from the
level of the flat transition system to the level of the modular model specification?
This is an important issue, since users do not want to work at the level of the flat
Markov chain, they do not even want to see that low-level model. Users rather
want to work with their high-level model specification, i.e. they wish to know
how to change their model specification, in order to get a particular requirement
satisfied. We now illustrate this problem by a motivating example.

In Fig. 1, inspired by [13], two processes A and B which are synchronised
over action a, and also the resultant flat model are drawn. Each transition is
specified by a tuple of the form (a, λ), where a is the action name and λ is the
transition rate, and each state is labelled by atomic propositions (for the moment,
the atomic propositions can be ignored). Now assume that – for the purpose of
model repair – the rate of only one of the two c-transitions in the combined
transition system should be multiplied by the factor f (as highlighted in Fig. 1),
while the transition rate of the other c-transition should remain unchanged (thus
the factor 1 in the figure). But both of these transitions stem from the same c-
transition in component B. Therefore, a local repair, changing only the rate of
the c-transition in component B, is not possible, since this would affect both
c-transitions in the flat model. Whether or not to apply factor f depends on
the context: On the c-transition originating in state (2, 2) the factor should be
applied, but in the one originating in (1, 2) it should not.

This example shows that model repair at the level of the flat transition sys-
tem, in general, cannot be lifted in a straight-forward way to the high-level
model. Having realised this fact, the questions to be answered by this paper are:
Is there a technique to make such a lifting possible? Is it always possible to find
a suitable lifting? How does the algorithm work that decides whether lifting is
possible, and how does such an algorithm construct a valid lifting?

This paper develops an algorithm that lifts rate modification information
from the level of the flat Markov chain to the level of the compositional model
specification. It is assumed that the model is specified with the help of a Marko-
vian SPA, where, in particular, processes interact via action synchronisation.
It turns out that such a lifting is not always possible, but our algorithm will
detect this and stop with a suitable error message. Then, of course, the question
arises whether it is possible to characterise the situations where the algorithm
will be successful by suitable conditions. While we are not able to give necessary
and sufficient conditions that cover all possible cases, Sec. 4 of the paper shows
that for the class of SPA product-form models regarded in [14], the algorithm is
always guaranteed to find a lifting.

This paper is structured as follows: Sec. 2 provides some background infor-
mation on Stochastic Process Algebra and on model repair by rate modification.
Sec. 3, the main section of the paper, contains the description of the new lifting
algorithm. It starts by taking up the example from the introduction, before the
actual algorithm is presented and discussed. Sec. 3 also contains a worked ex-
ample where all the different cases occuring during the course of the algorithm
are illustrated. In Sec. 4, we focus on a class of product form models, previously
regarded in [14], for which, under some mild conditions, the lifting algorithm is
always guaranteed to find a solution. Finally, Sec. 5 concludes the paper with a
summary and a view into future extensions.

2 Modelling framework and state of the art

2.1 Stochastic Process Algebra (SPA)

We assume that the model to be analysed is specified with the help of a stochas-
tic process algebra (SPA) such as PEPA [1], EMPA [2] or CASPA [3], where each
transition is labelled by an action and a rate, the latter specifying an exponen-
tially distributed delay. Complex models are constructed by parallel composition
of components, which interact via action synchronisation. This yields an overall
model with a modular or even hierarchical structure. The states of the overall
model are tuples (i.e. vectors) of states of the constituent processes, and the
semantic model is a Markovian (multi-)transition system [1].

For action synchronisation in SPA, different semantics have been discussed
and compared in the past, concerning the rate of the synchronised transition (also
called combined transition) as a function of the rates of the partner processes [15].
In this paper, we assume that the rate of a combined transition is calculated as
the product of the rates of the transitions to be synchronised. Rate multiplication
can be used, for instance, in such a way that during action synchronisation, one
partner determines the basic rate and the other partner(s) are either passive (rate
1) or may contribute a factor (accelerating / decelerating) to the resulting rate.
Technically, this is realised by rate factor multiplication. However, it is important
to point out that the algorithm presented in Sec. 3 will also work for different
synchronisation semantics, for instance if the combined rate is determined as the

minimum of the two partner rates, or by consideration of the apparent rate of a
given action type within the partner processes as in [1].

