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Abstract The paper shows that there is a deep structure on certailfskisimilar Probabilistic
Automata (PA). The key prerequisite for these structuresristion of compactness of PA. It is shown
that compact bisimilar PA form lattices. These results laeatused in order to establish normal forms (in
the sense of [4]) not only for finite automata, but also fomiitéi automata, as long as they are compact.

1 Introduction

Probabilistic automata (PA) [11, 12, 8] are a powerful andytar modelling formalism, since they allow
one to reason about the behaviour of systems which featdherindomness and nondeterminism. For
probabilistic automata (PA), several notions of simulagi@nd bisimulations have been defined in the
literature [11/ 10]. Bisimulation relations — in generalit also in particular for probabilistic automata
— are employed for characterising equivalent behaviouusTthey may serve as the basis for checking
whether two systems are equivalent in some sense. As ahtfamigard consequence, bisimulation
relations are also very valuable for reducing the size ofsdesy, by replacing it with an equivalent
but smaller one. Hereby the goal is to find the smallest pless$ilsimilar system, i.e. the minimal
one. We concentrate on two notions of bisimulation for PRorg probabilistic bisimulation and weak
probabilistic bisimulation. For automata with finite sefsstates and transitions, both are known to be
decidable in polynomial time [2] 6].

Recently, the question of calculating minimal canonicahfs (i.e. normal forms) of probabilistic
automata has been tackled (again, for automata with finieeafestates and transitions)| [4], where it
turned out that this problem can also be solved in polynotiria. In the present paper, we go one step
further: We show that finiteness is not required for definirigimal canonical forms. We point out that
also for automata with countably infinite (“countable” ftiost) state space, countable set of actions, and
possibly uncountable set of transitions, there are notidnsormal forms. However, we show that, in
contrast to the finite case, normal forms do not always eltisither turns out that an auxiliary condition,
namely compactness|[3], is crucial for the existence of mbforms.

In the context of PA, the distributions reached by probatilischedulers form convex sets. The first
ones to use this observation were Segala and Cattani whéodedea decision algorithm out of this fact
[2]. In this paper, we combine the strongly geometric iddg®Jowith the ideas of compact automata of
[3]. This enables us to extend the recent resultslof [4] t@aascbf PA with countable state space. In this
way we may use geometrical ideas to show that normal form#afrBe naturally as some “generating
points” — in a strong or weak sense — of convex sets. Howeweglgo show (by a counterexample) that
in general one cannot expect normal forms for arbitrary P& wountable state space. For normal forms
wrt. strong bisimulation, we may directly use a classicaltefrom functional analysis, the theorem of
Krein-Milman [7], that directly extends the ideas bf [2] teetcase of countable state spaces. For weak
bisimulation, we extend the results bf [4] by adding some gactness assumptions.
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2 Lattice structures for PA

This paper is, to the best of our knowledge, the first approaderive lattice structures on bisimilar
objects. Technically, we work with partially ordered setbisimilar PA on which lattice structures are
established, such that the normal form corresponds to ttierbelement of the lattice. We show that
there are unique bottom elements in the lattices we define.w@k on quotients of PA, but do not
address the question of how to find such quotients for arpiratomata. For the countably infinite case,
ideas from|[1| 5] could be used to calculate quotients, butiaveot investigate this further. However,
even ifitis hard to find quotients for infinite state systems,feel that the lattice structures we establish
are interesting just from an abstract point of view.

The paper is organised as follows: Sec. 2 recalls some bastie 6n preorders, lattices and prob-
abilistic automata, compact sets and extreme points. dt dddines the notion of compact PA which
is essential for our paper. Operations on bisimilar quédiemd sets of quotients (intersection, union,
rescaling) are defined in Sé¢. 3. The core of the paper ceritfie results on lattice structures given in
Secl4. Some illustrating examples are provided in Sec.cbSac[6 concludes the paper.

2 Preliminaries

Definition 1. The disjoint union of two setg @nd $ is defined as 8U S := Ujc(1 23 {(X,i)|x € §}.

The disjoint union is defined up to isomorphism, which impl@mmutativityS; US =S U S;.
There are canonical embeddings— S; U S, x+— (x,1) andS, — S U S, X+ (X, 2).

2.1 Partial orders and lattices

Definition 2. A partial orderis a binary relation< over a set S which iantisymmetric transitive and
eitherreflexiveor irreflexive, i.e., for all a, b, and c in S, we have that:

e If a < b and b< a then a= b (antisymmetry).
e If a < band b< cthen a< c (transitivity).
o Either: a< a (reflexivity) for all ac S, or: a¥ a (irreflexivity) for all ac S.

A set with a partial order is called partially ordered sefalso called a poset). For a poset we write
a<biffa<band a# b (and similar a> b).

Definition 3. Let (S, <) be a poset, and let a and b be two elements in S. An element & tficéhieet
(or greatest lower boundr infimum) of a and b, if the following two conditions are satisfied:

e c<aandc<b(i.e., cis dower boundof a and b).

e For any de S, such that & a and d< b, we have K c (i.e., ¢ is greater than or equal to any
other lower bound of a and b).

An element ¢ of S is thiein (or least upper boundr supremunh of a and b, if the following two
conditions are satisfied:

e a<candb<c(i.e., cis aupper boundf a and b).

e Forany de S, such that & d and b< d, we have & d (i.e., c is smaller than or equal to any
other upper bound of a and b).

