

Leveraging Tree-Structured Graphs in Graph Neural **Networks for Fake News Detection**

PROBLEM STATEMENT & BACKGROUND

- Gossipcop & Politifact: two datasets of multiple news propagation graphs from Twitter with BERT-encoded nodes labeled as real or fake
- Proprietary dataset: twelve million tweets collected from Afghanistan and Lebanon
- A Graph G = (X, A) is defined by its feature matrix $X \in \mathbb{R}^{n \times m}$ and its adjacency matrix $A \in \mathbb{R}^{n \times n}$
- A Graph Neural Network (GNN) Message Passing Layer is generally defined by $x_i = \alpha(x_i, \beta_{i \in \mathcal{N}(i)} \gamma(x_i, x_i, A_{ij}))$, where α , γ are differentiable functions, β is a permutation invariant function and $\mathcal{N}(i)$ are the neighbour nodes of node i

RESEARCH QUESTIONS

TreePool & TreeGNN

How can the tree-structure of news propagation graphs be leveraged with a special graph pooling or GNN layer?

TreePool

- Pool only child nodes at certain depth
- Reduce graph by reduction factor $r \in [0,1]$
- Acc. improvement for multiple GNN layers and deep trees

Method Dataset	Graph- Sage	GCN	GAT
Politifact (no pooling)	Acc: 83.71	Acc: 81.00	Acc: 82.35
	F1: 83.65	F1: 80.76	F1: 82.22
Politifact (TreePool)	Acc: 84.16	Acc: 83.71	Acc: 84.62
	F1: 84.09	F1: 83.65	F1: 84.54
Gossipcop (No pooling)	Acc: 94.49	Acc: 91.85	Acc: 90.83
	F1: 94.46	F1: 91.77	F1: 90.79
Gossipcop (TreePool)	Acc: 89.26	Acc: 85.52	Acc: 83.46
	F1: 89.16	F1: 85.20	F1: 83.01
Scores for 2 layer GNNs and r = 0.6			

TreeGNN

- Only aggregate information from child nodes
- Apply attention mechanism to k-hop child nodes
- Augment node features with number of connected childs and depth

Generative GNNs for Trees

How can time evolving generative **GNNs** for early detection of fake news be improved by leveraging the treestructure?

Problem

• It takes time until a sufficiently large graph for classification is available

Idea

- Successively choose next edge and node conditioned on previous node chain from the root, i.e. $\max_{i=1,...n} P(x_{new} | x_0, ... x_i, d, n)$, where d = depth, n = num neighbours, x_0 , ... x_i = chain from root to node i
- Choose node with highest probability
- Different methods like neural networks or LSTMs are possible, which are trained to predict the probability for every node to have the new node attached to it
- A different neural network is used to predict node features in the same way

Graph Auto-Encoder for Trees

How can pre-training of graph neural networks be improved by leveraging the tree structure?

Problem

- The ordering of the nodes and the corresponding adjacency matrix is not unique
- Permutation invariant readout-functions loose too much information
- A permutation invariant endocer and decoder is needed

Idea

- Use the ordering of the tree according to depth starting from the root
- Reconstruct meta-information like number of nodes at each depth, maximal depth, total number of nodes
- Separate node features from graph structure for multipurpose usage

FURTHER APPROACHES

- Temporal graph neural networks for entire social network graphs leveraging cross-time and cross-node attention
- Decision tree quided prompt engineering of large language models for question answering and classification

CONCLUSION

- There are multiple ways to leverage the tree-structure of news propagation graphs in graph neural networks
- Existing GNN architectures can be adjusted to incorporate the information of the tree structure

Tobias Fritz