We do not go into the details of the syntax or semantics of stochastic process
algebra. We only give the formal semantics (SOS rules) for parallel composition,
since this is needed to understand the algorithm in Sec. 3:

P
a,λ−−→ P ′, Q

a,µ−−→ Q′

P ‖Σs Q
a,op(λ,µ)−−−−−−−→ P ′ ‖Σs Q′

(a ∈ Σs)

P
a,λ−−→ P ′

P ‖Σs Q
a,λ−−→ P ′ ‖Σs Q

(a 6∈ Σs)
Q

a,µ−−→ Q′

P ‖Σs Q
a,µ−−→ P ‖Σs Q′

(a 6∈ Σs)

In these rules, P and Q are processes, || is the parallel composition operator,
Σs ⊆ Act is the set of synchronising actions, a ∈ Act is an action, and λ, µ are
transition rates. The first rule realises the actual synchronisation via action a,
where the resulting rate is obtained by combining the two partner rates by the
binary operator op (which, as already said, we simply replace by multiplication).
The other two (fully symmetrical) rules represent a move of one partner process
while the other one remains stable.

2.2 Model repair by rate modification

The concept of model repair by rate modification has been developed in earlier
works. In [9], the authors studied the model checking of action- and state-labelled
CTMCs against requirements specified by the temporal logics CSL [10] and
asCSL [11] (asCSL is an extension of CSL which allows one to describe complex
path requirements, specified by regular expressions over action labels and state
formulas). In particular, the paper [9] focused on time-unbounded CSL Until
formulas and time-unbounded asCSL path requirements, to be checked on flat
CTMC models. The central idea of the approach is as follows: If a given CSL
requirement is violated, some specific transition rates in the model are changed
deliberately, in order to affect the satisfaction probabilities in a positive way.
For a violated CSL requirement, the model repair strategy of [9] consists of
determining a particular subset of the CTMC’s transitions whose rates should
be reduced by a common factor. For violated asCSL requirements, the idea in [9]
is similar, but the model repair algorithm is more complicated since it involves
a product construction with a non-deterministic automaton representing the
asCSL path formula.

In [12] similar approaches were developed, but for state-labelled CTMCs to
be checked against CSL Until requirements with upper time bound. Again, the
model repair strategy consists of determining rate reduction factors by which the
transition rates between certain classes of states should be reduced. The theo-
retical background of perturbing the transition rates of a CTMC by a common
factor, with applications to model repair, has been studied in [16].

While some previous work on model repair only considered rate reduction,
in this work we allow rate modifications in both directions, i.e. the rate of a
specific transition can be either reduced or increased. However, we do not allow

reducing a rate to zero (thereby effectively deleting a transition in the CTMC),
which guarantees that the graph of the CTMC is not changed by the repair.

Importantly, as already mentioned in the introduction, this paper does not
concern itself with the question which rates of a given model should be modified,
in order to satisfy the requirement at hand. It is assumed that the rate modifi-
cation factors have already been determined by a model repair algorithm such
as the ones mentioned above. But all mentioned previous work considered the
problem of model repair at the level of a monolithic, flat model, which means
that the rate modification factors are only known at the level of the flat model.
However, when models are constructed from a modular or compositional model
specification such as SPA, model repair should take place at the level of the
high-level model, not at the level of the flat state space. This is the focus of the
present paper: Answering the question if and how model repair information (in
the form of transition rate modifications) can be lifted from the flat low-level
model to the high-level model specification.

3 A lifting algorithm for modular model repair

3.1 Motivating examples

We return to the example from Sec. 1 and show how it can be fixed. In Fig. 1,
we saw that local repair of just one component (component B) is not possible,
since only one of the two c-transitions in the flat model should be changed.
This means that there exists a context-dependency for the repair factor. We can
implement this context-dependency by adding action c to the synchronisation
set and inserting c-self-loops at the states of component A, as shown in Fig. 2.
The such repaired components are now denoted A′ and B′. The rates of those
self-loops correspond to the desired modification factors. We can describe this
approach mathematically by the following system of equations:

x11 · y21 = γ · 1
x22 · y21 = γ · f

where the xii are the rates of the self-loops in component A′, and y21 is the rate
of the c-transition in component B′. One solution to this system is x11 = 1,
x22 = f and y21 = γ, as depicted in Fig. 2.

These modifications obviously solve the model repair lifting problem for the
example of Fig. 1. Unfortunately, such a solution is not always possible, as an
extension of the same example shows (see Fig. 3). In this extended example,
component A remains unchanged, but component B has been extended by a

third state, as shown in Fig. 3. Now suppose that the two transitions (2, 2)
c,γ−−→

(2, 1) and (1, 2)
c,γ−−→ (1, 3) should both be multiplied each by factor f . Both

of these transitions stem from component B, but again one can easily argue
that a local repair, changing only component B, is not possible. Trying to solve
the context-dependency by a similar approach as before will not work either

Fig. 2: Processes A′ and B′ with added self-loops and modified synchronising set

Fig. 3: Extended example

for this example. The reason is that the context (the state of component A) is
contradictory in the following sense: When component A is in state 1, only the
B-transition 2

c−→ 3 should be modified, but not the B-transition 2
c−→ 1, but

when component A is in state 2, it is exactly the other way around! This cannot
be controlled by c-self-loops on the states of component A. One can easily show
this contradiction mathematically by the following system of nonlinear equations

x11 · y21 = γ · 1
x11 · y23 = γ · f
x22 · y21 = γ · f
x22 · y23 = γ · 1

where, as before, xii are the rates of the c-self-loops that would be added to
states of component A, and y21 and y23 are the rates of the c-transitions in
component B. For f 6= 1, this system of equations does not possess a solution.

