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ABSTRACT
This paper studies properties of continuous-time Markov chains

with one class of transient states and at least two absorbing states.

We look at a perturbation of the chain that arises by uniformly de-

creasing all rates to absorption. For this situation, the monotonicity

of the trapping probabilities is analysed, and their asymptotic limit

is computed. The theoretical findings are then applied to a type

of model repair problem, where a lower time-bounded and lower

probability-bounded CSL until requirement needs to be satisfied.

The paper presents an algorithm for this type of problem and proves

its correctness.

CCS CONCEPTS
• Computing methodologies → Model verification and val-
idation; • Theory of computation → Verification by model
checking; •Mathematics of computing→Markov processes;

KEYWORDS
Markov Chain, Perturbation, Trapping Probability, Monotonicity,
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1 INTRODUCTION
This paper studies properties of continuous-time Markov chains

(CTMC) with one class of transient states and at least two absorb-

ing states. In particular, we study a setting where all rates into the

absorbing states are multiplied by a small perturbation factor. We

analyze in detail the behaviour of the trapping probabilities (also

known as hitting probabilities) – seen as functions of the pertur-

bation factor – from the individual transient states to the different
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absorbing states. We show that, although the individual trapping

probabilities are not necessarily monotonic wrt. the perturbation

factor, interestingly, their enveloping functions are indeed mono-

tonic. It is also shown that, as the perturbation factor goes to zero,

in the limit the trapping probabilities from all transient states coin-

cide, and those limits can be calculated from the unique stationary

distribution of the transient class (when transitions to absorbing

states are ignored) and the rates from transient to absorbing states.

In order to achieve these goals, we use the concept of the Drazin

inverse which allows to perform the analysis in terms of simpler

algebraic manipulations.

For us, the question of monotonicity of trapping probabilites

arose when we tried to solve a particular instance of model repair.

In general, the model repair problem is to fix a system (or rather a

model thereof), in case it does not satisfy some desirable property.

Earlier work on model repair of probabilistic systems can be found,

e.g. in [2, 7, 18]. We are interested in model repair problems arising

in the context of CTMCs labelled with state properties, where re-

quirements are expressed in continuous stochastic logic (CSL) [1],

a temporal logic that has become very popular and can be automat-

ically checked with tools such as PRISM [15]. We look at a typical

time-bounded reach-avoid requirement that is expressed by the

CSL until operator with lower time bound and lower probability

bound. For the case that the requirement is violated, the paper pro-

poses an algorithm how to repair the model, by uniformly reducing

certain subsets of its transition rates. Depending on the case at

hand, either one or two reduction factors are employed. It is exactly

the monotonicity property derived in the earlier sections which

ensures that our model repair strategy will be always successful,

i.e. it is shown that the proposed algorithm will always succeed in

repairing the model.

Related work: Absorbing Markov chains, also known as lossy

Markov chains, have receivedmuch attention for a long time, see e.g.

[9] for an early paper. Of particular interest is their quasi-stationary

distribution [8], also referred to as quasi-limiting distribution, i.e.

the kind of equilibrium attained after a long time, provided that

absorption has not yet happened. From a different point of view,

an absorbing Markov chain can also be seen as a phase-type distri-

bution [16, 17]. This powerful class of probability distributions is

frequently used for the fitting of traffic traces [13], where the match-

ing of moments [4] and finding canonical representations [14] are

prime concerns. In that context, the focus is on the distribution of

the time to absorption, and there is usually only a single absorbing

state. To the best of our knowledge, the question of monotonic-

ity of trapping probabilities, in the context of perturbed absorbing

https://doi.org/10.1145/3150928.3150947
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Markov chains with more than one absorbing state, has not received

any attention in the literature.

Finally we mention work on parameter synthesis for parametric

Markov chains and Markov decision processes, which is related to

model repair. In [6, 11] and the recent paper [19] strategies have

been proposed to find valid parameter values in amulti-dimensional

search space.

Structure of the paper: Sec. 2 introduces some terminology

and notation, Sec. 3 derives the main monotonicity result for the

perturbedMarkov chains, and Sec. 4 is devoted to the analysis of the

asymptotic limit of the trapping probabilities as the perturbation

factor goes to zero. In Sec. 5, an algorithm for the model repair

problem is presented and its correctness is proven with the help

of the results from Sec. 3 and 4. Conclusions and future work are

discussed in Sec. 6.

2 PRELIMINARIES
For a matrixA = (Ai j ) ∈ R

n×m
writeA ≥ 0 ifAi j ≥ 0 for all i, j and

A ≫ 0 if Ai j > 0 for all i, j. Let 1 ∈ Rn denote the column vector

with values 1i = 1. A matrix P ∈ Rn×n is stochastic if P ≥ 0 and

P1 = 1 and substochastic if P ≥ 0 and P1 ≤ 1. A matrixQ ∈ Rn×n is

a generator if Qi j ≥ 0 for all i , j and Q1 = 0 and a subgenerator if
Qi j ≥ 0 for all i , j and Q1 ≤ 0. There are several ways to convert

a (sub-)stochastic matrix into some (sub-)generator and vice versa
1
.

A matrix P is strictly substochastic if it is substochastic but not

stochastic and similarly a matrix Q is a strict subgenerator if it is
a subgenerator but not a generator. If Q is a generator and D ≤ 0

is diagonal then Q + D is a subgenerator. Conversely, every sub-

generator S can be uniquely decomposed into S = Q + D where

Q is a generator and D ≤ 0 is diagonal. In particular, S is a strict

subgenerator if and only if D , 0.

