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Abstract

This thesis deals with experimental and numerical analysis of ductile dam-

age and fracture behavior under reverse loading conditions. The experimental

part includes novel one-axial and biaxial monotonic and reverse experiments

conducted on different specimens taken from ductile aluminum alloy EN AW

6082-T6 sheet with a thickness of 4mm. For this purpose, different one-axis-

loaded and biaxially loaded specimens have been newly designed to generate a

wide range of stress states under various reverse experiments. An anti-buckling

device is used in uniaxial compression tests, and a down-holder is employed

in biaxial testing to prevent buckling. The digital image correlation (DIC)

technique is used to record and analyze displacements and strain fields, while

scanning electron microscopy (SEM) images of fractured surfaces are utilized to

verify the proposed damage mechanism. In the numerical part, an anisotropic

two-surface cyclic plastic-damage constitutive model based on the framework of

Brünig (2003a) is proposed, incorporating combined isotropic-kinematic hard-

ening and softening laws. The plasticity model is further extended to simulate

the Bauschinger effect, the strength-differential effect, and the non-hardening

effect after shear reverse loading. Moreover, a novel kinematic softening rule

based on Brünig’s damage strain rate tensor is added to the damage condition

to describe the movement of the damage surface. An efficient Euler explicit

numerical integration is realized by the inelastic (plastic or plastic-damage)

predictor-elastic corrector approach. In-depth discussions are presented on

various consistent tangent operators related to numerical integration aimed at

achieving convergence in the global Newton-Raphson scheme. The proposed

constitutive model is implemented as a user-defined subroutine (UMAT) into

the commercial software Ansys. The comparison between experimental and nu-

merical results, encompassing global load-displacement curves and local strain

fields, as well as the numerically predicted damage evolution and experimen-

tally obtained SEM images, offers a comprehensive explanation of the influence

of reverse loading histories on ductile damage and fracture behavior at both

micro- and macro-levels.
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Zusammenfassung

Diese Dissertation behandelt die experimentelle und numerische Analyse des

duktilen Schädigungs- und Versagensverhaltens unter zyklischen Belastungen.

Der experimentelle Teil umfasst neuartige einachsige und biaxiale, monotone

und zyklische Versuche, die an verschiedenen Proben (4 mm Dicke) der duktilen

Aluminiumlegierung EN AW 6082-T6 durchgeführt wurden. Zu diesem Zweck

wurden verschiedene einachsige und biaxiale Proben neu entworfen, um eine

große Bandbreite an Spannungszuständen unter verschiedenen zyklischen Be-

lastungen zu erzeugen. Eine Druckvorrichtung wird bei einachsigen Druckver-

suchen verwendet und ein Niederhalter bei biaxialen Versuchen gegen Beulen

eingesetzt. Die digitale Bildkorrelation erfasst und analysiert Verschiebungen

und Dehnungsfelder, während Rasterelektronenmikroskop (REM)-Aufnahmen

von den Bruchflächen zur Überprüfung der prognostizierten Schädigungsmech-

anismen verwendet werden. Im numerischen Teil wird ein anisotropes, zyk-

lisches Plastizitäts-Schädigungsmodell basierend auf dem Ansatz von Brünig

(2003a) vorgeschlagen, das kombinierte isotrop-kinematische Verfestigungs-

und Entfestigungsgesetze integriert. Das Plastizitätsmodell wird weiterent-

wickelt, um den Bauschingereffekt, den Strength-Differential-Effekt und den

Nicht-Verfestigungs-Effekt nach Scherumkehrbelastung zu simulieren. Darüber

hinaus wird ein neuartiges kinematisches Entfestigungsmodell, basierend auf

Brünigs Schädigungsdehnungstensor, eingeführt, um die kinematische Änder-

ung der Schädigungsfläche zu beschreiben. Eine effiziente explizite numerische

Euler-Integration wird durch den inelastischen Prädiktor-elastischen Korrektor-

Ansatz realisiert. Verschiedene konsistente Tangentenoperatoren werden im

Rahmen der numerischen Integration ausführlich diskutiert, um die Konver-

genz im globalen Newton-Raphson-Schema zu gewährleisten. Das vorgeschla-

gene konstitutive Modell wird als benutzerdefiniertes Materialmodell in die

Software Ansys implementiert. Der Vergleich zwischen experimentellen und

numerischen Ergebnissen, einschließlich globaler Last-Verschiebungs-Kurven

und lokaler Dehnungsfelder, sowie der numerisch vorhergesagten Schädigungs-

entwicklungen und den REM-Aufnahmen bietet eine umfassende Erklärung für

den Einfluss von zyklischen Belastungsgeschichten auf das duktile Schädigungs-

und Versagensverhalten auf mikro- und makroskopischer Ebene.
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1 Introduction

1.1 Background

Numerical modeling of ductile damage and fracture behavior has emerged
as a significant research field in recent decades. This approach is pre-
cious, considering that actual full-scale experiments in the industry are
often costly and impractical. It is also well-established that nucleation,
growth, and coalescence of micro-defects, such as micro-voids and micro-
shear-cracks, are key mechanisms resulting in damage in ductile metals.
Moreover, the influence of the stress triaxialities on the damage and frac-
ture behavior has been extensively discussed in the literature (Bao and
Wierzbicki, 2004, 2005; Brünig et al., 2008, 2014; Gao et al., 2010; Lou
and Yoon, 2018; Lou et al., 2020; Wei et al., 2023b, 2022). In high stress
triaxialities, damage is induced by the growth and coalescence of micro-
voids, while in conditions of low negative stress states, damage arises
from the growth and coalescence of micro-shear-cracks. Furthermore,
Bao and Wierzbicki (2005) analyzed experimental data from upsetting
tests for the aluminum alloy Al2024-T351 with cylindrical specimens and
concluded that damage does not occur below the cut-off value of stress
triaxiality, specifically when it is lower than −1/3. However, as stud-
ied by A. S. Khan and Liu (2012) through uniaxial tension followed by
torsion and biaxial non-proportional compression tests, this aluminum
alloy indicates that the cut-off values are not constant and depend on
various stress states. Furthermore, Brünig et al. (2018) conducted a se-
ries of shear-compression biaxial experiments, and their analysis of both
experimental and numerical results demonstrates that the cut-off values
for stress triaxialities also depend on the Lode parameter. Additionally,
the shear deformation component plays a crucial role in negative stress
states, as also observed by Lou et al. (2014). The findings above under-
score the necessity of a sophisticated phenomenological damage model
to accurately capture the effects of varying stress states on material be-
havior.
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2 Introduction

A substantial body of literature on damage models is available, primarily
divided into two types: (1) Gurson’s damage hypothesis and (2) contin-
uum damage mechanics (CDM). In Gurson’s damage model (Gurson,
1977), damage is represented by the volume fraction, or porosity, which
increases due to the nucleation and growth of micro-voids. In the nu-
merical study of a rigid-plastic cell containing a single spherical void,
porosity is incorporated into the yield criterion to model the softening
effect. However, the original Gurson model cannot capture fracture and
the effects of coalescence of micro-voids. To address these limitations,
Tvergaard and Needleman (1984) introduced several parameters into the
classic Gurson model, the so-called GTN model, which was further ex-
plored through various studies such as those by Chu and Needleman
(1980), Faleskog et al. (1998), and Koplik and Needleman (1988). Sub-
sequently, the GTN model has been extensively modified, as documented
in the literature, to more accurately capture shear failure behaviors, with
significant contributions from studies by I. A. Khan et al. (2023), Malcher
et al. (2014), and Nahshon and Hutchinson (2008). It should be noted
that Gurson-type damage models solely affect the plastic behavior and
do not alter the material’s elastic properties. This assumption appears
somewhat inconsistent with experimental findings, which indicate that
Young’s modulus tends to decrease in tensile with loading and reloading
experiments (Lemaitre and Dufailly, 1987; Voyiadjis et al., 2013; Wei
et al., 2022). Thus, Rousselier (1987, 2001) considered the elastic prop-
erties change due to the damage in Gurson’s type model. In addition,
Rousselier and Luo (2014) introduced a comprehensive model that in-
tegrates void damage with a combined Mohr-Coulomb ductile fracture
model for micro-shear-cracks. More recently, Rousselier (2022) enhanced
this model by incorporating a Lode-dependent second porosity, which
significantly improves the accuracy of modeling ductile damage behav-
ior, particularly under shear-dominated loading conditions that involve
void rotation and flattening.

The continuum damage mechanics (CDM) represents another phenomeno-
logical and widely utilized approach for predicting the evolution of dam-
age. This approach primarily consists of two categories: the scalar
parameter-based isotropic damage model (among of others Algarni et
al. (2019), Lemaitre (1985a,b, 1986, 1996), Rabotnov (1969), Rong et al.
(2022), Saanouni (2008), and Voyiadjis et al. (2012)) and the vector or
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tensor-based anisotropic damage model (for example, Abu Al-Rub and
Voyiadjis (2003), Badreddine and Saanouni (2017), Balieu and Kringos
(2015), Brünig (2003a,b), Brünig et al. (2023), Chaboche (1984, 1992),
Lemaitre et al. (2000), Murakami (1988, 2012), Simo and Ju (1987),
Vignjevic et al. (2012), and Voyiadjis and Kattan (1992, 2005)). The
principles of strain equivalence and effective stress are fundamental in
realizing the theory of CDM. The concept of effective stress is based on
introducing a fictitious undamaged configuration, in which no damage de-
formations are considered (Abu Al-Rub and Voyiadjis, 2003; Balieu and
Kringos, 2015; Brünig, 2003a; Chaboche, 1992; Lemaitre, 1985a). In ad-
dition, the strain behavior in the undamaged configuration is equivalent
to that in the damaged configuration; that is, damage modifies the elastic
behavior solely through effective stress, as noted by Lemaitre (1985a).
Alternatively, Simo and Ju (1987) introduced the concept of stress equiv-
alence with effective strain, suggesting that damage alters elastic behav-
ior due to effective strain. The concepts of effective stress and strain are
fundamental in developing strain-based and stress-based elastic-plastic-
damage constitutive equations, respectively. Moreover, the theoretical
foundation of CDM is primarily rooted in the thermodynamic frame-
work, and irreversible thermodynamics is the cornerstone of the science
that makes the CDM a coherent theory. This field has been shaped signif-
icantly by the contributions of notable researchers, such as Brünig (2001,
2003a), Chaboche (1988a,b), Hayakawa et al. (1998), Krajcinovic (1983),
Krajcinovic and Fonseka (1981), and Murakami and Ohno (1981).

Experiments are essential for verifying various proposed material mod-
els and investigating damage and fracture behavior. Most importantly,
the designed experiments need to be sufficiently complex to generate a
wide range of stress triaxialities, enabling the calibration of model perfor-
mance under different loading conditions. Uniaxial tension, compression,
and one-axis loaded shear test are extensively discussed in the litera-
ture (Brünig et al., 2008; Gao et al., 2010; Kong et al., 2023; Peng et al.,
2019; Roth et al., 2018; Voyiadjis et al., 2013; Wei et al., 2022) since
their simplicity and accessibility. One significant limitation of these one-
axial tests is that they generate only a small range of stress triaxialities.
To address this problem, both proportional and non-proportional biaxial
experiments using multi-axis-loaded or biaxial cruciform specimens are
proposed. Notched hollow cylinders are one of the widely used spec-
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imens for generating a broad range of stress triaxialities through com-
bined tension-torsion experiments (Barsoum and Faleskog, 2007; Cortese
et al., 2016; Faleskog and Barsoum, 2013; Gao et al., 2010; Graham et
al., 2012; Haltom et al., 2013; Papasidero et al., 2015 among of others).
Notably, Cortese et al. (2016) performed a series of non-proportional
loading by changing from tension to torsion with hollow cylindrical spec-
imens without unloading processes before alternating the loading direc-
tion. Conversely, stocky tubular specimens (Papasidero et al., 2015)
are first preloaded with tension, compression, or torsion, then unloaded,
followed by subsequent reloading with different proportional loads. The
resulting stress triaxialities cover a range from approximately 0 to 0.6. In
addition, butterfly specimens can be subjected to either uniaxial loading
or various combinations of normal and transverse loads, resulting in in-
duced stress triaxialities ranging from -0.33 to 0.60 (Bai and Wierzbicki,
2008; Dunand and Mohr, 2011; Mohr and Henn, 2007).

Furthermore, cruciform biaxially loaded specimens represent another ef-
fective method for generating complex stress states, making them a valu-
able method for the study of metal sheets (Brünig et al., 2015; Demmerle
and Boehler, 1993; Gerke et al., 2017; Hou et al., 2022; Kulawinski et al.,
2011; Kuwabara, 2007; Müller and Pöhlandt, 1996; Raj et al., 2022; Zill-
mann et al., 2015). Based on experimental and numerical analyses, the
XO- and H-specimens proposed by Brünig et al. (2015) and Gerke et al.
(2017) induce stress triaxialities ranging from -0.1 to 0.9 and -0.6 to 0.8,
respectively. Additionally, biaxially loaded experiments also provide the
opportunity for accessible non-proportional loading. For instance, utiliz-
ing biaxially loaded specimens, Brünig et al. (2021c) designed a series of
non-proportional experiments, alternating between tension and shear, to
study damage and fracture behavior. More recently, Kong et al. (2023)
also conducted similar non-proportional experiments. Furthermore, Zistl
et al. (2022a) extended this series of non-proportional experiments by ap-
plying large compressive preloads and shear stress states, followed by a
transition to tension. A special pneumatic downholder was employed to
prevent buckling in experiments dominated by compression. Their find-
ings suggested that different preloading methods can alter the material
properties, either increasing brittleness or ductility in the investigated
ductile metals.

Cyclic loading significantly affects the service lifetime of engineering
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structures. However, most previous studies have focused on a limited
range of strain states. Limited research is available in the literature on
cyclic tests conducted at large strain ranges (Algarni et al., 2019; Barlat
et al., 2003; Marcadet and Mohr, 2015; Voyiadjis et al., 2012, 2013; Wei et
al., 2022; Yoshida et al., 2002). Barlat et al. (2003) conducted a series of
shear tests on specimens made from 3 mm thick 1050-O aluminum sheets,
applying different reversal strains up to 0.22. Marcadet and Mohr (2015)
explored the effect of reversal loading on fracture initiation by analyzing
compression-tension experiments conducted on flat-notched specimens.
Concerning experimental technique, different anti-buckling devices have
been employed to prevent buckling during compressive deformation, and
details of these anti-buckling devices can be found in Boger et al. (2005),
Cao et al. (2009), Gerke et al. (2023), Marcadet and Mohr (2015), and
Ramberg and Miller (1946).

Moreover, reverse loading histories also significantly influence damage
and fracture behavior. Kanvinde and Deierlein (2007) experimentally
analyzed seven types of steel subjected to low-cycle (less than 20 cycles)
tests under a large strain range, revealing that micro-defects became
more susceptible to coalescence or fracture at smaller void volumes in
subsequent tensile cycles. A slight recovery of Young’s modulus for the
high-strength DIN1.6959 steel was observed by Voyiadjis et al. (2012,
2013), and they also indicated different cyclic loading patterns influ-
ence damage and fracture behavior. It is worth noting that, for ductile
metals, the microstructure undergoes significant degradation during the
initial cycles of cyclic loading, followed by a reduction in deterioration
during the subsequent cycles until failure, as highlighted by Algarni et
al. (2019). Moreover, Wei et al. (2022) performed a series of uniaxial
tension-compression and shear cyclic loading tests. The scanning electron
images (SEM) revealed that larger and coalesced micro-defects were more
prevalent than under monotonic loading. Additionally, the corresponding
numerical simulations elucidated the influence of reverse loading condi-
tions on material behavior. One area for improvement in the mentioned
one-axis cyclic experiments is the limitation in generating a broad range
of stress triaxialities. Inspired by the biaxial non-proportional monotonic
loading tests, both proportional and non-proportional biaxial reverse ex-
periments were required to solve this issue.

Several experimental effects, such as the Bauschinger effect, the strength-
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differential effect, and changes in hardening ratio after reverse loading,
have been observed in studies of ductile metal behavior, with many re-
searchers using different approaches to model and explain these observa-
tions. The Bauschinger effect, commonly observed in metals under cyclic
loading conditions, has led to the proposal of various kinematic hardening
models to accurately predict the yield surface’s movement. For a detailed
review of these models, please refer to Chaboche (2008). Prager’s kine-
matic hardening model (Prager, 1955) represents a linear approach to
kinematic hardening, wherein the back stress tensor is collinear with the
plastic strain tensor. It is obvious that this linear-type kinematic hard-
ening cannot capture the non-linear elastic-plastic transient behavior.
Hence, Frederick and Armstrong (2007) introduced a recovery term into
Prager’s hardening rule, resulting in the back stress rate tensor being a
combination of the plastic strain rate tensor and the back stress tensor.
During the application of the Armstrong-Frederick kinematic hardening
model, a shortcoming is observed in modeling the strain hardening be-
havior under large strains. To address this problem (Chaboche, 1986;
Chaboche and Rousselier, 1983) decomposed the total back stress rate
tensor into different components, combining both Armstrong-Frederick
and Prager’s type kinematic hardening models. Indeed, these modifi-
cations significantly enhance the accuracy of modeling the Bauschinger
effect.

The strength-differential (SD) effect denotes asymmetric yielding in uni-
axial tension and compression. Wei et al. (2022) noted that for the
aluminum alloy EN AW 6082-T6, the compressive yield stress exceeds
the tensile yield stress. This phenomenon was also observed in various
other ductile aluminum alloys (Bai and Wierzbicki, 2008; Brünig et al.,
2023; Holmen et al., 2017; Spitzig and Richmond, 1984; Wilson, 2002).
Several pressure-sensitive asymmetric yield functions, incorporating dif-
ferent combinations of stress invariants, have been proposed to model
the SD effect effectively. Spitzig and Richmond (1984) and Spitzig et al.
(1975) developed a linear term of the first stress invariant in the von
Mises yield function, akin to the Drucker-Prager (Drucker and Prager,
1952) yield condition utilized in soil mechanics. Brünig (1999a) pursued
this idea to study the influence of pressure on the plastic behavior of met-
als, further extending it to include the third stress invariant Brünig et al.
(2000). Stoughton and Yoon (2004) proposed a pressure-sensitive yield
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function incorporating a non-associated plastic flow, aligning with the as-
sumption of incompressibility in plastic deformations. Gao et al. (2011)
modeled the SD effect by considering all three stress invariants under
non-associated plastic flow for isotropic materials. Most recently, Brünig
et al. (2023) presented Hoffmann’s anisotropic, pressure-dependent yield
function (Hoffman, 1967), employing a non-associated plastic flow rule to
predict the plastic behavior of the aluminum alloy EN AW-2017A. The
models mentioned above agree with experimental observations of uniax-
ial tension superimposed hydrostatic pressure, performed by Spitzig and
Richmond (1984), showing only a marginal increase in plastic volume.

The change in the hardening rate effect is also widely observed and mod-
eled in literature. Daroju et al. (2022) experimentally observed that alu-
minum alloys AA6016-T4 and AA7021-T79 evidently reduce the harden-
ing ratio when comparing cyclic loading to monotonic loading cases. Wei
et al. (2023b) also reported that the hardening ratio significantly changes
after shear reverse loading conditions by experimentally examining the
load-displacement behavior for one-axial and biaxial shear reverse tests.
On the other hand, Ohno (1982) and Ohno and Kachi (1986) proposed a
non-hardening concept in their cyclic plasticity model, i.e., non-isotropic
strain hardening occurs in a certain plastic region after reverse loading.
A governing equation for plastic strain models the evolution of the non-
hardening region. Nouailhas et al. (1985) proposed additional terms for
the plastic memory surface variables to predict the behavior of the plas-
tic memory surface under a decreasing plastic strain range. Okorokov
et al. (2019a,b) present a function based on the plastic strain range and
previously accumulated plastic strains, including more than ten material
behaviors, in their new kinematic hardening law.

1.2 Motivation

This work is primarily dedicated to addressing the gap in research regard-
ing the investigation of ductile damage and fracture behavior in metal
sheets under uniaxial and biaxial reverse loading tests, covering a wide
range of stress triaxialities. To achieve this objective, the work can be
divided into three main parts: experiments, material modeling and nu-
merical analysis.
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The experiments initially focused on uniaxial tension-compression and
one-axis shear monotonic and cyclic tests due to their simplicity and ac-
cessibility. Moreover, uniaxial tension-compression monotonic and cyclic
tests provide nearly homogeneous stress states before necking or buckling
occurs, which is crucial for accurately calibrating the necessary material
parameters. Importantly, these tests present a fundamental understand-
ing of the differences between monotonic and cyclic loading and offer in-
sights into damage mechanisms induced by micro-voids, as well as those
resulting from micro-shear-cracks. Addressing buckling under compres-
sive loads is challenging, especially for one-axis-loaded specimens with a
thickness of 4mm. The newly developed experimental technique, which
incorporates using different clamping jaws and anti-buckling devices in
conjunction with the DIC technique, has successfully solved the issue of
avoiding or delaying buckling in one-axis experiments.

After gaining insights into damage mechanisms under one-axial cyclic
loading conditions, the present work progresses towards a more central
objective: designing or modifying a new biaxially loaded cruciform spec-
imen. The newly designed or modified biaxially loaded specimen needs
to meet the following requirements: (1) facilitate the easy combination of
compression/tension and shear loads, (2) allow both axes to impose cyclic
loads either separately or simultaneously, and (3) cover as wide a range
of stress triaxialities as possible. The focus initially is on single-cycle
biaxial experiments, denoting that only one axis is imposed cyclic load-
ing, i.e., tension-compression or shear. Inspired by the non-proportional
experiments (Brünig et al., 2021c; Cortese et al., 2016; Papasidero et al.,
2015; Zistl et al., 2022b), the single cyclic biaxial experiments involve
applying different shear, tension, or compression preloads on one of the
biaxial loading axes. After reaching a predetermined magnitude, these
preloads are maintained without any unloading, followed by the super-
imposition of cyclic loading on the perpendicular axis. Subsequently,
the idea arose to perform bi-cyclic biaxial experiments, that is, imposing
cyclic loading simultaneously on both axes. Different combinations of
loading sequences in both axes are designed to study the damage and
fracture behavior. Details of the discussed experimental program are
presented in Section 4.1.

Concerning numerical modeling, it is essential to propose a constitutive
model that includes the following aspects.
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� The model is conceptualized as a phenomenological CDM model,
adept at capturing anisotropic damage mechanisms, explicitly fo-
cusing on incorporating the effect of different stress states.

� The yield condition must consider the stress strength differential
effect, the Bauschinger effect, and the changes in the hardening ra-
tio (non-hardening effect) under shear reverse loading conditions.
These factors are crucial for accurately simulating material behav-
ior under cyclic loading.

� The proposed continuum damage model should be designed for
user-friendly implementation as a user-defined material subroutine,
ensuring accessibility for a broad range of users.

� The model should consistently and accurately predict material be-
havior across various conditions, including reproducing global load-
displacement curves and local strain fields under various complex
loading conditions, all while utilizing a unified set of parameters.

Given the outlined requirements, the kinematic framework developed by
Brünig (2001, 2003a) has been adopted. His anisotropic damage model,
which employs a stress-state-dependent damage evolution tensor, effec-
tively models a range of damage phenomena. Moreover, previous stud-
ies by Brünig et al. (2018, 2019a, 2021b, 2019b, 2021c) have conclu-
sively demonstrated the effectiveness of Brünig’s theoretical framework
in modeling and predicting the behavior of various ductile metals under
both proportional and non-proportional loading conditions. However,
the previous Brünig’s elastic-plastic-damage model (Brünig, 2001, 2003a;
Brünig et al., 2008, 2013) shows shortcomings in accurately predicting
the Bauschinger effect and the non-hardening effect after shear reverse
loading. Therefore, the main task of this research is to incorporate an ap-
propriately modified isotropic-kinematic hardening model into Brünig’s
existing constitutive framework. Moreover, a novel kinematic harden-
ing rule based on the damage strain rate tensor is proposed to predict
the damage surface movement under cyclic loading. Finally, the modified
anisotropic elastic-plastic-damage model is implemented as a user-defined
subroutine in Ansys FEM commercial software (Ansys, Inc., 2013). The
numerical integration utilizes the plastic predictor-elastic corrector ap-
proach in undamaged configurations and the inelastic (plastic-damage)
predictor-elastic corrector method in damaged configurations.
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1.3 Outline

This thesis is structured as follows. Chapter 2 briefly recalls the kine-
matic framework proposed by Brünig (2001, 2003a) and discusses the
plastic yield condition with modified isotropic-kinematic hardening, as
well as the damage condition, incorporating a combined softening law.
Chapter 3 describes the numerical integration method for the proposed
elastic-plastic-damage model. Chapter 4 provides a detailed discussion
of the experimental setups, including the novel design of experimental
specimens, DIC settings, and numerical setup, encompassing the numer-
ical model and parameter identification approach. Chapter 5 describes a
comparison of experimental and numerical results, including the global
load-displacement curves and local strain fields. Additionally, a com-
prehensive understanding of the occurrence and development of damage
is discussed in this chapter, based on numerical damage strains, stress
states, SEM images, and fracture pictures. Chapter 6 concludes the
thesis, presenting a summary of the findings and providing outlooks for
future research directions.



2 Constitutive modeling

Wei et al. (2022) performed uniaxial tensile tests under loading and
reloading conditions, and the stress-strain curve is shown in Fig. 2.1(a).
It can be observed that Young’s modulus E reduces during the loading
and unloading processes due to the damage. To characterize the elastic-
plastic-damage behavior, Brünig (2001, 2003a) proposed an advanced
phenomenological elastic-plastic-damage continuum model. A schematic
picture is illustrated in Fig. 2.1(b) in terms of the load-displacement
curve for the monotonic uniaxial tensile test. Following his idea, the
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Figure 2.1: (a) Changes in Young’s modulus E under tensile loading
and unloading conditions, (b) the load-displacement curve
for the uniaxial monotonic tensile test. Experimental data
are cited from Wei et al. (2022).

material has elastic behavior until plastic yielding, and the plastic yield
condition characterizes the onset of the plastic behavior. The plastic
flow rule models the evolution of inelastic strains due to plastic behavior.
Similarly, the same approach is used to describe damage. The damage

11
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condition captures the onset of damage and the evolution of further in-
elastic strains governed by the damage strain rate tensor. When damage
reaches a critical value, macro-cracks will begin to form.