3.2 Idea of the algorithm

We present an algorithm which, for given rate multiplication factors, decides
whether or not a lifting to the compositional model, by applying certain mea-
sures, is possible. If it is possible, the algorithm proposes a modification to the

compositional high-level model, i.e. how exactly it should be changed. We now
explain the general idea of the algorithm.

As its input, the algorithm takes a flat transition system whose states are n-
tuples, each element characterising the current state of one of the n constituent
processes. In order to keep the description simple, we assume for now that n = 2,
but the algorithm can be extended to the case n > 2 in a rather straight-forward
way. In addition to the flat transition system, the information about the rate
modification factors is also given, i.e. it is known which transition rate of the
flat model should be multiplied by which factor. The algorithm looks at the
transitions whose rates are to be modified in a one by one fashion. A distinction is
made, depending on whether the currently processed transition is a synchronising
transition where several components are involved, or a local transition of only
one single component.

Case (1): In case the currently processed transition is a synchronising tran-
sition, all transitions with the same action label are processed at once. For each
of them, a nonlinear equation is created and a solution of the resulting system
of equations is sought. If no solution exists, a lifting of the rate modification
factors to the constituent components is not possible, so the algorithm termi-
nates unsuccessfully. If a solution exists, the rates in the constituent processes
are modified accordingly and the algorithm proceeds with the next transition to
be modified.

Case (2): If the currently processed transition is a non-synchronising one,
the algorithm first tries to fix its rate locally (i.e. by modifying only one of the
components), thereby avoiding the creation of a (possibly large) system of equa-
tions. Such a local solution, however, is only possible if all modification factors
of “parallel” transitions are identical, where “parallel” means that one compo-
nent makes a specific move while the other component remains in any arbitrary
fixed state. If a local solution is not possible, the modification factor of a non-
synchronising transition depends on the context, i.e. the state of the other com-
ponent. In this case, all transitions with the same action label are treated at once.
The idea now is to change the transition from a non-synchronising transition to
a synchronising one, thereby making it possible to control the modification fac-
tor depending on the context. For this reason, self-loops in the other component
are added. In this case, a system of equations is created and solved. Again, it is
possible that no solution exists, in which case a lifting is not possible.

3.3 Lifting algorithm

In order to keep the notation simple, we present the algorithm, assuming that
the states of the flat transition system are 2-tuples. If the states are n-tuples,
the algorithm can be adapted canonically.

We first introduce the notation used in the algorithm: Let M1 and M2 be
two Markovian transition systems and Σs ⊆ Act a set of (synchronising) actions.
The flat transition system of M1||ΣsM2 is given by the set of tuples

T ⊆ (S1 × S2)×Act× R>0 × (S1 × S2)

where the first two elements denote the source state tuple, the last two elements
denote the target state tuple, and the two elements in the middle denote the
action label and the rate. Let S denote the reachable subset of S1×S2. Consider
a subset of transitions Tmod ⊆ T . The rate of each transition ti ∈ Tmod is to be
modified by an individual multiplicative factor factor(ti) ∈ R>0\{1}. For conve-
nience, for transitions which are not to be modified, i.e. transitions ti ∈ T \Tmod,
we define the modification factor as factor(ti) = 1. For a combined transition

t = ((s, u)
c,γ−−→ (s′, u′)) ∈ T , we use the following notation:

source(t) := (s, u), source1(t) := s, source2(t) := u

target(t) := (s′, u′), target1(t) := s′, target2(t) := u′

action(t) = c, rate(t) = γ

If for a transition t ∈ Tmod we write t = ((s, u)
c,γ·f−−−→ (s′, u′)) then we mean that

rate(t) = γ and factor(t) = f 6= 1 (although strictly speaking the modification
factor is not stored as part of Tmod). If we write the same for a transition t ∈
T \ Tmod, then factor(t) = f = 1.