A matrix A ∈ Rn×n is a nonsingular M-matrix if Ai j ≤ 0 for all

i , j and every eigenvalue of A has a strictly positive real part [3,

Chapter 6]. For every nonsingularM-matrix it holds A−1 ≥ 0. If A
is an irreducible nonsingularM-matrix then A−1 ≫ 0 [3, Chapter

6, Theorem 2.7].

ForA ∈ Cn×n denote byN (A) and R (A) the nullspace and range

of A, by ind(A) := min{k ∈ N | N (Ak ) = N (Ak+1)} < ∞ the index
of A and by AD ∈ Cn×n the Drazin inverse of A, i.e. the unique
matrix satisfying Aν+1AD = Aν for ν = ind(A), ADAAD = AD and

AAD = ADA. If A is invertible (i.e. ind(A) = 0) then AD = A−1

and if A is nilpotent then AD = 0. If ind(A) ≤ 1 then it also holds

that AADA = A (since in this case A has a group inverse which

coincides with AD ). For any matrix A ∈ Cn×n we can decompose

Cn = N (Aν ) ⊕ R (Aν ) where ν := ind(A) and the matrices AAD

and I − AAD are the corresponding projections to R (Aν ) along
N (Aν ) resp. vice versa. For any projection P it holds PD = P . If
A,B ∈ Cn×n commute then (AB)D = BDAD .

A matrix A ∈ Cn×n is semistable if ind(A) ≤ 1 and the non-zero

eigenvalues of A have strictly negative real part [5]. Equivalently,

A is semistable if and only if eAt converges as t → ∞ and in this

case the limit is given by limt→∞ eAt = I −AAD . For us of interest

1
IfQ is a (sub-)generator andD a non-singular matrix such that P := DQ+I ≥ 0 then

P is (sub-)stochastic. The uniformization and the embedding of a generator correspond

to choosing D as a suitable diagonal matrix.

is the fact that every generatorQ is semistable. The limiting matrix

limt→∞ eQt = I −QQD
is called the ergodic projection of Q and its

rows comprise the stationary distributions of the corresponding

Markov chain.

3 PERTURBED TRAPPING PROBABILITIES
AND MONOTONICITY

3.1 Setting
Consider an absorbing continuous-timeMarkov chain (CTMC) with

m absorbing states and n transient states such that all transient

states communicate and all absorbing states are reachable from

some transient state (and thus from all transient states). In other

words, the generator Q ∈ R(m+n)×(m+n) of the Markov chain can

be decomposed as Q = Q1 +Q2 with

Q1 =

(
0 0

0 E

)
and Q2 =

(
0 0

F D

)
(1)

where E ∈ Rn×n is the generator of an irreducible Markov chain

over n states (the transient states ofQ with transitions to absorbing

states omitted), F ∈ Rn×m is a matrix comprising the rates for

transitions to the absorbing states and D = −∆(F1) ∈ Rn×n is

the diagonal matrix comprising the negative row sums of F (the

operator ∆ turns a column vector into a diagonal matrix). Note that

D contains at least one strictly negative diagonal entry.

Let Π := limt→∞ eQt ∈ R(m+n)×(m+n) denote the ergodic pro-
jection ofQ and consider the canonical decomposition Π = RL into

a matrix R ∈ R(m+n)×m which contains the trapping probabilities

into the ergodic classes ofQ and L ∈ Rm×(m+n) which contains the

stationary distributions of Q . Since we supposed that Q is absorb-

ing and definesm absorbing states it follows that Q hasm ergodic

classes each consisting of a single state. Therefore L and R are of

the form

L =
(
I 0

)
and R =

(
I

R̃

)
where I ∈ Rm×m is the identity matrix, 0 ∈ Rm×n the zero matrix

and R̃ ∈ Rn×m comprises the trapping probabilities from each of

the n transient states into each of them ergodic classes.

3.2 Trapping Probabilities
The following proposition provides an explicit expression for the

trapping probabilities R̃.

Proposition 3.1. The matrix −(E+D) is a nonsingularM-matrix
and R̃ = −(E + D)−1F .

In order to prove the first part of this proposition we state the

following well-known

Lemma 3.2. If P ∈ Rn×n is irreducible and strictly substochastic
then its spectral radius ρ (P ) is strictly bounded by 0 < ρ (P ) < 1.

For completeness we provide its

Proof. By the Perron-Frobenius theorem for irreducible non-

negative matrices applied to P it follows for the spectral radius

λ := ρ (P ) that (i) λ > 0, (ii) λ is a simple eigenvalue of P and (iii)

that there is a left eigenvector π ∈ Rn corresponding to λ with
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strictly positive components πi > 0 (i.e. π ≫ 0). We can assume

π to be normalized by ∥π ∥1 =
∑
i πi = 1, i.e. π is stochastic. Set

v := (I − P )1 ∈ Rn and define

P̂ :=

(
P v
0 1

)
∈ R(n+1)×(n+1) and π̂ :=

(
π 0

)
∈ R1×(n+1) .