Remark 1. If there is a meet (join) of a and b, then indeed it is uniquegsiif both ¢ and’care greatest
lower bounds (least upper bounds) of a and b, theha and ¢ < ¢, whence indeed e- c.
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Definition 4. A poset(L, <) is alatticefif it satisfies the following two axioms.

¢ (Existence of binary meets) For any two elements a and b dfd_seét{a,b} has a meet: a b
(also known as the greatest lower bound, or the infimum).

¢ (Existence of binary joins) For any two elements a and b ofié set{a, b} has a join: av b (also
known as the least upper bound, or the supremum).

A lattice is calledbounded if it has a least and a greatest element, i.e. elememgsslich that for all
xelL:x<gandIl<x. Wewill also writel (L) =1, T(L) =g. A lattice is calledcomplete if meet and
join exist forall subsets AC L.

We will use the following simple but elementary lemma:

Lemma 1 (descending chain condition (DCC))et (S, <) be a poset, then the following statements are
equivalent:

e Every nonempty subset@S contains an element minimal in A

e S contains no infinite descending chagraa; > a, > ...

2.2 Probabilistic Automata
First we define the notion of discrete subdistribution aates terms and notations:

Definition 5 ((Sub-)distributions) Let S be a countable set. A mappimgS— [0,1] is called (discrete)
subdistribution if Y (s) < 1. As usual we writg/(S) for S g t(s). Thesupportof u is defined as
Supgu) = {se Ju(s) > 0}. The empty subdistributiopy is defined by Sufpp) = 0. Thesize of
u is defined asu| := u(S). A subdistributionu is called distributionif |u| = 1. The sets DigtS) and
SubdistS) denote distributions and subdistributions defined oversiteS. Lef\s € Dist(S) denote the
Dirac distribution on s, i.eAs(s) = 1. For two subdistributiongu, ' the sumu” := pu @ ' is defined as
p”(s) ;== u(s)+ p'(s) (as long agpu”| < 1). Aslong as €|u| < 1, we denote bye the subdistribution
defined by(cu)(s) := c- u(s). For a subdistributionu and a state &€ Supgu) we defineu — s by

O (e

Definition 6 (Lifting of relations on states to distributionsyVhenever there is an equivalence relation
RC Sx S, we may lift it to DistS) x Dist(S) in the following way. Fom, y € Dist(S) we write uL(R)y
(or simply, by abuse of notatiopRy) if and only if for each G= S/rR: u(C) = y(C).

Definition 7 (cf. [2]). A probabilistic automaton (PA) P is a tup(& Act, T,s), where S is a countable
set of states sy € S is theinitial state, Act is a countable set attions(Act=H U E, H hidden actions,
E external actions) and T Sx Act x Dist(S) is atransition relation(can be uncountable). Whenever
(s,a,u) € T we also write s3 .

In this paper we restrict ourselves to the case where {1}, i.e. E = Act\ {1}. Note that by the
countability ofSit is clear that every distribution ov&has at most countable support.



4 Lattice structures for PA

2.2.1 Weak transitions

In the following we use the definitions and terminologyi of, [9Jit we leave out the definitions for labelled
transition systems. The only major difference is that we atcassumdinite branchingi.e. for each state
sthe set{(a, ) € Act x Dist(S)|s-> u} does not have to be finite. Given a transitton= (s,a, ), we
denotes by sourcétr) and u by . An execution fragment of a PR = (SAct, T,s) is a finite or
infinite sequencer = qoay1ax0p--- Of alternating states and actions, starting with a state ifike
sequence is finite, ending in a state, where gagta; 1, 1i+1) € T and i 1(gi+1) > 0. Stateqp, the
first state ofa, is denoted byfstatea). If a is a finite sequence, then the last statera§ denoted by
Istatg/a). An executionof P is an execution fragment (¢f) whereqp = S. We let fraggP) denote
the set of execution fragments Bfand frags(P) the set of finite execution fragments Bf Similarly,
we letexec$P) denote the set of executions Bfandexec$(P) the set of finite executions. Execution
fragmenta is aprefix of execution fragment’, denoteda < a’, if sequencen is a prefix of sequence
a’.

The trace of an execution fragmentr, written trace(a), is the sequence of actions obtained by
restrictinga to the set of external actions, i&ct\ {1}. For a seE of executions of a PR, tracegE)
is the set of traces of the executiondEnWe say thap is a trace of a P& if there is an execution of
P with trace(a) = 3. LettracegP) denote the set of traces Bf

A scheduleffor a PAP is a functiono : frags'(P) — SubDis¢T ) such thatr € supfdo(a)) implies
thatsourcétr) = Istatg a). This means that the imagg o) is adiscretesubdistribution over transitions.
The defect of the subdistribution, i.e—1o(a)| is used for stopping in the current state. In other words,
a scheduler is the entity that resolves nondeterminism mlagbilistic automaton by choosing randomly
either to stop or to perform one of the transitions that asbbad from the current state. A scheduter
is said to bedeterministicif for each finite execution fragmett eithero(a)(T) =0 or o(a) = A(tr)
(Dirac measure fotr) for sometr € T. A scheduler is calledhemorylessif it depends only on the last
state of its argument, that is, for each pair a- of finite execution fragments, istatga; ) = Istatga>),
theno(a1) = o(ay).