Given the desired rate modification factors for the flat composed model, the
following algorithm computes the modified rates for M1 and M2, if a solution
exists. Apart from changing rates in M1 and M2, the algorithm may also in-
sert some self-loops and add actions to the synchronisation set Σs, in order to
control the context in which a previously non-synchronising action takes place,
which means controlling its rate in a context-dependent way. In other words, the
algorithm lifts a given model repair strategy from the flat model to the com-
positional model, if such a lifting is possible at all. If successful, the algorithm
returns the modified processes M ′1 and M ′2, as well as the potentially augmented
synchronisation set Σ′s. We now present the algorithm in pseudocode, where the
explanation of all essential steps is given by the comments.

1: Algorithm RepairLifting (M1,M2, Σs, T, Tmod, factor)
2: // T is the flat Markovian transition system of M1||ΣsM2.
3: // The algorithm lifts the repair information given in the form of
4: // rate modification factors factor(t) for transitions t ∈ Tmod ⊆ T
5: // to the high-level components M1 and M2, if possible.
6: // The repaired system is returned as M ′1, M ′2 and Σ′s.
7: M ′1 := M1, M ′2 := M2, Σ′s := Σs // initialisation
8: while Tmod 6= ∅ do

9: choose t̂ := ((ŝ, û)
c,γ̂·f̂−−−→ (ŝ′, û′)) from Tmod

10: // t̂ is the transition processed during one iteration of the while-loop
11:

12: // Case (1):
13: if action(t̂) =: c ∈ Σs then
14: // a synchronising transition needs to be modified
15: Tc := {t ∈ T | action(t) = c} // all c-transitions considered at once
16: Tmod := Tmod \ Tc // remove considered transitions from Tmod

17: for each t := ((s, u)
c,γ·f−−−→ (s′, u′)) ∈ Tc do

18: create an equation xss′ · yuu′ = γ · f = rate(t) · factor(t)
19: // or more general: create an equation op(xss′ , yuu′) = γ · f
20: // where op is the operator determining the resulting rate (see Sec. 2.1)
21: end for
22: solve the system of nonlinear equations, i.e. find all xss′ and yuu′

23: if no solution exists then
24: return “impossible”
25: else

26: for each t := ((s, u)
c,γ·f−−−→ (s′, u′)) ∈ Tc do

27: in M ′1 set s
c,xss′−−−−→ s′

28: in M ′2 set u
c,yuu′−−−−→ u′

29: end for
30: end if
31:

32: // Case (2):
33: else if action(t̂) =: c 6∈ Σs ∧ ŝ 6= ŝ′ then
34: // a non-synchronising M1-transition needs to be modified,
35: // the algorithm first tries to do this locally in M1

36: // by considering all “parallel” transitions at once
37: Tc,ŝ,ŝ′ := {t ∈ T | action(t) = c ∧ source1(t) = ŝ ∧ target1(t) = ŝ′}
38: if ∃fcom ∈ R : ∀t ∈ Tc,ŝ,ŝ′ : factor(t) = fcom then
39: // there exists a common factor fcom for all transitions in Tc,ŝ,ŝ′

40: in M ′1 set ŝ
c,γ1·fcom−−−−−−→ ŝ′ (where γ1 is the current rate in M ′1)

41: Tmod := Tmod \ Tc,ŝ,ŝ′
42: for each t ∈ Tc,ŝ,ŝ′ do
43: factor(t) := 1
44: // the modification factor of the fixed transitions is changed to 1,
45: // which is important in case they are considered again
46: // when dealing with another c-transition from Tmod later
47: end for
48: else
49: // if the local fix in M1 was not possible,
50: // since non-synchronising action c can also occur in M2,
51: // the algorithm now tries to modify all c-transitions at once
52: // by making c into a synchronising action.
53: // but this only makes sense if there is no reachable combined state
54: // from which c-transitions in both M1 and M2 are possible
55: // (because if such a state existed, making c into a synchronising
56: // action would generate spurious (i.e. wrong) transitions)

57: if ∃(s, u) ∈ S : ∃t1, t2 ∈ T : (t1 = ((s, u)
c,γ1−−−→ (s′, u)) ∧ t2 =

((s, u)
c,γ2−−−→ (s, u′))) then

58: return “impossible”
59: end if

60: Tc := {t ∈ T | action(t) = c}
61: Tmod := Tmod \ Tc
62: for each t := ((s, u)

c,γ·f−−−→ (s′, u)) ∈ Tc do
63: // an M1-move
64: create an equation xss′ · yuu = γ · f = rate(t) · factor(t)
65: end for

66: for each t := ((s, u)
c,γ·f−−−→ (s, u′)) ∈ Tc do

67: // an M2-move
68: create an equation xss · yuu′ = γ · f = rate(t) · factor(t)
69: end for
70: solve the system of nonlinear equations, i.e. find all xss, xss′ , yuu, yuu′