Moreover, scanning electron microscopy (SEM) images of the fractured
surfaces for the monotonic tensile and shear test show significantly dif-
ferent damage mechanics, as reported by Wei et al. (2022). As shown
in Fig. 2.2, the micro-voids are visible on the fractured surface after
monotonic tensile test, whereas the micro-shear-cracks predominate on
the fractured surface after shear test. These findings confirmed that
the damage and fracture behaviors show an anisotropic and stress-state-
dependent response of the investigated ductile aluminum alloy. Thus,
the anisotropic damage characteristics should be taken into account in
the realistic material model.

(a)  Uniaxial tension (b)  Shear

20µm 20µm

Figure 2.2: SEM images of the fractured surfaces for the uniaxial ten-
sion test (a) and shear test (b). The SEM pictures are cited
from Wei et al. (2022).

To develop the above-mentioned phenomenological elastic-plastic-damage
continuum model, Brünig (2001, 2003a) introduced a second-order dam-
age strain rate tensor into the damage configurations to model the large
inelastic deformations caused by micro-defects, whereas effective ficti-
tious undamaged configurations characterize only elastic-plastic behav-
ior. The relations between the damaged configurations and fictitious
undamaged configurations are based on damage tensors. Moreover, the
metric transformation tensor and the effective metric transformation ten-
sor are used to characterize the deformations between the reference and
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current configurations in the damaged configurations and undamaged
configurations, respectively. In contrast to the approach of decomposing
the deformation gradient tensor (Lee, 1969), the proposed continuum for-
mulation is based on the multiplicatively decomposed (effective) metric
transformation tensors into an inelastic and an elastic part in different
configurations.

To characterize the material behavior under cyclic loading more accu-
rately, in addition to the continuum model proposed by Brünig (2003a),
the following modifications have been made.

� The strain triaxialities (Wei et al., 2022) and strain Lode parame-
ter are newly proposed (Wei et al., 2023b) to distinguish between
stress/strain states in monotonic and cyclic loading paths, as well
as different cyclic loading patterns.

� For the cyclic plasticity model, Wei et al. (2022) incorporated
the isotropic-kinematic combined hardening law into the Drucker-
Prager-type yield criterion to capture the strength-differential (SD)
and Bauschinger effects. Moreover, a newly proposed method by
Wei et al. (2023b) provides a straightforward approach to charac-
terize the change in the hardening ratio after shear reverse loading
conditions.

� For the cyclic damage model, a novel kinematic softening material
model based on the damage strain rate tensor is proposed by Wei
et al. (2023b) to characterize the translation of the damage surface.

2.1 Kinematic framework

In this section, the kinematic framework proposed by Brünig (2001,
2003a) is briefly summarized. In the damaged configurations, basis vec-
tors and metric coefficients for the initial undeformed configuration B̊,
the intermediate configuration

∗
B and the plastically deformed and dam-

aged configuration B are given by

G̊ij = g̊i · g̊j ,
∗
Gij =

∗
gi ·

∗
gj , and Gij = gi · gj , (2.1)

respectively.

The macroscopic behavior of elastic-plastic-damage materials under large
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deformations is formulated based on the mixed-variant metric transfor-
mation tensor

Q = Qi
.jgi ⊗ gj = G̊ikG

kjgi ⊗ gj = FFT , (2.2)

where F is the deformation gradient tensor. It can be multiplicatively
decomposed as:

Q = Qi
.jgi ⊗ gj = FFT = QpdQel (2.3)

with Qpd and Qel representing the inelastic (plastic-damage) and the
elastic part of the metric transformation tensor, respectively, as illus-
trated in Fig. 2.3.

BB̊

∗
B

R̊

o

E

∗
R

∗
E

Q

Q̄pl

E

QelQpd

R

Q̄el

Q̄

Figure 2.3: Configurations and metric transformation tensors: B̊ – ref-

erence configuration in the damaged configurations,
∗
B and

B – current configurations in the damaged configurations,
E̊ – reference configuration in the effective fictitious undam-

aged configurations, and
∗
E and E – current configurations in

the effective fictitious undamaged configurations, see origi-
nal image Brünig (2003a) and Wei et al. (2024b).
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Moreover, the logarithmic Hencky strain tensor is expressed in the form

A = Ai
.jgi ⊗ gj =

1

2
lnQ , (2.4)

and the elastic part of the logarithmic Hencky strain is defined as

Ael = (Ael)i.jgi ⊗ gj =
1

2
lnQel . (2.5)

In addition, the strain rate tensor

Ḣ = Ḣi
.jgi ⊗ gj =

1

2
Q−1Q̇ =

1

2
Qel−1Qpd−1Q̇pdQel

+
1

2
Qel−1Q̇el = Ḣpd + Ḣel

(2.6)

is additively decomposed into the inelastic, Ḣpd, and the elastic part,
Ḣel.

The effective fictitious undamaged configurations are introduced to char-
acterize the pure elastic-plastic material behavior, similar to Betten
(1982, 1983), Murakami and Ohno (1981), Voyiadjis and Kattan (1992),
and Voyiadjis and Park (1999). Furthermore, the second-order initial

damage tensor R̊, and the current damage tensors R and
∗
R are ad-

dressed to describe the damage transformation respective to the damage
configurations and the effective fictitious undamaged configurations, see
Fig. 2.3. The significant advantage of the proposed approaches is that
they simplify the complexity of the kinematic equations compared to
the classical theory based on multiplicative decomposition of the total
deformation gradient tensor (see, e.g., Voyiadjis and Park (1999)).

The basis vectors and metric coefficients for the initial undeformed un-
damaged configuration E̊ , the intermediate undamaged configuration

∗
E

and the current undamaged configuration E are given by

E̊ij = e̊i · e̊j ,
∗
Eij =

∗
ei ·

∗
ej , and Eij = ei · ej , (2.7)

respectively. Moreover, the damage deformation gradient

F̃ = gi ⊗ ei , (2.8)
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is used to transform the undeformed kinematic variables into the current
damaged configuration B.

In addition, the effective metric transformation tensor can be multiplica-
tively decomposed as

Q̄ = F̃(Q̄i
.jei ⊗ ej)F̃−1 = Q̄i

.jgi ⊗ gj = Q̄plQ̄el , (2.9)

where Q̄pl and Q̄el are the plastic and the elastic part of the effective
metric transformation tensor, respectively. Moreover, the effective loga-
rithmic strain tenor is given by

Ā = Āi
.jgi ⊗ gj =

1

2
ln Q̄ , (2.10)

and the effective logarithmic elastic strain tenor is expressed as

Āel = (Āel)i.jgi ⊗ gj =
1

2
ln Q̄el . (2.11)

In addition, the rate of the effective strain tensor

˙̄H = ˙̄Hi
.jgi ⊗ gj =

1

2
Q̄−1 ˙̄Q =

1

2
Q̄el−1Q̄pl−1 ˙̄QplQ̄el

+
1

2
Q̄el−1 ˙̄Qel = ˙̄Hpl + ˙̄Hel

(2.12)

can be additively decomposed into plastic and elastic part.

Following Brünig (2001, 2003a), the explicit characterization of damage
kinematics is achieved through the utilization of metric transformations
and corresponding logarithmic strain measures. As shown in Fig. 2.3, the

damage metric transformation tensors (R,
∗
R, and R̊) describe the kine-

matic connections the effective undamaged configurations and damaged
configurations. They are defined as

R̊ij = R̊i
.jgi⊗gj ,

∗
Rij =

∗
Ri

.jgi⊗gj , and Rij = Ri
.jgi⊗gj , (2.13)

respectively. Compared to the damage tensor R̊ corresponding to the
initial damage and R associated with the current damage, the current

damage tensor
∗
R solely describes the kinematic deformation of the dam-
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age. Thus, the damage strain tensor is defined as

Ada = (Ada)i.jgi ⊗ gj =
1

2
ln

∗
R , (2.14)

and the rate of the damage strain tenor is given by

Ḣda = (Ḣda)i.jgi ⊗ gj =
1

2

∗
R−1

∗̇
R . (2.15)

Furthermore, as illustrated in Fig. 2.3, the kinematic relation between

the current damage tensor R and
∗
R is depicted as

R = Ri
.jgi ⊗ gj = Q̄el−1

∗
RQel , (2.16)

and the metric transformation tensor Q can be also decomposed in the
form of

Q = R̊−1Q̄pl
∗
RQel . (2.17)

Substituting Eqs. (2.15), (2.16), and (2.17) into Eq. (2.6), one gets

Ḣ = Ḣel +R−1 ˙̄HplR+Qel−1ḢdaQel . (2.18)

It is worth noting that the (effective) elastic strain rate tensors in the
effective fictitious undamaged and damage configurations are assumed to

be the same as discussed by Brünig (2001, 2003a) ( ˙̄Hel = Ḣel), resulting
in Ael = Āel.

2.2 Thermodynamic considerations

The effective fictitious undamaged configurations characterize solely the
elastic-plastic deformations. The rate of the effective specific mechanical
work is defined as

ρ0 ˙̄w = T̄ · ˙̄H , (2.19)

where ρ0 represents the initial mass density and T̄ is the effective Kirch-
hoff stress tensor.
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Making use of the Eq. (2.12), the effective mechanical work ˙̄w can be
additively decomposed

ρ0 ˙̄w = ρ0 ˙̄wel + ρ0 ˙̄wpl

= T̄ · ˙̄Hel + T̄ · ˙̄Hpl
(2.20)

into an effective elastic part ˙̄wel and an effective plastic part ˙̄wpl.

Moreover, the specific effective Helmholtz free energy ψ̄ is introduced in
the effective fictitious undamaged configurations. It is additively separa-
ble into an effective elastic ψ̄el and an effective plastic part ψ̄pl

ψ̄ = ψ̄el(Āel) + ψ̄pl(γ) , (2.21)

where Āel denotes the effective elastic strain tensor (2.11) and γ is the
equivalent plastic strain.

In addition, the second law of thermodynamics must be fulfilled to derive
the consistent state relations of the elastic-plastic model in the effective
fictitious undamaged configurations. The associated Clausius-Duhem
inequality is given by

˙̄w − ˙̄ψ ≥ 0 . (2.22)

Taking Eqs. (2.20) and (2.21) into account, Eq. (2.22) can be rewritten
as

T̄ · ˙̄Hel + T̄ · ˙̄Hpl − ρ0
∂ψ̄el

∂Āel
· ˙̄Ael − ρ0

∂ψ̄pl

∂γ
γ̇ ≥ 0 . (2.23)

Considering non-dissipative processes within the effective elastic range,
it results in

T̄ · ˙̄Hel − ρ0
∂ψ̄el

∂Āel
· ˙̄Ael = 0 . (2.24)

Taking into account the following assumption (Brünig, 2003a)

T̄ · ˙̄Hel = T̄ · ˙̄Ael , (2.25)
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and thus, based on Eq. (2.24), the effective Kirchhoff stress is given by

T̄ = ρ0
∂ψ̄el

∂Āel
. (2.26)

In addition, the remaining Kelvin inequality is given by

T̄ · ˙̄Hpl − ρ0
∂ψ̄pl

∂γ
γ̇ ≥ 0 , (2.27)

where the effective plastic strain rate tensor ˙̄Hpl governs the evolution
of the effective plastic deformations.

In the context of damage configurations, following Eqs. (2.19) and (2.20),
the rate of the specific mechanical work w is additively split of an elastic
part (ẇel), a plastic part (ẇpl), and a damage part (ẇda), i.e.,

ρ0ẇ = ρ0ẇ
el + ρ0ẇ

pl + ρ0ẇ
da = T · Ḣ . (2.28)

Masking use of the Eq. (2.18), one arrives at

ρ0ẇ
el + ρ0ẇ

pl + ρ0ẇ
da

= T · Ḣel +T · (R−1 ˙̄HplR) +T · (Qel−1ḢdaQel) .
(2.29)

In the framework by Brünig (2001, 2003a), plastic flow and damage lead
to permanent deformations. In addition, as demonstrated in Fig. 2.1(a),
micro-defect deformations evidently reduce Young’s modulus. It is high-
lighted that damage also affects elastic behavior but not plastic deforma-
tions. Consistent with the assumptions made in Lemaitre (1985a) and
Lu and Chow (1990), plastic flow and damage processes are considered
to be independent. Thus, the Helmholtz free energy ψ is assumed to be
an additive combination of an elastic part ψel, a plastic part ψpl, and a
damage part ψda

ψ = ψel(Ael, Ada) + ψpl(γ) + ψda(µ) . (2.30)

The elastic part of free energy ψel only depends on the elastic strain ten-
sor Ael and the damage strain tensor Ada, modeling the elastic response
of the damaged material in the damage configurations. In addition, the
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plastic part of the free energy ψpl characterizes the plastic flow in terms
of the plastic internal variable γ. In contrast, the damage part of the
free energy ψda describes the evolution of damage and depends on the
equivalent damage strain µ.

From which the second law of the thermodynamics the Clausius-Duhem
inequality is given by

T · Ḣel + (RTR−1) · ˙̄Hpl + (QelTQel−1) · Ḣda

− ρ0
∂ψel

∂Ael
· Ȧel − ρ0

∂ψel

∂Ada
· Ȧda − ρ0

∂ψpl

∂γ
γ̇ − ρ0

∂ψda

∂µ
µ̇ ≥ 0 .

(2.31)

According to the non-dissipative processes within the elastic range, one
gets

T · Ḣel − ρ0
∂ψel

∂Ael
· Ȧel = 0 . (2.32)

Following the assumption (Brünig, 2003a)

T · Ḣel = T · Ȧel , (2.33)

one gets

T = ρ0
∂ψel

∂Ael
. (2.34)

Moreover, the remaining dissipation inequality is decomposed into a
plastic part

(RTR−1) · ˙̄Hpl − ρ0
∂ψpl

∂γ
γ̇ ≥ 0 , (2.35)

and a damage part

(QelTQel−1) · Ḣda − ρ0
∂ψel

∂Ada
· Ȧda − ρ0

∂ψda

∂µ
µ̇ ≥ 0 . (2.36)

It should be noted that the effective plastic strain rate ˙̄Hpl based on
the plastic potential function ψ̄pl needs only to enforce Eq. (2.27). The
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second damage dissipation may lead to restrictions in formulating the
elastic part of the free energy ψel and in choosing the damage material
parameters. Moreover, it is evident that the evolution equation for the
damage part of the deformation is expressed in terms of the damage
strain rate tensor Ḣda, as shown in Eq. (2.36).

2.3 Elastic laws and stress and strain states

2.3.1 Elastic laws in damaged and undamaged configurations

In effective fictitious undamaged configurations, the effective elastic part
of the Helmholtz free energy

ρ0
˙̄ψel(Āel) = GĀel · Āel +

1

2

(
K − 2

3
G

)
(tr Āel)2 (2.37)

is formulated in terms of the effective logarithmic elastic strain tensor
Āel (2.11), the shear modulus G, and the bulk modulus K. Thus, based
on Eq. (2.26), the effective Kirchhoff stress is given by

T̄ = ρ0
∂ψ̄el

∂Āel

= 2GĀ
el
+

(
K − 2

3
G

)
tr Ā

el
1 ,

(2.38)

where 1 is the second-order unit tensor.

Furthermore, the elastic part of the free energy in the damaged configu-
ration is defined as

ρ0ψ
el(Ael, Ada) = GAel ·Ael +

1

2
(K − 2

3
G)(trAel)2

+ η1 trA
da(trAel)2 + η2 trA

daAel ·Ael

+ η3 trA
elAda ·Ael + η4A

el · (AelAda)

(2.39)

with the damaged parameters η1...η4 to describe the deterioration of the
elastic properties induced by the micro-defects (Brünig, 2003a; Brünig
and Michalski, 2017; Hayakawa et al., 1998).
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Taking into account Eq. (2.34), the Kirchhoff stress can be obtained

T = ρ0
∂ψel

∂Ael

= 2(G+ η2 trA
da)Ael + (K − 2

3
G+ 2η1 trA

da) trAel1

+ η3(A
da ·Ael)1+ η3 trA

elAda + η4(A
elAda +AdaAel) .

(2.40)

2.3.2 State variables

In the continuum damage and fracture community, the stress invariants
I1 and J2, the stress triaxiality η, and the stress Lode parameter ω are
widely used to characterize the stress states, such as Bai and Wierzbicki
(2008), Brünig et al. (2008), Gao et al. (2010), and Lou et al. (2020). In
addition, Wei et al. (2023b, 2022) suggested adding the strain invariants
(Iel1 , J

el
2 , IA1 , and JA

2 ), strain triaxialities (ηel and ηA), and strain Lode
parameters (ωel and ωA) together with stress state variables (I1, J2, η,
and ω) to better distinguish the stress and strain state between multi-axis
loaded monotonic and cyclic loading conditions. The invariants based on
stress and strain fields are summarized as

I1 = trT, and J2 =
1

2
devT · devT ,

Iel1 = trAel, and Jel
2 =

1

2
devAel · devAel ,

IA1 = trA, and JA
2 =

1

2
devA · devA ,

(2.41)

respectively, where A is total strain tensor (2.4).

With stress and strain invariants in hand, the stress or strain triaxialities
are expressed as

η =
σm
σeq

=
I1

3
√
3J2

,

ηel =
εelvol
εeleq

=
Iel1√
3Jel

2

, and ηA =
εvol
εeq

=
IA1√
3JA

2

,

(2.42)
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where σm is the mean stress, εelvol and εvol are the volumetric parts of
the elastic and total strain tensors, respectively, as well as σeq, ε

el
eq, and

εeq are the von Mises equivalent stress and elastic and total equivalent
strains, respectively.

The stress Lode parameter

ω =
2T2 − T1 − T3

T1 − T3
with T1 ≥ T2 ≥ T3 , (2.43)

and elastic and total strain Lode parameters

ωel =
2Ael

2 −Ael
1 −Ael

3

Ael
1 −Ael

3

with Ael
1 ≥ Ael

2 ≥ Ael
3

ωA =
2A2 −A1 −A3

A1 −A3
with A1 ≥ A2 ≥ A3

(2.44)

are defined with the principal stresses Ti and principal elastic, Ael
i , and

total strains, Ai (i = 1...3), respectively.

2.4 Isotropic plasticity with combined hardening

Wei et al. (2022) observed that the compressive yield stresses are higher
than the tensile yield stresses from the monotonic uniaxial tension and
compression experiments for the investigated aluminum alloy EN-AW
6082-T6. This experimental strength-differential effect (SD effect) was
also reported by Spitzig and Richmond (1984), Holmen et al. (2017), and
Brünig et al. (2023). Furthermore, the Bauschinger effect was detected
particularly during the reverse loading experiments. In addition, in the
case of proportional or non-proportional shear reverse loading, the change
in the hardening ratio can be obviously observed in experimental load-
displacement curves (Wei et al., 2023b). The material model, which
takes into account the SD effect, the Bauschinger effect, and the effect of
hardening ratio changes, is comprehensively summarized in this section.

Furthermore, the hydrostatic-stress-dependent Drucker-Prager-type
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yield criterion with combined hardening

fpl =

√
1

2
dev(T̄− ᾱ) · dev(T̄− ᾱ)− c̄(1− a

c̄
tr(T̄− ᾱ))

=
√
J̄2 − c̄(1− a

c̄
Ī1) = 0

(2.45)

characterizes the onset of the plastic flow caused by the plastic behavior,
where c̄ is the current equivalent stress, a/c̄ represents the hydrostatic
stress coefficient related to the SD effect, and ᾱ describes the effective
back stress tensor associated with the Bauschinger effect.

In addition, Spitzig and Richmond (1984) experimentally observed that
the plastic volume change in iron-based materials and aluminum alloys
is only marginally affected by the hydrostatic-stress. Hence, a non-
associated flow rule is used to predict the evolution of plastic strain,
ensuring compliance with the assumption of incompressibility in plastic
deformations. The non-associated von Mises potential function (gpl) is
given by

gpl(T̄− ᾱ) =

√
1

2
dev(T̄− ᾱ)·dev(T̄− ᾱ) =

√
J̄2 . (2.46)

In addition, the effective plastic strain rate can be computed in the form

˙̄Hpl = λ̇
1

2
√
J̄2

dev(T̄− ᾱ) = γ̇N̄ , (2.47)

where the equivalent plastic strain rate γ̇ = λ̇√
2
is the non-negative plastic

multiplier, and N̄ = dev(T̄−ᾱ)√
2J̄2

represents the normalized deviatoric effec-

tive reduced stress tensor, describing the direction of the plastic strain
rate.

The extended double Voce-hardening law (Holmen et al., 2017; Wei et
al., 2023b, 2022)

c̄ = c0 +Q1(1− e−p1γ) +Q2ξ(1− e−p2γ) (2.48)

is used to model the change of the size of the yield surface, where c0
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denotes the initial yield stress, Q1 and Q2 represent isotropic hardening
moduli, and p1 and p2 are material constants that describe the shape
of the hardening function. Furthermore, ξ is an elastic strain triaxiality
based variable function proposed to characterize material behaviors more
accurately at the onset of plasticity under a wide range of elastic strain
triaxialities. The parameter ξ is given by

ξ =


−6.650ηel − 0.565 for ηel < −0.1

1
0.787(1+e−50(ηel+1))

for − 0.1 ≤ ηel < 0.1 and ηel ≥ 0.45

2.477ηel + 1.025 for 0.1 ≤ ηel < 0.45

,

(2.49)

where the coefficients are inversely calibrated by one-axial and biaxial ex-
periments, covering a wide range of the elastic strain triaxialities, see Wei
et al. (2023b, 2022) for more details.

The modified Chaboche type non-linear kinematic hardening law
(Chaboche and Rousselier, 1983; Voyiadjis et al., 2013; Wei et al., 2022)
captures the transformation of the current yield surface through the ef-
fective back stress tensor ᾱ. To provide a more accurate description of
the Bauschinger effect under finite strain, the effective back stress rate
tensor ˙̄α is additively decomposed into three terms, as follows:

˙̄α = ˙̄α1 + ˙̄α2 + ˙̄α3 , (2.50)

with

˙̄α1 = b1χ
˙̄Hpl − b2χγ̇ᾱ1 ,

˙̄α2 = b3
˙̄Hpl − b4γ̇ᾱ2 ,

˙̄α3 = b5
˙̄Hpl − (1− cos2 θ)b6γ̇ᾱ3 ,

(2.51)

respectively, where b1...b6 are material constants. The exponential Decay
function

χ = 0.8e−300γ + 0.2 (2.52)

models the decreasing translation rate of the current yield surface with
an increasing accumulated equivalent plastic strain γ. This approach
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was proposed by Voyiadjis et al. (2013). In addition, Wei et al. (2022)
introduces a scalar angle parameter

cos2 θ =
((T̄− ᾱ) · ᾱ3)

2∥∥T̄− ᾱ
∥∥ ∥ᾱ3∥

(2.53)

into the third terms of the effective back stress rate, activating or deac-
tivating the non-linear recovery term under large plastic deformations.
This correction implies that the transformation rate of the yield surface
decreases under finite strain or when there are changes in loading paths.

Furthermore, the isotropic hardening ratio ρh is proposed to combine
the isotropic and kinematic hardening part. Therefore, the current total
equivalent isotropic hardening rate is expressed as

˙̄σ = khρh ˙̄c+ (1− khρh) ˙̄α with 0 ≤ ρh ≤ 1 , (2.54)

where ˙̄c denotes the current equivalent stress rate associated with the
isotropic hardening, and ˙̄α is the current equivalent effective back stress
rate corresponding to kinematic hardening. kh is a scalar parameter to
model the change in hardening ratio after reverse loading conditions.
This above-mentioned phenomenon is widely observed in the experi-
ments (Daroju et al., 2022; Ohno, 1982; Ohno and Kachi, 1986; Oko-
rokov et al., 2019b; Wei et al., 2023b). One possible explanation could
be that metal hardening during plastic deformation results from dislo-
cation immobilization due to obstacle formation. Shear reverse loading
briefly restores mobility to some dislocations, temporarily softening a
specific plastic strain region before subsequent immobilization and fur-
ther hardening (Ohno, 1982). Following this physical explanation, Wei
et al. (2023b) introduced piecewise function as follows:

kh =

 0 for γ∗ ≤ 0.05 and γ∗ < γ
fk for 0.05 < γ∗ ≤ 0.15 and γ∗ < γ
1 for 0.15 < γ∗ < γ or γ∗ ≥ γ

with

fk = 1− e−60(γ∗−0.05) + (10γ∗ − 0.5)e−6 ,

(2.55)

where γ∗ is the cyclic equivalent plastic strain, and the value of γ∗ resets
to zero during each elastic unloading paths. In this formulation, tem-



Anisotropic damage with combined softening 27

porary softening occurs in a range of γ∗ ≤ 0.05 based on a numerical
study performed by (Ohno, 1982), and hardening recovers slowly during
further loading processes until γ∗ = 0.15. One of the highlights of the
proposed approach is that only a single parameter is needed, compared
to the multi-factor (Okorokov et al., 2019a,b) or multi-surface methods
(Ohno, 1982; Ohno and Kachi, 1986).

2.5 Anisotropic damage with combined softening

Many previous studies indicated that damage and fracture behavior de-
pends on stress states (Bai and Wierzbicki, 2008; Brünig, 2003a; Brünig
et al., 2008; Gao et al., 2010; Yu et al., 2018). In addition, the damage
might occur early after uniaxial compressive reverse load since the micro-
defects change their shapes and sizes (Kanvinde and Deierlein, 2007). For
a more accurate characterization of the changes in the position and shape
of the current damage surface under cyclic loading conditions, Wei et al.
(2023b) introduced a novel combined softening rule based on Brünig’s
damage strain rate tensor (Brünig, 2003a).

The damage condition taking into account the combined softening law is
expressed as

fda = α̂ tr(T−α) + β̂

√
1

2
dev(T−α) · dev(T−α)− σ̃

= α̂I1 + β̂
√
J2 − σ̃ = 0 ,

(2.56)

where α represents the damage back stress tensor, and σ̃ is the current
equivalent isotropic softening. The stress-state-dependent coefficients

α̂(η) =

{
0 for η ≤ 0
1
3 for η > 0

and

β̂(η,ω) = −0.017ω3 − 0.065ω2 − 0.078ω − 1.28η + 0.85 ≥ 0

(2.57)

govern different damage conditions under different stress states (Brünig
et al., 2013, 2016). For example, α̂ equals zero for all negative stress

triaxialities, see Fig. 2.4(a), simplifying the damage condition to β̂
√
J2.
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Figure 2.4: Damage parameters α̂ (a) and β̂ (b) in the damage condi-
tion (2.56) (Wei et al., 2023b).

