
An iterative method for final time optimization in

nonlinear optimal control

Alberto De Marchi∗ Matthias Gerdts

May 8, 2019

Abstract

This paper discusses a bilevel optimization approach for free finite final time opti-
mal control problems and addresses a numerical method for their approximate solu-
tion. The core idea is to decouple the final time optimization from the optimal control
and state trajectory. This is rigorously formulated as an equivalent bilevel problem
seeking, at the upper level, the optimal final time and optimal control and correspond-
ing state at the lower level. Standard solvers for nonlinear optimal control can deal
with the latter, while the former is a box-constrained optimization problem with one
scalar decision variable. The interface between the two levels is based on the Hamil-
ton function associated to the problem and its relationship with the cost function.
A method for solving the upper level problem is developed, that combines a tailored
fast first-order method with a robust and guaranteed root-finding algorithm. Finally,
numerical results demonstrate the robustness of the method and show its limitations.

1 Introduction.

This paper aims at solving nonlinear optimal control problems (OCPs) with free final time
by decoupling the search of the optimal control from the final time optimization. This
approach has been introduced in [9] for linear systems and extended to nonlinear OCPs
in [8], and its bilevel perspective is based on the vanishing condition on the Hamilton
function for free time OCPs [12], [17]. This allows to formulate a single-objective bilevel
optimization problem, consisting of an upper and a lower level. The latter seeks the
optimal control for an OCP with fixed final time, which is considered at and given by the
upper level. This approach avoids any time or spatial transformation, which are commonly
adopted for this class of problems, especially those arising, e.g., in automotive and robotic
applications [3], [15], [19], [20]. Hence, the dynamics do not change and no local optima are
introduced by the transformation. However, the equivalence of the bilevel reformulation

∗Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg/Munich, Germany.
Corresponding author: alberto.demarchi@unibw.de.
Published in: 2019 Proceedings of the Conference on Control and its Applications (June 2019, pp. 60–66).
DOI: 10.1137/1.9781611975758.10.

1

https://doi.org/10.1137/1.9781611975758.10

is in general not guaranteed, unless the lower level problem admits a unique solution [7],
[10].

The contribution of this paper is an extension of the bilevel approach to any method
for solving the lower level problem, that is the fixed final time counterpart of the original
problem. In this respect, this work differs from [8], which is based on successive linear-
quadratic approximations of the lower level nonlinear problem and exploits the results in
[9]. Herein, instead, the only necessary feature, needed by the upper level, is that it must
be possible to evaluate the Hamilton function, along a solution given by the lower level,
at the final time (for autonomous systems, at some time). This value corresponds to the
sensitivity of the cost function with respect to the final time [9], and thus, at the upper
level, it can be used within a gradient-based optimization method. This approach harks
back to the descent methods discussed in [7]. Indeed, the upper level does not necessarily
need the evaluation of the cost function, even though it could take advantage of it, as
discussed in Section 3.2. Since the lower level is an optimization problem, it may share
inexact or inaccurate information with the upper level, which could still properly work;
for details see [11].

This paper is organized as follows. In Section 2 we formulate a bilevel optimization
approach for free-time OCPs, which we propose to overcome difficulties with local minima
that might be introduced by standard time transformation techniques for problems with
free final time. The solution approach is briefly delineated. A method for dealing with
the upper level problem is sketched in Section 3, with the corresponding procedures and
the coupling with the lower level is discussed. The proposed approach is numerically
validated on two standard problems in Section 4, showing effectiveness and limitations of
the proposed algorithm.

2 Problem and Approach.

Let

J : Rnx × Rnx × Rnp × R→ R
f : Rnx × Rnx × Rnu × Rnp × R→ Rnx

b : Rnx × Rnx × Rnp × R→ Rnb

c : Rnx × Rnu × Rnp × R→ Rnc

be sufficiently smooth functions (nx, nu, np, nb, nc being some positive integers). Let also
T`, Tu ∈ R be given bounds on the final time, such that 0 < T` < Tu. Let us consider the
following free-time optimal control problem:

Problem 1 (OOCP). Minimize J(x(0),x(T),p, T) subject to the constraints

f(ẋ(t),x(t),u(t),p, T) = 0 , t ∈ [0, T] , (1)

b(x(0),x(T),p, T) ≤ 0 , (2)

c(x(t),u(t),p, T) ≤ 0 , t ∈ [0, T] , (3)

T` ≤ T ≤ Tu . (4)

2

Herein, the controls u(·) are assumed to be measurable, with the corresponding state
trajectories x(·) being absolutely continuous functions of time (in general, for DAEs,
not all components of x(·) can be absolutely continuous [12]). Problem 1 represents a
fairly general class of problems, in that it possibly has dynamics described by differential-
algebraic equations (1), free boundary conditions (2), mixed state and control constraints
(3), free parameters p and final time T . Considering autonomous OCPs only is not a
restriction [12], [14]; for an extension in this direction see [8]. For the sake of simplicity
and without loss of generality, let us collect in λ the Lagrange multipliers associated to
the OOCP and denote H = H(x,u,p,λ, T) the corresponding Hamilton function [12],
[17].