71: if no solution exists then
72: return “impossible”
73: else

74: for each t := ((s, u)
c,γ·f−−−→ (s′, u)) ∈ Tc do

75: in M ′1 set s
c,xss′−−−−→ s′

76: in M ′2 add self-loop u
c,yuu−−−→ u

77: end for

78: for each t := ((s, u)
c,γ·f−−−→ (s, u′)) ∈ Tc do

79: in M ′2 set u
c,yuu′−−−−→ u′

80: in M ′1 add self-loop s
c,xss−−−→ s

81: end for
82: Σ′s := Σ′s ∪ {c} // add action c to the synchronisation set
83: end if
84: end if
85:

86: // Case (2), symmetrical case:
87: else if action(t̂) =: c 6∈ Σs ∧ û 6= û′ then
88: // an M2-transition needs to be modified
89: // this case is fully symmetrical to the previous case,
90: // the code is analogous to lines 32-84
91: . . .
92: end if
93: end while
94: return M ′1, M ′2, Σ′s

3.4 Remarks on the algorithm

We now comment on the way the algorithm works and give some insight into
how it can be made to work efficiently:

– The flat transition system T is not modified by the algorithm. That means
for t ∈ T : rate(t) stays unmodified during the course of the algorithm. The
algorithm assigns new rates (which are the solutions of the systems of equa-
tions) to some transitions of M ′1 and/or M ′2 and possibly adds actions to the
set of synchronising actions Σ′s.

– The algorithm cannot always find a solution, in which case it returns “im-
possible” (lines 24, 58 and 72). However, the algorithm can always decide
whether or not a solution exists, and if it exists the algorithm will find it.

– It is possible that the same transition rate in M ′i changes twice in the course
of the algorithm. This will occur if a non-synchronising transition is first
changed locally and needs to be considered again later, when another transi-
tion with the same action label cannot be changed locally. This is the reason,
why resetting the modification factor of already fixed transitions in line 42
is necessary.

– The algorithm is not a truly compositional algorithm, but only a lifting
algorithm, which has the disadvantage that the low-level model needs to
be constructed. Thus, practical use of the algorithm is limited in case state
space explosion occurs.

– Various optimisations of the algorithm are possible. E.g. there are conditions
which can be checked in order to decide a priori whether the system of
equations in lines 21 or 69 possesses a solution. In some cases, it is also
possible to split a large system of equations into several smaller systems,
thus reducing the effort to solve the equations. Elaborating on the details of
such optimisations would be beyond the scope of the present paper.

– It is natural to ask for necessary / sufficient conditions under which the
algorithm will find a solution. These could be conditions concerning the
composition structure and other characteristics of the overall model, but also
conditions on the requirement whose violation during model checking caused
the need for the model to be repaired (e.g., if the requirement only refers
to state properties of only a single model component). Ideally, one should
be able to check those conditions at the specification level. The goal is to
identify special classes of models which can be repaired at the specification
level without having to analyse the low-level model. One such candidate is
the class of product form models discussed in Sec. 4.

3.5 Illustration of the algorithm

In the following example we try to cover all possible cases which might occur
during the course of the algorithm. Fig. 4 shows two processes M1 and M2,
synchronised over actions a and b, and also the resultant flat model. Assume
that all rates are equal to 1, and so also the rates in the flat model are all 1.

Model repair of synchronising transitions:
Let us assume that we need to modify the rates of a-transitions where a is
a synchronising action. According to the algorithm (Case (1)), we create an
equation for each of the a-transitions.

In this example there are six a-transitions in the flat model. Table 1 shows
those transitions and the system of nonlinear equations created according to
lines 17-21 of the algorithm. The rate modification factors are f1, . . . , f6, and
Fig. 5 shows M ′1 and M ′2 with only a-transitions where xss′ and yuu′ are the
modified rates.

Fig. 4: Processes M1 and M2 and the resultant flat model

(1, 1)
a,1·f1−−−−−→ (2, 2) =⇒ x12 · y12 = f1

(1, 2)
a,1·f2−−−−−→ (2, 3) =⇒ x12 · y23 = f2

(1, 3)
a,1·f3−−−−−→ (2, 1) =⇒ x12 · y31 = f3

(2, 1)
a,1·f4−−−−−→ (1, 2) =⇒ x21 · y12 = f4

(2, 2)
a,1·f5−−−−−→ (1, 3) =⇒ x21 · y23 = f5

(2, 3)
a,1·f6−−−−−→ (1, 1) =⇒ x21 · y31 = f6

Table 1: a-transitions and the system of
nonlinear equations.

Fig. 5: Processes M ′1 and M ′2
with only a-transitions shown in
Case (1).