Moreover, β̂ increases with increasing the negative triaxialities, as shown
in Fig. 2.4(b). Notably, there is no damage for metals under large neg-
ative stress triaxialities (η ≤ ηcut), see Bao and Wierzbicki (2004) and
Brünig et al. (2018). It is indicated that the onset of the damage is
mainly due to the shear or deviatoric stresses under nearly zero and low
negative stress triaxialities. On the other hand, β̂ becomes zero under
large stress triaxialities (η ≥ 2

3 ). Thus, the damage condition is governed
only by the first stress invariant term α̂I1, with α̂ = 1

3 . In this context,
hydrostatic stresses for high stress triaxialities significantly affect the on-
set of damage. Obviously, the proposed damage condition depends on
the stress states. In addition, α̂ and β̂ are calibrated by analyzing the
initial equivalent damage stresses and the corresponding stress states (η
and ω) of the unit-cell containing a spherical void in its center under
various loading paths. The detail of the identification and validation of
α̂ and β̂ can be found in (Brünig et al., 2013, 2016).

Furthermore, the non-associated damage potential function is modified
as a combination of the first transformed reduced stress invariant Ĩ1 =
tr(T̃ − α̃) and second deviatoric transformed reduced stress invariant
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J̃2 =
√

1
2 dev(T̃− α̃) · dev(T̃− α̃), which is given by

gda(T̃− α̃) = gda(Ĩ1,J̃2) = α̃Ĩ1 + β̃

√
J̃2 . (2.58)

Based on the kinematic model proposed by Brünig (2003a), the trans-
formed stress and damage back stress tensor can be computed as

T̃ = QelTQel−1 and α̃ = QelαQel−1 , (2.59)

respectively. In addition, the damage strain rate tensor can be calculated
as the derivative of the damage potential function to the transformed
reduced tensor (T̃− α̃), which leads to

Ḣda = µ̇
∂gda(T̃− α̃)

∂(T̃− α̃)
= µ̇(α̃

1√
3
1+ β̃Ñ) , (2.60)

where µ̇ represents the non-negative damage multiplier. Clearly, Ḣda

consists of two terms: (1) the isotropic part α̃ 1√
3
1 associated with the

growth of micro-defects; (2) the deviatoric part based on the transformed

normalized reduced deviatoric stress tensor Ñ = dev(T̃−α̃)√
2J2

describes the

isochoric deformation of the micro-defects. The damage parameters α̃
and β̃ are calibrated by performing numerical simulations using unit-cell
containing a spherical void in its center across a wide range of stress
states. These numerical simulations are used to identify parameters in
the damage strain rate tensor, see Eq. (2.60), based on the kinematic re-
lation of the continuum damage model proposed by Brünig et al. (2013).
These kinematic stress-dependent parameters (Brünig et al., 2013, 2016)
are defined as

α̃(η) =

{
0 for η ≤ 0
0.5714η ≤ 1 for η > 0

, (2.61)

and

β̃(η,ω) = β̃0(η) +

{
(1− ω2)(0.0378η − 0.0252) for η ≤ 2/3
0 for η > 2/3

(2.62)
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with

β̃0(η) =

{
0.87 for η ≤ 1/3
0.97875− 0.32625η ≥ 0 for η > 1/3

, (2.63)
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Figure 2.5: Damage parameters α̃ (a) and β̃ (b) in the damage evolu-
tion equation (2.60) (Wei et al., 2023b).

respectively. In addition, α̃ and β̃ are visualized in Fig. 2.5. For low neg-
ative stress triaxialities (− 1

3 < η ≤ 0), α̃ is zero, and the damage strain
rate tensor is only governed by the deviatoric part. This corresponds
to the damage mechanism involving the formation and growth of micro-
shear-cracks caused by deviatoric stresses under shear or compressive
loading conditions. For high stress triaxialities, α̃ increases with increas-
ing stress triaxialities, whereas β̃ decreases as stress triaxialities increase,
as shown in Fig. 2.5. Thus, damage is mainly caused by the formation,
growth, coalescence of the micro-voids under tension-dominated stress
states. In addition, damage is due to both above-mentioned mechanisms
for the low positive stress triaxialities. Briefly, the effect of different dam-
age mechanisms on macroscopic deformation behavior can be accurately
characterized by the proposed damage criterion and damage evolution
equation with damage parameters identified by the micro-mechanical
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simulations.

Furthermore, an Armstrong-Frederick type non-linear anisotropic soft-
ening law based on the damage strain rate tensor Ḣda (2.60) is newly
proposed to predict the transformation of the damage surface (2.56) un-
der different stress states (Wei et al., 2023b). Thus, the rate of the back
stress tensor is given by

α̇ = d1Ḣ
da − d2µ̇α , (2.64)

where d1 and d2 are softening material constants. It is clear that the
evolution of the damage back stress tensor depends on stress-states since
the Ḣda contains the stress-state-dependent variables α̃ and β̃. There-
fore, the newly proposed softening law enables the characterization of
the change in the position of the damage surface under different loading
paths and introduces anisotropic properties in the softening law. It is
worth noting that the proposed softening law can also be decomposed
into different terms to better predict the damage behavior.

The exponential softening law

σ̃ = σ̃0 − C1e
−C2µ (2.65)

is additionally introduced to model the change in the shape of the current
damage surface, where σ̃0 is the initial damage stress, C1 denotes the
damage softening modulus, and C2 describes isotropic softening material
constant.

As mentioned in Section 2.4, the isotropic hardening ratio ρh combines
the isotropic and kinematic hardening. Following this idea, the scalar
softening ratio ρs is further proposed to describe the mixed softening
behavior. Hence, the total equivalent softening rate can be calculated as

σ̇ = ρs ˙̃σ + (1− ρs)α̇eq with 0 ≤ ρs ≤ 1 , (2.66)

where ˙̃σ is the current equivalent damage stress rate and α̇eq represents
the equivalent damage back stress rate.



3 Numerical implementation

In the present work, the numerical simulations are performed within
the commercial program package Ansys Classic APDL. Thus, the pro-
posed two-surface elastic-plastic-damage continuum model in Chapter 2
is implemented as a user-defined subroutine. To be able to solve the
discretized equilibrium equations, the numerical integration of the con-
stitutive rate equations is required.

The main idea is to use one single step without iterations strategy, first
proposed by Nemat-Nasser (1991) and Nemat-Nasser and Li (1992) for
the elastic-plastic material model. In this approach, the plastic strain in-
crement is first assumed to be the same as the total strain increment since
the plastic deformations are predominant for ductile metals after plastic
yielding, followed by an elastic corrector step to compute the current plas-
tic increment. This method provides accurate numerical results for var-
ious loading conditions. Afterward, Brünig (1999b) introduced the plas-
tic predictor-elastic corrector method in the finite element analyses for
the large hydrostatic stress-sensitive elastic-plastic material. Moreover,
Brünig (2003b) innovatively extended the above-mentioned approach for
implementing an anisotropic elastic-plastic-damage two-surface uncou-
pled continuum model. Compared to one-surface elastoplasticity mate-
rial, two independent unknown variables (plastic and damage increment)
must be computed by solving a comprehensive set of integrated equa-
tions. Hence, the inelastic predictor-elastic corrector approach assumes
in the first step the elastic strain increment to be equal to zero in the
inelastic predictor step and then computes the plastic and damage strain
increment error in the elastic corrector step. Finally, with the current
stress direction and elastic-damage material laws, all stress and strain
components can be determined.

Two different implementation strategies are considered for the proposed
continuum model in undamaged and damaged configurations.

� In the fictitious undamaged configurations, the plastic predictor-
elastic corrector is used to compute the stress and strain compo-

32
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nents, as well as the current yield surface due to the plastic defor-
mations by solving a single scalar-valued rate constitutive equation.

� In the damaged configurations, the inelastic predictor-elastic cor-
rector approach is introduced to calculate the stress and strain
components, the current yield surface, and the current damage
surface caused by the inelastic deformations by solving a system of
the scalar-valued rate constitutive equations.

The following will comprehensively summarize the numerical integration
for the proposed material model described in Chapter 2. This approach
is adapted from Wei et al. (2024b).

3.1 Preliminaries

Deriving Eqs. (2.45) and (2.56) with respect to time, respectively, the
plastic consistency condition is obtained as follow:

ḟpl =

(
1

2
√
J̄2

dev(T̄− ᾱ) + a1

)
· ( ˙̄T− ˙̄α)−

(
1− a

c̄
Ī1

)
˙̄c = 0 , (3.1)

and the damage consistency condition is given by

ḟda =

(
α̂1+ β̂

1

2
√
J2

dev(T−α)

)
· (Ṫ− α̇)− ˙̃σ = 0 . (3.2)

Making use of the normalized deviatoric effective reduced stress tensor

N̄ =
dev(T̄− ᾱ)

2
√
J̄2

(3.3)

and the normalized deviatoric reduced stress tensor

N =
dev(T−α)

2
√
J2

, (3.4)
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Eqs. (3.1) and (3.2) can be rewritten as(
1− a

c̄
Ī1

)
˙̄c =

(
1√
2
N̄+ a1

)
· ( ˙̄T− ˙̄α) (3.5a)

˙̃σ =

(
α̂1+ β̂

1√
2
N

)
· (Ṫ− α̇) . (3.5b)

3.1.1 Fictitious undamaged configurations

As mentioned in Section 2.1, the fictitious undamaged configurations ex-
clusively describe elastic-plastic deformations. Consequently, the plastic
consistency condition, denoted as ḟpl in Eq. (3.5a), is the only relevant
criterion. Additionally, the total effective strain rate can be decomposed

into effective elastic ( ˙̄Hel) and plastic ( ˙̄Hpl) part, see Eq. (2.12), and the
corresponding effective stress rate

˙̄T = 2G ˙̄Hel +

(
K − 2

3
G

)
tr ˙̄Hel1 (3.6)

can be derived from the elastic law (2.38) with respect to time in the
undamaged configurations.

Inserting Eqs. (2.12) and (3.6), and the effective back stress rate tensor
α̇ (2.51) into Eq. (3.5a), which leads to(

1− a

c̄
Ī1

)
˙̄c =

√
2GN̄ · ( ˙̄H− ˙̄Hpl) + 3aK tr ˙̄H−

√
2

2
b̄1(N̄ · ˙̄Hpl)

+
√
2

(
1

2
b̄2(N̄ · ᾱ) +

a√
2
b̄2 tr ᾱ

)
γ̇

(3.7)

with

b̄1 = (1− ρh)(b1 + b3 + b5) , (3.8)

and

b̄2 = (1− ρh)(b2 + b4 + b6(1− cos2 θ)) . (3.9)
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Substituting ˙̄γ = N̄ · ˙̄Hpl (2.47) into Eq. (3.7), one arrives at(
1− a

c̄
Ī1

)
˙̄c =

√
2G( ˙̄ε− (1 + wh) ˙̄γ) (3.10)

with

˙̄ε = N̄ · ˙̄H+
3aK√
2G

tr ˙̄H , (3.11)

and

wh =
1

2G
b̄1 −

1

2G
b̄2(N̄ · ᾱ)− a√

2G
b̄2 tr ᾱ. (3.12)

Furthermore, numerically integrating Eq. (3.10) over the time increment
∆t results in

∆c̄ = c̄(t+∆t)− c̄(t) =
√
2Ḡ(∆ε̄− (1 + wh)∆γ̄) (3.13)

with Ḡ = G
1− a

c̄ Ī1
.

Hence, the goal in the fictitious undamaged configurations is to determine
the non-negative ∆γ̄ that satisfies the Kuhn-Tucker condition:

fpl ≤ 0, ∆γ̄ ≥ 0, ∆γ̄fpl = 0 . (3.14)

3.1.2 Damaged configurations

In the damaged configurations, inelastic deformations are mainly caused
by plasticity and damage. Therefore, both the plastic and damage consis-
tency conditions must be satisfied simultaneously. Moreover, the elastic
strain rate tensor Ḣel is calculated based on Eq. (2.18), and the associ-
ated Kirchhoff stress rate is given by

Ṫ =2(G+ η2 trA
da)Ḣel + (K − 2

3
G+ 2η1 trA

da) tr Ḣel1

+ η3(A
da · Ḣel)1+ η3 tr Ḣ

elAda + η4(Ḣ
elAda +AdaḢel)

+ 2η2 tr Ḣ
daAel + 2η1 tr Ḣ

da trAel1+ η3 trA
elḢda

+ η3(Ḣ
da ·Ael)1+ η4(A

elḢda + ḢdaAel) .

(3.15)
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Considering the plastic and damage strain rate tensors (2.47) and (2.60),
the effective back stress rate tenor (2.51), the damage back stress rate
tensor (2.64), and the Kirchhoff stress (2.18) and elastic strain rate ten-
sor (3.15), the plastic (3.1) and damage consistency (3.2) conditions can
be numerically integrated over the time increment ∆t as follows:

∆c̄ =
√
2Ḡ(∆ε1 − w1∆γ − w2∆µ)

∆σ̃ =
√
2G2(∆ε2 − w3∆γ − w4∆µ)

(3.16)

with the equivalent strain increments

∆ε1 =
1√
2Ḡ

Z1 ·∆H̄

∆ε2 =
1√
2G2

Z3 ·∆H ,

(3.17)

where

Ḡ =
G

1− a
c̄ Ī1

(3.18)

and

G2 = G+ η2 trA
da. (3.19)

Additionally, the parameters w1...w4 are defined as

w1 = RN̄R−1 · N̄+
1

2G
b̄1 −

1

2G
b̄2(N̄ · ᾱ)− a√

2G
b̄2 tr ᾱ ,

w2 =
1√
2G

QelZ1Q
el−1 · Z2 ,

w3 =
1√
2G2

RZ3R
−1 · N̄ , (3.20)

w4 =
1√
2G2

[
(QelZ3Q

el−1 − Z4) · Z2 + w5

]
,

w5 = α̂(1− ρs)d2 tr(α) + (1− ρs)d2
β̂√
2
(N ·α) ,
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with the following tensor abbreviations

Z1 =
√
2GN̄+ 3aK1 ,

Z2 = α̃1+ β̃N̄ ,

Z3 =
√
2β̂G2 +

(
α̂(3K + 6η1 + 2η2 + η3) trA

da +
β̂√
2
η3N ·Ada

)
1

+
β̂√
2
η4(NAda +AdaN) + α̂(3η3 + 2η4)A

da ,

Z4 =
β̂√
2
η3 trA

el +
β̂√
2
η4(NAel +AelN) + α̂(3η3 + 2η4)A

el

+

(
β̂√
2
2η2N ·Ael + α̂(6η1 + 2η2 + η3) trA

el − α̂(1− ρs)d1

)
1

− β̂√
2
(1− ρs)d1N .

(3.21)

Hence, in the damage configurations, the aim is to find non-scalar pa-
rameters ∆γ and ∆µ considering Eq. (3.16), while ensuring they adhere
to the corresponding Kuhn-Tucker conditions:

fpl ≤ 0, ∆γ ≥ 0, ∆γfpl = 0

fda ≤ 0, ∆µ ≥ 0, ∆µfda = 0 .
(3.22)

3.2 Elastic behavior

If the plastic yield condition fpl < 0, ∆γ̄ equals zero as per the Kuhn-
Tucker conditions (3.14) in terms of the equation ∆γ̄fpl = 0. The result
is that the elastic strain increment tensor is equal to the total strain
increment tensor

∆Hel = ∆H̄el = ∆H . (3.23)
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Thus, the total elastic strain tensor at time step tn+1 can be computed
as

Ael = Ael
n +∆Hel (3.24)

with

Ael
n =

1

2
lnQel

n ,

and the corresponding elastic part of transformation tensor is calculated
using the first Padé approximation (Brünig, 1999a)

Qel = exp(2Ael) = [1−Ael]−1[1+Ael] . (3.25)

Moreover, the third Padé approximation

Ael
n =

(
Qel

n − 4

15
(Qel

n )
3

)(
1− 3

5
(Qel

n )
2

)−1

(3.26)

is used to compute the value of logarithm with high accuracy (Brünig,
1999a). Please note that, for enhanced readability, this thesis omits the
subscripts (·)n+1 at current time tn+1, and instead, the subscripts (·)n
correspond to the previous time steps at tn.

With the current elastic strain tensor Ael in hand, the current stress can
be calculated in two different ways.

� In the absence of previous damage (µn = 0), the current stress is
computed using the elastic law given by Eq. (2.38).

� In the presence of previous damage (µn > 0), the current stress is
calculated using the elastic-damage law specified by Eq. (2.40).

In addition, in the absence of previous damage (µn = 0), the elastic
tangent modulus Cel is given by

Cel =
dT̄

dAel
= 2G1+ (K − 2

3
G)1⊗ 1 (3.27)
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with the fourth-order isotropic tensor

1 =
1

2
(δikδ

l
j + δilδjk)gi ⊗ gk ⊗ gl ⊗ gj , (3.28)

where 1 describes the second-order identity tensor. Furthermore, the
elastic-damage tangent modulus Cel,d expresses in the form of

Cel,d =
dT

dAel
= 2(G+ η2 trA

da
n )1+ (K − 2

3
G+ 2η1 trA

da
n )1⊗ 1

+ η3(A
da
n ⊗ 1+ 1⊗Ada

n ) + η4Ada
n

(3.29)

in the presence of previous damage (µn > 0), where Ada
n represents the

damage strain tensor at previous time step tn and Ada
n = (Ada

n )ilδ
k
j +

(Ada
n )jkδ

i
l denotes fourth-order damage tensor.

3.3 Elastic-plastic behavior

3.3.1 Predictor-corrector-algorithm

According to Eq. (3.13), in the fictitious undamaged configurations, the
predictor of the equivalent plastic strain increment

(1 + wh)∆γ̄pr = ∆ε̄ , (3.30)

can be equated to the equivalent total strain increment ∆ε̄ in the plastic
predictor step, where wh defined in Eq. (3.12) denotes the kinematic
hardening factor. In addition, ∆ε̄ can be numerically integrated in the
time increment ∆t in terms of Eq. (3.11)

∆ε̄ = N̄ ·∆H̄+
3aK√
2G

tr∆H̄ , (3.31)

with

N̄ ·∆H̄ =
θ

2
N̄n ·∆H̄+ (1− θ

2
)
√
dev∆H̄ · dev∆H̄ , (3.32)
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where θ is the weighting factor between 0 and 2. Furthermore, Nemat-
Nasser and Li (1992) reported that variations in the parameter θ have an
insignificant impact on the numerical accuracy of the isotropic elastic-
plastic materials. Hence, the θ value of 0 is chosen in the present work
because the elastic strain rate is significantly smaller than the plastic
strain rate, providing an estimation as reliable as those from other values.
Additionally, the factor a in Eq. (3.31) can be calculated as a

c̄ · c̄n using
the material constant a/c̄.

The isotropic hardening tangent is given by

dc̄

dγ̄pr
= p1Q1e

−p1γ̄pr + p2Q2ξe
−p2γ̄pr , (3.33)

and thus, the equivalent stress increment ∆c̄pr can be computed as

∆c̄pr = khρh
dc̄

dγ̄pr
∆γ̄pr . (3.34)

Moreover, the predicted current total equivalent stress at time tn+1 can
be expressed as

c̄pr = c̄(γn +∆γ̄pr) = c̄n + khρh
dc̄

dγ̄pr
∆γ̄pr , (3.35)

where khρh = 0 in the pure kinematic hardening model, resulting in
c̄pr = c̄(γn).

The estimated values of the equivalent plastic strain γ̄pr (3.30) and the
yield stress c̄pr (3.35) are obviously overestimated because the elastic
strain increment is not accounted for during the plastic predictor step.
The respective errors are given by

∆erγ̄ = ∆γ̄pr −∆γ̄ =
∆c̄√

2Ḡ(1 + wh)
, (3.36)

and

∆erc̄ ≈ khρh
dc̄

dγ̄pr
∆erγ̄ = c̄pr − c̄n −∆c̄ , (3.37)
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respectively. Making use of Eqs. (3.36) and (3.37), the error in the equiv-
alent plastic strain increment can be rewritten as

∆erγ̄ =
c̄pr − c̄(t)√

2Ḡ(1 + wh) + khρh
dc̄
dγ̄

. (3.38)

Hence, the current equivalent plastic strain increment can be computed
as

∆γ̄ = ∆γ̄pr −∆erγ̄ =
∆ε̄

(1 + wh)
− c̄pr − c̄n√

2Ḡ(1 + wh) + khρh
dc̄

dγ̄pr

. (3.39)

As the normalized deviatoric effective reduced stress tensor defined in
Eq. (2.47), the effective stress direction alters as

N̄− N̄n =
dev(T̄− ᾱ)√

2J̄2
− dev(T̄n − ᾱn)√

2J̄2,n
. (3.40)

Rewriting Eq. (3.40), one arrives at

√
2J̄2N̄−

√
2J̄2,nN̄n = dev∆T̄− dev∆ᾱ

= 2Gdev∆H̄el − dev∆ᾱ

= 2Gdev∆H̄− 2Gdev∆H̄pl − dev∆ᾱ .

(3.41)

The estimated plastic strain increment is given by

∆H̄pl = dev∆H̄pl = ∆γ̄N̄m , (3.42)

where N̄m is the mean normalized deviatoric effective reduced stress
tensor at time t+∆t. It can be computed as follows

N̄m = λ1
[
(1− λ2)N̄+ λ2N̄n

]
with λ1 = 1 and λ2 =

1

2
, (3.43)

where λ1 is employed to maintain the normalization of N̄m, as discussed
in Wang and Atluri (1994) and Wei et al. (2024b). Similarly, the esti-
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mated effective back stress increment can be calculated as

dev∆ᾱ = (1− khρh)∆γ̄(b̄1N̄m −
∑
i

bi dev ᾱi,n) (i = 2,4,6) , (3.44)

where b̄1 = b1 + b3 + b5 represents the sum of the kinematic hardening
moduli, as shown in Eq. (2.51).

Substituting Eqs. (3.42), (3.43) and (3.44) into Eq. (3.40), the current
normalized deviatoric effective reduced stress tensor can be expressed as

N̄ =
2Gdev∆H̄+ (

√
2J̄2,n −Gd∆γ̄)N̄n −

∑
i∆γ̄bi dev ᾱi,n√

2J̄2 +Gd∆γ̄
, (3.45)

where Gd = G+ 1
2 (1− khρh)b̄1 and i = 2,4,6.

Following Eq. (3.43), the current normalized mean effective stress tensor
is

N̄m =
1

2
(N̄+ N̄n) . (3.46)

With N̄m in hand, the updated plastic strain increment is given by

∆H̄pl = ∆γ̄N̄m . (3.47)

In addition, the current elastic strain increment tensor is

∆Hel = ∆H̄el = ∆H̄−∆H̄pl , (3.48)

and the calculation of total elastic strain tensor Ael is outlined in (3.24).

3.3.2 Consistent elastic-plastic tangent modulus

The stress differential without previous damage (µn = 0) can be com-
puted in the form

dT̄ =
dT̄

dAel
Ael = CeldAel , (3.49)
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where

dAel = dH̄el = dH̄− dH̄pl = dH̄− N̄mdγ̄ . (3.50)

Based on Eq. (3.39), one arrives at

dγ̄ =

√
2G

(1 + wh)
√
2G+ (1− a

c̄ I1)khρh
dc̄
dγ̄

N̄n · dH̄ . (3.51)

Substituting Eq. (3.51) into Eq. (3.50), the elastic strain differential is

dH̄el =

(
1⊗ 1−

√
2G

(1 + wh)
√
2G+ (1− a

c̄ I1)khρh
dc̄
dγ̄

N̄m ⊗ N̄n

)
dH̄ .

(3.52)

Making use of Eqs. (3.52) and (3.49), in the absence of previous damage
(µn = 0), the mixed elastic-plastic tangent modulus Cep considering the
isotropic-kinematic combined hardening can be calculated as

Cep = Cel −

(
2
√
2G2

(1 + wh)
√
2G+ (1− a

c̄ I1)khρh
dc̄
dγ̄

)
N̄m ⊗ N̄n , (3.53)

where the elastic tangent without previous damage Cel is shown in (3.27),
wh corresponds to the kinematic hardening modulus (3.12), and khρh

dc̄
dγ̄

is related to the isotropic hardening modulus.

In the presence of previous damage (µn > 0), Eq. (3.49) is given by

dT =
dT

dAel
Ael = Cel,ddAel , (3.54)

Again, substituting Eq. (3.52) into Eq. (3.54), the mixed elastic-plastic
tangent modulus with previous damage Cep,d for the isotropic-kinematic
combined hardening is

Cep,d = Cel,d−

(
2
√
2G2

(1 + wh)
√
2G+ (1− a

c̄ I1)khρh
dc̄
dγ̄

)
N̄m⊗N̄n , (3.55)
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where Cel,d (3.29) denotes the elastic-damage tangent modulus.

3.4 Elastic-plastic-damage behavior

3.4.1 Predictor-corrector-algorithm

The plastic-damage (inelastic) predictor approach is used in the dam-
age configurations, where the elastic strain increment is assumed as
∆Hel = 0. This results in an equivalent effective stress increment∆c̄ = 0,
indicating no plastic hardening increment, and an equivalent stress incre-
ment ∆σ = 0, representing no evolution of damage softening. Therefore,
the predicted values can be computed in the form[

∆γpr
∆µpr

]
=

[
w1 w2

w3 w4

]−1 [
∆ε1
∆ε2

]
(3.56)

based on Eq. (3.16). Parameters w1...w4 are defined in Eq. (3.20), where
the effective stress direction N̄ is given by

N̄ =
θ

2
N̄n + (1− θ

2
)NF with 0 ≤ θ ≤ 2 , (3.57)

and stress direction N can be calculated as

N =
θ

2
Nn + (1− θ

2
)NF with 0 ≤ θ ≤ 2 , (3.58)

where NF represents the final orientation (Nemat-Nasser and Li, 1992),
and it is coaxial with the deviatoric strain increment tenor

NF =
dev∆H√

dev∆H · dev∆H
. (3.59)

Moreover, the parameters α̂n, β̂n, α̃n, β̃n at previous time step (tn)
are utilized to compute w1...w4 because these parameters are implicitly
dependent on the stress states (Wei et al., 2024b).

Omitting the elastic strain increment ∆Hel leads to overestimations in
both the plastic and damage strain increments and the equivalent yield
and damage stresses. To quantify the degree of overestimation, account-
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ing for the errors associated with the equivalent yield stress ∆erc̄ and the
equivalent damage stress ∆erσ̃ is crucial. They are given by

∆erc̄ ≈ khρh
dc̄

dγpr
∆erγ = c̄pr − c̄n −∆c̄ , (3.60)

and

∆erσ̃ ≈ ρs
dσ̃

dµpr
∆erµ = σ̃pr − σ̃n −∆σ̃ , (3.61)

respectively, where khρh denotes the isotropic hardening ratio and ρs is
the softening ratio.