2.1 Lower Level.

Assume a final time T̂ ∈ [T`, Tu] is given by the upper level. Then, a fixed time OCP can
be formulated; the lower level problem (LLP) reads:

Problem 2 (LLP). Minimize J(x(0),x(T),p, T) subject to the constraints(1)–(3) and
T = T̂ .

This problem is to be solved, with different values of T̂ , at each and every iteration
of the upper level. One could take advantage of previous solutions as initial guesses for
warm starting the lower level optimization.

2.2 Upper Level.

For a given final time T̂ , let us denote x̂, û, p̂ and λ̂ a solution to the corresponding LLP.
Then, let us introduce the reduced cost function J̃ and the reduced Hamilton function H̃,
defined by:

J̃(T̂) := J(x̂(0), x̂(T̂), p̂, T̂) , (5)

H̃(T̂) := H(x̂(T̂), û(T̂), p̂, λ̂(T̂), T̂) , (6)

for any T̂ ∈ [T`, Tu]. In the case the LLP turns out to be an autonomous OCP, the
Hamilton function attains a constant value along a solution and definition (6) could be
relaxed [9], [12]. By constructing the reduced cost function (5), the underlying OCP is
hidden and an optimization problem with a single decision variable, namely the final time,
appears; it reads:

Problem 3 (ULP). Minimize J̃(T) subject to the constraint (4).

We stress that the bilevel optimization problem consisting of LLP and ULP, namely
Problems 2 and 3, is in general not equivalent to Problem 1; if the lower level problem
admits a unique solution, then the two formulations are equivalent [7], [10]. In fact, in
our case, it suffices to solve the lower level problem to global optimality, exploiting the
fact that lower and upper levels share the same objective function. Then, in particular,

3

a solution to the ULP is also an optimal final time for the OOCP. The key result which
supports the bilevel perspective is drawn in [9, Theorem 10]; it reads:

J̃ ′(T) = H̃(T) , ∀T ∈ [T`, Tu] . (7)

This provides a relatively simple way to couple the lower to the upper level and adopt
gradient-based techniques for facing the ULP. In Section 3 we propose a method to solve
the ULP and sketch a suitable procedure for the bilevel solver.

3 Methods.

This Section discusses an approach to couple the two levels of the bilevel optimization
problem formulated above and proposes a method for solving the upper level problem.
For the bilevel approach introduced above to properly work, some information must be
shared among the levels. The coupling between the two levels is based on the reduced
quantities (5)–(6) and their relationship (7). Hence, the method proceeds as follows: (i)
the upper level communicates an estimate of the optimal final time, say T̂ , to the lower
level; (ii) the corresponding LLP is solved and the reduced quantities, say Ĵ := J̃(T̂) and
Ĥ := H̃(T̂), are evaluated and sent back to the upper level, at which (iii) the optimal
final time estimate is updated. Overall, at most three scalar values are exchanged at
each and every iteration of the bilevel solver; thus, the communication load is clearly
marginal. Indeed, the cost function evaluation is not strictly needed for the upper level
to work, as considered in Section 3.2 from a general perspective. Suitable features for the
lower level are summarized in Section 3.1. Regarding the implementation of the proposed
methods, the reverse communication mode provides a favorable environment for setting
up the bilevel solver and interfacing the two levels.

3.1 Lower Level.

It is assumed a standard solver, e.g. CasADi [1], BOCOP [18] and OCPID-DAE1 [13], is
available and capable of solving the LLP (global convergence to local optima is expected).
Moreover, one must be able to evaluate the Hamilton function H, possibly a posteriori,
along a solution to the LLP. These two requirements are to evaluate the reduced quantities
defined in (5)–(6) and to be exchanged with the upper level.