The necessary condition for the system of equations in Table 1 to have a solution
is f1

f4
= f2

f5
= f3

f6
(∗). If this condition holds, one of the unknowns can be chosen

freely, e.g. x21 := 1, and then the other unknowns are determined:

x12 = f1/f4
y12 = f4/x21 = f4
y23 = f5/x21 = f5
y31 = f6/x21 = f6

So, if the modification factors are such that condition (∗) is satisfied, there exists
a solution and lifting is possible.

Local repair of non-synchronising transitions:
Let us assume that we need to modify two of the d-transitions with common
modification factor f :

(3, 2)
d,1·f−−−→ (2, 2) (3, 3)

d,1·f−−−→ (2, 3)

Following the algorithm, at first one of those d-transitions is picked from Tmod.
Since action d is non-synchronising, the possibility of local model repair in one
of the components should be tested. For that purpose, all other “parallel” d-
transitions where M1 moves from state 3 to state 2 (denoted by Td,3,2) are
investigated to check if there is a common modification factor for all transitions
(algorithm line 38). Both the above mentioned transitions stem from the same

transition in M1 which is (3)
d,1−−→ (2). Since the modification factor f is the

same for both transitions, it is clear that local model repair in M1 is possible,

so the algorithm sets the rate of transition (3)
d,1−−→ (2) in M1 to the value 1 · f .

Impossibility of model repair of non-synchronising transitions:
We now study a similar case as the previous one, but with different modification
factors. Assume that the following d-transitions need to be changed:

(1, 1)
d,1·f1−−−−→ (2, 1) (1, 2)

d,1·f2−−−−→ (2, 2) (1, 3)
d,1·f3−−−−→ (2, 3)

where f1 6= f2 or f1 6= f3. Action d is a non-synchronising action and it is
obvious that local model repair is not possible, since condition in line 38 of the
algorithm is not satisfied.

According to the condition in line 57 of the algorithm, model repair is im-
possible, since the non-synchronising action d is present in M1 and M2 and
state (1, 3) in the flat model (which is a reachable state) has two outgoing d-
transitions, one in the M1-dimension and one in the M2-dimension (the same
is true for state (3, 3)). The algorithm would stop at this point, as it should. If
the algorithm went ahead and made action d into a synchronising action, then
two spurious transitions would be created: one from state (1, 3) to state (2, 2),
and one from (3, 3) to (2, 2). So making d into a synchronising action is not an
option here.

Successful model repair of non-synchronising transitions:
Assume that the following c-transitions need to be modified, where action c is
not a synchronising action and f1, f2 6= 1:

(1, 1)
c,1·f1−−−−→ (1, 2) (1, 2)

c,1·f2−−−−→ (1, 3)

The difference between this case and the former case is that there is no reachable
state in the flat model (Fig. 4) with two outgoing c-transitions stemming from
M1 and M2, so the impossibility condition of line 57 of the algorithm is not
satisfied.

It is clear that local model repair is not possible, since the two transitions

(1, 1)
c,f1−−−→ (1, 2) and (2, 1)

c,1−−→ (2, 2) are contradicting for f1 6= 1. Therefore
according to the algorithm, action c is added to the synchronising set and we
need to consider all reachable c-transitions:

(1, 1)
c,1·f1−−−−→ (1, 2) =⇒ x11 · y12 = f1

(2, 1)
c,1−−→ (2, 2) =⇒ x22 · y12 = 1

(1, 2)
c,1·f2−−−−→ (1, 3) =⇒ x11 · y23 = f2

(2, 2)
c,1−−→ (2, 3) =⇒ x22 · y23 = 1

(3, 2)
c,1−−→ (3, 3) =⇒ x33 · y23 = 1

The necessary condition for this system of equations to have a solution is y12
y23

=
f1
f2

= 1
1 which implies f1 = f2. So only if this condition is satisfied, lifting is

Fig. 6: Processes M ′1 and M ′2 (only c-transitions shown)

possible. One unknown variable can be chosen freely, say x11 = 1, then the other
unknowns are determined:

x22 = x33 = 1/f1
y12 = y23 = f1

Fig. 6 shows the modified processes M ′1 and M ′2, with only c-transitions drawn.

4 Application to SPA models with product form

In this section, we identify a class of models for which the algorithm from Sec. 3
is guaranteed to always find a solution. In [14], a class of PEPA models is de-
fined, based on Boucherie’s framework [17] of Markov processes competing over
resources, for which it is shown that the equilibrium probability distribution is
of product form. These SPA models consist of a set of cyclic processes and a set
of mutually independent resources

Sys = (M1 || . . . ||MK) ||L (R1 || . . . ||RM)

There is no direct interaction among processes Mk (k = 1, . . . ,K), but indirect
interaction because of the mutually exclusive use of the resources Rm (m =
1, . . . ,M). Apart from the interaction with the processes, the resources must
not have any internal behaviour, thus the resources are redundant at the state
level. “Redundant” means that the current state of any of the resources can be
inferred from the states of the K processes.