Making use of Eqs. (3.16), (3.60), and (3.61), the errors of the equivalent
plastic and damage strain increments are calculated as follow

[
∆erγ
∆erµ

]
=

[√
2Ḡw1 + khρh

dc̄
dγpr

√
2Ḡw2√

2G2w3

√
2G2w4 + ρs

dσ̃
dµpr

]−1 [
c̄pr − c̄n
σ̃pr − σ̃n

]
.

(3.62)

By subtracting Eq. (3.62) from Eq. (3.56), one gets

[
∆γ
∆µ

]
=

[
∆γpr
∆µpr

]
−
[
∆erγ
∆erµ

]
=

[
w1 w2

w3 w4

]−1 [
∆ε1
∆ε2

]

−

[√
2Ḡw1 + khρh

dc̄
dγpr

√
2Ḡw2√

2G2w3

√
2G2w4 + ρs

dσ̃
dµpr

]−1 [
c̄pr − c̄n
σ̃pr − σ̃n

]
.

(3.63)

As discussed in Eq. (3.41), the alteration in the effective stress direction
is expressed as√

J̄2N̄−
√
J̄2,nN̄n = 2Gdev∆Hel − dev∆ᾱ . (3.64)

Wei et al. (2024b) indicted that the tensorial quantities of the Qel and R
undergo only minimal changes during the numerical simulations. More-
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over, it has been noted that the elastic metric transformation tensor
Qel tends to closely approximate the identity tensor 1. Hence, in the
damaged configurations, the elastic strain increment tensor (2.18) can
be simplified as

∆Hel = ∆H−∆H̄pl −∆Hda (3.65)

to determine the current stress direction. Thus, inserting Eq. (3.65) into
Eq. (3.64), one arrives at√

2J̄2N̄−
√
2J̄2,nN̄n = 2Gdev∆H− 2Gdev∆H̄pl

− 2Gdev∆Hda − dev∆ᾱ .
(3.66)

Moreover, the deviatoric plastic increment is given by

dev∆H̄pl = ∆γN̄m =
1

2
∆γ(N̄+ N̄n) , (3.67)

as shown in Eqs. (3.42) and (3.43). Similarly, the deviatoric damage
strain increment can be approximately calculated as

dev∆Hda = ∆µβ̃Ñm =
1

2
∆µβ̃(Ñ+ Ñn) , (3.68)

in terms of the damage strain rate tensor Eq. (2.60). Then, substituting

Eqs. (3.44), (3.67), and (3.68) into Eq. (3.66), and neglecting
√
2J̄2N̄−√

2J̄2,nN̄n leads to

1

2
β̃G∆µÑ = 2Gdev∆H− 2G∆γN̄m − 1

2
β̃G∆µÑn

− (1− khρh)∆γ(b̄1N̄m −
∑
i

bi dev ᾱi,n) (i = 2,4,6) .

(3.69)

This simplification is justified as the term
√
2J̄2N̄ −

√
2J̄2,nN̄n can be

considered negligible compared to the other terms in Eq. (3.69). Fur-
thermore, the numerical analysis has shown that the most effective con-
vergence is achieved when utilizing a constant effective deviatoric stress
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direction over the time increment, i.e., N̄m = N̄n+1 = N̄n. As ex-
plained in Wei et al. (2024b), significant plastic deformations typically
occur at the initiation of damage, leading to a negligible change in the
effective stress direction. Based on the above assumptions, the current
transformed stress direction can be computed in the form

Ñ =
2Gdev∆H− 2G∆γN̄m − 1

2 β̃G∆µÑn

1
2 β̃G∆µ

−
(1− khρh)∆γ(b̄1N̄m −

∑
i bi dev ᾱi,n)

1
2 β̃G∆µ

(i = 2,4,6) .

(3.70)

Following Eq. (3.43), in the damage configurations, the current normal-
ized mean transformed stress direction is given by

Ñm =
1

2
(Ñ+ Ñn) . (3.71)

Therefore, the corresponding plastic strain increment tensor is

∆H̄pl = ∆γN̄m , (3.72)

and the damage strain increment tensor is calculated as

∆Hda = ∆µ(α̃
1√
3
1+ β̃Ñm) . (3.73)

Hence, the total damage strain tensor is

Ada = Ada
n +∆Hda , (3.74)

and the current damage tensor
∗
R can be determined by the first Padé

approximation (Brünig, 1999a)

∗
R = [1−Ada]−1[1+Ada] , (3.75)

and then, the damage transformation tensor R is given by

R = Qel−1
n

∗
RQel

n . (3.76)
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As mentioned in Eq. (3.65), the elastic metric transformation tensor Qel

tends to closely approximate the identity tensor 1 after initiation of dam-
age. Thus,Qel

n is used in Eq. (3.76) to calculate the current damage strain
tensor R.

Moreover, substituting Eqs. (3.72) and (3.73) into Eq. (2.18), the elastic
strain increment tensor can be computed in the form

∆Hel = ∆H−∆γR−1N̄mR−∆µQel−1
n (α̃

1√
3
1+ β̃Ñm)Qel

n . (3.77)

Then, the total elastic strain Ael (3.24) and the current elastic metric
transformation tensor Qel can be further calculated (3.25), respectively.

3.4.2 Consistent elastic-plastic-damage tangent modulus

As the current plastic strain increment ∆H̄pl, the updated damage strain
increment ∆Hda, and the total elastic strain Ael are known, the effective
back stress increments (2.51), the damage back stress increment (2.64),
as well as the stress tensor (2.40) can be calculated, respectively. Fur-

thermore, the stress-state-dependent parameters α̂, β̂, α̃, β̃ and corre-
sponding factors w1...w4 in (3.16) can be computed based on the newly
obtained stress tensors (T̄ (2.38) and T (2.40)) and stress directions
(N̄m and Ñm), and these are utilized to determine the consistent elastic-
plastic-damage tangent modulus according to the above-mentioned nu-
merical integration method.

In the damaged configurations, the stress differential is

dT = CepddH = Cel,ddAel + CdadAda

=
dT

dAel
dAel +

dT

dAda
dAda ,

(3.78)

where the elastic strain differential is

dAel = dHel = dH− dγR−1N̄mR− dµQel−1(α̃
1√
3
1+ β̃Ñm)Qel ,

(3.79)



Elastic-plastic-damage behavior 49

and Cel,d is shown in Eq. (3.29). In addition, Cda is expressed as

Cda = 2η1 trA
el1⊗ 1+ 2η2A

el ⊗ 1+ η31⊗Ael + η3 trA
el1+ η4Ael

(3.80)

with

Ael = (Ael)i.kδ
l
.j + δi.k(A

el)l.j .

It should be emphasized that dγ and dµ are computed utilizing the above-
mentioned numerical integration method. Thus, considering Eqs. (3.56),
(3.60), (3.61), (3.62) and (3.63), one gets[

dγ
dµ

]
=

[
m1 m2

m3 m4

] [
dε1
dε2

]
. (3.81)

with[
m1 m2

m3 m4

]
=

[
w1 w2

w3 w4

]−1

−D−1

[
khρh

dc̄
dγ 0

0 ρs
dσ̃
dµ

][
w1 w2

w3 w4

]−1

,

(3.82)

and

D =

[√
2Ḡ1w1 + khρh

dc̄
dγ

√
2Ḡ1w2√

2G2w3

√
2G2w4 + ρs

dσ̃
dµ

]
. (3.83)

Finally, inserting Eq. (3.81) into Eq. (3.78), the elastic-plastic-damage
tangent moduli considering combined hardening and softening laws can
be expressed as

Cepd = Cel,d − [Cel,d(R−1N̄mR)]⊗
(
m1Z1√

2G
+
m2Z3√
2G2

)
−
[
Cel,d

(
α̃√
3
1+ β̃Qel−1ÑmQel

)]
⊗
(
m3Z1√

2G
+
m4Z3√
2G2

)
+

[
Cda

(
α̃√
3
1+ β̃Ñm

)]
⊗
(
m3Z1√

2G
+
m4Z3√
2G2

)
.

(3.84)
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3.5 Algorithmic implementation

The active set strategy (Kiefer et al., 2018; Simo et al., 1988) is used to
correctly and effectively seek the respective constraints between the ef-
fective fictitious configurations and damaged configurations, respectively,
in the proposed two-surface constitutive model. This adopted strategy
satisfies the requirements of the Kuhn-Tucker conditions within differ-
ent configurations. The main structure of the inelastic predictor-elastic
corrector approach for the proposed constitutive model is summarized in
Algorithm 1.

Algorithm 1 Inelastic predictor-elastic corrector

1: History variables: D ∈ {Ael
n , Ada

n , T̄n, Tn, ᾱi,n, ᾱn, αn, γn, µn}
2: Given strain filed: Ael,tri = Ael

n + ∆H

3: Compute and check the trial yield condition fpl,tri and the equivalent effective plastic
strain increment ∆γ̄, as well as the trial damage condition fda,tri, the equivalent
plastic strain increment ∆γ and the equivalent damage strain increment ∆µ

4: if fpl,tri > 0 and ∆γ̄ > 0 then
5: if fda,tri > 0 and ∆γ > 0 and ∆µ > 0 then
6: go to elastic-plastic-damage part, see Section 3.4
7: update Ael, Ada, T (2.40), ᾱ, α, γ, µ, and Cepd (3.84)
8: end if
9: else

10: go to elastic-plastic part, see Section 3.3
11: if µn > 0 then
12: update Ael, T (2.40), ᾱ, γ,and Cep,d (3.55)
13: else
14: update Ael, T̄ (2.38), ᾱ, γ, and Cep (3.53)
15: end if
16: else
17: go to elastic part, see Section 3.2
18: if µn > 0 then
19: update Ael, T (2.40), and Cel,d (3.29)
20: else
21: update Ael, T̄ (2.38), and Cel (3.27)
22: end if
23: end if



4 Experimental and numerical setups

Experiments with one-axis-loaded and biaxially loaded specimens have
been performed to validate the proposed continuum damage model and
to capture the mechanical response of the investigated ductile aluminum
alloy EN AW 6082-T6. One-axis loaded monotonic and cyclic tension
and shear tests (Wei et al., 2022, 2023d) are initially carried out to iden-
tify the material parameters. Subsequently, different proportional and
non-proportional biaxial experiments (Wei et al., 2023b, 2024b) are con-
ducted to verify the performance of the proposed continuum damage
model under various complex loading conditions. According to previous

-1 0 1-0.33 0.33

stress triaxiality

-0.20 0.20-0.60 0.8

Figure 4.1: Attainable stress triaxiality for different specimens (Wei et
al., 2023b).

numerical and experimental studies (Wei et al., 2022), see Fig. 4.1, the
uniaxial tension and compression tests generate stress triaxialities of 0.33
and -0.33, respectively. In addition, the stress triaxialities induced by
monotonic and cyclic shear tests fall within the range of approximately
-0.2 to 0.2. One of the highlights of the newly designed experiments with
thin metal sheets covers a wide range of stress triaxialities (from -0.60
to 0.8) under non-proportional biaxial reverse loading conditions, as il-
lustrated in Fig. 4.1. This addresses a crucial gap in studying damage

51
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and fracture behavior under cyclic biaxial loading. During the experi-
ments, digital image correlation (DIC) technique records deformations
and strain changes. Following the experiments, the fractured surfaces
are examined by scanning electron microscopy (SEM). In Section 4.1,
the material, geometries, and experimental setups and programs will be
discussed in detail. Furthermore, the finite element mesh and material
parameter identification strategy (Wei et al., 2022, 2023d) are presented
in detail in Section 4.2.

4.1 Experimental aspects

4.1.1 Material and geometries of specimens

The medium strength aluminum-magnesium-silicon (AlSiMgMn) alloy
EN AW 6082-T6, which is widely used in building structures, aircraft,
and automobile constructions, is utilized to study the damage and frac-
ture behavior under cyclic loading conditions. The chemical composition
is shown in Table 4.1.

Table 4.1: Chemical composition of the aluminum alloy EN AW 6082-
T6. The table is adapted from Wei et al. (2023b).

Al Si Mg Mn Fe Zn Cu Ti Others
To balance 0.90% 0.70% 0.47% 0.37% 0.09% 0.09% 0.03% 0.06%

The uniaxial tension-compression specimen (TC-specimen) and the one-
axis-loaded shear specimen are shown in Fig. 4.2, respectively. Compared
to the standard tensile specimen (Brünig et al., 2021a), the central com-
pact part of the TC-specimen, as shown in Fig. 4.2(a), has been shortened
to 21mm with a quadratic 4mm×4mm cross-section for compression
testing to avoid early buckling. Fig. 4.2(c) illustrates the geometry of
the one-axis-loaded shear specimen, which has a double notch part in
its center. The design of this new shear specimen, drawing inspiration
from the performance of the notch in the biaxially loaded H-specimen
proposed by Gerke et al. (2017), is specifically engineered to prevent ro-
tation around the vertical axis as much as possible. In addition, the
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details of the notched parts are depicted in Figs. 4.2(d) and (e), re-
spectively. Moreover, the geometries of the biaxially loaded cruciform
HC-specimen is shown in Fig. 4.3. As can be seen in Fig. 4.3(b), it
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Figure 4.2: One-axis-loaded geometries: (a) TC-specimen, (b) isomet-
ric photo of the TC-specimen, (c) shear specimen, (d)-(e)
details of the notch parts of the shear specimen, and (f)
isometric photo of the shear specimen; all units in mm,
thickness 4mm (Wei et al., 2022).

has four 2mm thick notches in its center, and the distances between the
notches in the horizontal and vertical directions are 32mm and 8mm,
respectively, to allow imposing the cyclic loading on both axes. This de-
sign is similar to the H-specimen but differs in that the distances in the
vertical direction have been increased from 2mm to 8mm. In addition,
tension or compression stresses are obtained when the load is subjected
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to the horizontal axis (axis 1), whereas the shear stresses occur with
loading along the vertical axis (axis 2). Hence, non-proportional biaxial
reverse experiments are achieved by altering the loading directions and
axes using the HC-specimen.

Furthermore, the relative displacement ∆uref is introduced to character-
ize the load-displacement curves during the experimental and numerical
analysis. For the TC-specimen and the shear specimen, it is defined as

∆ui,ref = ui.1 + ui.2 (4.1)

between the two measuring points, as plotted in Figs. 4.2(a) and (c),
respectively. Similarly, the relative displacements for the HC-specimen
are calculated between the measuring points in axis 1 and 2 are shown
in Fig. 4.3(e), respectively. In addition, the mean forces Fi

Fi =
Fi.1 + Fi.2

2
(4.2)

are used for the load-displacement analysis for all above discussed spec-
imens.
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Figure 4.3: Biaxially loaded HC-specimen: (a) isometric photo of the
HC-specimen, (b)-(d) details of the notch parts, (e) loading
and measurement points (red); all units in mm, thickness
4mm (Wei et al., 2023b).
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4.1.2 Experimental setups

Testing machines, DIC setups, and SEM

The one-axis-loaded experiments are conducted on the standard electro-
mechanical testing machine Inspekt Table 50-1 manufactured by Hege-
wald & Peschke, Germany. All experiments are performed under quasi-
static loading conditions with a machine speed of 0.05mm/min. As illus-
trated in Fig. 4.4, the DIC setups includes four 6Mpx cameras mounting
75mm lenses, two LED lights type FL-B50, and two LED lights type
FL-B25. On each side, two cameras monitor the front and back side of
the specimen, and all cameras are calibrated into a unified system us-
ing a specially designed double-sided target. Moreover, the same LED
lights combinations, i.e., FL-B50 and FL-B25, are used in both sides
of the specimen to provide sufficient brightness without creating shad-
ows and reflection around the region of interest (ROI) of the specimens.
Prior to conducting the experiments, the specimens are sprayed with

Figure 4.4: DIC setups for one-axial experiments: lighting system and
camera equipment (Wei et al., 2022).

white acrylic paint and subsequently coated with graphite, creating a
black spot pattern. The average resolution at the center of the one-
axis-loaded specimens is approximately 56 px/mm. Istra 4D, from the
commercial company Limess/Dantec, is utilized for the analysis of ex-
perimental data, with special emphasis on calculating the physical strain
directly from the distortions of the facet. During the experimental evalu-
ation, the subset (facet size) is set to 33 px and the grid spacing (overlap)
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is selected to 11 px, respectively. These settings are recommended by the
manufacturer (Limess/Dantec), consistent with the recommendations for
good practice (Jones et al., 2018). Moreover, displacement or contour
smoothing is not taken into account. The region of interest (ROI) for
the TC-specimen is chosen as 1168 px in width and 501 px in height, and
2752 px in width and 2206 px in height for the shear specimen.

The biaxial experiments are performed using the horizontally arranged
electro-mechanical testing machine LFM-BIAX 20 kN, which was manu-
factured by Walter + Bai, Switzerland, under quasi-static loading condi-
tions with a machine speed of 0.004mm/s. The experiments employ

Figure 4.5: DIC setups for biaxial experiments with down-holder: light-
ing system and camera equipment.

the same cameras and LED lights as those utilized in the one-axis-
loaded experiments, with the DIC setups depicted in Fig. 4.5. The av-
erage resolution at the center of the biaxially loaded specimens is about
60 px/mm. The subset and the grid spacing are set to match the one-
axis-loaded tests, i.e., 33 px and 11 px. In addition, the ROI is defined
as 2752 px× 2206 px.
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After the experiments, the fractured surfaces are examined by scanning
electron microscopy (SEM) with ZEISS EVO 15 with lanthanum hexa-
boride electron emitter (LaB6) and Everhart-Thornley (ET) detector to
confirm the proposed damage mechanisms. Imaging is conducted in a
high vacuum environment, maintaining a working distance of approxi-
mately 11mm, an electron beam diameter (spot-size) of 300 nm, and an
accelerating voltage of 20 kV.

Clamping jaws and anti-buckling devices

Different clamping jaws are used to perform different one-axial experi-
ments: (1) a wedge grip up to 40 kN (Fig. 4.6(a)) for tensile loading with
TC-specimens; (2) anti-buckling device (THS613:50 kN), see Fig. 4.6(b),
for uniaxial compression test using TC-specimens; (3) Jaws with screw-
action grip (THS90-BP), as illustrated in Fig. 4.6(c), for one-axial shear
test.

(a) (b) (c)

Figure 4.6: Clamping jaws: (a) wedge grip 40 kN, (b) anti-buckling de-
vice (THS613:50 kN), and (c) clamping with screw-action
grip (THS90-BP).

Initially designed for composite compression, the anti-buckling device
(THS613:50 kN) is well-suited for flat specimens up to 30mm wide and
6mm thick. Moreover, this device automatically aligns itself and delays
buckling significantly. The TC-specimen is secured in the anti-buckling
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device as follows. First, remove the clamping jaws from the anti-buckling
taper wedge device. Then, position the TC-specimen centrally within the
clamping jaws and secure it by tightening the jaw screws. Finally, the
clamping jaws are reinserted into the anti-buckling device with the TC
specimen. The DIC technique allows for the evaluation and analysis of
experimental data across different series using the same specimen, with
cameras and lights fixed in position. Hence, the idea arose to alternate
between using tensile wedge grips and an anti-buckling device for uniaxial
tension-compression cyclic loading tests to avoid buckling and provide
reliable results.

In addition, the shear cyclic experiments are conducted using the screw-
action grip THS90-BP, which enables the imposition of both tensile and
compressive loads. It should be noted that this device must be aligned
carefully to avoid eccentricities as much as possible. These clamping jaws
are employed with the one-axis-loaded shear specimen, offering greater
robustness against buckling than the TC-specimen.

(a) (b)

Figure 4.7: Clamping jaws with down-holder in biaxial testing ma-
chine(a) and down-holder(b).

Furthermore, as shown in Fig. 4.7, a newly designed down-holder in co-
operation with Walter + Bai is incorporated to restrict the perpendicular
displacements on the surface of the HC-specimen. The central opening
is purposefully designed to accommodate the DIC technique. Addition-
ally, it features a stationary base and a mobile upper section fitted with
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a coiled spring. Rollers incorporated into the down-holder provide ade-
quate and consistent contact with the HC-specimen. It is imperative to
ensure precise alignment of the base of the down-holder with the base of
the machine plate through swivel brackets to prevent interference with
DIC usage (Fig. 4.5). In addition, the height of the lower roller bearings
is meticulously adjusted using rotary controls and subsequently verified
through both visual and acoustic inspections following the installation
of the cross-check. It is essential to align the base’s height with the
clamping jaws’ bottom. Following the installation of the HC-specimen,
the mobile upper section of the down-holder is affixed and subjected to
preloading using springs, which are tightened by rotary controls, guar-
anteeing that the specimen receives sufficient support from the roller, as
shown in Fig. 4.7(b).

4.1.3 Experimental programs

The test naming rule includes three parts: the first part refers to the
specimen type; the second part indicates between monotonic (mon), sin-
gle cyclic (cyc), and bi-cyclic (cyc2) loading; and the third part alters
between one-axial and biaxial experiments. This could be the loading
sequence for one-axial experiments or the preload and loading pattern in
biaxial tests. A detailed explanation is discussed in this section.

One-axial experiments

The uniaxial monotonic tensile and compression tests are conducted to
study the strength-differential effect (SD-effect) and to calibrate the ma-
terial parameters. Various cyclic loading patterns are designed to observe
the Bauschinger effect. Moreover, both monotonic and cyclic shear tests
are performed to distinguish between the damage mechanisms induced
by tension-dominated and shear-dominated (near zero) stress states. The
test classifications are summarized in Table 4.2. The test ID for one-axial
experiments consists of three parts: the specimen, the loading pattern,
and the loading sequence. In addition, TC and S refer to the tension-
compression and shear specimen, respectively, while the symbols cyc and
mon are abbreviations for cyclic and monotonic loadings, respectively.



60 Experimental and numerical setups

Table 4.2: Test classifications for one-axial experiments.

Test ID Specimen Loading pattern
TC-mon-T TC-specimen Monotonic tension
TC-cyc-TCT TC-specimen Tension-compression-tension
TC-cyc-TCTCT TC-specimen Tension-compression-tension-compression-tension
TC-cyc-CT TC-specimen Compression-tension
TC-cyc-CTCT TC-specimen Compression-tension-compression-tension
S-mon-T Shear specimen Monotonic tension
S-cyc-TCT Shear specimen Tension-compression-tension
S-cyc-TCTCT Shear specimen Tension-compression-tension-compression-tension
S-cyc-CT Shear specimen Compression-tension
S-cyc-CTCT Shear specimen Compression-tension-compression-tension

Biaxial experiments

The proportional and non-proportional biaxial reverse experiments using
HC-specimens are performed to generate a wide range of stress triaxiali-
ties, with the aim of investigating stress-state-dependent ductile damage
and fracture behavior. In the present work, single cyclic loading super-
imposed with different preloads without unloading, and bi-cyclic loading
experiments are designed. The symbols cyc and cyc2 represent the single
cyclic loading and bi-cyclic loading tests, respectively. Compared to the
one-axial experiments, only the cyclic loading pattern TCT is selected
to study the ductile damage and fracture behavior under reverse loading
conditions.

In the single cyclic experiments, shear or tensile preloads are subjected
to axis 1 or axis 2 to achieve the target forces without unloading. Sub-
sequently, the TCT cyclic loading is imposed on axis 2 or axis 1. As
shown in Table 4.3, the different tensile or compressive preloads 0 kN,
±3 kN, and ±5 kN are first imposed on axis 2 (horizontal axis, as shown
in Fig. 4.3(e)) at the loading stage 1. Then, the TCT shear cyclic load-
ing is superimposed on the axis 1 (vertical axis, as shown in Fig. 4.3(e))
until specimens failed during the second loading stage. Moreover, similar
nomenclature is used for the biaxially loaded experiments. HC is the ab-
breviation for the used HC-specimen. The notations mon-Tx and cyc-Tx
denote the monotonic or cyclic loading imposed on axis 1 superimposed
by F2 = x kN in axis 2. Also, uM1 and uM2 describe the machine displace-
ments of cylinder 1 and cylinder 2, respectively. In addition, a schematic
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diagram of the experimental loading paths is presented in Fig. 4.8.

Table 4.3: Test classifications for single biaxial cyclic experiments su-
perimposed by tensile or compressive preloads (Wei et al.,
2023b).

Test ID
Stage 1 Stage 2

uM2 [mm] uM1 [mm] F2 [kN]
HC-mon/cyc-T0 until reaction force F2 = 0kN mon./cyc. until fracture 0
HC-mon/cyc-T3 until reaction force F2 = 3kN mon./cyc. until fracture 3
HC-mon/cyc-TN3 until reaction force F2 = −3 kN mon./cyc. until fracture -3
HC-mon/cyc-T5 until reaction force F2 = 5kN mon./cyc. until fracture 5
HC-mon/cyc-TN5 until reaction force F2 = −5 kN mon./cyc. until fracture -5

(a) monotonic loading

1

2

(b) cyclic loading

1

2

  mon-Tx   cyc-Tx

Figure 4.8: Schematic diagram of the experimental loading paths. Ten-
sile or compressive preload F2 is illustrated as red arrows,
and superimposed monotonic or cyclic load F1 is depicted
as blue arrows (Wei et al., 2023b).

Moreover, the positive shear preloads 0 kN, 4.5 kN and 5 kN applied along
axis 1 (vertical axis) are superimposed by the tensile cyclic loading pat-
tern TCT along axis 2 (horizontal axis), respectively. The test classifi-
cations are summarized in Table 4.4. The notations mon-Sx and cyc-Sx
denote the monotonic or cyclic loading imposed on axis 2 superimposed
by F1 = x kN in axis 1. Notably, different compressive displacements
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(C) in the TCT (stage 2) loading patterns are selected to investigate the
influence of the degree of compressive displacements on the mechanical
response of the material, denoted as symbols i and ii, respectively. Also,
Fig. 4.9 shows the schematic diagram of experimental loading paths.

Table 4.4: Test classifications for single biaxial cyclic experiments su-
perimposed by shear preloads (Wei et al., 2024b).