Then π̂ P̂ =
(
πP πv

)
and the fact that P is strictly substochastic

means that P1 ≤ 1 and that there is i ∈ {1, . . . ,n} such that 0 ≤

(P1)i < 1 and thus 0 < vi = 1 − (P1)i ≤ 1. Since πj > 0 for all j

it follows that πv =
∑
j πjvj > 0. From ∥π̂ P̂ ∥1 = ∥πP ∥1 + πv we

deduce that

λ = λ∥π ∥1 = ∥λπ ∥1 = ∥πP ∥1 = ∥π̂ P̂ ∥1 − πv < ∥π̂ P̂ ∥1 = 1

where in the last equation we used that π̂ P̂ is stochastic since π̂

and P̂ are stochastic. □

An alternative proof for Lemma 3.2 can be given by applying [3,

Corollary 2.1.5].

Corollary 3.3. If S is an irreducible strict subgenerator then −S
is a nonsingularM-matrix.

Proof. Set s := max{−Sii | i = 1, . . . ,n} and note that s > 0

since S is a strict subgenerator. Define P := 1

s S + I . Then P is

irreducible and strictly substochastic and it follows by Lemma 3.2

that 0 < ρ (P ) < 1. If λ is an eigenvalue of S then
1

s λ + 1 is an

eigenvalue of P and thus Re

(
1

s λ + 1
)
≤ ρ (P ) < 1 which implies

that Re(λ) < 0. Therefore, every eigenvalue of −S has a strictly

positive real part and since (−S )i j ≤ 0 for i , j it follows that −S is

a nonsingularM-matrix. □

Proof of Proposition 3.1. Recall that since Q is semistable its

ergodic projection Π is given by Π = I −QQD
. In the following, we

are going to computeQD
. Instead of the decompositionQ = Q1+Q2

as in (1) consider the decomposition Q = B + N where

B :=

(
0 0

0 E + D

)
and N :=

(
0 0

F 0

)
.

Note that NB = 0 and N is nilpotent of index 2 (since N , 0 and

N 2 = 0). With this decomposition we can apply [10, Corollary 2.3]

(or [12, Corollary 2.1 (iv)]) which results in

QD = (B + N )D = BD + (BD )2N .

It follows that

Π = I −QQD = I − (BBD + NBD + B (BD )2N + N (BD )2N )

= I − BBD (I + BDN )

where we have applied that NBD = NBDBBD = NB (BD )2 = 0

since NB = 0. Since E +D is an irreducible strict subgenerator, it is

invertible by Corollary 3.3 and thus we have

BD =

(
0 0

0 (E + D)−1

)
.

It follows

Π =

(
I 0

0 I

)
−

(
0 0

0 I

) ((
I 0

0 I

)
+

(
0 0

(E + D)−1F 0

))
=

(
I 0

−(E + D)−1F 0

)
.
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Figure 1: Top: an absorbing Markov chain with rates to ab-
sorption scaled by ε > 0. Bottom: the corresponding trap-
ping probabilities R̃ (ε ) into state 2. The function R̃ (ε )52 is non-
monotonic, but the enveloping functions maxi R̃ (ε )i2 and
mini R̃ (ε )i2 are monotonic.

Thus when comparing with

Π = RL =

(
I

R̃

) (
I 0

)
=

(
I 0

R̃ 0

)
we get R̃ = −(E + D)−1F . □

Remark 3.1. For transient states i and j denote by Ti j the total
sojourn time in state j (until absorption) when starting in state

i . Then −(E + D)−1 = E(Ti j )i,j (see [9, Eq. (2.2)]) and thus R̃ik =∑
j E(Ti j )Fjk for an absorbing state k .

3.3 Perturbation of rates to absorbing states
Let us now scale the rates of the transitions of Q to absorption

with a small factor ε > 0, i.e. consider the family of generators

Qε
:= Q1 + εQ2 with Q1 and Q2 as in Section 3.1. The generator

εQ2 can be regarded as an additive perturbation to the generator

Q1 and Q
ε
as a generator of some perturbed Markov chain. Note

that the number of ergodic classes of Qε
ism for ε > 0 (i.e. them

absorbing states) andm + 1 for ε = 0 (them absorbing states plus

the ergodic class of Q1 (which is transient for ε > 0)). When we

substitute Q2 by εQ2 for ε > 0 then by Proposition 3.1 we get that

the trapping probabilities R̃ (ε ) are also perturbed by ε and given by

R̃ (ε ) = −(E + εD)−1εF .

Note that for any ε > 0 the matrix E + εD is nonsingular while for

ε = 0 it is singular. The matrix function (E+εD)−1 is the restriction
of the generalized resolvent (E + λD)−1 (which is defined for all

those λ ∈ C for which E + λD is nonsingular) to the positive real

line (0,∞).
Figure 1 shows an example of such a perturbed CTMC and the

trapping probabilities R̃ (ε )i2 from all transient states i = 3,4,5 to

the absorbing state 2. In the following, we are going to analyze

the behaviour of the trapping probabilities R̃ (ε ). While for a fixed

transient state i the trapping probability R̃ (ε )ik into the absorbing

state k is not necessarily monotonic, we prove the monotonicity of
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their enveloping functions maxi R̃ (ε )ik and mini R̃ (ε )ik for every

absorbing state k . Following Campbell [5], it turns out to be suitable

to define for ε > 0 the matrix functions

Êε := (E + εD)−1E and D̂ε := (E + εD)−1D.

Before establishing themonotonicity of the enveloping functions,

we first state some helpful facts and identities involving thematrices

Êε and D̂ε .