The original Boucherie framework of [17] requires a strong blocking condi-
tion, which means that when a process occupies a certain resource, all other
processes competing over the same resource are fully blocked and not allowed
to move at all. But in [14], instead of the strong blocking condition, there is a
strong restriction on components, based on the notion of so-called guarding and
returning resources. A resource is guarding with regard to a sequential compo-
nent if all paths (which are actually cycles) starting from the initial state of the
component and returning to the initial state, either cooperate with the resource
on the first action of the cycle or are completely independent of the resource
actions during the whole cycle. Similarly, a resource is returning with regard to

a sequential component if all paths (cycles) starting from the initial state and re-
turning to the initial state, either cooperate with the resource on the last action
of the cycle or are completely independent of the resource actions during the
whole cycle. For the formal definition of guarding resource and returing resource
the reader is referred to [14].

We now study what happens when we apply our lifting algorithm from Sec. 3
to SPA product form models as described in [14]. As mentioned, resources are
redundant at the state level, so their state is implicit and does not need to be
recorded in the state descriptor of the combined model. The following theorem
provides sufficient conditions for successful lifting of model repair information.

Theorem 1. Let Sys be a SPA product form model as described in [14], i.e.
Sys = (M1 ‖ . . . ‖ MK)‖LR, where M1, . . . ,MK are cyclic sequential com-
ponents and R is the independent parallel composition of distinct simple re-
source components which are guarding and returning with respect to each Mk

(k = 1, . . . ,K) and redundant in the state representation of the model. Let Tmod
be the subset of transitions of the low-level model of Sys whose rates are to be
multiplied by given factors. Lifting this model repair information to the specifi-
cation level by applying the algorithm from Sec. 3 will be successful if:

1. all local actions within Mk (i.e. all actions of Act(Mk) ∩ L) are pairwise
distinct (for all k = 1, . . . ,K)

2. the local actions of any two components are disjoint, i.e.
Act(Mk) ∩Act(Ml) ∩ L = ∅ (for all k, l = 1, . . . ,K)

3. the rates of the synchronising actions are not to be modified, i.e.
Act(Tmod) ∩ L = ∅

Note that in this Product Form framework there is no synchronisation among
components, so Case (1) of the algorithm never occurs (all transitions in the
combined model are just along one dimension, with exactly one process changing
its state). Model repair will take place by either local repair inside one of the
components Mk, or by inserting self-loops (for context-dependent control of the
rates) and making the components synchronising over some action set Σs ⊆
Act(Tmod). The resulting repaired model is (M ′1 ‖Σs . . . ‖ΣsM

′
k) ‖LR where the

M ′k are the modified components. We now give a proof sketch for the theorem.

Proof. For simplicity, the proof is carried out for the special case of K = 2
components, thus the system can be written as Sys = (M1 ‖M2) ‖LR. The
conditions in Theorem 1 indicate that any action c ∈ Act(Tmod) only exists
in one of the components M1 or M2, and in this component there is only one
c-transition. Assume that this c-transition is in M1 and there are N reachable
states in M2, as shown in Fig. 7:

Then there exist (at most) N c-transitions in the flat model (with fn, n =
1, . . . , N , being the associated modification factors). Now either the system can
be repaired by local repair of M1, or we need to solve the following system of at
most N equations (there might be fewer than N c-transitions if some combined

Fig. 7: Processes M1 and M2

states are unreachable):

(ai, b1)
c,1·f1−−−−→ (aj , b1)

(ai, b2)
c,1·f2−−−−→ (aj , b2)

...

(ai, bN)
c,1·fN−−−−→ (aj , bN)

xij · y11 = f1
xij · y22 = f2

...
xij · yNN = fN

For arbitrary values of the multiplication factors f1, . . . , fN , this system of equa-
tions always has a solution. One solution is xij = 1 and ynn = fn for all
1 ≤ n ≤ N . ut

5 Summary and future work

In this paper, we have presented an algorithm which lifts model repair informa-
tion, given in the form of transition rate modification factors, from a flat low-level
CTMC to the associated high-level compositional model. The algorithm modi-
fies a subset of the model components’ transition rates, and it may also change
the interaction between the components by adding actions to the synchronisa-
tion set. While such a solution to the lifting problem does not always exist, the
algorithm is guaranteed to find a valid solution if it exists. For a special class of
SPA product form models, we have shown that lifting is always possible.