A schedulero and a discrete initial probability measupg € Dist(S) induce a measure on the
sigma-field generated by cones of execution fragments Bsvi&l If a is a finite execution fragment,
then theconeof a is defined byC, = {a’ € frags(P)|a < a’}. The measure of a coneCy is defined
recursively: Ifa = sfor somes € Swe defines(Cy) = Lo(S). If a is of the forma’d’s it is defined by
the equation

€Ca)=£(Ca)- Y 0(@)(t)He(S),
treT (&)

whereT (&) denotes the set of transitions ®fthat are labelled by'. Standard measure theoretical
arguments ensure thatis well defined. We call the measugea probabilistic execution fragment Bf
and we say that is generated by and L.

Consider a probabilistic execution fragmerf a PAP, with first states, i.e. Lo = A(S), that assigns
probability 1 to the set of all finite execution fragmentsvith tracetrace(a) = 8 for somef € (Act\

{t})*. Let u be the discrete measure definedig ) = e({a|lstatga) = s'}). Thens £>c u is aweak
combined transitiorof P. We calle arepresentatiorof s£>c u. If s£>c U is induced by a deterministic

scheduler, we also write2 u. In casetrace(a) is empty we writes ¢ L.

Let {s—a> i Yier be a collection of transitions of a FA and let{c; }ic| be a collection of probabilities
such thaty;., ¢ = 1. Then the triplgs,a, ¥ i Ci i) is called a(strong) combined transitioof P and we
write s 3¢ Tici G-
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2.3 Bisimulations

Definition 8 (Strong probabilistic bisimulation_[12])An equivalence relation R on the set of states S
of a PA P= (S Act, T,s) is called strong probabilistic bisimulatioif and only if x R y implies for all
ac Act: (x> ) implies (y 3¢ p) with u(C) = p/(C) for all C € S/k. Two PA are calledstrongly
bisimilar if their initial states are related by a strong probabilistbisimulation relation on the direct sum
of their states.

Definition 9 (Weak probabilistic bisimulation [12])An equivalence relation R on the set of states S of a
PAP= (S Act,T,5) is calledweak probabilistic bisimulatioif and only if x Ry implies for all & Act:
(x5 1) implies(y 3¢ p’) with u(C) = ' (C) for all C € S/r. Two PA are calledveakly bisimilarif their
initial states are related by a weak probabilistic bisimtide relation on the direct sum of their states.

Note that (as we always use combined transitions), in tHewaig we generally omit the word
“probabilistic” for our bisimulation relations, even if ithe sense of [12] we speak about strong proba-
bilistic and weak probabilistic bisimulations. In the sebwe denote, as usual, by a strong bisimula-
tion relation and bys a weak bisimulation relation.

It has been shown in [12] that decision of bisimilaritieslizssely related to convex sets of reachable
distributions, i.eS.(s,a) := {#eDist(S)s3cu}/~ andS.(s,a) := {keDist(Sls3cu}/~. Those sets are consid-
ered modulo the bisimilarities known and splitters are toieted out of them. For details we refer to
[12]. The important point is that those sets can be definedhforite state systems as well. The only
difference is that they can no longer be regarded as subisBtsthen.

It is clear by definition that the unreachable parts of anmaton do not play any role for bisimilarity,
which motivates the following definition.

Definition 10 (Reachable states) et P= (S Act, T,5) be a PA, SC S its set of reachable states,
i.e. those states that can be reached with non-zero probalty a scheduler starting fromps Let
T' = TlgxactxDist(s) be the restriction of the transition relation td. Ve define (P) := (S,Act, T', %)
and call it thereachable fractiowof P.

2.4 Isomorphic & quotient automata

We want to be able to identify automata that are basicallys#imee, only having different names of their
states. The following definition formalises this.

Definition 11 (Isomorphic automata)Let P= (S Act, T,s) and S a set with|S| = |S. We call a
bijective mapping between sats S— S a (set-)Jsomorphism Via this isomorphism we may push
forward distributions on S to distributions o8/ the mapping: o1, as the following diagram shows.

s—!'.g

/7
7/
u
l 2 por

0,1

That in turn means that we may push forward transitions betwaates in the set S to transitions between
states in the set' $ising our isomorphism by the following mapping

1. SxActxDist(S) — S xActxDist(S)
(s.a,H) = (1(s),apor™)
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By this, we may define the automatai®) := (1(S),Act,(T),1(s)) where we, as usual, denote for
mappings f: A— B by f(A) := {f(a)|lae A} C B theimageof A under f. Two PA P= (SAct, T,%),

P’ = (S,Act, T',s,) are calledisomorphig if there exists an isomorphism S— S such that P=1(P).
For isomorphic automata we write Bis, P'.

We would like to stress that we require the@meset of actions for two automata to be isomorphic.
The reason for this is that also for bisimulations sianeset of actions is considered.

Lemma 2. The relation=ig is an equivalence relation.
Proof. Follows by direct verification from the properties of isomplisms O

Whenever an equivalence relatiBris given R will be chosen to be- or =), itis common to look at
a special automaton that is defined over equivalence clagstes. The following definition formalises
this.

Definition 12 (Quotient automaton)Let P= (S Act, T,s) be a PA and R an equivalence relation over
S. We write’/r to denote the quotient automaton of P wrt. R, that is

P/R= (S/R,Act,T/R,[S0]R)

with T/r C S/r x Act x Dist($/rR) such that([gr,a, ) € T/rif and only if there exists a statés [g]g such
that (s,a,p') € T andV[tlr € SR: p([tlr) = Sveps H'('). We call an automaton quotient wrt. R if it
holds that P=is, P/R.