Test ID
Stage 1 Stage 2

uM1 [mm] F1 [kN] uM2 [mm]
HC-mon-S0 - 0 mon. until fracture
HC-mon-S4.5 until reaction force F1 = 4.5 kN 4.5 mon. until fracture
HC-cyc-S4.5-i until reaction force F1 = 4.5 kN 4.5 cyc. until fracture
HC-cyc-S4.5-ii until reaction force F1 = 4.5 kN 4.5 cyc. until fracture
HC-mon-S5 until reaction force F1 = 5kN 5 mon. until fracture
HC-cyc-S5-i until reaction force F1 = 5kN 5 cyc. until fracture
HC-cyc-S5-ii until reaction force F1 = 5kN 5 cyc. until fracture

Figure 4.9: Schematic diagram of the experimental loading paths.
Shear preload F1 is illustrated as blue arrows, and super-
imposed monotonic or cyclic load F2 is depicted as red ar-
rows (Wei et al., 2024b).

Regarding the bi-cyclic experiments, both axes of the HC-specimens are
subjected to cyclic loading simultaneously until the specimens fail. A
schematic diagram for the loading paths is illustrated in Fig. 4.10. Cur-
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Figure 4.10: Schematic diagram of the bi-cyclic biaxial experimental
loading paths (Wei et al., 2024a).

Table 4.5: Test classifications for bi-cyclic biaxial experiments.

Test ID
LP1 LP2 LP3

Stage1 Stage2

uM1
uM2 till
F2 [kN]

uM1
uM2 till
F2 [kN]

uM1
uM2 till
F2 [kN]

uM1
F2

[kN]

HC-cyc2-TTT3 + 3 - 3 + 3 Fx 3
HC-cyc2-TTT5 + 5 - 5 + 5 Fx 5
HC-cyc2-TCT3 + 3 - -3 + 3 Fx 3
HC-cyc2-TCT5 + 5 - -5 + 5 Fx 5
HC-cyc2-CTT3 + -3 - 3 + 3 Fx 3
HC-cyc2-CTT5 + -5 - 5 + 5 Fx 5
HC-cyc2-CCC3 + -3 - -3 + -3 Fx -3
HC-cyc2-CCC5 + -5 - -5 + -5 Fx -5
HC-cyc2-TCC3 + 3 - -3 + -3 Fx -3
HC-cyc2-TCC5 + 5 - -5 + -5 Fx -5
HC-cyc2-CTC3 + -3 - 3 + -3 Fx -3
HC-cyc2-CTC5 + -5 - 5 + -5 Fx -5

Note: +/− indicates tensile or compressive loading, and Fx signifies fracture.
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rently, the newly designed experiments focus on the shear cyclic loading
(TCT, see blue lines in Fig. 4.10) along axis 1 superimposed with dif-
ferent kinds of tensile or compressive cyclic loading patterns on axis 2,
i.e., TTT, TCT, CTT, CCC, TCC, and CTC, as the red lines shown
in Fig. 4.10. It should be emphasized that the maximum or minimum
forces in the first and second tensile cyclic loading patterns are restricted
to 3 kN and 5 kN or −3 kN and −5 kN, respectively. Most importantly,
if the target forces in the last loading pattern reach ±3 kN or ±5 kN, the
loads are kept constant until failure. The corresponding test classifica-
tions are listed in Table 4.5.

4.2 Numerical aspects

4.2.1 FE mesh

Concerning numerical analysis, Solid185 elements with default settings
in Ansys are utilized. In the one-axial shear tests, one-half of the spec-

Figure 4.11: Mesh of the one-axis-loaded shear specimen: (a) overview,
(b) details of the notched part (Wei et al., 2022).

imen with 15,037 elements is analyzed, considering the symmetry of the
one-axis-loaded shear specimen. Additionally, mesh refinement is applied
in the notched part where damage is expected to occur in the numerical
simulations, see Fig. 4.11. Similarly, as depicted in Figs. 4.12(a) and
(b), one-quarter of the HC-specimen with 22,502 elements, incorporat-
ing mesh refinement in the notched part, is used to analyze the material
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Figure 4.12: Mesh of the HC-specimen: (a) overview, (b) and (c)
details of the notched part and the notched cross-
section (Wei et al., 2023b).
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response for different biaxial experiments. Moreover, the selected ele-
ment dimensions at the center of the notched region for the shear and
HC-specimens are 0.25mm × 0.125mm × 0.1mm along axes 1, 2, and
3, see Figs. 4.11(b) and 4.12(b). It is worth noting that the mesh sizes
are determined based on mesh studies, which provide consistency with
the distribution of the strain localization band measured from DIC, es-
pecially regarding the bandwidth on the notch surface. This approach
yields reliable numerical results for comparing with experimental obser-
vations and predicting material behavior. Such predictions, including
stress triaxialities and the evolution of plastic strains, cannot be directly
measured experimentally. This contrasts with traditional mesh stud-
ies, which solely focus on identifying the mesh size that provides stable
numerical results. However, these may not characterize the material be-
havior in the local strain fields with high accuracy.

Furthermore, the stress triaxiality η and the Lode parameter ω are
widely used to capture the stress states during the numerical analy-
sis. In accordance with previous studies, the stress triaxiality η and
the Lode parameter ω are uniformly distributed with a gradient over the
notched cross-section of the shear specimen (Wei et al., 2023d) and the
H-specimen (Brünig et al., 2021c; Zistl et al., 2022a). To more accurately
capture the stress state over the notched cross-section, the mean stress
triaxiality η̄ and the mean Lode parameter ω̄ (Wei et al., 2023b, 2022)

η̄ =
1

S

∫ S

0

ηds and ω̄ =
1

S

∫ S

0

ωds (4.3)

are introduced, where S represents the total area of the notched cross-
section, as illustrated in Fig. 4.12(c).

4.2.2 Parameter calibration

Elastic and plastic hardening parameters

Based on the uniaxial tension test as shown in Fig. 4.13(a) (Wei et al.,
2022), Young’s modulus is measured as E = 67500MPa, and Poisson’s
ratio is given by ν = 0.29. In addition, it is observed that the mean
flow stress in tension σt

m = 268.8MPa is lower than in compression
|σc

m| = 273.5MPa, as shown in Fig. 4.13(b). Thus, the hydrostatic stress
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coefficient is computed as
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Figure 4.13: (a) The load-displacement curve for the uniaxial mono-
tonic tensile test and (b) the true stress-strain curves
for tension and compression tests with absolute values.
The tensile experimental curves are considered only up
to ∆uref = 0.1mm and all experimental data and corre-
sponding pictures are cited from Wei et al. (2022).

2a = S −D = 2× |σc
m| − σt

m

|σc
m|+ σt

m

≈ 1.7% , (4.4)

and the ratio a
c̄ keeps constant and is subsequently calculated as

a

c̄
=

a

(1 + a)σt
m

=
a

(1− a) |σc
m|

= 32TPa−1 (4.5)

according to Spitzig and Richmond (1984).

Moreover, the plastic and damage parameters can be independently cali-
brated as the plastic hardening and damage softening parameters do not
influence each other. Because damage is assumed to rapidly develop after
the significant localization of plastic strain (after the beginning of neck-
ing) in uniaxial tension tests, the plastic parameters are calibrated using
experimental data obtained before the occurrence of necking. Although
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damage may occur earlier, before necking, its influence on material stud-
ies is often considered negligible. However, this effect can be reconsidered
in the reverse fitting of damage parameters procedure.

As discussed in Wei et al. (2023d), the isotropic and kinematic hardening
parameters can be identified by using the equivalent stress c̄ – equivalent
plastic strain γ curve (Fig. 4.14(a)) and the equivalent back stress ᾱ –
equivalent plastic strain γ curve (Fig. 4.14(b)). These curves are derived
from the original load–displacement curve obtained during the uniaxial
tension test (Fig. 4.13(a)). The fitting of material parameters is based
on the least-square method provided in Matlab, which searches for the
optimal parameter set that satisfies the following governing equation

min
x

∥F(x,γ)− y∥22 = min
x

∑
i

(F(x,γi)− yi)
2 with y ∈ {c̄,ᾱ} . (4.6)

Different vector-based functions F(x,γ) are chosen based on the formu-
lation of effective equivalent stress c̄ in the isotropic hardening model
(2.48) and the equivalent effective back stress ᾱ for the integrated form
of the kinematic hardening rule (2.51) for uniaxial tests, where ᾱ is given
by

ᾱ =
b1
b2
(1− e−b2γ) +

b3
b4
(1− e−b4γ) + b5γ . (4.7)

It is important to note that the uniaxial tension test provides an almost
homogeneous stress state before necking. Therefore, the non-linear re-
covery term in ˙̄α3 (2.51) can be neglected under assumption that b6 = 0.
In addition, x represents the material parameter vector necessary for the
used isotropic or kinematic hardening model.

Table 4.6: Plastic parameters.

c0[MPa] Q1[MPa] Q2[MPa] p1[−] p2[−] ρh[−]
139 74.93 21.31 8.96 676.01 0.41

b1[MPa] b2[−] b3[MPa] b4[−] b5[MPa] b6[−] a/c̄ [TPa−1]
61250 1750 895 15 115 7.5 32

As shown in Fig. 4.14, the numerically fitted curves agree well with the
experimental ones and the corresponding plastic hardening parameters
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are listed in Tab. 4.6. It is worth noting that the originally fitted kine-
matic hardening parameters b1 and b2 are 12250MPa and 350, respec-
tively. Taking into account the exponential Decay function χ (2.52) in
the first back stress rate tensor ˙̄α1 (2.51), parameters b1 and b2 should
be multiplied by 5, resulting in b1 = 61250MPa and b2 = 1750.
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Figure 4.14: (a) Experimental and fitted c̄ – γ curves and (b) experi-
mental and fitted ᾱ – γ curves (Wei et al., 2023d).

Additionally, the kinematic hardening parameter b6 is inversely cali-
brated by solving governing equation

κ = argmin
κ

∑
j

∣∣∣∣∣F num
j (κ)− F exp

j

F exp
j

∣∣∣∣∣
 with j ∈ Dexp (4.8)

with objective parameter defined as κ = b6 and a set of identification ex-
perimentsDexp, including one-axial monotonic tension and shear tests. It
is evident that no significant difference is observed in load–displacement
curves before point A (∆uref = 0.6mm) when varying the b6 parameters,
as plotted in Fig. 4.15(a). This is attributed to the angle parameter cos2 θ
(2.51 and 2.53), which is almost close to 1, as detailed in Wei et al. (2022).
Nevertheless, as b6 increases, the slope between points A and B on the
load–displacement curve decreases. As depicted in Fig. 4.15(a), the nu-
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merical result overestimates the experimental one when b6 = 0, whereas
the numerical result with b6 = 13.5 underestimates it. Moreover, the
numerically predicted results for the uniaxial tension test illustrated in
Fig. 4.15(b) suggest that the kinematic hardening parameter b6 has a
minimal impact on the monotonic tensile load–displacement curves.

0 0.6 1.2
uref [mm]

0

3

6

F
 [k

N
]

EXP
SIM (b6=0)

SIM (b6=7.5)

SIM (b6=13.5)

0 1 2 2.5
uref [mm]

0

3

6

F
 [k

N
]

EXP
SIM (b6=0)

SIM (b6=7.5)

SIM (b6=13.5)

(a) (b)

A B
C

Figure 4.15: Experimental and numerical load–displacement curves for
the one-axial shear test (a) and the uniaxial tension test
(b) (Wei et al., 2023d).

Finally, the isotropic hardening ratio ρh can also be inversely determined
considering the minimization function (4.8) with κ = ρh through the
uniaxial tension-compression (TC) test conducted within a small strain
range (≤ 5%), as shown in Fig. 4.16. This approach helps to avoid
the influence of damage and buckling on the yield stress after reverse
loading while also providing a homologous stress state. As depicted in
Fig. 4.16, the numerically predicted yield stress after reverse loading with
the isotropic hardening model (ρh = 1, Eq. (2.48)) is significantly greater
than that one considering only the proposed kinematic hardening model
(ρh = 0, Eq. (2.51)). It is evident that relying solely on a pure isotropic
or kinematic hardening model results in either an overestimation or un-
derestimation of the yield stress after reverse loading condition. On
the other hand, the combined hardening approach with the hardening
ratio ρh = 0.41 demonstrates a remarkable agreement with the experi-
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mental one. Moreover, the pure extended double Voce-hardening (2.48)
fails to capture the nonlinear properties under reverse loading condition.
In contrast, the modified nonlinear Chaboche kinematic and combined
hardening model, considering three back stress components, can aptly
describe the nonlinearity after reverse loading, as illustrated in Fig. 4.16.
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Figure 4.16: Experimental and numerical load–displacement curves for
uniaxial tension-compression (TC) with three unloading
patterns after compression (Wei et al., 2023d).

Damage softening parameters

The damage related parameters are listed in Table 4.7.

Table 4.7: Damage parameters.

σ̃0 [MPa] C1[MPa] C2 [-] d1 [MPa] d2 [-] η1...η4 [MPa] ρs[−]
320 0.004207 92.97 -0.51 -84 -10000 0.41

As discussed in Section 2.5, the stress-state-dependent damage parame-
ters α̂ and β̂ (2.57) in the damage condition (2.56), as well as α̃ (2.61)
and β̃ (2.62) in the damage evolution equation (2.60), are calibrated by
analyzing the mechanical behavior of a unit-cell containing 3% void vol-
ume in terms of the representative volume element (RVE) concept. The
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details of the proposed approach and the corresponding material fitting
pressure are discussed in Brünig et al. (2013, 2016). Most recently, Wei
et al. (2023b) introduced this RVE approach to identify the damage soft-
ening parameter C1, C2, d1, and d2 (2.64 and 2.65). Thus, the equivalent
damage stress σ̃ (2.65), the equivalent back damage stress αeq (2.64), and
the corresponding equivalent damage strain µ (2.65 and 2.64) can be cal-
culated through numerical simulations involving monotonic and cycling
loading conditions within the unit-cell. Subsequently, the softening pa-
rameters C1, C2, d1, and d2 can be determined using Eqs. (2.64) and
(2.65). Most importantly, these softening parameters must be validated
through a large number of proportional and non-proportional monotonic
or cyclic experiments, see Wei et al. (2023a,b,c, 2024b). In addition,
the elastic-damage material parameter η1...η4= −10000MPa (2.40) are
inversely identified in Brünig et al. (2021c) and Wei et al. (2022), and
the softening ratio ρs is assumed to be equal to the isotropic hardening
ratio ρh.



5 Results and Discussions

As introduced in Chapter 4, digital image correlation (DIC) is employed
to monitor changes in deformations and strains during the experiments.
Consequently, the numerical results are compared with the experimental
ones, focusing on global load–displacement curves and local strain fields.
Additionally, scanning electron microscopy (SEM) images taken from
fractured surfaces are utilized to validate the proposed damage mecha-
nisms. The stress state, characterized by the mean stress triaxiality and
the mean stress Lode parameter, along with the distribution of dam-
age strains, is analyzed to elucidate the damage mechanism using SEM
pictures.

5.1 Uniaxial tension tests

5.1.1 Global load–displacement curves

The experimental and numerical load–displacement curves for the mono-
tonic and cyclic tension–compression tests are shown in Fig. 5.1. The nu-
merical results agree well with the experimental ones. Notably, the pro-
posed cyclic elastic-plastic-damage model accurately predicts the yield
stresses after each reverse loading condition. Moreover, the monotonic
tension test (TC-mon-T) failed at the displacement ∆u2,ref = 2.39mm
with a fracture force of F fr

2 = 4.82 kN, see Fig. 5.1(a). The relative
reverse fracture displacements ∆u∗2,rel for the TC-cyc-TCT and TC-cyc-
TCTCT experiments are 1.94mm and 1.66mm, respectively. These val-
ues are significantly smaller than those observed in the TC-mon-T test.
It should be noted that the relative reverse fracture displacement in axis
2 ∆u∗2,rel is defined from the point of zero force to the final fracture after

the last reverse loading. In addition, the fracture forces F fr
2 are 4.91 kN

and 5.01 kN for the TC-cyc-TCT and TC-cyc-TCTCT experiments, re-
spectively. Furthermore, fracture occurred at ∆u2,ref = 2.22mm for the
TC-cyc-CT test, with the fracture force F fr

2 reaching 5.01 kN. In the

73
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case of the TC-cyc-CTCT experiment, the relative reverse fracture dis-
placement is ∆u∗2,rel = 1.80mm, and the corresponding fracture force F fr

2

reaches 5.04 kN.
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Figure 5.1: Experimental and numerical load–displacement curves
for uniaxial monotonic (a) and cyclic (b)–(e) tension–
compression tests.

Clearly, all uniaxial tension–compression cyclic experiments resulted in
earlier failure compared to the monotonic loading. This finding indicates



Uniaxial tension tests 75

that the material tends to become more brittle under cyclic loading con-
ditions. Furthermore, the fracture forces under cyclic loading are greater
than those observed under monotonic loading, attributed to strain hard-
ening after reverse loading. In conclusion, loading histories and reverse
loading conditions significantly influence the macroscopic material be-
havior.

5.1.2 Local strain fields

A comparison of the distribution of the first principal strains A1 on the
TC-specimen surfaces between experiments and numerical simulations
is shown in Fig. 5.2. The numerically predicted A1 shows good agree-
ment with the experimental ones. Moreover, the necking effect can be
observed in both experiments and numerical simulations. Among them,
the experimentally observed and numerically predicted maximum first
principal strains are highly localized on the center of TC-specimen sur-
faces, with their maximum values being A1 = 0.36 for the TC-mon-T
experiment and A1 = 0.35 for the TC-cyc-TCTCT test, as illustrated
in Figs. 5.2(a) and (c). Moreover, the numerically predicted orange-red
region in the TC-cyc-TCT test is slightly wider than that one in the TC-
cyc-CT test, see Figs. 5.2(b) and (d). However, the values of the maxi-
mum principal strains A1 show no apparent differences, with A1 = 0.28
for the TC-cyc-TCT test and A1 = 0.29 for the TC-cyc-CT experiment,
respectively. Additionally, the numerically predicted A1 = 0.37 for the
TC-cyc-CTCT experiment is deemed acceptable, although the predicted
orange-red strain region is slightly narrower and darker than the exper-
imental one. These findings clearly indicate that the loading patterns
and reverse loading conditions significantly affect the plastic behavior,
resulting in differences in the localization of the total strain field A1.

5.1.3 Damage strains, fracture surfaces, and SEM images

The fracture pictures of the TC-specimens and the distribution of the
damage strains Ada

1 on the surfaces 12 and in the cross-sections 13 of
the TC-specimens are shown in Fig. 5.3, respectively. It can be observed
that the damage strains Ada

1 are mainly localized in the cross-sections of
the TC-specimens, where the maximum values of Ada

1 are significantly
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Figure 5.2: Experimental (EXP) and numerical (SIM) distribution of
the first principal strains A1 on the TC-specimen surfaces
(surface 12, coordinate see Fig. 4.2).

greater in the cross-sections than that ones on the surfaces, see Fig. 5.3.
This observation is supported by the experimental result of the typical
tension test, where the specimen failed from the inner side towards the
outside. In addition, the TC-mon-T test has the maximum predicted
damage strain Ada

1 = 7.04% in the cross-section, and no damage strain is
numerically predicted on the surface. Moreover, the maximum damage
strain Ada

1 = 0.37% on the TC-specimen surface is observed in the TC-
cyc-CTCT loading case, while Ada

1 = 3.48% is predicted in the cross-
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Figure 5.3: Fracture pictures for the TC-specimens (left) and numer-
ically predicted damage strains Ada

1 (right) on the surface
12 and in the cross-section 13 of the TC-specimens.

section. Similarly, the damage strains Ada
1 in the TC-cyc-TCT test are

distributed as widely on the surface as in the TC-cyc-CTCT experiment,
but its maximum value is only 0.14%. The maximum damage strain
Ada

1 = 1.23% is predicted in the cross-section. In the cases of the TC-
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cyc-TCTCT and TC-cyc-CT, the maximum values of the damage strains
Ada

1 are nearly the same on the surface, around 0.05%, while in the
cross-sections, they are 1.62% and 1.99%, respectively. Thus, different
distributions of the numerically predicted damage strains Ada

1 confirm
that the loading patterns affect the damage behavior on the microscopic
level.

Concerning the fracture pictures shown in Fig. 5.3 (left), different kinds
of fracture lines are visible on the surfaces of TC-specimens. The frac-
ture lines for the loading patterns TC-mon-T (Fig. 5.3(a)) and TC-mon-
CT (Fig. 5.3(c)) appear smoother than those in the other loading cases.
Moreover, the typical cup-cone fracture surfaces occur due to large plastic
deformations and necking, as shown in strain fields in Fig. 5.1. Addition-
ally, the fracture surfaces become more rough and irregular under cyclic
loading conditions than that one observed under monotonic loading con-
dition. Most interestingly, the numerically predicted Ada

1 for loading
paths TC-cyc-TCT and TC-cyc-TCTCT on the surface is distributed
more widely than for the others, resulting in significantly rougher and
more irregular fracture surfaces.

The stress triaxialities η are nearly the same for different loading cases,
as observed in the numerical simulations of Wei et al. (2022). The stress
triaxiality is -1/3 under compressive loading, and 1/3 is obtained in the
tensile loading before necking occurs. After that, the stress triaxialities
increase during the loading, up to 0.6 in the center of cross-section 13
(see Fig. 4.2). Furthermore, the SEM images taken from the fracture
cross-sections are illustrated in Fig. 5.4. The micro-voids are visible for
all loading patterns, caused by high stress triaxialities (η > 1/3). Larger
micro-defects and dimples are observed under cyclic loading compared
to those under monotonic loading condition. For example, a compari-
son of Figs. 5.4(a)-(c) reveals that the micro-defects become denser and
larger, caused by the coalescence of the micro-voids when subjected to
more tensile–compressive cyclic loading patterns. One possible expla-
nation could be that compressive loading changes the size and shape
of the micro-defects, causing them to become flatter (penny-shaped).
These flatter micro-voids may be more susceptible to coalescing with
neighboring ones, as explained by Kanvinde and Deierlein (2007). In
addition, the depth of the dimples observed in Fig. 5.4(c) is shallower
than of those shown in Fig. 5.4(a), indicating a more brittle material be-
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Figure 5.4: SEM images taken from the fracture surfaces for the TC-
specimens (Wei et al., 2022).

havior with an increasing number of cyclic loading patterns. The same
trend is evident when comparing the experiments between TC-cyc-CT
and TC-cyc-CTCT. These microscopic findings explain that the speci-
mens fail earlier after reverse loading than monotonic loading. From the
microscopic SEM perspective, it can be concluded that reverse loading
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conditions significantly influence the damage and fracture behavior at
the microscopic level.

5.1.4 Summary

The uniaxial monotonic and various cyclic experiments have been con-
ducted to investigate plastic, damage, and fracture behavior. The identi-
fied material parameters and the proposed elastic-plastic-damage model,
incorporating a combined hardening rule, demonstrated accurate predic-
tions of load–displacement curves and local strain fields at the macro-
scopic level. In particular, the initial tensile and compressive yield stresses
(the SD-effect), as well as the yield stresses after reverse loading (the
Bauschinger-effect), can be accurately captured using the proposed ma-
terial model. Plastic, damage, and fracture behavior have been found to
be significantly influenced by loading patterns and reverse loading con-
ditions. At the microscopic level, larger and coalesced micro-defects and
dimples were observed after reverse loading. Furthermore, an increase
in the number of loading cycles led to a more brittle behavior. One
limitation of the uniaxial monotonic and cyclic experiments is that the
stress triaxialities (η) are confined to a small range, e.g., η = −1/3 for
compressive loading and η = 1/3 for tensile loading.

5.2 One-axial shear tests

5.2.1 Global load–displacement curves

The experimental and numerical simulation results are shown in Fig. 5.5.
Moreover, for cyclic loading tests, the numerical results with the non-
hardening correction (w/corr.) and without the non-hardening correc-
tion (wo/corr.) are additionally compared with the experimental ones
in Figs. 5.5(b)-(e), respectively. It is evident that the numerical simu-
lations with non-hardening correction accurately characterize the load–
displacement curves after shear reverse loading for all shear cyclic loading
patterns. This emphasizes the importance of considering the hardening
change effect after shear reverse loading conditions, as discussed in Sec-
tion 2.4.
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Figure 5.5: Experimental and numerical load–displacement curves for
one-axial monotonic (a) and cyclic (b)–(c) shear tests.

In addition, the experimentally observed maximum forces Fmax
1 , fracture

forces F fr
1 and corresponding fracture displacements ∆u∗1,rel and ∆u

fr
1,ref

are listed in Table 5.1. Among them, the relative reverse fracture dis-
placement ∆u∗1,rel is defined as the displacement in axis 1 from zero force
to the final failure for the last loading pattern. As can be observed in
Table 5.1 and Fig. 5.5, the shear monotonic test (S-mon-T) failed with
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a maximum force Fmax
1 = 5.42 kN, which is evidently larger than that

ones observed under cyclic experiments. Regarding the relative fracture
displacement ∆u∗1,rel, it decreases with an increasing number of loading
cycles for the cyclic tests, as shown in Table 5.1. Moreover, the specimens
also failed earlier under cyclic loading tests than that ones undergoing
monotonic loading test, excluding cyclic test S-cyc-CT. These findings
clearly confirm that the monotonic and cyclic loading patterns, as well
as the number of loading cycles, significantly influence the material re-
sponses in terms of macroscopic fracture forces and displacements.

Table 5.1: Maximum forces Fmax
1 , fracture forces F fr

1 , and fracture dis-
placements ∆u∗1,rel and ∆u

fr
1,ref.

Tests
FP

Fmax
1 [kN] F fr

1 [kN] ∆ufr1,ref [mm] ∆u∗1,rel [mm]

S-cyc-T 5.42 5.34 1.16 1.16
S-cyc-TCT 5.39 5.13 0.72 1.03
S-cyc-TCTCT 5.25 4.97 0.77 0.91
S-cyc-CT 5.38 5.14 0.86 1.41
S-cyc-CTCT 5.30 5.11 0.83 0.98

5.2.2 Local strain fields

A comparison between the experimental distribution of the first princi-
pal strains A1 obtained from the DIC and numerically predicted ones
is illustrated in Fig. 5.6. It is evident that the numerically predicted
shear bands show good agreement with the numerical results in terms of
shape and corresponding maximum values. In addition, the first princi-
pal strains A1 are more discontinuously distributed along the shear bands
in the tests S-cyc-CT and S-cyc-CTCT compared to those in the S-mon-
T, S-cyc-TCT, and S-cyc-TCTCT experiments. Moreover, monotonic
loading results in the maximum first principal strain A1 = 0.63 among
all the loading patterns, as its loading direction does not change during
the loading process. As observed during the experiments and simula-
tions, strains change their directions and values due to the alteration of
loading direction in cyclic loading tests. These facts indicate that the
loading histories alter the distributions and maximum values of the first
principal strains.
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Figure 5.6: Experimental (left) and numerical (right) distribution of
the first principal strains A1 on the shear specimen surface
(surface 12, coordinate see Fig. 4.2).