In future work, we are planning to elaborate on the extension of the lifting
algorithm to more than two processes. We are also planning to work on optimi-
sations of the algorithm, such as splitting a large system of nonlinear equations,
as created by the algorithm, into several smaller, independent systems of equa-
tions, whenever this is possible. There is also the question whether additional
measures, apart from local rate modifications and augmenting the synchroni-
sation set, could open up further opportunities for lifting. The long-term goal
is to develop a truly compositional model repair approach, which – as opposed
to the lifting approach presented here – would work directly at the level of the
high-level compositional model specification.

Acknowledgement: The authors would like to thank Alexander Gouberman
for critical comments on the manuscript.

References

1. J. Hillston, A Compositional Approach to Performance Modelling, Cambridge Uni-
versity Press, 1996.

2. M. Bernardo, R. Gorrieri, A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time, Theoretical Computer Sci-
ence 202 (1) (1998) 1 – 54.

3. M. Kuntz, M. Siegle, E. Werner, Symbolic Performance and Dependability Evalu-
ation with the Tool CASPA, in: M. Nunez, Z. Maamar, F. Pelayo (Eds.), FORTE
2004 Workshops, European Performance Engineering Workshop, Springer, LNCS
3236, 2004, pp. 293–307.

4. M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of probabilis-
tic real-time systems, in: Proc. 23rd Int. Conf. on Computer Aided Verification
(CAV’11), Vol. 6806 of LNCS, Springer, 2011, pp. 585–591.

5. C. Dehnert, S. Junges, J.-P. Katoen, M. Volk, A storm is coming: A modern prob-
abilistic model checker, in: R. Majumdar, V. Kunčak (Eds.), Computer Aided
Verification, Springer International Publishing, 2017, pp. 592–600.

6. E. Bartocci, R. Grosu, P. Katsaros, C. Ramakrishnan, S. Smolka, Model Repair
for Probabilistic Systems, in: TACAS’11, Springer LNCS 6605, 2011, pp. 326–340.

7. T. Chen, E. M. Hahn, T. Han, M. Kwiatkowska, H. Qu, L. Zhang, Model Repair
for Markov Decision Processes, in: Proc. 7th Int. Symp. Theor. Aspects of Software
Engineering (TASE), IEEE CS Press, 2013, pp. 85–92.

8. S. Pathak, E. Ábrahám, N. Jansen, A. Tacchella, J.-P. Katoen, A Greedy Approach
for the Efficient Repair of Stochastic Models, in: NASA Formal Methods - 7th Int.
Symposium, 2015, pp. 295–309.

9. B. Tati, M. Siegle, Parameter and Controller Synthesis for Markov Chains with
Actions and State Labels, in: É. André, G. Frehse (Eds.), 2nd Int. Workshop on
Synthesis of Complex Parameters (SynCoP’15), Vol. 44 of OpenAccess Series in
Informatics (OASIcs), Dagstuhl, Germany, 2015, pp. 63–76.

10. C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Model-Checking Algorithms
for Continuous-Time Markov Chains, IEEE Transactions on Software Engineering
29 (6) (2003) 524–541.

11. C. Baier, L. Cloth, B. Haverkort, M. Kuntz, M. Siegle, Model Checking Markov
Chains with Actions and State Labels, IEEE Transactions on Software Engineering
33 (4) (2007) 209–224.

12. B. Tati, M. Siegle, Rate reduction for state-labelled Markov chains with upper time-
bounded CSL requirements, in: T. Brihaye et al. (Ed.), Proc. Cassting Workshop on
Games for the Synthesis of Complex Systems and 3rd Int. Workshop on Synthesis
of Complex Parameters, Open Publ. Assoc., El. Proc. in Theor. Computer Science
Vol. 220, 2016, pp. 77–89.

13. B. Tati, Quantitative Model Repair of Stochastic Systems, Ph.D. thesis, Bun-
deswehr University Munich, Department of Computer Science (2018).

14. J. Hillston, N. Thomas, Product form solution for a class of PEPA models, Per-
formance Evaluation 35 (3) (1999) 171 – 192.

15. J. Hillston, The Nature of Synchronisation, in: U. Herzog, M. Rettelbach
(Eds.), Proc. of the 2nd Workshop on Process Algebras and Performance Mod-
elling, Arbeitsberichte des IMMD 27(4), Universität Erlangen-Nürnberg, Regens-
berg/Erlangen, 1994, pp. 51–70.

16. A. Gouberman, M. Siegle, B. Tati, Markov Chains with Perturbed Rates to Ab-
sorption: Theory and Application to Model Repair, Performance Evaluation 130
(2019) 32–50.

17. R. J. Boucherie, A characterization of independence for competing Markov chains
with applications to stochastic Petri nets, IEEE Transactions on Software Engi-
neering 20 (7) (1994) 536–544.