Lemma 3.4. (i) For any ε > 0 and δ > 0 the matrix Êε + δD̂ε
is invertible and

Êδ = (Êε + δD̂ε )
−1Êε and (Êε + δD̂ε )

−1 = Êδ + εD̂δ .

(ii) For 0 < ε ≤ δ it holds

Êε + δD̂ε ≥ I and Êε + εD̂ε = I .

(iii) For ε > 0 and δ > 0 the matrices Êε , ÊDε , D̂ε , D̂D
ε , Êδ , ÊDδ , D̂δ

and D̂D
δ commute pairwise.

(iv) For ε > 0 the matrix εD̂ε is stochastic and thus −Êε = εD̂ε − I
is a generator and for both the set {j | D j j < 0} forms their
single irreducible class.

Proof. (i) Since E + εD is invertible for any ε > 0 it follows that

Êε + δD̂ε = (E + εD)−1 (E + δD) is also invertible and its inverse is

given by

(Êε + δD̂ε )
−1 = (E + δD)−1 (E + εD) = Êδ + εD̂δ .

The other identity follows from

Êδ = (E + δD)−1E = (E + δD)−1 (E + εD) (E + εD)−1E

= ((E + εD)−1 (E + δD))−1 (E + εD)−1E = (Êε + δD̂ε )
−1Êε .

(ii) The identity Êε+εD̂ε = I is clear. SinceD ≤ 0 and (E + εD)−1 ≤ 0

by Corollary 3.3 it follows that D̂ε ≥ 0. Thus, if δ ≥ ε then

Êε + δD̂ε ≥ Êε + εD̂ε = I .
(iii) Since Êε + εD̂ε = I by (ii) it follows that the four ε-matrices Êε ,

ÊDε , D̂ε and D̂
D
ε commute pairwise. By (i), Êδ is expressible in terms

of Êε (as a power series in Êε for a fixed δ ). Therefore, Êδ commutes

with the ε-matrices and it then follows that ÊDδ = ÊDε (Êε + δD̂ε ),

D̂δ and D̂D
δ also commute with the ε-matrices.

(iv) In the proof of (ii) we already mentioned that D̂ε ≥ 0. From

E1 = 0 we get (E+εD)1 = εD1 and thus εD̂ε1 = (E+εD)−1εD1 = 1
from which we conclude that εD̂ε is stochastic. In order to show

that J := {j | D j j < 0} is the single irreducible class of εD̂ε set A :=

−(E + εD) and note that j-th column of the matrix D̂ε = A−1 (−D)

is of the form (D̂ε )·,j = ((A−1)i j (−dj ))i so that (D̂ε )·,j = 0 if dj = 0

and (D̂ε )·,j ≫ 0 if dj , 0 since A is an irreducible nonsingular

M-matrix and thus A−1 ≫ 0. Therefore, the stochastic matrix εD̂ε
has exactly |J | strictly positive columns and n − |J | zero columns

from which we deduce that J is the single irreducible class for εD̂ε .

Since −Êε = εD̂ε − I it follows that −Êε is an irreducible generator

with the same single irreducible class J . □

Weare now ready to establish themonotonicity of the enveloping

functions. This will allow us to compare the trapping probabilities

R̃ (ε ) for different perturbation values ε .

Theorem 3.5. Fix an absorbing state 1 ≤ k ≤ m and consider
the perturbed trapping probabilities R̃ (ε )ik from all transient states
1 ≤ i ≤ n to k for ε > 0. Define the functions

Mk (ε ) := max

i=1, ...,n
R̃ (ε )ik and mk (ε ) := min

i=1, ...,n
R̃ (ε )ik .

ThenMk (ε ) is monotonically increasing andmk (ε ) is monotonically
decreasing.

Proof. Consider the k-th column of R̃. We show that for all

transient states i ∈ {1, . . . ,n}, for all δ > 0 and for all 0 < ε ≤ δ the

i-th component R̃ (ε )ik is a convex combination of all the R̃ (δ )jk ,
j = 1, . . . ,n. It then follows that

mk (δ ) = min

j
R̃ (δ )jk ≤ R̃ (ε )ik ≤ max

j
R̃ (δ )jk = Mk (δ ).

Since these inequalities hold for an arbitrary transient state i it
follows that

mk (δ ) ≤ mk (ε ) = min

i
R̃ik (ε ) ≤ max

i
R̃ik (ε ) = Mk (ε ) ≤ Mk (δ )

and the conclusion follows. So let δ > 0 and 0 < ε < δ . Then

R̃ (ε ) = −(E + εD)−1εF = (E + εD)−1 (E + δD) (E + δD)−1 (−εF )

= (Êε + δD̂ε )
ε

δ
R̃ (δ ).

Now note that P (ε,δ ) := (Êε + δD̂ε )
ε
δ is stochastic. Indeed, since

0 < ε ≤ δ we get by Lemma 3.4(ii) that Êε + δD̂ε ≥ I ≥ 0

and thus P (ε,δ ) ≥ 0 and moreover P (ε,δ )1 = ε
δ Êε1 + εD̂ε1 = 1

where we applied that εD̂ε is stochastic by Lemma 3.4(iv) and Êε1 =
(E + εD)−1E1 = 0 sinceE1 = 0. Therefore R̃ (ε )ik =

∑
j P (ε,δ )i j R̃ (δ )jk

is a convex combination of all the R̃ (δ )jk for any i . □

Remark 3.2. (1) We recall that in contrast to the enveloping

functions mk (ε ) and Mk (ε ), a fixed component function

R̃ik (ε ) of R̃ (ε ) need not be increasing or decreasing (Fig.