2.5 Compact automata

One key property when searching for lattice structures omsR®mpactness. Compactness definitions
already have been introduced fin [3] for the alternating rhode

Definition 13 (adapted from Def. 9 ir [3])Let P= (S Act, T,s) be a PA. The function d on Di&) x
Dist(S) is defined by
d(H1, Hz) == SUphcs|pa(A) — t2(A)|

Even if in [3] it is mentioned without a proof, that functiahdefined above is really a metric, we
give an explicit proof here.

Lemma 3. The function d in Def. 13 is a metric on D(S).

Proof. It is clear by definition that is non-negative and symmetric. Identity of indiscernilikesorth
a thought: For general measures we only know wtigm, 1) = 0 that 1y and pp coincide up to a
zero set. ADist(S) is a set ofdiscreteprobability measures, the valuéss, (s))|s € S} completely
determineu. Therefored(us, 2) = 0= 3 = Hp. Also the triangle inequality holdsd(us, Us) =
SUAcs|H1(A) — H3(A)| = SURcs| H1(A) — t2(A) + p2(A) — H3(A)| < supncs(|H1(A) — Ha(A) |+ [ H2(A) —
Hs(A)]) < supncs|Hi(A) — Ha(A)[ + suphcs|piz(A) — pa(A)| = d(pa, p2) +d(H2, H3) O

Corollary 1. Let P= (S Act, T,s) be a PA and fix an equivalence relationeR ~,~} on S, s= S and
a < Act. Then for every paifs,a) € Sx Act there is a metric spades(s,a),d).

Definition 14 (adapted from Def. 10 ir_[3])Let P= (S Act,T,s) be a PA and consider some fixed
equivalence relation R {~,~} on S, s S and ac Act. We say that state s is a-compact wrt. R, if the
set &(s,a) is compact under the metric d. P is calledmpactwrt. R, ifVse SvVa € Act: s is a-compact
wrt. R. We omit “wrt. R” if the context is clear.
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The definition given by Desharnais et al. can be seen alseimitw of products of metric spaces.
We recall the definition of a product of metric spaces:

Definition 15. If (M;,d;), i € N are metric spaces, we define a metric on the countably inf@aitesian
product[Jiey M; by
o 1 di(x, yl

2' 1+d (%, i)

It is well-known that this construction Ieads to the metpase ([Jicy M, d) .

This metric metrizes the product topology - under this raetli projection functions are continuous.
We are now able to relate the metric SPALRs a)cs«<act R(S, @), d) to the definition of compactness
given in Def[14.

Lemma 4 (Reformulation of Def_T4)Let P= (S Act, T, ) be a quotient of a PA wrt. some equivalence
relation R. The compactness of P defined in Déf. 14 is equivedehe compactness of the metric space

(H(s,a)eSxAct K(sa),d).

Proof. Assume that Def._14 holds. Tychonoff's theorem (or equiviyethe axiom of choice) ensures
that the product of compact spaces is compact again, soddegirspace in Def. 15 is compact.

The projectiong] (s ajcsxact SR(S, @) — SRr(s,a) are continuous for every péis,a). Continuous map-
pings between metric spaces map compact sets to compacbeddef[ 14 also holds. O

d(x,y) =

The question about compactness is only relevant in the ddaséirote automata. As long as PA are
constructed out of finite sets (both states and transitighsy are compact anyway. This is due to the
following classical theorem:

Theorem 1(Heine-Borel) For a subset of M R" (R" the metric space of all n-Tuples with Euclidean
metric) the following statements are equivalent:

e M is bounded and closed
e every open cover of M has a finite subcover, that is, M is coinpac

An important theorem for compact sets is the Krein-Milmagafem (see below). It only works for
locally convex vector spaces. We use as a basic fact, thatétwec spacél®, d(X,y) = SURen|X — Vi|)
of bounded sequences kis locally convex (using the seminornps({X,}n) = ||, i € N). Sequences
may be used to characterise distributions in the followimywAssume that the states are ordered by the
natural numbers. Define the mappifg (Sk(s,a),d) — (1°,d), u+— (U(X1), U(X2),...). We show that
this mapping is continuous, which is straight-forward, iagjletons are also subsetsupcs|pi(A) —
H2(A)| < € = supes|ii(a) — H2(a)| < €. As continuous images of compact sets are compact, we know
that f (Sz(s,a)) is compact. By definition of convex schedulers it is alsorcthat f (Sz(s,a)) is convex.
The product of (s a).5,(s.a)20 f (Sr(S,@)) is also compact (Tychonoff’s Theorem — accepting the axibm o
choice) and convex as a product of convex sets. These sétsewised later to apply the Krein-Milman
theorem.

Definition 16 (Extreme points) Anextreme poinbf a convex set A is a pointxA with the property that
if X =cy+ (1—c)z with yze A and ce [0,1], then y= x or z= x. E(A) will denote the set of extreme
points of A.