5.2.3 Stress triaxiality, stress Lode parameter and strain Lode
parameter

The mean stress triaxiality η̄ and the mean stress Lode parameter ω̄ are
discussed in detail to study the dependency of the stress states on the
damage and fracture behavior. As shown in Fig. 5.7(a), the mean stress
triaxiality η̄ increases from about 0.1 to 0.2 for the monotonic loading test
S-mon-T. In the cyclic loading test, η̄ and ω̄ show a significant increase
at the beginning of the alternation of the loading direction, followed by
a subsequent decrease. For cyclic experiments, the positive mean stress
triaxialities η̄ are generated undergoing the shear loads in the tensile
loading direction, and the negative mean stress triaxialities are obtained
for the shear loads in the compressive loading direction. In addition,
the η̄ at the end of the loading patterns TCT, TCTCT, CT, and CTCT
are 0.14, 0.17, 0.16, and 0.2, respectively. Moreover, the evolution of
the mean stress triaxialities η̄ and the mean stress Lode parameters ω̄
are nearly similar for the same loading directions within various loading
patterns. For example, changes in η̄ (Fig. 5.7) and ω̄ (Fig. 5.8) in the S-
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Figure 5.7: The mean stress triaxiality (η̄) versus displacements ∆u1,ref
during the loading processes.

cyc-TCTCT experiment are represented by blue dashed line (RP1-RP2,
C to T) and solid line with x-marker (RP3-RP4, C to T), respectively,
which show nearly consistent behavior. The same trends can be observed
in Figs. 5.7 and 5.8. It is evident that only the mean stress triaxiality and
the mean stress Lode parameter are challenged to distinguish between
different cyclic loading patterns.
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Thus, Wei et al. (2023b) proposed a novel strain Lode parameter ω̄A to
address the problem mentioned above. As can be observed in Fig. 5.8
(right), the mean strain Lode parameter changes significantly during the
loading processes. For example, the mean stress Lode parameters ω̄
at RP1 and FP for the test S-cyc-TCT are both approximately 0.14,
whereas the mean strain Lode parameters are 0.14 and 0.19, respec-
tively. This distinction highlights the changes in loading patterns during
the loading processes. Similar trends can also be observed in the other
loading cases. Most importantly, there is no apparent difference between
the ω̄ and ω̄A for the monotonic loading S-mon-T, as shown in Fig. 5.8.

5.2.4 Damage strains, SEM images and damage mechanisms

The distribution of the first principal damage strains Ada
1 on the surfaces

and notched cross-sections are shown in Fig. 5.9. One can also see the
fracture lines marked with red lines on the notch surfaces in Fig. 5.9.
Different distribution of the damage strains Ada

1 can be observed for
various loading patterns. For example, the numerically predicted damage
strains Ada

1 are distributed along the shear band on the notch surface
and localized at the edge of the notched cross-section for the monotonic
loading S-mon-T, see Fig. 5.9(a). For cyclic loading patterns S-cyc-TCT
and S-cyc-TCTCT, the damage strains Ada

1 are localized on the bottom
and the middle of the notch surfaces with maximum values of 2.28% and
1.72%, respectively. Moreover, the numerically predicted damage strains
Ada

1 are more uniform on the notched cross-sections compared to the
ones observed in the monotonic loading case, leading to a more brittle
behavior of the material, as shown in Figs. 5.9(a)–(c). Furthermore, the
maximum damage strains Ada

1 occur on the top of the notch surfaces for
the S-cyc-CT and S-cyc-CTCT experiments, as observed in Figs. 5.9(d)
and (e). In the case of the S-cyc-CT experiment, the damage strains Ada

1

are mainly distributed at the edge of the notched surface (Fig. 5.9(d)),
whereas the damage strains Ada

1 appear and cover the middle to the
bottom of the notched surface (Fig. 5.9(e)) in the S-cyc-CTCT test.

Furthermore, the evolution of the damage strain increments ∆Ada
1 for

the loading patterns S-cyc-TCT and S-cyc-CTCT are additionally illus-
trated in Fig. 5.10. The damage strains Ada

1 occur and develop mainly
on the notch surface and at the edge of the notched cross-section until
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Figure 5.8: The mean stress Lode parameter ω̄ versus displacements
∆u1,ref (left) and the mean strain Lode parameter ω̄A versus
displacements ∆u1,ref (right) during the loading processes.
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Figure 5.9: Fracture pictures for the shear specimens (left) and numer-
ically predicted damage strains Ada

1 on the surface 12 and
in the cross-section 13 of the shear specimens.

reverse point 1 (RP1). During subsequent reverse loading, the dam-
age strains increase significantly in the middle-bottom of the notched
cross-section. Interestingly, the damage strains ∆Ada

1 decrease mainly
over the notch surface and notched cross-section from RP2 to FP, i.e.,
from shear in the compressive loading direction to the tensile loading
direction. However, damage only increases on the top of the notch sur-
face and in the middle-bottom of the notched cross-section, as shown in
Fig. 5.10(a). In the first shear load in the compressive loading direction
(C) of the S-cyc-CTCT, nearly no damage is numerically predicted in
the notched surface and cross-section. From RP1 to RP2 and RP2 to
RP3, the damage strains mainly appear and develop on the notch surface
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Figure 5.10: The changes in the first principal damage strain ∆Ada
1 for

the experiments S-cyc-TCT and S-cyc-CTCT at various
reverse points (RPs) and fracture point (FP).

and the notched cross-section. Again, the damage strains reduce nearly
everywhere and increase only on the top of the notch surface for the last
tensile loading pattern (RP3 to FP). These findings confirm that load-
ing patterns, reverse loading condition, and the number of loading cycles
influence the occurrence and development of the damage strain.

The SEM images taken from the fracture surfaces for the shear specimens
are shown in Fig. 5.11. Micro-shear-cracks are visible and dominated un-
der monotonic and cyclic loading conditions. Moreover, as illustrated in
Fig. 5.11, the micro-voids can also be observed in various loading pat-
terns. As numerically predicted, the stress triaxialities for the monotonic
and cyclic loading tests are generated appropriately from -0.2 to 0.2, see
Fig. 5.7. Based on the proposed damage mechanism, damage is caused by
the micro-defects under the low positive stress triaxialities 0 ≤ η ≤ 1/3.
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The SEM images provide clear evidence supporting the critical aspects of
the proposed damage theory. In addition, larger and denser micro-voids
and coalesced micro-shear-cracks can be seen in the cyclic loading pat-
terns TCT, TCTCT, CT, and CTCT than the ones under monotonic
loading (T). Moreover, the same trends can be observed by increas-
ing the number of loading cycles, as seen in the comparison between

(a)  S-mon-T

20µm

(b)  S-cyc-TCT (c)  S-cyc-TCTCT

20µm 20µm

(d)  S-cyc-CT (e)  S-cyc-CTCT

20µm 20µm

Figure 5.11: SEM images taken from the fracture surfaces for the shear
specimens (Wei et al., 2022).
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TCT and TCTCT. It indicates that micro-defects become more accessi-
ble to coalescence with neighboring ones, leading to further degradation
of the material at the microscopic level after reverse loading. Also, the
micro-defects are more uniformly distributed in the notch cross-section
as observed in Figs. 5.11(b) and (c), which agree well with the numeri-
cal predictions of the damage strains in Figs. 5.9(b) and (c). It reveals
that the proposed anisotropic continuum damage model demonstrates
good predictive accuracy for the mechanical response at the microscopic
level. Most importantly, the SEM images clearly show the influence of
the reverse loading condition on the microscopic damage behavior.

5.2.5 Summary

Monotonic and cyclic one-axis shear tests were conducted to investigate
the damage and fracture behavior under shear-dominated stress states.
The designed one-axis-loaded shear specimens successfully generated low
negative and positive stress triaxialities. As shown in the SEM pictures,
damage is caused by the growth and coalescence of the micro-defects,
with micro-shear-cracks dominating. More larger and denser micro-voids
and coalesced micro-shear-cracks can be seen in the cyclic loading pat-
terns than under monotonic loading. Furthermore, the change in the
hardening ratio is obviously observed in the experiments. The novel
straightforward hardening correction method effectively improves the nu-
merical results. In addition, the stress triaxiality and the stress Lode pa-
rameter can not distinguish the different cyclic loading patterns within
each loading case. However, the newly proposed strain Lode parameter
addresses this issue. The experimental and numerical results regarding
global load–displacement curves and local strain fields, the occurrence
and evolution of the damage strains, as well as SEM images of the frac-
ture surfaces, provide clear evidence of how the reverse loading condition
and loading histories change the material behavior at macroscopic and
microscopic levels. Although the newly designed one-axis-loaded shear
specimen allows for broadening the range of stress triaxialities compared
to the TC-specimen, it still covers a small range of stress triaxialities.
Hence, biaxial non-proportional experiments are conducted to induce a
broader range of stress states.
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5.3 Single cyclic biaxial tests

5.3.1 Shear reverse experiments superimposed by tensile or
compressive preloads

Fracture displacements, forces, and global load–displacement curves

The overview of the experimental load–displacement curves for mono-
tonic loading is shown in Fig. 5.12. Moreover, the experimental mono-

-1 0 1 2 2.5
uref [mm]

-6

-3

0

3

6

F
 [k

N
]

mon-T0-axis1,2
mon-T3-axis1,2
mon-TN3-axis1,2
mon-T5-axis1,2
mon-TN5-axis1,2

Figure 5.12: Overview of the experimental load–displacement curves
for monotonic loading.

tonic and cyclic load–displacement curves are illustrated in Figs. 5.13(a1)-
(e1), and Figs. 5.13(a2)-(e2) provide a comparison between the mono-
tonic and first and second reversal load–displacement curves. Note that
the load–displacement curves after reverse loading are aligned with the
related monotonic experiments to compare the hardening rate change
quickly. It can be observed that the yield stresses and the hardening rate
are significantly altered after shear reverse loading conditions, as shown
in Figs. 5.13(a2)-(e2). A similar phenomenon was detected by Daroju
et al. (2022) in aluminum alloy AA6016-T4. In Fig. 5.13(a2), reversal
yield stresses for experiments with 0 kN preload are nearly identical to
the initial yield stress under monotonic loading, with only a slight change
in the hardening rate. In contrast, the hardening rate significantly in-
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creases after reverse loading for tests with negative preloads of −3 kN
and −5 kN, see Figs. 5.13(c2) and (e2). Comparing the second reversal
load–displacement curves to the monotonic loading for tests with posi-
tive preload, a similar, although more minor, increase in the hardening
rate is observed in Figs. 5.13(b2) and (d2).

Table 5.2: Fracture forces F fr
1 and fracture displacements ∆u∗1,rel,

∆ufr1,ref, and ∆u
sw
2,ref (Wei et al., 2023b).

Tests
HC-

preload
F2 [kN]

monotonic (mon-) cyclic loading (cyc-)

∆ufr1,ref
[mm]

∆usw2,ref
[mm]

F fr
1

[kN]
∆ufr1,ref
[mm]

∆u∗1,rel
[mm]

∆usw2,ref
[mm]

F fr
1

[kN]

T0 0 2.02 n/a 5.40 1.20 1.31 n/a 5.01
T3 3 1.24 0.09 4.78 0.59 0.58 0.14 4.57
TN3 -3 2.41 -0.46 5.36 2.27 2.23 -0.63 5.62
T5 5 1.08 0.19 4.61 0.44 0.48 0.26 4.23
TN5 -5 2.50 -0.75 4.97 2.01 1.99 -0.97 5.65

In addition, a comparison of the fracture displacement ∆ufr1,ref in axis 1,
the relative displacement after the change of the loading axis ∆usw2,ref in

axis 2, the relative reverse fracture displacement for axis 1 ∆u*1,rel, and

the fracture force F fr
1 in axis 1 between different monotonic and cyclic

loading tests is shown in Table 5.2. It can be observed that the ma-
terial exhibits increased brittleness in tests with superimposed positive
preloads (3 kN and 5 kN) compared to the experiment without preload
(0 kN). The fracture forces F fr

1 and the fracture displacements ∆ufr1,ref
for the HC-mon-T3 and HC-mon-T5 tests differ by approximately 15%
and 40%, respectively, compared to the HC-mon-T0 test.

Furthermore, the fracture displacement ∆ufr1,ref decreases with increasing
positive preloads. Conversely, the negative preloads (−3 kN and −5 kN)
increase the ductility of the investigated material, resulting in fracture
displacement ∆ufr1,ref approximately 20% larger than that one observed
in the HC-mon-T0 test. Also, the ductility increases with increasing
negative preloads. These findings highlight that the loading directions
and degrees of preloads play a crucial role in altering material properties.

In the case of cyclic loading, the HC-specimens exhibit earlier failure
compared to those under monotonic loading, as the relative reverse frac-
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Figure 5.13: Monotonic and cyclic load–displacement curves, with a
comparison of monotonic loading and 1st and 2nd reverse
loading (Wei et al., 2023b).
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ture displacements∆u*1,rel for cyclic loading are significantly smaller than

the corresponding fracture displacements ∆ufr1,ref observed during mono-

tonic loading. In addition, the ∆ufr1,ref for cyclic loading with preloads
of 3 kN and 5 kN differs by approximately 50% compared to the mono-
tonic loadings. In contrast, the difference in ∆ufr1,ref between monotonic
and cyclic loading for experiments superimposed with negative preloads
(−3 kN and −5 kN) is only 20%.

Furthermore, cyclic softening is observed in the cyclic experiments with
preloads of 0 kN, 3 kN, and 5 kN, where the fracture forces F fr

1 differ from
4.3% to 8% between monotonic and cyclic loading conditions, as shown
in Table 5.2. However, the fracture forces F fr

1 for the experiments with
−3 kN and −5 kN preloads significantly increase after reverse loading
compared to the corresponding monotonic loading conditions due to the
increased hardening rate, as discussed in Figs. 5.13(c2) and (e2). It
can be stated that the cyclic hardening or softening, as well as fracture
behavior, are significantly influenced by the preloads.

The experimental and numerical load–displacement curves for monotonic
loading are shown in Fig. 5.14. The numerical results agree well with
the experimental ones in both axes. In addition, a comparison between
numerical simulations with and without (kh = 1 in Eq. (2.54)) consid-
ering the change hardening effect and experimental results are shown
in Figs. 5.15(a1)-(e1) and (a2)-(e2), respectively. It is evident that the
numerical results taken into hardening correction (see Eq. (2.54) in Sec-
tion 2.4) can capture the load–displacement curves more accurately, as
observed in the one-axial shear tests. This emphasizes again the im-
portance of considering the hardening change effect after shear reverse
loading conditions, as discussed in Section 2.4.

To conclude, single cyclic shear reverse experimental results reveal a
significant change in the hardening rate after reverse loading. This
phenomenon is also observed in the one-axial cyclic shear tests, as dis-
cussed in Section 5.2. Considering the hardening correction after reverse
loading, the modified two-surface cyclic elastic-plastic-damage model
can accurately predict the material behavior at the macroscopic load–
displacement level. In addition, monotonic loading with tensile preload
increases material brittleness, whereas negative preload enhances mate-
rial ductility. Furthermore, the material exhibits increased brittleness
under cyclic loading compared to monotonic loading. Cyclic softening is
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Figure 5.14: Numerical and experimental load–displacement curves for
monotonic loadings (Wei et al., 2023b).

observed in the experiments with tensile preloads, while cyclic hardening
is significant for the tests superimposed by compressive preloads. These
findings indicate that the material behavior is significantly altered by
the direction and magnitude of preloading, as well as by reverse loading
conditions.
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Figure 5.15: Numerical and experimental load–displacement curves
without hardening correction (a1)-(e1) and with harden-
ing correction (a2)-e(2) for cyclic loadings (Wei et al.,
2023b).
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Local strain fields

The experimental (obtained from DIC) and numerically predicted dis-
tribution of the first principal total strains A1 on the notch surfaces are
illustrated in Fig. 5.16. Moreover, comparisons of the experimental and
numerical strain–displacement curves during the loading process are de-
picted in Fig. 5.17. Note that the first principal strains A1 presented
in Fig. 5.17 represent the mean value over a region of interest (ROI) of
the rectangle (approximately 0.25mm × 0.50mm) on the center of the
notch surface in DIC and numerical simulations. Different distributions
of shear bands with varying maximum values are observed under mono-
tonic and cyclic loading conditions with different preloads. Moreover,
the numerical simulations agree well with the experimental results in
both distributions and maximum values of A1, as shown in Fig. 5.16,
and in quantitative values and evolutionary trends of A1, as presented
in Fig. 5.17.

In the case of monotonic experiments, the shear bands distributed as
counterclockwise with increasing tensile preloads, whereas the direction
of the shears band alter along the clockwise with increase of the com-
pressive preloads, as shown in Figs. 5.16(a1)-(e1). Moreover, the max-
imum values of the first principal strains A1 for the test HC-mon-T3
and HC-mon-T5 are smaller in the experiments HC-mon-T0, HC-mon-
TN3, and HC-mon-TN5, since the positive preloads increase the material
brittleness and the compressive loads increase the material ductility, as
discussed in Table 5.2. Additionally, the first principal strains A1 mono-
tonically increase during the loading process, as observed in Figs. 5.17(a)-
(e).

For cyclic loading experiments, it can be observed that the strain direc-
tions and their maximum values alter at different loading stages (RP1,
RP2 and FP), see Figs. 5.16(a2)-(e2). Furthermore, the distribution
of A1 at the fracture point (FP) under cyclic loading shows more a pro-
nounced discontinuity along the shear band compared to the correspond-
ing monotonic loading path. For example, the first principal strains A1

for the HC-cyc-TN3 and HC-cyc-T5 experiments at RP1 continuously
distribute along the shear bands with maximum values of 0.17 and 0.26,
respectively. After subsequent reverse loading, the strains A1 distribute
in an X-shape, localizing in the right-top and left-bottom of the notch
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0.610.00 0.220.00 0.130.00 0.340.00

0.330.00 0.170.00 0.120.00 0.250.00

       RP2                            FP(a2) HC-cyc-T0  RP1(a1) HC-mon-T0  FP
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       RP2                            FP(c2) HC-cyc-TN3  RP1(c1) HC-mon-TN3  FP
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0.640.00 0.260.00 0.220.00 0.640.00

Figure 5.16: Experimental (left) and numerically predicted (right) first
principal total strains A1 on the notch surfaces (surface
12) at reverse point 1 (RP1), reverse point 2 (RP1), and
fracture point (FP) (Wei et al., 2023b).
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Figure 5.17: Experimental and numerically predicted first principal
strains A1 during the loading processes for monotonic tests
(a)–(e) and cyclic loading tests (f)–(j) (Wei et al., 2023b).
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part with decreased maximum values of 0.13 and 0.18, respectively. In
the final loading pattern, the distribution of total strains along the shear
band becomes discontinuous upon reversing the loading direction again.
Moreover, an evident distortion is observed at the edge of the notched
region due to large negative preloads superimposed during the experi-
ments. A similar trend in strain change can be seen in the cyclic tests
HC-cyc-T3 and HC-cyc-T5 (Figs. 5.16(b2) and (d2)).

Furthermore, the evolution path of the strains A1 is strongly depen-
dent on the loading patterns and different preloads, as illustrated in
Figs. 5.17(f)-(j). Among them, the first principal strain A1 decreases
significantly at the beginning of the last loading stage, i.e., from RP1 to
RP2, for the pure shear cyclic loading test (HC-cyc-T0), see Fig. 5.17(f).
However, in other cyclic experiments after the second reverse loading,
A1 varied slightly at the beginning and then increased rapidly until the
specimen failed. This facts reveal that the cyclic loading patterns and
loading histories significantly influence the elastic-plastic behavior.

Briefly speaking, the proposed elastic-plastic-damage model can accu-
rately characterize the distributions of first principle strains A1 and their
maximum values in different loading stages (RP1, RP2, and FP). More-
over, it successfully predicts the evolutionary trends of the first principal
strains A1 during the loading processes. Additionally, the aforemen-
tioned findings highlight the significant influence of monotonic and cyclic
loading patterns, as well as different preloads, on the elastic-plastic be-
havior. Most importantly, reverse loading conditions can result in strain
concentration and further significantly influence damage and fracture be-
havior.

Stress states and damage strains

As shown in Fig. 5.18(a), the mean stress triaxialities η̄ for the monotonic
loading tests remain nearly constant throughout the loading processes.
Positive preloads (T3 and T5) and zero preload (T0) generate positive
stress triaxialities, whereas negative stress triaxialities are induced by
superimposing negative preloads (TN3 and TN5). Moreover, the stress
triaxialities η̄ increase with higher preloads; for example, η̄ values for
mon-T0, mon-T3, and mon-T5 are 0.08, 0.21, and 0.31, respectively. It
is evident that different preloads generate different stress triaxialities.
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These experiments bridge the gap between uniaxial tension-compression
and one-axial shear tests.
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Figure 5.18: The mean stress triaxiality η̄ and the mean stress Lode
parameter ω̄ during loading processes for monotonic ex-
periments (Wei et al., 2023b).

In addition, the evolution of the stress triaxialities η̄ and of the stress
Lode parameters ω̄ for cyclic loading paths are illustrated in Figs. 5.19(a)-
(e) and Figs. 5.20(a1)-(e1), respectively. It can be observed that the val-
ues of the stress triaxialities η̄ and the stress Lode parameters ω̄ increase
quickly at the beginning of reversal loading, followed by a rapid de-
crease until the stress triaxialities and the stress Lode parameters stabi-
lize again. Similar to the monotonic loading cases with various preloads,
different stress triaxialities are induced under cyclic experiments. This
indicates that the stress triaxiality is effective in distinguishing experi-
ments with different preloads. However, η̄ and ω̄ exhibit limitations in
distinguishing between cases within the loading cases. For instance, at
the FP for experiments superimposed by 5 kN under both monotonic and
cyclic loading, η̄ values are 0.32 and 0.34, while ω̄ values are -0.44 for
both cases. Similarly, the mean stress triaxialities and the stress Lode
parameters at FP are nearly the same for the experiments HC-mon-TN5
and HC-cyc-TN5, i.e., η̄ = −0.13 and ω̄ = 0.15. On the other hand, the
mean stress Lode parameters ω̄ at RP1, RP2 and FP for the HC-cyc-T3
are -0.29, -0.21, and -0.20, respectively, as depicted in Fig. 5.19(b1). It
presents challenges in distinguishing the stress state based on the stress
triaxiality and the stress Lode parameter.
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Figure 5.19: The mean stress triaxiality η̄ during loading processes for
cyclic experiments (Wei et al., 2023b).

As discussed in one-axial shear experiments, the strain Lode parameter
ω̄A clearly enables the distinction of different loading histories. Thus, the
evolution of the strain Lode parameter ω̄A under cyclic loading conditions
is additionally plotted in Figs. 5.20(a2)-(e2). Apparent differences can
be observed at different loading stages (RP1, RP2, and FP). As shown
in Fig. 5.20(b2), the mean strain Lode parameters ω̄A at RP1, RP2 and
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Figure 5.20: The mean stress Lode parameter ω̄ and the mean strain
Lode parameter ω̄A during loading processes for cyclic ex-
periments (Wei et al., 2023b).
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FP for the HC-cyc-T3 are -0.30, -0.80, and -0.55, respectively. The same
observations are evident in the other loading cases. It is obvious that the
proposed strain Lode parameter can effectively recognize different loading
histories in both one-axial and single biaxial cyclic shear experiments.

Damage strains, fracture surfaces and SEM images

The damage strainsAda
1 for the monotonic loading experiments are shown

in Fig. 5.21. As can be observed in Figs. 5.21(a), (b) and (d), it is evident
that the shapes of the damage strain distributions Ada

1 closely resemble
those of the first principal strains A1 shown in Figs. 5.16(a), (b) and
(d), respectively. Moreover, the maximum values of the damage strains
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Figure 5.21: Numerically predicted damage strains Ada
1 on the surfaces

12 and in the cross-sections 13 of the HC-specimens (Wei
et al., 2023b).

Ada
1 are numerically predicted on the notch surfaces. It is worth not-

ing that the predicted damage strains distribution on the surface and
notch cross-section for the HC-mon-T0 test is similar to the distribution
of damage strains in the S-mon-T test (Fig. 5.9(a)). In the HC-mon-T3
and HC-mon-T5 experiments, the damage strains are highly localized
on the top and bottom of the notch surfaces, with values of 0.80% and
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0.77%, respectively, and the damage strains mainly appear at the edge
of the notched cross-sections. Moreover, the maximum damage strain
Ada

1 = 2.21% occurs in the notched cross-section in the HC-mon-TN3
experiments, see Fig. 5.21(c). In addition, the damage strains are signif-
icantly larger on the notch surface than in the notched cross-section for
the test HC-mon-TN5, with a maximum value of 1.89% on the right-top
and left-bottom of the notch surface.

Furthermore, SEM images taken from the fracture surfaces under mono-
tonic loading tests are illustrated in Figs. 5.23(a1)-(e1). On the one hand,
micro-shear-cracks, predominantly caused by negative and low positive
stress triaxialities, are observed in experiments HC-mon-T0, HC-mon-
TN3, and HC-mon-TN5, with numerically predicted mean stress triax-
ialities of 0.08, -0.06, and -0.13, respectively, see Fig. 5.18(a). On the
other hand, micro-voids and micro-shear-cracks are visible for the tests
HC-mon-T3 and HC-mon-T5, see Figs. 5.23(b1) and (d1). The mean
stress triaxialities for the HC-mon-T3 and HC-mon-T5 experiments are
0.22 and 0.32, respectively, resulting in deeper and larger micro-voids in
the loading pattern HC-mon-T5 compared to the micro-voids in the HC-
mon-T3 test. The above-mentioned microscopic findings confirm that
the dependency of damage mechanism on stress states.