1).

(2) The lower bound Êε + δD̂ε ≥ I from Lemma 3.4(ii) provides

additional information on the behaviour of the trapping prob-

abilities R̃ (ε ): from R̃ (ε ) = (Êε + δD̂ε )
ε
δ R̃ (δ ) and R̃ (δ ) ≥ 0

it follows that R̃ (ε ) ≥ ε
δ R̃ (δ ) for 0 < ε ≤ δ . In other words,

any component of
1

ε R̃ (ε ) is decreasing in ε and by differen-

tiating it we deduce that
d
dε R̃ (ε ) ≤

1

ε R̃ (ε ) for each ε > 0.

The inequality R̃ (ε ) ≥ ε
δ R̃ (δ ) for 0 < ε ≤ δ also implies that

for any δ > 0 the graph of R̃ (ε )ik in the interval (0,δ] is
always above the line connecting the origin with the point

(δ , R̃ (δ )ik ).

4 ASYMPTOTIC LIMIT OF TRAPPING
PROBABILITIES

In this section we analyze the limiting behaviour of the perturbed

trapping probabilities R̃ (ε ), i.e. we establish the limit of R̃ (ε ) as
ε → 0. We begin with the following

Lemma 4.1. Fix ε > 0. Then
(i) Êε ÊDε and D̂ε Ê

D
ε do not depend on ε .

(ii) ind(Êε ) = 1 and thus Êε ÊDε Êε = Êε .
(iii) εD̂ε (I − Êε Ê

D
ε ) = I − Êε Ê

D
ε
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(iv) (I + εÊDε D̂ε )
−1ÊDε = Êε Ê

D
ε

Proof. (i) can be found in [5, Theorem 3.1.2, p. 36].

(ii) Since E is irreducible and E + εD is invertible we get ind(Êε ) =

ind(E) = 1. Therefore ÊDε is the group inverse of Êε and thus

Êε Ê
D
ε Êε = Êε .

(iii) By applying Lemma 3.4(ii, iii) and this lemma (ii) we compute

εD̂ε (I−Êε Ê
D
ε ) = (I−Êε ) (I−Êε Ê

D
ε ) = I−Êε Ê

D
ε −Êε+Ê

2

ε Ê
D
ε = I−Êε Ê

D
ε .

(iv) From Lemma 3.4(ii, iii) and this lemma (ii) it follows that

Êε (I +εÊ
D
ε D̂ε ) = Êε (I + Ê

D
ε (I − Êε )) = Êε + Êε Ê

D
ε − Ê

2

ε Ê
D
ε = Êε Ê

D
ε .

Since Êε and D̂ε commute it follows that

(I + εÊDε D̂ε )
−1ÊDε = (Êε (I + εÊ

D
ε D̂ε ))

D = (Êε Ê
D
ε )D = Êε Ê

D
ε

where in the last step we used that Êε Ê
D
ε is a projection. □

In order to establish the limit of R̃ (ε ) as ε → 0 we show that

R̃ (ε ) can be extended to an analytic function on R and establish

its power series expansion at 0. For this purpose, we first state the

following

Proposition 4.2. The generalized resolvent (E + εD)−1 satisfies

(E + εD)−1 =

(
(I − Π̂)(Êδ + εD̂δ )

−1 + Π̂
δ

ε

)
(E + δD)−1 (2)

where δ > 0 is arbitrary and Π̂ := I − Êδ Ê
D
δ = I − Êε Ê

D
ε .

Proof. First write

(E + εD)−1 = (E + εD)−1 (E + δD) (E + δD)−1

= ((E + δD)−1 (E + εD))−1 (E + δD)−1

= (Êδ + εD̂δ )
−1 (E + δD)−1.

Decompose (Êδ+εD̂δ )
−1

with respect to the projection Π̂ = I − Êδ Ê
D
δ :

(Êδ + εD̂δ )
−1 = (I − Π̂)(Êδ + εD̂δ )

−1 + Π̂(Êδ + εD̂δ )
−1.

Simplify the right hand side as required by applying Lemma 3.4(i)

which gives

Π̂(Êδ + εD̂δ )
−1 = Π̂(Êε + δD̂ε ) = δD̂ε Π̂ =

δ

ε
Π̂

where in the last two steps we also applied Lemma 3.4(iii) and

Lemma 4.1(ii, iii). □

Remark 4.1. In [5, Proof of Theorem 4.2.1, p. 80] one can also

find the Laurent series expansion at 0 of the generalized resolvent

(E + εD)−1 which takes the form

(E + εD)−1 = *.
,
ÊDδ

∞∑
k=0

(−ÊDδ D̂δ )
kεk + D̂D

δ Π̂
1

ε
+/
-
(E + δD)−1.

This expansion can be also deduced from (2) by using the equalities

D̂D
δ Π̂ = δ Π̂ (which follows from Lemma 4.1(iii)) together with

(I − Π̂)(Êδ + εD̂δ )
−1 = ÊDδ (I + εÊDδ D̂δ )

−1
(see proof of Theorem

4.3) and its Neumann series expansion.

In the following, we are going to apply the preceding proposi-

tion in order to establish the power series expansion at 0 of the

trapping probabilities R̃ (ε ) which then can be used to compute their

asymptotic behaviour as ε → 0.