Now the Krein-Milman theorem says that a compact convexetutfsa locally convex vector space
is the convex hull of its extreme points:

Theorem 2 (Krein-Milman [7]). Let A be a compact convex subset of a locally convex vectaesya
then A=CHUull(E(A)).
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3 Operations on bisimilar quotient automata

Definition 17 (Set operations on bisimilar quotientd)et P= (S Act, T,5) and P = (S,Act,T',5))
be PA. Let S:= SU S be the disjoint union of state spaces and consider a fixechhlation relation
Re {~,~}, RC S xS. Let P and Pbe bisimilar, i.e. sRg,. In the following, we assume that P and
P’ are quotients wrt. R. The intersection of S ande®d the union) is performed #i/r by means of the
canonical mappings

S—=S~—8
\i l &/
SO/R
With this diagram in mind we may define
SNrRS={[X €S/RFse S:se [xATs €S :d € [x}

SURS={[X €S/RFse S:se[x]v3s €S :d e [x}

Using these canonical mappings, similar operations can défindd on the sets of transitions. Clearly
T C Sx Actx Dist(S) and T C S x Act x Dist(S). The set operations are performed in the $gt x
Act x Dist(S’/r) by means of the corresponding canonical mappings.

Sx Act x Dist(S) —— S x Act x Dist(S’) <—— S x Act x Dist(S)

~
~
~
~ —
~ —
~ —
~ —
A Pl

S'/r x Act x Dist(S'/r)

—
—
—

We thus may define (using the abbreviatior- S'//rR x Act x Dist(S'/Rr)):
T'OrT ={(X,a[u]) € T(A(say) eT:se MAye ) A(E(S,ay)eT S ey € [u)}

T'URT ={(,a [u]) €TI(C(say) eT:se WAye[u)V(AS,ay)eT s €Ay €[u)}

Finally we note thatghas to be mapped ®&/r. Summing up, we define the intersection quotient wrt. R
as
PNP = (S’ NRSAct, TNrT/, [o]r)

and, similarly, the union quotient wrt. R as
PUP = (S’ UrRSAct, TURT/, [o]r)

With the same mappings one may define P’ if and only if SC S (in S/rR) and TC T’ in S'/Rx Act x
Dist(S'/R).

As we target on bisimilar automata in this paper, we woulé li& stress that only the reachable
fraction of automata is relevant. Our quotient definition #me above set operations are defined for the

general case, where unreachable states may occur, butrskedbey apply also to the case where only
reachable states are present.

Lemma 5. Let Re {~,~} and P= (SAct,T,5), P = (S,Act,T’,5)) be bisimilar quotients of PA
wrt. R. It holds that AP’ =i5c P NP and PUP' =i, PP UP.
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Proof. Clear by identifying the different direct sums accordindrto O

As it will turn out that t-loops leading back to the same state (as part of a distiutian disturb
the lattice property in the case of weak bisimulation, weghe following definition.

Definition 18 (Rescaled Automata)An automaton P- (S Act, T, ) is calledrescaledlif for all (s, 7, ) €
T it holds either thagi(s) = 0 or u(s) = 1.

Note that the rescaling as defined in Def. 18 is only one piisgifncidently the one leading to the
smallest transition fanout), but different rescalingseveheactr transition would loop back to its source
state with fixed probability & p < 1 (or probability 1 for “loops”) would also work.

Remark 2. Let P= (S Act, T,s) be a PA. We split its set of transitions into the setsF {(s,a, ) €
Tla#t1}h Ta={(sT,1) e T|u=A4s} and Tp = {(s,T, 1) € T|u # As}. Now we define the function
res: T-p — Sx Act x Dist(S) by regs, 7, ) := (s, T, L—a(s)(v —9)) which is well-defined, as we always
havev(s) # 1. With

T = T UTaU res(TﬁA)
we may define the rescaled automatdff P= (S Act, T',s9). When using randomised schedulers, it is a
basic fact, that P~ P,

3.1 Sets of quotients
Definition 19 (Sets of quotients)Let P be an automaton antP.<7 be the set of all PA. Define the set
Q. (P):={Ae Z4|A quotient wrt.~, A~ P}
and the set
Q~(P) := {Ae Z47|A quotient wrt.~, A~ P, A rescaled
The reachable fractions can also be considered:
QF(P):={Ae Zd|A quotient wrt. ~, A~ P A=r(A)}
and the set
QL(P):={Ae P4/|A quotient wrt.~,A~ P,ArescaledA=r(A)}
Of course, the automata in the st (P) (in the setQ? (P)) all have the same number of states.
Lemma 6. It holds thatQ* (P) C Q..(P) andQ%L(P) C Q~(P).
Remark 3. As usual for equivalence relations, we may consider qutstiert. isomorphism, i.82~(P)/=,
and2~(P)/=,. Without loss of generality we may identify the states afyesetomaton in these quotients
by a subset of the natural numbeé¥gusing1 for the initial states). For the setq . (P) andQ~ (P) such
an enumeration cannot be performed, as there are uncoyntalhy unreachable parts (this is shown
in detail by Lemm&a3).
For the rest of the paper we now assume that the stat@s(iy=,, and 2x(P)/=;, are consecutive

natural numbers, starting with 1 for the initial state.
The rest of this section is devoted to show that for compabiere are well-defined operations

n: QN(P)/EiSO X QN(P)/EiSO — QN(P)/EiSO
M: Q%(P)/Eiso X Q%(P)/Eiso — Q%(P)/Eiso

Similar operations exist fou, but their existence and well-definedness is clear. Noteitlga priori
not clear that the result is again - (P)/=;s, (or 2~(P)/=;,, respectively), with other words that the results
are again bisimilar t&. This will be shown in the following.
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Remark 4 (Counterexample)We show that there is in general no well-defined operatio®-(P)/=, x
2-(P)/=i5, — Q~(P)/=, that means the compactness of P is crucial. We use the @opact) automata