The development of damage strains Ada
1 during the loading processes is

shown in Fig. 5.23 to study how the reverse loading and loading histories
affect the damage behavior. There is no damage numerically predicted
on both the notch surfaces and notched cross-sections at RP1 for the
tests superimposed by zero or positive preloads (3 kN and 5 kN). To
contrast, damage strains with maximum values of Ada

1 = 0.81% and
Ada

1 = 1.80% appear on the notch surfaces as points in experiments HC-
cyc-TN3 and HC-cyc-TN5, respectively. Subsequently, damage strains
occur and develop in significantly different manners for various loading
patterns. For instance, damage strains increase by 0.23% on the top of
the notch surface from RP1 to RP2, and then reach a maximum value of
0.40% on the bottom of the notch surface from RP2 to FP for the HC-cyc-
T3 experiment. Compared to the HC-cyc-T3 test, the damage strains
(∆Ada

1 = 0.44%) are mainly develop at the top edge of the notched sur-
faces in the last loading pattern in HC-cyc-T5 experiment, as shown in
Fig. 5.23(d). Conversely, damage strains predominantly increase in the
center of the notched cross-sections after the first reverse loading (RP1 to
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Figure 5.22: Fracture pictures and SEM images for the monotonic and
cyclic loading tests superimposed by different tensile or
compressive preloads (Wei et al., 2023b).
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(a) HC-cyc-T0  RP1         RP1 to RP2                 RP2 to FP                            FP                       

>0% 0.00% >0% 0.87% -0.50% 1.15% >0% 1.51%
(b) HC-cyc-T3  RP1         RP1 to RP2                 RP2 to FP                            FP                       

>0% 0.00% >0% 0.23% >0% 0.40% >0% 0.42%

(c) HC-cyc-TN3  RP1       RP1 to RP2                 RP2 to FP                            FP                       
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(d) HC-cyc-T5  RP1         RP1 to RP2                 RP2 to FP                             FP                       
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Figure 5.23: The changes in the first principal damage strains ∆Ada
1 at

various reverse points (RPs) and fracture point (FP) (Wei
et al., 2023b).
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RP2) for tests with negative preloads (−3 kN and −5 kN). Subsequently,
the damage strains then develop on the notch surfaces, as observed in
Figs. 5.23(c) and (e). Obviously, the preloads and reverse loading condi-
tions significantly influence the evolution of damage strains.

In addition, SEM images for cyclic experiments with different preloads
are depicted in Figs. 5.22(a2)–(e2), respectively. It is evident that more
larger coalesced micro-shear-cracks and micro-voids are visible under
cyclic loading conditions than those undergoing monotonic loading condi-
tions. Furthermore, the micro-voids exhibit greater depth with a preload
of 5 kN compared to those with 3 kN, given the higher mean stress tri-
axiality of η̄ = 0.34 for the HC-cyc-T5 test compared to η̄ = 0.25 in
HC-cyc-T3. Also, micro-voids are significantly larger for the tests with
positive preloads than those in the experiments with negative preloads.
A potential explanation is that experiments with positive preloads in-
duced predominantly positive stress triaxialities throughout the entire
loading process (Figs. 5.19(b) and (d)), leading to the continuous growth
of micro-voids and a positive incremental damage strain, as observed
in Figs. 5.21(b) and (d). These facts prove that reverse loading condi-
tions alter the matrix of the material at the microscopic level, leading to
different macroscopic material behavior.

5.3.2 Summary

A series of non-proportional biaxial shear monotonic and cyclic loading
experiments, superimposed with various tensile or compressive preloads,
were conducted to investigate plastic, damage, and fracture behavior.
Experiments with tensile preloads result in positive stress triaxialities
ranging from 0.2 to 0.34, while tests with negative or zero preloads in-
duce stress triaxialities in the range of -0.25 to 0. These experiments
effectively bridge the gap between uniaxial tension-compression tests and
one-axial shear cyclic experiments. The alteration in the hardening ratio
after shear reverse loading, akin to the observations in the one-axial shear
experiments, is effectively addressed by the proposed most straightfor-
ward hardening correction method, ensuring accurate improvement in
numerical results. In addition, the strain Lode parameter, along with
the stress triaxiality and the stress Lode parameter, is suggested to dis-
tinguish the stress state for different loading cases and loading histories,
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particularly within different shear cyclic conditions.

An increase in compressive preloads enhances the ductility of the ma-
terial, whereas an increase in tensile preloads leads to increased brittle-
ness. Micro-shear-cracks predominantly initiate damage when negative
or zero preloads are superimposed, whereas micro-defects contribute to
damage in experiments with positive preloads. Larger and coalesced
micro-defects are more prominent under cyclic loading than monotonic
loading, contributing to a more pronounced material degradation. These
SEM images provide apparent evidence that the stress states and reverse
loading conditions significantly influence the damage behavior at the mi-
croscopic level. Moreover, analyzing the numerical results for global
load–displacement curves, local total strain fields, and damage strain
fields provides insights into how preloads, loading histories, and reverse
loading influence plastic, damage, and fracture behaviors at both macro-
and microscopic levels.

5.3.3 Tensile reverse experiments superimposed by shear preloads

Global load–displacement curves

The experimental and numerical load–displacement curves are shown in
Fig. 5.24. It is obvious that the numerical results show good agreements
with the experimental ones, see Figs. 5.24(b)–(f). However, the numeri-
cally predicted load–displacement curves for the final tensile reverse load-
ing pattern exhibit a slight discrepancy compared to the experimental
ones. The experimental and numerical results for the shear reverse exper-
iments superimposed by tensile or compressive preloads in Section 5.3.1
demonstrate a considerable change in the hardening ratio (non-hardening
effect) after shear reverse loading conditions. Conversely, the numerically
predicted results for tensile reverse experiments without non-hardening
correction can accurately capture the reversal yield stresses and the load–
displacement curves after the first tensile reverse loading condition, in-
dicating the insignificant role of the non-hardening effect under tensile
reverse loading conditions. Therefore, the non-hardening effect is not
considered under biaxial tensile reverse conditions.

Furthermore, the load–displacement curves in axis 2 (tension axis) for
monotonic and cyclic loading tests are illustrated in Fig. 5.24(a), where
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Figure 5.24: Numerical and experimental load–displacement curves for
monotonic and tensile cyclic tests (Wei et al., 2024b).

all curves are aligned with starting points in the zero displacements.
In addition, the fracture forces F fr

2 and fracture displacements ∆usw1,ref,

∆u∗2,rel, and ∆u
fr
2,ref are listed in Table 5.3. The non-proportional frac-

ture displacement ∆usw1,ref describes the displacement increment of axis 1
(shear axis) from the second loading stage (after preloading) up to the
specimen failure, see Table 5.3. Additionally, the relative reverse frac-
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ture displacement ∆u∗2,rel denotes the displacement increment from zero
force to final fracture after the second tensile reverse loading. It can
be observed that fracture displacements ∆ufr2,ref and the corresponding

fracture forces F fr
2 obviously decrease with an increasing shear preloads

F1 under monotonic loading conditions, as shown in Fig. 5.24(a) and
Table 5.3. This observation reveals that the shear preload increases the
brittleness of the investigated ductile aluminum alloy.

Table 5.3: Fracture forces F fr
2 and fracture displacements ∆usw1,ref,

∆u∗2,rel, and ∆u
fr
2,ref (Wei et al., 2024b).

Preload
F1 [kN]

monotonic (mon-) cyclic loading (cyc-)

∆ufr2,ref
[mm]

∆usw1,ref
[mm]

F fr
2

[kN]
Loading
paths

∆ufr2,ref
[mm]

∆u∗2,rel
[mm]

∆usw1,ref
[mm]

F fr
2

[kN]

0 0.42 n/a 10.05 n/a n/a n/a n/a n/a

4.5 0.22 0.66 5.16
S4.5-i 0.07 0.23 1.29 7.18
S4.5-ii -0.10 0.21 1.52 8.17

5 0.13 0.43 4.27
S5-i 0.01 0.12 0.81 5.17
S5-ii -0.03 0.14 1.09 6.22

In the case of cyclic experiments, the relative reverse fracture displace-
ments ∆u∗2,rel also reduce by increasing the shear preload, as observed
undergoing monotonic loading conditions. Although the relative fracture
displacements show no apparent difference between monotonic and cyclic
loading experiments, the fracture forces for the cyclic experiments are ev-
idently greater than those undergoing monotonic loading conditions. As
depicted in Fig. 5.24(a), the material exhibits increased brittleness during
tensile reverse loading compared to monotonic loading, leading to rapid
failure as the specimens reach the reverse tensile yield limit. Moreover,
the fracture force F fr

2 = 8.17 kN for the HC-cyc-S4.5-ii is higher than
F fr
2 = 7.18 kN in the HC-cyc-S4.5-i experiment, and the same trend can

also be observed between experiments HC-cyc-S5-ii and HC-cyc-S5-i. It
is worth noting that in loading patterns HC-cyc-S4.5-ii and HC-cyc-S5-
ii, only a higher compressive load is imposed compared to HC-cyc-S4.5-i
and HC-cyc-S5-i, respectively, resulting in a obviously greater fracture
force, see Figs. 5.24(d) and (f). It indicates that the reversal yield stress
and fracture force are significantly affected by the tensile reverse loading
histories. In addition, the non-proportional fracture displacement∆usw1,ref
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for the mon-S5 experiment is greater than that one in the mon-S4.5 test.
This results in a more limited range of compressive loading patterns for
the cyclic experiments with F1 = 5kN that can be chosen in the present
study.

The experimental analysis of fracture displacements and forces empha-
sizes the significant impact of shear preload, its magnitude, and different
cyclic loading patterns on increasing the brittleness of the material. Ad-
ditionally, the influence of tensile reverse loading conditions and the ex-
tent of compressive loading patterns is clearly evident in plastic, damage,
and fracture behavior compared to monotonic loading.

Local strain fields

The distribution of the first principal strains A1 and strain increments
∆A1 during the loading processes are illustrated in Fig. 5.25, respectively.
The numerically predicted strain fields align well with the experimental
results obtained from DIC. The first principal strain A1 distribution on
the notch surface takes the form of an ellipse, reaching a maximum value
of 0.13 in the HC-mon-S0 test. With an increase in shear preload, the
principal strains along the shear band on the notch surfaces exhibit higher
maximum values, such as A1 = 0.26 for HC-mon-S4.5 and A1 = 0.32
for HC-mon-S5. Furthermore, the shear band in the HC-mon-S5 test
appears straighter compared to that in the HC-mon-S4.5 experiment.
These observations suggest that shear preloads significantly affect the
distribution of the first principal total strains A1 and alter the strain
states during the monotonic experiments.

In the case of cyclic loading, the maximal value of the first principal
strain A1 at FP is 0.49 for the loading pattern HC-cyc-S4.5-ii, exceeding
that one of the HC-cyc-S4.5-i loading pattern (A1 = 0.41), as depicted
in Figs. 5.25(b2) and (b3). Moreover, the larger compressive loading
pattern (cyc-S4.5-ii) not only localizes strains but also causes the shear
band to become more discontinuous, deformed, and twisted. Addition-
ally, the strain increment ∆A1 from RP1 to RP2 is twice as large under
the loading path cyc-S4.5-ii compared to the one in the cyc-S4.5-i loading
pattern, where strains are highly localized in the top and bottom of the
shear band. However, an opposite trend is predicted during the RP2 to
FP, see Figs. 5.25(b2) and (b3). A similar trend can be seen for the cyclic
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Figure 5.25: Experimental (left) and numerically predicted (right) first
principal total strains A1 and strain increments ∆A1 on
the notch surfaces (surface 12) at reverse point 1 (RP1)
and fracture point (FP), and RP1 to reverse point 2 (RP2)
and RP2 to FP (Wei et al., 2024b).
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loading experiments HC-cyc-S5-i and HC-cyc-S5-ii in Figs. 5.25(c2) and
(c3). Moreover, the change in the loading direction results in alterations
in the direction of the shear band.

Based on both experimental and numerical analyses of strain fields, it
is evident that the loading patterns and histories employed substantially
influence plastic behavior and resultant strain states. In particular, a
larger compressive load in the second loading stage leads to a more dis-
continuous distribution of the strain on the notch surface.

5.3.4 Damage strains, stress states and SEM pictures

The mean stress triaxiality η̄ and the mean stress Lode parameter ω̄
over the notched cross-section are shown in Figs. 5.26(a)–(c). Moreover,
Fig. 5.26(d) depicts the relationship between the mean strain Lode pa-
rameter ω̄A and the mean equivalent strain ε̄eq at the RP1, RP2 and
FP. In addition, Fig. 5.27 illustrates the occurrence and development of
the damage strains during the loading processes to analyze the influence
of loading histories on damage. Finally, Fig. 5.28 shows the fracture
pictures and SEM images to verify the damage mechanisms.

As shown in Fig. 5.26(c), experiment HC-mon-S0 exhibits the maxi-
mum mean stress triaxiality η̄ = 0.71, leading to a large damage strain
Ada

1 = 8.67% localized in the notched cross-section, see Fig. 5.27(a).
Moreover, many large and deep micro-voids and dimples can be seen in
the fracture surface, along with jagged fracture lines visible on the notch
surface, indicative for high stress triaxialities, as observed in SEM image
Fig. 5.28(a). In addition, the numerical predictions show maximum dam-
age strains of Ada

1 = 0.32% and Ada
1 = 0.13% in the notched cross-section

for experiments HC-mon-S4.5 and HC-mon-S5, respectively. Compared
to the loading case HC-mon-S0, damage strains are additionally numer-
ically predicted for the experiments HC-mon-S4.5 and HC-mon-S5 on
the notch surfaces. As shown in Fig. 5.26(c), the mean stress triaxial-
ity η̄ decreases with increasing shear preloads. For example, the mean
stress triaxiality for tests HC-mon-S4.5 and HC-mon-S5 are 0.33 and
0.28, respectively. In SEM images, Figs. 5.28(b)–(c), both micro-voids
and micro-shear-cracks are visible, with the depth of the micro-voids
significantly shallower than those in the pure tensile test HC-mon-S0.
Moreover, larger coalesced micro-voids are observed in the HC-mon-S4.5



Single cyclic biaxial tests 115

0
1

1

0.2

0

0.4

0
-1 -0.5 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4
-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4
-1

-0.5

0

0.5

1

mon-S0
mon-S4.5
mon-S5

cyc-S4.5-ii
cyc-S5-i
cyc-S5-ii

cyc-S4.5-i

(a) (b)

(c) (d)

Figure 5.26: Figs. (a)–(c) illustrate the mean equivalent strain ε̄eq ver-
sus the mean stress triaxiality η̄ and the mean stress Lode
parameter ω̄ over the notched cross section for monotonic
and cyclic experiments, and (d) depicts the relation be-
tween the mean equivalent strain ε̄eq and the mean strain
Lode parameter ω̄A. The symbols ⃝ = RP1, □ = RP2,
and △ = FP (Wei et al., 2024b).

experiment compared to the HC-mon-S5 test. Smooth shear-band-like
fracture lines are detected in Figs. 5.28(b)–(c) compared to the exper-
iment HC-mon-S0. These findings highlight that damage is caused by
the growth and coalescence of micro-voids under high stress triaxialities,
and stress states could also further affect the depth of the micro-voids
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and the occurrence of micro-shear-cracks.

Concerning the cycling loading, the stress states significantly alter during
the loading processes. For the loading case HC-cyc-S4.5-i, the stress
triaxialities change from 0.24 at RP1 to -0.18 during the compressive
loading pattern, and finally, it reaches 0.40. Experiment HC-cyc-S4.5-ii
generates similar stress triaxialities at RP1, RP2, and FP, with values
of 0.24, -0.20, and 0.40, respectively, as illustrated in Figs. 5.26(a)–(c).
Also, the stress triaxialities decrease with increasing shear preloads, as
observed in the monotonic loading test. The stress triaxialities for the
loading pattern HC-cyc-S5-i are 0.16, -0.07, and 0.30 at RP1, RP2, and
FP, respectively. In addition, the corresponding values are 0.16, -0.09,
and 0.33, respectively, for the experiment HC-cyc-S5-ii. It is evident
that the alteration of the stress triaxialities results in different damage
evolutions, as illustrated in Fig. 5.27.

As shown in Figs. 5.27(b2)–(b3), the damage strains Ada
1 are numeri-

cally predicted on the notched surface, with a maximum value of 0.08%
in the notched cross-section at RP1. Although different compressive dis-
placements are imposed for loading patterns HC-cyc-S4.5-i and HC-cyc-
S4.5-ii, the maximum damage strain increments ∆Ada

1 show no apparent
difference. One possible reason could be that the stress triaxialities from
RP1 to RP2 are close to the cut-off value of −1/3, resulting in nearly no
further damage occurring and developing. During the last loading stage,
i.e., RP2 to FP, damage mainly develops in the notched cross-section
and at the edge of the notched cross-section for the loading cases HC-
cyc-S4.5-i and HC-cyc-S4.5-ii. Their related damage strains are 0.08%
and 0.01%. However, the mean stress triaxialities and the stress Lode pa-
rameters differ only by 0.02 and 0.07 between experiments HC-cyc-S4.5-i
and HC-cyc-S4.5-ii, respectively. Moreover, the damage strains just be-
fore failure (FP) are 1.65% and 1.62%, respectively, evidently greater
than those observed in monotonic tests. It indicates that the loading
histories significantly influence the development of damage. In addition,
some coalesced larger micro-voids and micro-shear-cracks are obviously
visible in SEM pictures Figs. 5.28(b2)–(b3). As discussed, negative stress
triaxialities from RP1 to RP2 induce these micro-shear-cracks and their
coalescence during loading. Furthermore, the depth of the micro-voids
becomes deeper under cyclic loading conditions compared to monotonic
loading, particularly in the HC-cyc-S4.5-i experiment.
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Figure 5.27: The first principal damage strains Ada
1 and their incre-

ments ∆Ada
1 on the notched surfaces (surface 12) and

notched cross-sections (surface 13) for the monotonic and
cyclic loading tests (Wei et al., 2024b).
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For cyclic experiments with 5 kN shear preload, damage strains are ob-
served on the notch surface and notched cross-section at RP1, where the
numerically predicted maximum damage strain Ada

1 is 0.12% at the edge
of the notched cross-section. Subsequently, different distributions and
values are detected between loading patterns HC-cyc-S5-i and HC-cyc-
S5-ii after the first compressive reverse loading, see Figs. 5.27(c2)–(c3).
However, the stress states are nearly the same at RP2, i.e., η̄ = −0.07
and ω̄ = 0.08. It must be emphasized that there are no apparent dif-
ferences in the development of the damage strains, even when larger
compressive displacements are imposed in the HC-cyc-4.5-ii experiment
compared to the loading pattern HC-cyc-4.5-i. Thus, this highlights the
influence of stress state on the damage behavior. In the last loading path
(RP2–FP), damage strains mainly develop and are localized as an ellipse
in the notched cross-sections. Moreover, the maximum damage strain
Ada

1 = 1.24% appears in the notched cross-section for the HC-cyc-S5-i
experiment, whereas Ada

1 = 1.44% are observed on the notch surface in
the test HC-cyc-S5-ii. Compared to monotonic loading (Fig. 5.27(c)), a
few larger micro-voids and predominate micro-shear-cracks are observed
in Figs. 5.27(c1) and (c2). Micro-shear-cracks are formed and developed
during the loading stage from RP1 to RP2, where micro-shear-cracks in
loading pattern HC-cyc-S5-ii are more significantly visible in the SEM
images than in the HC-cyc-S5-i loading case. This is caused by larger
compressive displacement imposed in the HC-cyc-S5-ii test, where the
near-zero stress triaxialities further result in the coalescence of micro-
shear-cracks. Moreover, some larger micro-voids can also be observed
under cyclic conditions compared to the related monotonic loading tests.

5.3.5 Summary

Biaxial tensile reverse experiments superimposed by different shear preloads
are performed to study the plastic, damage, and fracture behavior. The
high stress triaxiality η = 0.71 is generated in the monotonic tensile test
HC-mon-S0. Most importantly, the stress states significantly change
during compressive and tensile reverse loading conditions, resulting in
different damage mechanisms during the loading processes. In the nu-
merical simulations, damage strains and their increments clearly reveal
how the loading histories and stress states influence the occurrence and
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(b) HC-mon-S4.5 FP

(b1) HC-cyc-S4.5-i FP

(b2) HC-cyc-S4.5-ii FP

(c) HC-mon-S5 FP

(c1) HC-cyc-S5-i FP

(c2) HC-cyc-S5-ii FP
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Figure 5.28: Fracture pictures taken from fractured notched surfaces
(surface 12) and SEM pictures taken from fractured
notched cross-sections (surface 13) for monotonic and
cyclic experiments (Wei et al., 2024b).
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development of damage. Based on the global load–displacement curves,
the change of the hardening ratio after tensile reverse loading is not
significant compared to that one after shear reverse loading. However,
the reverse yield stresses increase significantly after compressive reverse
loading, where the degrees of compressive loading patterns also affect the
reverse yield stresses by comparing different loading patterns -i and -ii
with the same shear preloads. As discussed in Wei et al. (2023c, 2024b),
one possible explanation is that the preformed micro-shear-cracks expand
in the direction of increasing hydrostatic pressure after compressive re-
verse loading condition. This change in direction causes deformed voids
and cracks to become more challenging.

Furthermore, the material becomes brittle with increasing shear preloads
or under cyclic loading conditions. Also, the generated stress triaxialities
decrease by superimposing a higher shear preloads. On the one hand,
as observed in SEM image for the pure tension test (HC-mon-S0), the
damage is caused by the growth and coalescence of the micro-voids. On
the other hand, micro-shear-cracks and micro-voids are both visible in
the tensile reverse experiments with different shear preloads. Moreover,
larger and coalesced micro-defects are observed under cyclic loading con-
ditions compared to those in the monotonic tests with different shear
preloads, and the micro-voids are deeper with increasing stress triaxiali-
ties. These findings highlight the dependence of the stress states on the
damage mechanisms.

5.4 Bi-cyclic biaxial tests

Global force-displacement curves

The experimental and numerical load–displacement curves for bi-cyclic
biaxial experiments are illustrated in Fig. 5.29. It is evident that the
numerically predicted load–displacement curves agree well with the ex-
perimental ones. The comparison of fracture displacements in Table 5.4
indicates that pure negative cyclic loading patterns (CCC, without re-
verse loading in axis 2) lead to an increase in the ductility of the mate-
rial compared to experiments with pure positive loading patterns (TTT,
without reverse loading in axis 2). Moreover, the fracture displacements
(∆ufr1,ref and ∆u

∗
1,rel) and forces F fr

1 are listed in Table 5.4. In addition,
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Figure 5.29: Numerical and experimental load–displacement curves for
bi-cyclic biaxial tests (Wei et al., 2024a).

applying an increased superimposing positive load (HC-cyc2-xxT3 and
-xxT5) in the final loading stage enhances the brittleness of the mate-
rial. Conversely, applying an increased superimposing negative load (HC-
cyc2-xxC3 and -xxC5) in the last loading stage increases the ductility of
the material, as shown in Table 5.4. On the other hand, cyclic load-
ing patterns incorporating reverse loading increase ductility compared
to those without reverse loading. However, the forces causing fracture
demonstrate divergent trends under positive (HC-cyc2-xxT3 and -xxT5)
and negative (HC-cyc2-xxC3 and -xxC5) final superimposed loads. For
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Figure 5.29: Numerical and experimental load–displacement curves for
bi-cyclic biaxial tests (continuation) (Wei et al., 2024a).

instance, the fracture forces increase in experiments with superimposed
final positive loads but decrease in tests involving final negative loads,
as observed in Table 5.4. Furthermore, cyclic loading patterns TCT
and CTT, as well as TCC and CTC, exhibit distinct irregular influences
on the global load–displacement curves, along with varying effects on
fracture forces and displacements. However, this underscores that the
loading sequences evidently influence the macro-level material behavior,
particularly in terms of fracture displacements and forces. In conclusion,
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the variations in loading patterns and magnitudes of superimposed load
markedly alter macroscopic material behavior.

Table 5.4: Fracture forces F fr
1 and fracture displacements ∆ufr1,ref and

∆u∗1,rel (Wei et al., 2024a).

Tests
HC-

positive superimposed loads
at last loading stage

Tests
HC-

negative superimposed loads
at last loading stage

∆ufr1,ref
[mm]

∆u∗1,rel
[mm]

F fr
1

[kN]
∆ufr1,ref
[mm]

∆u∗1,rel
[mm]

F fr
1

[kN]

cyc2-TTT3 1.01 1.08 4.94 cyc2-CCC3 2.68 2.42 5.31
cyc2-TCT3 1.39 1.29 4.95 cyc2-TCC3 2.79 2.71 5.20
cyc2-CTT3 1.32 1.19 5.25 cyc2-CTC3 2.52 2.36 5.24

cyc2-TTT5 0.79 0.80 4.29 cyc2-CCC5 2.09 1.93 5.42
cyc2-TCT5 1.24 1.25 4.66 cyc2-TCC5 2.92 2.82 5.03
cyc2-CTT5 1.07 1.08 4.49 cyc2-CTC5 2.95 2.95 5.07

Local strain fields

Fig. 5.30 displays the first principal strains A1 on the notch surfaces
at RP1, RP2, and FP for experiments with superimposed positive and
negative loads in the final loading stage. The numerical simulations
align closely with the measured experimental strains at different loading
stages. It is observed that the first principal strains A1 just before failure
(FP), particularly in experiments subjected to negative loads in the final
loading stage (Figs. 5.30(g)–(l)), are significantly larger than those in
tests with positive loading at the same stage, see Figs. 5.30(a)–(f). This
indicates that the material becomes more ductile under negative super-
imposed loads. Furthermore, it is observed that the strains distribute in a
counterclockwise direction with an increased superimposed positive load
(HC-cyc2-xxT3 and -xxT5) and in a clockwise direction with increasing
negative load (HC-cyc2-xxC3 and -xxC5), as also detected in the single
biaxial cyclic experiments, see Fig. 5.16 in Section 5.3.1. On the one
hand, the maximum values of the first principal strains A1 exhibit slight
differences between RP1 and RP2 in experiments with non-reverse cyclic
loading patterns along axis 2 (tension axis), namely TTT and CCC. How-
ever, the distribution of the first principal strains changes significantly in
shape and direction; for example, strains distribute in a X-shape at RP2



124 Results and Discussions

for loading patterns HC-cyc2-CCCx and -TTTx. On the other hand,
A1 becomes nearly zero in experiments involving reverse cyclic loading
patterns along axis 2, see Figs. 5.30(b)–(c), (e)–(f), (h)–(i), and (k)–(l).
It enables the study of how different previous loading patterns influence
material behavior.