Theorem 4.3. R̃ (ε ) can be extended to an analytic function on R
and its power series expansion at 0 can be written as

R̃ (ε ) =
(
ÊDδ (I + εM̂ )−1ε + Π̂δ

)
·

(
1

δ
R̃ (δ )

)
(3)

where δ > 0 is arbitrary and M̂ := ÊDδ D̂δ (independent of δ ).

Proof. From Proposition 4.2 we have

R̃ (ε ) = −(E + εD)−1εF

= −

(
(I − Π̂)(Êδ + εD̂δ )

−1 + Π̂
δ

ε

)
(E + δD)−1εF

=
(
(I − Π̂)(Êδ + εD̂δ )

−1ε + Π̂δ
)
1

δ
R̃ (δ ).

We show that

(I − Π̂)(Êδ + εD̂δ )
−1 = ÊDδ (I + εÊDδ D̂δ )

−1.

For this purpose, note that

ÊDδ (I + εÊDδ D̂δ )
−1 = ÊDδ Êδ Ê

D
δ (I + εÊDδ D̂δ )

−1

= ÊDδ Êε Ê
D
ε (I + εÊDε D̂ε )

−1

= ÊDδ Êε Êε Ê
D
ε = ÊDδ Êε

where we used Lemma 4.1(i, iv, ii). In order to show ÊDδ Êε =

(I − Π̂)(Êδ + εD̂δ )
−1

we show that I − Π̂ = ÊDδ Êε (Êδ + εD̂δ ):

ÊDδ Êε (Êδ + εD̂δ ) = Êε (Ê
D
δ Êδ + εÊ

D
δ D̂δ ) = Êε (Ê

D
ε Êε + εÊ

D
ε D̂ε )

= ÊDε Êε (Êε + εD̂ε ) = Êε Êε = I − Π̂

where we applied Lemma 3.4(ii, iii) and Lemma 4.1(i). Finally, the

desired identity in (3) follows. □

Corollary 4.4. The componentwise limit of R̃ (ε ) as ε → 0 exists
and we denote it by R̃ (0) := lim

ε→0

R̃ (ε ). If π is the unique stationary

distribution of the irreducible generator E then the ergodic projection
Π := I − EED of E has equal rows π (i.e. Π = 1π ) and

R̃ (0) =
1

∥πD∥1
ΠF =

1

∥πD∥1
1πF .

In particular, R̃ (0) is a stochastic matrix with equal rows R̃ (0)i · =
1

∥πD ∥1
πF (for each i) and thus constant columns R̃ (0)· k = 1 (π F )k

∥πD ∥1
.

Proof. Letting ε → 0 in (3) we note that since (I + εM̂ )−1 is

bounded in a neighborhood of 0 the componentwise limit R̃ (0) of

R̃ (ε ) as ε → 0 exists and is given by R̃ (0) = Π̂R̃ (δ ) for any δ > 0.

By Lemma 3.4(iv), −Êε is a generator with a single irreducible class

for any ε > 0. Recall that in contrast to −Êε , its ergodic projection

Π̂ = I − Êε Ê
D
ε does not depend on ε . Since −Êε is irreducible it

has a unique stationary distribution π̂ and thus Π̂ = 1π̂ . Since E
is irreducible it holds for its unique stationary distribution π that

πE = 0 and π ≫ 0. Since D is diagonal and D , 0 it follows that

πD , 0. Now note that π̂ = − 1

∥πD ∥1
πD since (by setting ε := 1)

πDÊ1 = πD (E + D)−1E = π (E + D) (E + D)−1E = πE = 0
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where we have applied that πD = π (E + D). Finally, from π̂ =
− 1

∥πD ∥1
π (E +D) it follows that −π̂ (E +D)−1 = 1

∥πD ∥1
π and since

Π̂ = 1π̂ we deduce that

R̃ (0) = Π̂R̃ (1) = 1π̂ (E + D)−1 (−F ) =
1

∥πD∥1
1πF =

1

∥πD∥1
ΠF .

□

Returning to the example from Fig. 1, where obviously π =
( 1
3
, 1
3
, 1
3
), we can calculate the limit as

R̃ (0)i2 = lim

ε→0

R̃ (ε )i2 =
1

3
· 1

10
+ 1

3
· 1

50

1

3
· 1

100
+ 1

3
( 1

50
+ 1

10
) + 1

3
· 1

50

= 0.8

for i ∈ {3,4,5}, which is the value that can also be read from the

figure.

5 APPLICATION TO MODEL REPAIR
In this section, the theoretical results derived in the previous sec-

tions are employed to solve a model repair problem.

5.1 Setting and Approach
Consider a CTMCwith generatorQ , with one irreducible class com-

prising n transient states andm = 2 absorbing states {failed,done}
which are both reachable from the transient states. The CTMC

represents a system that performs useful work for some time (all

transient states carry the label work) and – if all goes well – even-

tually finishes by moving to the inactive state done. However, it is
possible that an error occurs during the working phase, which will

lead the system to the undesirable failed state. A typical require-

ment for such a system would be that it works for a sufficiently

long period of time and then finishes without an error. This can

be expressed formally with the help of the following CSL [1] time-

bounded Until formula: Φ = P≥b (work U>t done), with lower

probability bound 0 < b < 1 and lower time bound t > 0. It is

required that each transient state should satisfy Φ.
If some of the transient states violate requirement Φ, the sys-

tem should be “repaired”, i.e. modified according to some strategy.