P ({L2,3).{r.ab},{(LT, %Ag@ (1- %)Ag)}nemzu (2.a00),(3.0.85)},1)

and
e e
P/ = ({17 27 3}7 {Tvav b}7 {(17 T7 HAZ %) (1_ H)A3)}HEN7HZG

1 1
U{(l, T, EAZ (&) EA?,), (2, a,Az), (3, b, A3)}, 1)

It is easy to see that R P’ and BP’ € 2-.(P)/=,. It is clear that the intersection of both automata is only

P":=({1,2,3},{1,a,b},{(1,T, %AZ@ %A;g), (2,a,;),(3,b,A3)},1),
aseis nota rational number. So the result of the intersection is deaot bisimilar, i.e. not in~(P)/=,.
The reason for this is, that both automata allow for a limgtidistribution (1, 7,A3), but both don’t reach
this distribution. As the ways how this limit is reached.(itee sequences) are different, the intersection
no longer leads to a bisimilar result. Note that there are mather examples (e.g. every irrational root
may be taken instead ef.

Thus we have shown:
Lemma 7. In general(2~(P)/=,, C) and (2.(P)/=,, C) are notlattices.

4 Lattice structures

For the rest of this paper we consider a subset of PA whtt@)/=;,, C) and (Q&(P)/=is,, C), R€ {~,~}
are lattices.

Lemma 8 (compact sets of quotients)et Re {~,~}. The PAs contained ifr(P)/=,, are either all
compact, or all non-compact. Thus the property of compastiewell-defined foRr(P)/=.

Proof. Let P be a PAR € {~,~} andP’ € 2r(P)/=. P’ is compact if and only iP is compact, as the
setsSk(s,a) are unique up to isomorphism. O

In the following we will only consider compact PA and them&f@lso compact sets of quotients. In
metric spaces, compactness is equivalent to sequence ctimags

Lemma 9. (2-~(P)/=, C) is a poset. If P is compact, it is even a lattice with uniondisection) of
automata as join (meet) operations. Intersections are glsssible over arbitrary sets of bisimilar au-
tomata.

Proof. By Krein-Milman Theorem (Theoref 2) we know that for couréedtate spaces the s&s(s, a)
(seen as subsets Bf) have a unique set of extreme poifitéS. (s,a)). This set is included in every
bisimilar automaton, therefore in every intersection. sTigithe reason why the intersection of all au-
tomata in a set of bisimilar automata still leads to a bismdutomaton. Transitions leading to some
distribution inS_(s,a) that is not extreme do not change the bisimilarity. This & thason why the
union of two bisimilar automata leads to a bisimilar autamnat Finally observe that the unreachable
fraction of states and transitions does not play any rold®igimilarity. O
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In the strong case, a minimal set of transitions leading teeexe points can be chosen from the
strong transitions emanating from In the weak case this does not have to be the case, as an extrem
point might be reached transitively via some intermedig#&idutions.

Astonishingly, there’s a similar statement also for wedairhilarity, when only rescaled automata are
considered. The interesting point is that the argumentiseoptoof of Lemmal9 do not apply one-to-one,
as the extreme points can now also be weak transitions. foneri¢is (with the arguments of the proof
for strong bisimulation) not clear that the intersectioadg again to a weakly bisimilar PA.

Lemma 10. (2~(P)/=s, C) is a poset. WheR=~(P)/=,, is compact, it is even a lattice with union (in-
tersection) of automata as join (meet) operations. Intetieas are also possible over arbitrary sets of
bisimilar automata.

Proof. The meet operation fdiinite PA is justified by Lemma 12 in_[4] and the observation that the
unreachable fraction of states and transitions does nptgpig role for bisimilarity. The join operation
is clear by definition of weak bisimilarity and the same okagon.

For the infinite case assume for the rest of the proof thaethex two quotient®; andPs, P, ~ P,
and we identify the (countable) reachable state sp&cesd S, as in Def[1¥ bys'/r (note that this
induces a bijection).

Now fix one states € S'//~. By assumption it must have two sets of emanagrtgansitions — one in
P1, one inP,. During the proof we use the notati®(s,a), i € {1,2} to denote the sets of reachable
distributions of automaton 1 and 2, respectively. We havehtaw that already the intersection of both
sets is enough to generdie(s,a). The main difference to the strong case is that we only knat th
St (s,a) = S(s,a) for all a € Act, but this does not necessarily imply that aBg(s,a) = & (s,a).
According to Def[ 1P both automaf andP, are rescaled. We consider the one-step-transiﬂ'@ns
{u € Dist(S/r)|(s,a,u) € Ti}. Assume further that the identical transitions (moduledtipn) already
have been identified (iff/r x Act x Dist(S’/r)) and are denoted' = TINT2 and letT, " = T)\ T
We will show that the identical transitions are enough toeradl the behaviour, i.e. all transitions in
T, i € {1,2}, can be omitted.

We will first consider the casa= 1. We fix an arbitraryu € T, "* for which we show that it can
be generated by transitions froft. It is clear that both sef§! andT? generate the s&. (s, 1) (in the
sense that all weak rescaled transitions must start withrdootion of these transitions as first step).