For experiments superimposed with positive load in the last loading pat-
tern, the changes in A1 from RP2 to FP for non-reverse cyclic loads
(TTT) along axis 2 are significantly greater than those observed in tests
with reverse cyclic patterns in axis 2 (TCT and CTT). For instance,
the strain increases ∆A1 are approximately 0.36 for experiments HC-
cyc2-TCT3, -CTT3, -TCT5, and -CTT5, respectively. This value is
greater than the 0.25 observed in the loading pattern HC-cyc2-TTT3,
and the 0.20 detected in the experiment TTT5, see Figs. 5.30(g)–(l).
This trend is also observed in tests superimposed with negative loads in
the final loading stage, as illustrated in Fig. 5.30. This observation can
be attributed to the reverse loading in axis 2 during the second loading
stage. Interestingly, the strain increments∆A1 from RP2 to FP in exper-
iments with tensile load in the third loading stage are marginally higher
than those observed in single biaxial cyclic tests (H-mon-T3 and H-mon-
T5, as shown in Fig. 5.16). Similarly, the strain increments ∆A1 from
RP2 to FP in experiments HC-cyc2-TCC3/5 and -CTC3/5 are greater
than those observed in tests HC-mon-TN3 and HC-mon-T5, respectively.
These findings suggest that specimens under reverse loading, resulting
in a near-zero strain state, may cause the material to become slightly
stronger than when it is unloaded. Most importantly, this near-zero
strain state can only be achieved in bi-cyclic biaxial tests rather than in
single cyclic biaxial tests discussed in Section 5.3.1.

Furthermore, strain increments ∆A1 from RP1 to RP2, as well as from
RP2 to FP, and strains A1 at failure (FP) show no apparent differences
between loading patterns TCT and CTT, as depicted in Figs. 5.30(b)–
(c) and (e)–(f). However, significant differences are observed in exper-
iments with final negative superimposed loads (TCC and CTC), indi-
cating that loading sequences alter material behavior. In addition, the
material shows greater ductility in tests with the same bi-cyclic loading
direction in both axes, e.g., HC-cyc2-TCT and -TCC (see loading sketch
in Fig. 4.10), compared to those subjected to opposite loading directions
in axis 1 and axis 2 (HC-cyc2-CTT and -CTC) during the first and sec-
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RP2 and FP (Wei et al., 2024a).
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ond loading stages. This is evident when comparing the strains at FP
in Fig. 5.30. Based on the observations of the first principal strains, it
is highlighted that loading sequences and histories significantly influence
material behavior, particularly in terms of the different evolutions of the
strain fields.

Damage strains, stress states, and SEM image

The mean stress triaxiality and the mean stress Lode parameter during
the loading processes are depicted in Table 5.5 and Table 5.6, respec-
tively. Positive stress triaxialities are generated when the tension axis
(axis 2) is subjected to tensile loads at the last loading stage, while nega-
tive stress triaxialities result from negative loads imposed on the tension
axis. Furthermore, an increase in either tensile or compressive loads in
axis 2 leads to a corresponding increase in stress triaxiality and stress
Lode parameter. Similarly, near-zero stress triaxialities are observed in
the test with −3 kN in the final loading stage, as seen in the single cyclic
test HC-cyc-TN3 (Fig. 5.18), which had a compressive preload of −3 kN
on the tension axis. In addition, high stress triaxialities can be observed
for the test with 5 kN in the final loading stage. Thus, the designed ex-
periments enable the generation of different stress triaxialities and stress
Lode parameters, significantly altering these triaxialities by changing the
loading directions.

Table 5.5: Mean stress triaxialities over the notched cross-section for
bi-cyclic loadings (Wei et al., 2024a).

Tests
HC-cyc2

positive superimposed loads
at last loading stage

Tests
HC-cyc2

negative superimposed loads
at last loading stage

RP1 RP2 FP RP1 RP2 FP

-TTT3 0.18 0.20 0.28 -CCC3 -0.12 -0.14 -0.03
-TCT3 0.19 -0.16 0.28 -TCC3 0.18 -0.15 -0.03
-CTT3 -0.11 0.18 0.26 -CTC3 -0.10 0.19 -0.05

-TTT5 0.29 0.28 0.38 -CCC5 -0.18 -0.20 -0.12
-TCT5 0.29 -0.27 0.31 -TCC5 0.28 -0.26 -0.11
-CTT5 -0.24 0.28 0.35 -CTC5 -0.24 0.28 -0.11

The evolution of the damage strains Ada
1 and strain increments ∆Ada

1
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Table 5.6: Mean stress Lode parameters over the notched cross-section
for bi-cyclic loadings (Wei et al., 2024a).

Tests
HC-cyc2

positive superimposed loads
at last loading stage

Tests
HC-cyc2

negative superimposed loads
at last loading stage

RP1 RP2 FP RP1 RP2 FP

-TTT3 -0.28 -0.20 -0.22 -CCC3 0.17 0.21 0.00
-TCT3 -0.28 0.20 -0.23 -TCC3 -0.28 0.21 -0.01
-CTT3 0.16 -0.21 -0.22 -CTC3 0.14 -0.20 -0.02

-TTT5 -0.47 -0.41 -0.41 -CCC5 0.26 0.24 0.16
-TCT5 -0.46 0.40 -0.41 -TCC5 -0.46 0.42 0.12
-CTT5 0.38 -0.42 -0.39 -CTC5 0.38 -0.42 0.13

are shown in Fig. 5.31. It is observed that no damage occurs in the
test with a positive load applied to axis 2 during the first loading stage.
Conversely, damage appears as discrete points on the top and bottom
of the notch surface when axis 2 is subjected to the negative load in
the first loading stage. This is typical due to the localization of plastic
strains, as evidenced by the larger first principal strains observed at RP1
in the Fig. 5.30. In addition, different evolutionary patterns are presented
under various loading histories during subsequent loading stages.

As illustrated in Figs. 5.31(a)-(c), damage mainly develops in the notch
cross-section in the second loading pattern (from RP1 to RP2). Sub-
sequently, the changes of damage are predominant in the notch sur-
faces. Interestingly, negative damage strain increments are numerically
predicted in the loading pattern HC-cyc2-TCT3 in its notched cross-
section center, with a value of ∆Ada

1 = −0.2%. The same phenomenon
is observed in the test HC-cyc2-TCT5, where negative damage strain
increments are numerically predicted in previously damaged regions, as
shown in Fig. 5.31(e). This indicates that the previous micro-shear-
cracks, caused by negative stress triaxialities induced by simultaneous
negative loading in both axes 1 and 2, change their deformation direc-
tions in the final loading pattern. Furthermore, the maximum damage
strains are 0.47%, 0.44%, and 0.40% for the tests HC-cyc2-TTT3, -TCT3,
and -CTT3, respectively. Compared to the experiments mentioned above
with 3 kN, significantly larger maximum damage strains are numerically
predicted for the experiments HC-cyc2-TTT5, -TCT5, and -CTT5, with
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values of 0.54%, 2.21%, and 0.68%, respectively. The locations of dam-
age also differ from each other. For instance, in the tests with 3 kN in
the final loading stage, damage is localized in the notch cross-sections,
whereas the maximal damage appears on the notched surfaces for exper-
iments superimposed by 5 kN. It is worth noting that the distribution of
damage strains for tests HC-cyc2-TTT3 and -TTT5 is nearly identical to
that in single cyclic loading with superimposed tensile preloads of 3 kN
and 5 kN (HC-cyc-T3 and -T5), as shown in Figs. 5.23(b) and (d). The
reason for this is that if non-reverse cyclic loads are imposed on axis 2,
e.g., TTT and CCC, the stress triaxialities remain positive and similar
to the tests with constant superimposed loads on axis 2. These findings
highlight that loading histories, especially reverse loading, and loading
sequences, along with the magnitude of the loads, significantly influence
damage development.

In the case of experiments with superimposed negative loads in the last
loading stage, significant damage is observed in tests with negative loads
on both axes, namely HC-cyc2-CCCx and -TCCx. Negative stress tri-
axialities are generated, as seen in Table 5.5, leading to growth and
coalescence of micro-shear-cracks. Consequently, this results in larger
values of the first principal strains, as shown in Figs. 5.31(g)–(l). It must
be noted that the quantity of the damage strains in this case indicates
that the micro-shear-cracks are highly deformed in the loading direction.
However, this does not mean earlier failure compared to experiments
with a tensile load in the last loading stage. Moreover, negative strain
increments are observed when previously formed micro-shear-cracks de-
form in the opposite direction compared to the previous loading stage.
This suggests a reversal in the deformation pattern of these micro-shear-
cracks under changing loading conditions. This phenomenon highlights
the sensitivity of micro-shear-cracks to loading history and direction.
The numerically predicted final maximum damage strains are present
on the top and bottom of the notch surfaces under all loading cases,
as depicted in Figs. 5.31(g)–(l), where obvious distortions and deforma-
tions are observed. Among these, the distributions of damage strains
under loading patterns CCC3 and CCC5 are similar to those observed
in the single cyclic tests with negative preloads, e.g., HC-cyc-TN3 and
HC-cyc-TN5, as illustrated in Figs. 5.23(c) and (e), respectively. More-
over, the damage strains demonstrate a broader range when compared to
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Figure 5.31: The changes in the first principal damage strain ∆Ada
1 at
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experiments conducted under positive loads, as shown in Figs. 5.31(a)–
(f). Among these tests, those superimposed by −3 kN in the last loading
pattern (Figs. 5.31(g)–(i)) exhibit a narrower damage shear band com-
pared to the experiments conducted with −5 kN (Figs. 5.31(j)–(l)) in the
final loading stage. The above findings confirm the influence of load-
ing histories, loading sequences, and reverse loading paths on damage
behavior.

Furthermore, SEM images taken from fracture surfaces (notched cross-
sections) and fracture pictures on the notch surfaces are shown in Fig. 5.32
and Fig. 5.33, respectively. Micro-voids are prominently visible in speci-
mens imposed by tensile loads during the final loading stage, as seen in
Figs. 5.32(a)–(f), whereas micro-shear-cracks predominate in tests con-
ducted under negative loads in the last loading stage, as depicted in
Figs. 5.32(g)–(l). These SEM images confirm that high positive stress
triaxialities lead to growth and coalescence of micro-voids, while neg-
ative and low positive stress states result in the growth and coales-
cence of micro-shear-cracks. The size and depth of the micro-voids in
Figs. 5.32(d)–(f) are slightly greater than those in Figs. 5.32(a)–(c), in-
dicating that higher stress triaxialities increase the depth of micro-voids.
Notably, larger maximum damage strain values are predicted in the nu-
merical simulations (Fig. 5.31), consistent with SEM observations. Fur-
thermore, the numerically predicted damage strain increments from RP1
to RP2 under the loading pattern TCT in both axes significantly increase
(Figs. 5.32(b) and (e)), attributed to larger negative stress triaxialities,
leading to the development of micro-shear-cracks. Consequently, micro-
shear-cracks are distinctly observed in the corresponding SEM images in
Figs. 5.31(b) and (e), respectively. Specimens subjected to non-reverse
cyclic loading (TTT) exhibit fewer coalesced micro-shear-cracks com-
pared to those imposed by reversed cyclic loading (TCT and CTT). In
addition, the fracture lines depicted in Figs. 5.33(a)–(f) align with the
distribution of the numerically predicted total strain A1 and damage
strain Ada

1 on the notch surfaces, as illustrated in Figs. 5.30 and 5.31,
respectively.

Additionally, SEM images Figs. 5.32(g)–(i) and (j)–(l) show only slight
differences for the specimens subjected to negative loads in the last load-
ing patterns. One possible reason could be that, on the one hand, the
first tensile loading pattern with TCC shows no distribution for the oc-
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Figure 5.32: SEM images for bi-cyclic biaxial loadings.

currence and development of damage. Numerically predicted results in-
dicate the absence of damage in these loading cases. On the other hand,
the tensile loading pattern in the second loading phase results in positive



134 Results and Discussions

stress triaxialities, leading the previously formed micro-shear-cracks to
grow more challenging in the hydrostatic stress increasing direction, as
observed and discussed in Section 5.3.3. Furthermore, a near-zero stress
triaxiality is observed for the test superimposed by −3 kN, leading to
fracture behavior similar to shear tests. Compared to the specimens with
−5 kN, more small single voids can be observed in Figs. 5.32(g)–(i), given
that the generated stress triaxialities are nearly -0.01 for the experiments
superimposed by −3 kN. Moreover, rough fracture layers can be seen in
Figs. 5.32(j)–(l), indicating a more ductile behavior. Figs. 5.33(g)–(i)
visually demonstrates that specimens partially break into distinct parts
along the shear band, aligning closely with the numerical predictions
presented for the total strains in Figs. 5.30(g)–(i). In contrast, the speci-

(a) TTT3 (d) TTT5 (e) TCT5 (f) CTT5 (b) TCT3 (c) CTT3

(g) CCC3 (j) CCC5 (k) TCC5  (l) CTC5 (h) TCC3 (i) CTC3  

Figure 5.33: Fracture pictures on the notch surfaces for bi-cyclic biaxial
loadings.

mens subjected to −5 kN do not break into parts; instead, only noticeable
fracture lines are observed on the top and bottom of the notched surface,
where SEM images are taken.
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Summary

Bi-cyclic loading tests involve non-reverse (HC-cyc2-TTT and -CCC),
and reverse cyclic loads in axis 2 are discussed. Experiments subjected
to both simultaneous reverse loads achieve nearly zero strain states at
the end of the loading pattern. Different stress states are successfully
generated, with stress triaxialities ranging from approximately -0.3 to
0.4. Stress states remain nearly constant for the specimens with loading
patterns TTT and CCC, while the stress triaxialities alter from positive
to negative or negative to positive for experiments with reverse cyclic
loadings. It enables the study of the evolution of damage under different
stress triaxialities. Moreover, SEM images highlight that micro-voids
predominantly contribute to damage under high stress triaxialities in
the tests superimposing positive loads in the last loading pattern. Con-
versely, micro-shear-cracks are responsible for damage in the tests with
negative loads. In addition, the tensile loads superimposed in the last
loading pattern increase the brittleness of the material, while compres-
sive loading enhances its ductility. These findings conclude that loading
patterns and directions significantly alter the material behavior.

Concerning the numerical simulations, the numerically predicted load–
displacement curves and local strain fields give good agreements with the
experimental ones. Notably, the numerical results accurately capture the
strain fields throughout the loading processes, not just those immediately
before failure. The evolution of the first principal total strains and of the
damage strains clearly show and explain how the loading patterns and
sequences influence plastic, damage, and fracture behavior.
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The ductile damage and fracture behavior of the 4mm thick sheet of
aluminum EN AW6082-T6 under non-proportional and reverse loading
conditions is discussed. Different one-axial and biaxial experiments are
conducted to investigate the plastic, damage, and fracture behavior at
both macro- and micro-levels using digital image correlation (DIC) tech-
nique and scanning electron microscopy (SEM). Corresponding numeri-
cal simulations are performed in Ansys with a novel modified two-surface
anisotropic cyclic elastic–plastic–damage continuum model. This model
is implemented in Ansys as a user-defined subroutine (UMAT) to cap-
ture the mechanical responses accurately, to elucidate the experimen-
tally observed phenomena, and to reveal mechanisms which cannot be
detected by experiments alone. The proposed material model accurately
characterizes the material behavior in global load–displacement curves
and local in strain states during the loading processes. One of the most
significant advantages is that the proposed model shows excellent per-
formance in modeling the experiments under complex loading conditions
without changing the fitted material parameters. In addition, the pro-
posed damage mechanisms provide a good explanation for the occurrence
and development of damage during reverse loading conditions and dif-
ferent kinds of damage mechanisms, allowing judgment of safety and
prediction of service lifetime of structures.

Concerning the numerical aspects, the combined hardening law is incor-
porated in the Drucker-Prager yield condition to capture the Bauschinger
effect and strength-differential (SD) effect. A most straightforward ap-
proach is proposed to characterize the change in hardening ratio after
shear reverse loading conditions by introducing a scalar hardening cor-
rection factor. In addition, a novel softening law based on damage strain
rate tensor is used to model the transformation of the damage surface.
Moreover, the numerical implementation details of the proposed consti-
tutive model are discussed in detail. The numerical integration algorithm
is realized by the plastic predictor–elastic corrector in the effective ficti-
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tious configurations, and the inelastic (plastic–damage) predictor–elastic
corrector in the damaged configurations. In addition, different consistent
tangent moduli respective to the numerical integration approach are ex-
pressly provided to meet the requirements of the global Newton–Raphson
scheme. An active set strategy is employed to satisfy different constraints
under the effective fictitious undamaged and damaged configurations, re-
spectively. This approach enforces the Kuhn–Tucker conditions in the
respective configurations, ensuring the efficiency and robustness of the
proposed numerical scheme.

For the experimental aspects, uniaxial tension–compression, one-axial
shear, and single biaxial and bi-cyclic biaxial reverse tests are proposed to
generate a wide range of stress triaxialities to validate the elastic-plastic-
damage material model. Hence, the newly designed tension-compression
specimen (TC-specimen), one-axis-loaded shear specimen, and biaxially
loaded HC-specimen are employed. Notably, the HC-specimen features
four symmetric 2mm thick notches at its center. When loads are applied
along the horizontal axes (tension axis or axis 2), tension or compres-
sion stresses are generated. In contrast, loading along the vertical axis
(shear axis or axis 1) results in shear stresses. Non-proportional reverse
experiments can be achieved by altering the loading direction and axes,
allowing for varied loading conditions and directional changes in testing
procedures.

Monotonic and different cyclic uniaxial tension-compression and shear
tests are used to study the damage behavior caused by the growth and
coalescence of micro-voids and micro-shear-cracks, respectively. Lim-
ited stress triaxialities are generated in the uniaxial tension-compression
and one-axial shear tests, i.e., 1/3 for the tension test, -1/3 for the
compression test, and approximately -0.2 to 0.2 for cyclic shear tests.
The Bauschinger effect and the SD effect are observed under monotonic
and cyclic uniaxial tension-compression loading conditions, respectively.
Most importantly, the experimental data enable the identification of ma-
terial parameters in the proposed continuum model, providing good ac-
curacy. One of the most significant contributions of the one-axial shear
cyclic tests is the noticeable change in hardening after shear reverse load-
ing, providing effective experimental data to model this observed non-
hardening effect and calibrate its material parameters. Moreover, both
experimental and numerical results show that cyclic loading conditions
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increase the material brittleness of the investigated material compared
to monotonic loading, as larger and more coalesced micro-defects are
formed. In addition, the various cyclic loading patterns clearly demon-
strate that damage occurs and develops in the earlier loading cycles, pro-
viding a significant difference compared to the monotonic loading case.
Therefore, only the tension-compression-tension (TCT) loading pattern
is chosen for the biaxial reverse experiments as it is representative to
study the influence of the reverse loading condition with a large number
of non-proportional loading paths.

Furthermore, single and bi-cyclic biaxial reverse experiments are con-
ducted to broaden the range of stress triaxialities. On the one hand,
single biaxial reverse experiments include shear reversals with tensile or
compressive preloads, and tensile reversals with shear preloads. The
loading processes are divided into two distinct stages: initially, ten-
sile/compressive or shear preloads are imposed on the horizontal or ver-
tical axis, respectively, until the desired force is attained. Without un-
loading, shear or tensile cyclic loads (loading pattern: TCT) are then
additionally superimposed on the vertical or horizontal axis, respectively.
On the other hand, bi-cyclic biaxial experiments involve imposing cyclic
loads on both axes simultaneously. Different non-reversal and reversal
cyclic loads applied to the horizontal axis are selected to be superimposed
with the shear cyclic loading (loading pattern: TCT) on the vertical
axis. Particularly, the loads on the horizontal axis will be kept constant
when the maximum or minimum forces are reached in the final loading
stage. These single and bi-cyclic biaxial experiments successfully gener-
ate a wider range of stress triaxialities, approximately from -0.33 to 0.75.
Moreover, constant positive or negative stress triaxialities are induced in
shear experiments with different tensile or compressive preloads, and in
bi-cyclic biaxial experiments with non-reversal cyclic loads on the hori-
zontal axis. Conversely, stress triaxialities that change from positive to
negative or vice versa are generated by the tensile reverse experiments
with shear preloads, and by bi-cyclic biaxial experiments with reversal
cyclic loading on the horizontal axis. Therefore, different plastic, dam-
age and fracture behaviors can be observed in experimental results or
numerical simulations.

Based on analyses of global load–displacement curves, along with cor-
responding fracture displacements and forces, it is emphasized that the
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directions of preloading, their magnitude, as well as the loading sequence
and patterns, considerably influence material behavior at the macro-level.
For instance, tensile and shear preloads increase the brittleness of the in-
vestigated material, whereas compressive preloads enhance the ductility
of the ductile aluminum alloy. Additionally, the material’s brittleness
is further enhanced with increasing tensile or shear preloads. Similarly,
its ductility increases with increasing compressive preloads. Additional
observations indicate that cyclic loading conditions also result in the ma-
terial becoming more brittle compared to those under monotonic loading
conditions. In the case of bi-cyclic biaxial experiments, those with non-
reversal cyclic loading on the horizontal axis have been seen to reduce
the ductility of the material compared to that ones with reversal cyclic
loading. Furthermore, a noticeable change in the hardening ratio (non-
hardening effect) after shear reverse loading is observed in experiments
with tensile or compressive preloads, similar to findings in one-axial shear
cyclic experiments. However, this phenomenon is not as significant in
tensile reverse experiments with shear preloads. Additionally, the re-
yielding stresses after the second reverse loading pattern increase signif-
icantly under tensile cyclic conditions compared to monotonic loading.
The experimental results also reveal that the degree of enhancement in
re-yielding stress depends on the previously imposed compressive (C) dis-
placements in the second loading stage of the cyclic loading pattern TCT.
Large compressive displacements result in higher re-yielding stresses.

Loading histories, patterns, and sequences significantly affect the occur-
rence and evolution of damage behavior at the micro-level, as evidenced
by the numerical analysis of damage strains and observation of SEM im-
ages. On the one hand, the numerical results show that damage might de-
velop, transferring from the notch surface to the notched cross-section or
vice versa due to reverse loading conditions. Negative damage strain in-
crements are numerically predicted for cyclic tests, inducing changes from
negative stress triaxialities to low positive stress triaxialities or maintain-
ing negative stress triaxialities. Given the observed damage mechanism,
one possible explanation could be that negative stress triaxialities cause
the occurrence and development of micro-shear-cracks. These previously
formed micro-shear-cracks are then more likely to deform easily in the
opposite direction following the alteration of the loading direction. How-
ever, the growth of previously formed micro-shear-cracks becomes chal-
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lenging under high stress triaxialities, especially in the direction of in-
creasing hydrostatic stress. Thus, this leads to increase in the re-yielding
stresses, as observed in the tensile reverse experiments with shear loads.
On the other hand, damage is observed to be caused by growth and
coalescence of micro-defects under positive stresses. This is evident in
the shear reverse experiments with tensile preloads, tensile reverse ex-
periments with shear preloads, and bi-cyclic biaxial reverse experiments
where a tensile superimposed load is applied in the final loading stage.
Conversely, micro-shear-cracks lead to damage under negative stress tri-
axialities, as demonstrated in the shear reverse experiments with nega-
tive preloads and bi-cyclic biaxial reverse experiments where a negative
superimposed load is imposed on the final loading stage. SEM images
also highlight that larger micro-voids and coalesced micro-shear-cracks
appear under cyclic loading conditions compared to monotonic loading.
In addition, the depth of the micro-defects might increase with increas-
ing stress triaxialities. Most importantly, the SEM images confirmed
the proposed damage mechanism and are consistent with the respective
numerical predictions.

The stress triaxiality and the Lode parameter can effectively distinguish
the stress state for different loading patterns under monotonic loading
conditions. However, they need an extra parameter to properly differen-
tiate between different stress states under various loading patterns during
cyclic loading. To address this challenge, the strain Lode parameter is
proposed for use in conjunction with the stress triaxiality and the stress
Lode parameters.

This study utilizes a linear combination of the first I1 and second stress
invariants J2 in the yield function, considering the observed slight strength-
differential (SD) effect in the investigated aluminum alloy. To broaden
the applicability of the proposed material model and capture a more sig-
nificant SD effect, an additional term involving the third stress invariant
J3 should be considered. Similarly, it is suggested to incorporate the in-
fluence of the third stress invariant J3 into the damage function to more
accurately capture the initiation of damage under various complex neg-
ative stress states. To capture the stress-state-dependent parameters on
the damage condition, a series of one-axial and biaxial experiments need
to be conducted under loading and reloading (without reverse loading)
to measure the change in Young’s modulus. Additionally, specimens can
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be examined metallographically with micrographs at different loading-
reloading stages to more accurately characterize the initiation of damage
compared to the indirect numerical method. The stress-state-dependent
material parameters in the damage strain rate tensor are fitted by study-
ing mechanical behavior of the unit-cell containing one 3% volume void
under monotonic loading. Although the fitted material parameters are
confirmed by the experimental results, the void behavior under different
cyclic loadings should continue to be studied. As mentioned above, the
stress triaxiality and the stress Lode parameter could not correctly cap-
ture the stress states under cyclic loading; thus, the newly carried out
micro-numerical simulations should focus on how stress-state-dependent
parameters are also affected by the strain Lode parameter after different
reverse loadings. Due to advancements in experimental technology and
calculation capabilities, it is suggested using X-ray tomography and elec-
tron backscatter diffraction (EBSD) to measure the size of voids for the
investigated material. The measured size can be utilized in the simula-
tions, considering a random spatial void distribution within the unit-cell.
Developing fracture criteria based on damage strain is crucial for future
research. This newly proposed fracture criterion should accurately de-
scribe fracture behavior under a wide range of stress states, distinguish-
ing between monotonic and cyclic loading conditions. From a numerical
perspective, it should also be designed for ease of implementation by
different users.

The concept of non-proportional loading, such as shear to tension or ten-
sion to shear, can be further explored to investigate how damage behavior
changes under cyclic loading. Similar to non-proportional loading, where
monotonic shear loading is initially applied along the vertical axis and
then unloaded to zero, the specimens could be subjected to shear cyclic
loading along the horizontal axis until failure. In this new experimental
program, cyclic loading is first imposed on the horizontal axis with a cer-
tain number of loading cycles until zero force is reached. Subsequently,
cyclic loading is applied along the vertical axis with a different loading
pattern. The different numbers of loading cycles in the first loading stage
demonstrate when these micro-defects develop and to what extent they
are more favorable or hindered in influencing the subsequent stages of
the loading axis. Similar experiments can be conducted by changing the
loading axis, for example, from shear cyclic to tensile cyclic. These ex-
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periments allow to observe how the previously formed micro-voids and
micro-shear-cracks evolve. Additionally, experiments with different load-
ing cycles (e.g., 15, 30, and 50 large loading strain cycles or more) are
suggested to understand the distinction between ductile and fatigue dam-
age. A new one-axis-loaded tension-compression specimen with only one
notch in its rectangular shape is needed to achieve this with one-axial
tensile cyclic loading tests. Similar specimens can be found in (Gao et
al., 2010).
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