Among the many possible approaches to model repair, such as

adding / removing states or transitions, we advocate a scheme

where the structure of the CTMC remains untouched, but transi-

tion rates may be reduced. The rationale behind rate reduction is

that in most real systems, slowing down a process (a processor, a

machine, etc.) is possible, while acceleration may not be feasible.

However, rate reduction still leaves many degrees of freedom. For

example, each transition could be reduced by its individual reduc-

tion factor, which could lead to good solutions but would open a

possibly huge multidimensional search space. Therefore we restrict

ourselves further by only allowing for common reduction factors

applied to sets of transitions.

Basically, for a transient state s , there can be two reasons (or a

combination of the two) for violating requirement Φ:

(1) The trapping probability from s to state done is too low (in

other words, the trapping probability to state failed is too

high).

(2) The trapping probability to state done is high enough, but

the time to absorption (starting from s) is too short.

We propose a general solution which takes into account (1) and

(2) and is guaranteed to lead to a solution for all transient states.

(I) We first try to deal with both (1) and (2) at the same time

by applying the common reduction factor 0 < η ≤ 1 to all

transitions from the transient class to state failed. As η is

reduced, the probability of getting absorbed in state done
can be made arbitrarily close to 1, and at the same time

the system will become “slower”, since the exit rates of the

transient states are reduced. Depending on the case at hand,

it may be possible to find some 0 < η ≤ 1 such that Φ will be

satisfied for all transient states, in which case we are done.

But it is also possible that no such η exists (since the system

goes to absorption too early, even though some rates were

reduced), in which case we need to proceed.

(IIa) If step (I) was not successful, we first concentrate on the

time-unbounded problem, i.e. we deal exclusively with is-

sue (1). The weakened requirement for this step is Φ′ =
P>b (work U done), where the time bound has been removed

and the probability bound has been changed from ≥ b to > b.
As shown in [20], one can always find a common reduction

factor ηut (applied simultaneously to all transitions from

transient states to state failed) such that all transient states

satisfy the time-unbounded requirement Φ′. After step (IIa)

we always move to (IIb).

(IIb) In this final step, we deal with issue (2). We keep factor ηut
fixed and return to the original time-bounded requirement

Φ. We now introduce a second common reduction factor

0 < ε ≤ 1 to all transitions from transient states to all

absorbing states (failed and done). The purpose is to slow

down the system, such that absorption before t becomes less

likely. It is essential that this perturbation by factor ε does
not destroy the trapping probabilities which were already

fixed in step (IIa). This is where we need Theorem 3.5 from

Sec. 3.3, which guarantees that during this slow-down the

trapping probabilities are preserved in the admissible range.

Proposition 5.1. The procedure described in steps (I), (IIa) and
(IIb) solves the model repair problem for the given requirement Φ =
P≥b (work U>t done), for all transient states.

Proof. The goal is that all transient states s should satisfy

P≥b (work U>t done), where b and t are fixed. From [20] we

know that one can find a solution for the corresponding time-

unbounded problem, i.e. one can find a reduction factor ηut s.t.

s |= P>b (work U done) for all 0 < η ≤ ηut , or in other words, that

b < Prηut (s,work U done) (the superscript indicates the proba-
bility measure for the Markov chain modified according to (IIa)).

Keeping ηut fixed, we know by Theorem 3.5, shown in Sec. 3.3,

that for all transient states s of the CTMC in which all rates to

absorption are further reduced by the common reduction factor

0 < ε ≤ 1 according to (IIb) the following inequality also holds:

b < Prηut ,ε (s,work U done).

The right hand side converges to some value p ≥ b as ε → 0 and

this limit is the same for all transient states s (Corollary 4.4). Since

mins Pr
ηut ,ε (s,work U done) (taken over all transient states s) is

decreasing in ε it follows that p > b. Now, for any Markov chain it
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Figure 2: Example Markov chain, also showing the applica-
tion of the reduction factors η and ε .

trivially holds that

Pr (s,work U done) = Pr (s,work U ≤t done)+Pr (s,work U>t done).

We apply this to the Markov chain modified by both reduction

factors ηut and ε and combine it with the previous inequality:

b < Prηut ,ε (s,work U done)
= Prηut ,ε (s,work U ≤t done) + Prηut ,ε (s,work U>t done).

Since as ε → 0 the first term of the sum vanishes, the second term

of the sum converges to p. From p > b it follows that there is ε > 0

for which the second term is ≥ b for all transient states s . □

5.2 Illustration by Example
We now study a concrete example, in order to demonstrate the

different situations that may occur during the algorithm proposed

in the previous section. Consider an example with three transient

states (labelled by work) plus the two absorbing states labelled by

failed and done, as shown in Fig. 2. (The example is the same as the

one from Fig. 1, but now the figure shows the application of both

reduction factors η and ε .) Furthermore, consider three instances of

a time-bounded requirement Φi = P≥bi (work U
>5 done), where

the probability bounds are chosen as follows: b1 = 0.2, b2 = 0.5 and

b3 = 0.7.

The probabilities for states 3, 4 and 5 to satisfy the path formula

φ = (work U>5 done) are Pr (3,φ) = 0.2053, Pr (4,φ) = 0.4609 and

Pr (5,φ) = 0.7925. Therefore, when model checking Φ1, all three

values are greater than b1 = 0.2 and thus all three transient states

satisfy Φ1. There is no need for model repair in this case.