With the construction from the proof of Lemma 12/ [4] we geteak transitiofl in Ty \{(s,T,u)}
such thats =c . Note that the construction inl[4] has been given fioite state spaces, but all
constructions there are also possible in the countable achgase due to sequential compactness. We
split this transition in its first-step-probability®, such thats —c u® =c u. We see that without
loss of generality we may reduce the 3etto the sefl; \ {(s, T, 1)} without losing bisimilarity. With
this construction we proceed as follows: Pick now some difagsition(s, 7, u') with p’ € T, \ {u}
that is used somewhere in the weak transitopc u' =¢ p. Now, again by the construction
in the proof of Lemma 12 in_[4], substitute all stromgransitions fromsto y’ by weak transitions in
T\ {(s 1,u),(sT,1")} such thatss ¢ u@ =c uM =¢ u (possiblyu® = u™ when we substituted
some transition not taken in the first step). Continuing m¢ame way yields a sequence of combined
one-step-transitions leading to the series of distrimstiu() );cy.

Now compactness comes into play: This sequence must haitg@bintsin S.(s, 7). If there is one
limit point already inT/", by construction there will be a scheduler that uses onlysitens fromT,"

1The proof in [4] shows that a transitian"> 1 — there denoted - vs — is redundant, as long as it is not in the intersection
T, by constructing the above mentioned transition. The oalseawhere it is not redundant leads to a contradiction to the
quotient property.
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when leavings. If there is a limit pointu* in T, ™, there is a non-trivial loop* =¢ y* = u* for some
y* € T "2 which would contradict the quotient property as it woulddenat least two states bisimilar.
Therefore we conclude that this case cannot happenuacan be omitted fronT, " without losing
bisimilarity.

As u was chosen arbitrarily, this construction can be done foelements inT,"* — even if they
might be uncountably many — (and analogouslyTgt'2). Therefore all transitions ifi; " (and analo-
gously forT; "?) may be omitted without losing bisimilarity.

For the casa # r we may omit those strorgtransitions that can be mimicked by a weak a transition
(after leaving out this strong transition). Observe thar¢hcannot be cyclic relations tises thea
transition oft (with probability 1)” and vice versa, because treandt would be bisimilar, which is a
contradiction to the quotient property.

For the general case of an arbitrary intersection (i.e.iplyssore than two automata) observe the
following: Let A be an arbitrary set of weakly bisimilar quotients. We havsitow that the automaton
Py = NpeaP is still bisimilar. Pick an arbitary automatdhe A we have to show that all transitions Bf
that are not irPy are redundant. We may find for every such transitioa bisimilar automatoi®, that
does not have such a transition (for otherwise the tramsitiould have to be in the intersection). By the
above procedure for two automata we show that the trangitimredundant. This can be done for all
other transitions not if%. O

Remark 5. The crucial point in the proof of Lemrhal10 is compactness. gBoeral quotients a sequence
of redundant distributions may not have a limit in(8, 7) (This would be e.qg. the distributiofi, 7,A3)
in Remark4). Sequential compactness ensures that thests exich a limit in S(s, 7).

As we have shown that the intersection of arbitrary sets sifrliar automata is again bisimilar by
Lemmal[® and 10, the following theorem is immediate. It extemtieorem 1 of[[4] to the compact
automata case.

Theorem 3. Let P be compact wrt. R. ThéAr(P)/=;,, C) has a unique minimal element.

Definition 20. Let P be compact wrt. R, R {~,~}. Then there is a well-defined mapping : PA—
PA/=iss, given by P— L (9r(P)/=,) that assign to every PA P the minimal elemen®iff)/=.,. The map-
ping to2~(P)/=, is just quotienting, while the mapping fo.(P)/=;, is quotienting followed by rescaling.
The mapping/” (for R fixed) is callechormal form

This definition corresponds to the normal form definitionegivn [4].

Corollary 2. The notations for normal forms defined in Defl 20 are normahfin the sense of [4].

As the bisimilarity only considers the reachable fractibthe state space, the following corollary is
immediate.
Corollary 3. Lemma®, Lemma_10 and Theoréi 3 also holdJoi)/=;, instead of2-~(P)/=, and
QL(P)/=, instead 0f2~(P)/=s,.

Some of the lattices we have constructed above have thelaqppeoperty of being bounded.
Lemma 11. The lattice2(P)/=,, C) and (2:(P)/=,, C) are bounded.

Proof. The lower bound is clearly given by the normal forms definedvab So it remains to show
that there is also an upper bound. Bet (S Act, T,S), for (2L(P)/=, C) and (2x(P)/=,, C) we know
that it is sufficient to considefQ™.(r(P))/=s,, C) and (Qx(r(P))/=,, C). As Sis countable, also the set of
reachable states will be countable. As there is no restmnabn T wrt. finiteness, the union over all
transition relations ifx(P)/=;, (identified by R) will be a valid transition relation (i.er of all transition
relations of quotients in the s8k(P)/=,). O
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Lemma 12. For a finite automaton P,
1. the maximal elements {®%(P)/=,, C) and (2 (P)/=,, C) are not necessarily finite.

2. the minimal elements (W< (P)/=,, C) and (2% (P)/=,, C) are finite.

