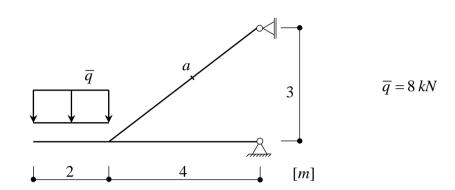
Datum/Unterschrift Zweitprüfer

Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Mechanik und Statik

Prof. Dr.-Ing. Michael Brünig

Datum/Unterschrift Erstprüfer

Klausur zur BA-Prüfung Baumechanik III


Montag, 31.08.2015 08:00 – 09:30 Uhr

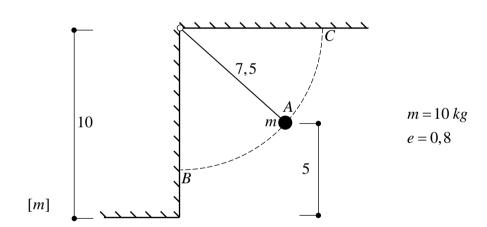
Name		Ma	Matrikel-Nr.											
Beachten Sie bitte	folgende I	Hinweise z	ur Bearbe	itung der .	Aufgaben:	:								
- Die Bearbeitungsz	zeit beträgt	90 Minut	en.											
- Beginnen Sie jede	Aufgabe	auf einer	neuen Seit	e.										
- Kennzeichnen Sie	jedes Arb	eitsblatt m	it Ihrem N a	amen und	der Aufga l	ben-Numr	ner.							
- Beschreiben Sie d	ie Blätter	nur einseit i	ig.											
- Benutzen Sie kein	ne grüne F	arbe.												
- Ihr Lösungsweg n	nuss nach	vollziehba	r sein.											
Aufgabe	1	2	3	4	5	6	Σ							
mögliche Punkte	11	12	41	17			81							
erreichte Punkte														
					•									
Note Erstprüfer							te Zweitpri							
			Endnote											

Aufgabe 1 (11 Punkte):

Berechnen Sie mit dem Prinzip der virtuellen Verrückung im Punkt a (Stabmitte) die Schnittkräfte N, Q und M.

Name: _____

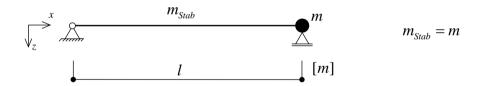
Institut für Mechanik und Statik Prof. Dr.-Ing. Michael Brünig Alexander Michalski, M.Sc.


																							•	•											
																								. ,											
																							./										٠		
			•															•				/													
•	•	٠	•	•		•	•	•	•		•	•	•	•			٠	•	•			•	•	•								•	•		
	•	•	٠	•	•	•	•	•	•		•	•	•	•	٠	•	٠	٠	./	/.	•	•	•	•			•		•		•	•	•	٠	
	•	٠	٠	•	•	•	•	•	•	٠	٠	•	•	•	٠	•		/		•	•	•	•	•			•		•	•	•	•	٠	٠	
•	•	•	٠	•	•	•	•	•	•	٠	٠	٠	•	•	٠		/	٠	•	•	•	•	•	•		•	•	•	•	•	•	٠	٠	٠	
•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	/	/	٠	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	٠	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	/		٠	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	۰
																									<u> </u>										
							·											٠																	
								•	•														•												
			٠														•	•		•			./												
	•	•	٠		•	•	•	•			•	•					•	•		•	. ,	/	•								•	•	•	٠	
	•	٠	ė			•	•	•	•		٠	•	•	•	٠			ė		./	/	•	•	•			•		•		•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	/		•	•	•	•		•	•				•	•	•	•	•
	•	٠	٠	•	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	/	•	•	•	•	•	•			•		•	•	•	٠	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		/	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	٠	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	٠	•		/	/ .	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	٠	•
		•	•		•			•	•	•	•	•		/	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	
																		•																	
			•				·											٠																	
																							•												
			٠					•										•					•	•									•		
					•				•														•	. /									•		
																																	•	•	
			•	٠	•	•	•	•	•	٠			٠	٠	•	٠	•	٠	٠	•		/		•								•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•		_/		•				•					•	•	•	•	
						•					٠	•	•	•	•							•				•	•		•			٠		٠	•
								•	•	•	•	•	•											•		•	•	•	•	•	•	•			
						•		•	•	•	٠	•	•				/					•		•		•	•	•	•	•	•	•		٠	
						•																										•			
					•					•	•	•	· /	/	•	•			•	•					 										
																							•												

Aufgabe 2 (12 Punkte):

Die Masse m wird aus der Lage A losgelassen und schwingt an dem masselosen Seil.

- a) Wie groß ist die Geschwindigkeit der Masse beim Aufprall auf die Wand im Punkt B?
- b) Wie groß ist die Geschwindigkeit der Masse nach dem teilelastischen Stoß und wie hoch schwingt die Masse danach zurück?
- c) Wie groß muss eine Anfangsgeschwindigkeit v_0 bei einem ideal-elastischen Stoß mindestens sein damit die Masse nach dem Stoß den Punkt C erreicht?
- d) Wie groß ist die maximale Fliehkraft im Aufgabenteil c) und wo tritt diese auf?



Aufgabe 3 (41 Punkte):

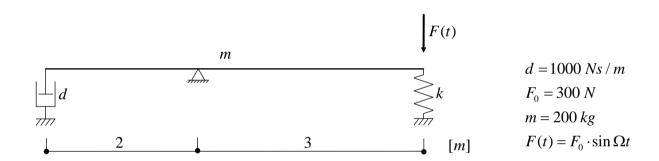
Bei dem dargestellten System versagt das rechte Auflager schlagartig. Ermitteln Sie am sich bewegenden System

- a) die Winkelbeschleunigung $\ddot{\varphi}$,
- b) die Winkelgeschwindigkeit $\dot{\varphi}$,
- c) die Auflagerkräfte im linken Auflager aus der jetzt auftretenden Belastung in Abhängigkeit des Winkels φ ,
- d) die Schnittkräfte N, Q und M über die Stablänge direkt nach dem Versagen des Auflagers (Theorie kleiner Winkel). Eine grafische Darstellung ist nicht notwendig.

Hinweis:
$$zu c) cos(\varphi) sin(\varphi) = \frac{1}{2} sin(2\varphi)$$

$$cos(\varphi) = 1 - 2 sin^2(\varphi) = 2 cos^2(\varphi) - 1$$

$$zu d) \ddot{\varphi} = 3g \varphi$$



Aufgabe 4 (17 Punkte):

Das dargestellte gedämpfte System wird durch eine Kraft F(t) zur Schwingung angeregt. Der Stab ist starr und homogen. Ermitteln Sie

- a) die Bewegungsgleichung des Systems,
- b) das Dämpfungsmaß D für eine maximale Auslenkung am Dämpfer von 8 cm,
- c) die maximale Federkraft für eine Erregerfrequenz von $\Omega = 250 \, \text{min}^{-1}$.

Hinweis: Es soll nach der Theorie kleiner Winkel gerechnet werden!