Turning to requirement Φ2, which contains the same path for-

mula φ = (work U>5 done), model checking yields the same

probabilities as for formula Φ1. But since the probability bound

b2 = 0.5 is higher, states 3 and 4 now violate that probability bound,

such that model repair is needed. Figure 3 shows that the model can

be repaired according to step (I) of the general solution by using the

common reduction factor η. The figure shows how probabilities in-

crease beyond b2 = 0.5 for all three transient states while reducing

η, such that Φ2 is satisfied in the range 0 < η ≤ 0.29. At η = 0.29,

the probabilities are Prη (3,φ) = 0.5017, Prη (4,φ) = 0.5586 and

Prη (5,φ) = 0.8349. We refer to [21] for more details on finding η
and how to deal with intersecting curves as in Fig. 3. (Note, how-

ever, that in [21] only the upper time-bounded case was considered

since we did not know yet how to solve the lower time-bounded

case.)

Finally, model checking Φ3, again containing the same path for-

mula φ, gives the original probabilities as in the case Φ1. But now

the probability bound b3 = 0.7 is higher again, which means that

Figure 3: Step (I): Probability curves for φ = work U>5 done
(time-bounded requirement), depending on η. If b = 0.5 then
model repair is successful with η = 0.29; if b = 0.7 then one
needs to move on to step (IIa).

Figure 4: Step (IIa): Probability curves for φ ′ = work U done
(time-unbounded requirement), depending on η. Determin-
ing ηut = 0.13 for b = 0.7.

Figure 5: Step (IIb): Probability curves for φ = work U>5 done
(time-bounded requirement) at ηut = 0.13, depending on ε .
Model repair is successful with ε = 0.645 (and η = ηut = 0.13).

reducing η alone as for Φ2 will not be sufficient. This is evident

from Fig. 3, as the probability of state 4 can reach a maximum

of 0.61 as η → 0. Therefore, we follow step (IIa) of the general

procedure and momentarily focus on the time-unbounded require-

ment Φ′
3
= P≥0.7 (work U done). We reduce factor η as shown

in Fig. 4, thereby finding ηut = 0.13. Afterwards, while keeping

ηut fixed, we return to the original time-bounded requirement Φ3

and introduce reduction factor ε . The behaviour of the satisfaction
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probabilities while reducing ε is shown in Fig. 5. Hence, in the

range 0 < ε ≤ 0.645, all three transient states have satisfaction

probability higher than 0.7 and therefore satisfy Φ3. The proba-

bilities at ηut = 0.13 and ε = 0.645 are Prηut ,ε (3,φ) = 0.7764,

Prηut ,ε (4,φ) = 0.7002 and Prηut ,ε (5,φ) = 0.8925. Thus, with a

combination of reduction factors ηut and ε , the model repair prob-

lem has been solved also for Φ3.

After having solved the model repair problem for all three prob-

lem instances, we shall once more return to the trapping probabil-

ities and their limit (purely for illustration purposes). As we had

seen in Fig. 1, when applying reduction factor ε to the original

CTMC, we could observe both non-monotonicity and intersection

of the trapping probability curves R̃ (ε )i2. As shown in Fig. 6, for

the modified system, where already ηut = 0.13 was applied before

reducing ε , we still get very slight non-monotonicity (for R̃ (ε )52)
but no intersection for 0 < ε ≤ 1. Of course, the enveloping func-

tions in this case are also monotonic, as we know from Theorem

3.5. Figure 6 also illustrates Corollary 4.4, which states that the per-

turbed trapping probabilities R̃ (ε )i2 all converge to the same value

as ε → 0. For this system where already ηut = 0.13 was applied,

we can calculate the limiting trapping probability by Corollary 4.4

which gives

R̃ (0)i2 =
1

3
· 1

10
+ 1

3
· 1

50

1

3
· 1

100
· 13

100
+ 1

3
( 1

50
· 13

100
+ 1

10
) + 1

3
· 1

50

≈ 0.9685 .

In fact, this limit is identical to the limit observed in Fig. 5, since

for very small values of ε the probability of absorption before t = 5

goes to zero, see proof of Proposition 5.1.

Figure 6: Probability curves for φ ′ = work U done (time-
unbounded requirement) at ηut = 0.13, depending on ε .
These are the trapping probabilities R̃ (ε )i2 for the Markov
chainmodified according to (IIa) with ηut = 0.13. Here, R̃ (ε )52
is nonmonotonic, but the curves do not intersect (as opposed
to the situation in Fig. 1).

6 CONCLUSION AND FUTUREWORK
This paper considered absorbing CTMCs with multiple sink states

for which the transient class would form an irreducible Markov

chain if the transitions to absorbing states were ignored. For such

Markov chains, we studied the behaviour of the trapping proba-

bilities as the rates to absorption are scaled by a paramter ε > 0,

for which setting we were able to prove monotonicity and limiting

results. The paper also presented an application of these theoretical

findings to a certain type of model repair problem. As future work,

we plan to generalize the established results without imposing any

such reducibility restriction on the structure of the transient class.

Moreover, we intend to check whether our results also generalize

to certain infinite-state absorbing Markov chains. Regarding the

application to model repair which we presented, we are currently

in the process of improving the efficiency of our prototype imple-

mentation, such that the algorithm will run faster on models with

a large number of states.
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