Proof. Assume thaf = (SAct, T,s) is given whereS= {A/B,C}. Assume further that transitions
(A, 1,Ag) and(A, 7,Ac) exist. Then everyA, 1,cAg @ (1— c)Ac) would also be a bisimilar transition for
everyc € (0,1). Thus, the number of such distributions is uncountably it&inThe union of all those
transitions would therefore lead to a non-finite automaton. O

Corollary 4. For a finite automaton P, the minimal elements(ih.(P)/=,, C) and (2~(P)/=;,, C) are
finite.

Lemma 13. The latticeg2~(P)/=i,, C) and (2~(P)/=;5,, C) are unbounded whenever there is at least one
action ac Act, a# T.

Proof. LetP = (S Act, T,5) anda € Act, a# 1. We can construct two unreachable non-bisimilar states
s1, & by using the transitiors; 2 As, which is not possible by, (possiblys; ~ sor s, ~ s for some

se€ S, then we would use the corresponding state(s) f&mot adding them by a disjunct union in the
following construction). So without loss of generality weynassume tha® = (SU {s1,s},Act, T U

{s1 2 A, }) The further construction goes in two steps. The first step isonstruct a countable set
of ‘fresh’ distinguished unreachable statés= N in the following way. use a single transitidn—

1A, @ (1— 1)A, for everyi € U (again, ifi ~ s for somes € S, we may assume thate U, but will

not adds again to the state space). So we reach the bisimilar autonfite: (SU U,Act, T U {i 5

%ASO D (1- %)Asl}ieu,so). It is easy to see that all stateslhare not bisimilar. For the second step
notice that the powerset of a countable is uncountable. ¥nyesuch subseh C N we may choose a
distribution pa whereua(s) > 0 if s€ A, 0 otherwise. Now, we can construct (uncountably many) PA
P, bisimilar toP where we add one additional unreachable sigteith the transitionsa BN Ua. Each of
those unreachable states would need a separate state iaximmahelement of our lattice (leaving alone
the states that are bisimilar to one stateSdfy chance), meaning that there would be an uncountable
number of states in the maximal element. This is a contriadid¢b the countability of the state space.
The weak case follows similarly. O

5 Examples

The first example is given in Fig. fla. We start with the tworsig bisimilar automata at the top of the
figure. The intersection of both is the automaton at the botibthe figure.

The next example is given in Fig.11b. We start with the two vialksimilar automata at the top of
the figure Bisimilarity essentially stems from the followifacts: Firstly, the transitio(l, 7,A3) of the
PA on the right can be mimicked by the left automaton by a Diteterminate scheduler that in state
1 always choose€l, 1, %Az@ %Ag) and in state 2 alway&, 1,A3) and stops in state 3. Secondly, the
transition(1, 7, 1A, @ %A3) of the left automaton can be mimicked by the right automatpchnosing
each of ther-transitions emanating from state 1 with probabil%LyThe intersection of both — which is
the canonical form — is the automaton at the bottom of thedigur
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(a) Strongly bisimilar case (b) Weakly bisimilar case

Figure 1: Intersection of bisimilar automata

cannot be
depicted

(a) Non-bisimilar automata (b) The bounded case

Figure 2: Examples continued

The next example shows that it is essential to have eleméts(®/=;,, otherwise the intersection
will not make sense. This example is given in Figl 2a. It isckhat e.g. the distributioaAz@ %Ae,
cannot be realised starting from state 1 by the right automdiut it can be realised by the left automaton,
so both cannot be bisimilar. Therefore, the intersectiofath automata is not bisimilar to the left
automaton.

5.1 A bounded example

Assume that we consider strong bisimulation and want tautatie2" (P)/=, for the automator® given

in Fig.[2B (middle). The least element (let’s callli) is shown on the left, the greatest element cannot be
adequately depicted, as it has (uncountably) infinitely yrtaainsitions. The situation becomes clearer
when (as suggested in [2]) considering distributions astpdnR". This is done in the lower line of the
figure. We only show the distributions that are possible bra®ieterminate schedulers starting from
state 1. As there are only two successor statéssuffices for our purpose. With this picture in mind
it is clear that the greatest element is the PA givenTby ({1,2,3},{1,a,b},{(2,a,42),(3,b,A3)} U
{(1,71,cA® (1—c)A3)|c € [0,1]},1). Clearly this is not a finite PA. Generalising from this ausion,

for A C [0,1] we may defindy := ({1,2,3},{1,a,b},{(2,8,4A2),(3,b,A3) }U{(1,T,cA2® (1—C)A3z)|c €
2},1). Note thatl = Pg1y, T = Pgy. But now it is clear how the se?-.(P)/=, must look like:
QLP) /= = {Py|2A C [0,1],0 € A, 1 € A} Leaving out 0 or 1 fron®l will break bisimilarity.
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6 Conclusion

This paper extends the notion of normal forms introduced]rtq the case of compact automata with
countably infinite state space, countably infinite set dbastand possibly uncountably many transitions.
We have justified the canonicity of normal forms by introchgcthem as the intersection of all bisimilar
automata, not from an abstract point of view aslin [4]. Thadtire presented is nice as a theoretical
result, but (at least for the moment) there is ho immediasetiyal applicability, as the hard part is to
construct the set..(P) andQ~ (P) where an uncountably infinite number of automata would have t
be constructed. The structure itself is particularly nmetéaching purposes and for better understanding
the possible 'shapes’ of infinite automata.
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