3.2 Upper Level.

Let a nonempty closed interval X, a function g : X → R and an initial guess xs ∈ X be
given. For clarity, consider X := [x`, xu]. Function g satisfies g(x) = f ′(x), x ∈ X, for a
given unknown function f : X → R. We assume function g be sufficiently smooth in X
and unknown function f be convex in X. Even though these conditions guarantee global
convergence to a global optimum, they can hardly be satisfied in practice. In fact, Lipschitz
continuity of g might be restrictive too and convexity of f might only hold locally around
a solution. Let us consider the following box-constrained scalar optimization problem:

4

Algorithm 1 fpg: a Fast Projected Gradient method.

procedure fpg(g, xs, X, Lg, κ)
2: x1 ← xs, α1 ← 1, z1 ← xs

for j = 1, 2, . . . do
4: zj+1 ← projX [xj − g(xj)/(κLg)] . prox-grad

αj+1 ←
(

1 +
√

1 + 4α2
j

)
/2

6: yj+1 ← zj+1 + (zj+1 − zj)(αj − 1)/αj+1

xj+1 ← projX [yj+1] . projection
8: end for

return xj+1

10: end procedure

Problem 4. Minimize f(x), by only evaluating g, subject to the constraint x ∈ X.

In order to solve this problem, we propose to combine a first-order optimization method
and a root-finding algorithm. In particular, the former is tailored for the specific problem
based on the fast proximal gradient method [2], see Algorithm 1. The iterative procedure
begins with an initial guess xs ∈ X and achieves optimal rate of convergence with marginal
overhead computation with respect to other first-order methods [2], [16]. It adjusts the
stepsize based on an estimate Lg of the Lipschitz constant of g in X and on the sequence
of gradient evaluations, through a safety factor κ ≥ 1. This is because the former is not
always known or not easily computable. Also, in order to generate a sequence of estimates
in the domain of g, an additional projection is performed, compare [2]. We highlight that
the proximal operator reduces to a simple projection, because the feasible set X is a closed
nonempty interval [16]. Termination criteria for Algorithm 1 may comprise a maximal
number of iterations and check |xi+1 − xi| < δx and |gi| < δg, δx and δg being small
positive tolerances. Evaluating function f in Algorithm 1 would make it possible to adopt
a backtracking stepsize rule or to have a monotone algorithm, improving robustness in both
cases [2]. Finally, we point out that the evaluation of g might be inexact, since it results
from an optimization problem, namely the LLP. Depending on this oracle’s accuracy, it
may be preferable to adopt a classical gradient method instead of a fast one, because the
latter suffers from error accumulation [11].

Starting from an initial guess, Algorithm 1 generates a sequence of pairs (xk, gk),
k = 1, 2, . . . , where xk ∈ X and gk = g(xk). In general, assuming function g be continuous
in an interval Z := [x0` , x

0
u] ⊆ X, root-finding algorithms guarantee to find an x? ∈ Z

such that g(x?) = 0 if Z is a change-of-sign interval for g, that is, if g(x0`) g(x0u) < 0.
Therefore, as a precondition for executing the root-finding algorithm, one has to detect
a suitable change-of-sign interval Z, possibly based on the sequence {(xk, gk)} only. The
procedure reported in Algorithm 2 generates a set which is the union of those change-of-
sign intervals for g with positive mean slope. This restriction stems from the sufficient
optimality condition for Problem 4, namely f ′′(x?) = g′(x?) > 0, valid for sufficiently
smooth problems. As soon as the set Z contains an interval, the root-finding method
can be executed; this provides a robust and guaranteed way for solving the first-order

5

Algorithm 2 posZero: a positive-slope zero-crossing detector.

procedure posZero({xi, gi}ni=1)

2: I ←

(a, b)

∣∣∣∣∣∣
a, b = 1, 2, . . . , n ,
xa < xb ,
ga < 0 < gb


Z← ⋃

(a,b)∈I
[xa, xb]

4: return Z
end procedure

necessary optimality conditions, namely g(x?) = 0. Nonetheless, it is not guaranteed to
end up in a local minimum, since local maxima may be in Z as well. In the following we
consider and adopt the Brent’s method, which is a derivative-free root-finding method and
usually exhibits superlinear convergence [4]; it combines linear interpolation and inverse
quadratic interpolation with bisection. A publicly available implementation using reverse
communication has been adopted [6].

The overall strategy for the upper level is sketched in Algorithm 3. First of all, it
is checked if X is a positive-slope zero-crossing interval, then also the initial guess xs is
considered. As long as no suitable change-of-sign interval is detected, namely Z = ∅,
the tailored first-order method in Algorithm 1 is executed and the sequence {(xk, gk)}
extended. At each and every of these iterations, Algorithm 2 is called to detect and, if
possible, build Z; this ensures the set Z is either empty or a nonempty interval in X.
Some cases are possible. (i) If f has a minimum in X, then g exhibits a positive-slope
zero-crossing, hence Z is nonempty and x? ∈ Z is found by the root-finding algorithm. (ii)
If f has a maximum in X, then g exhibits a negative-slope zero-crossing, hence Z is empty
and the projected gradient method terminates at x? ∈ {x`, xu}, depending on the initial
guess xs. (iii) If f is monotone increasing (decreasing) in X, then g is positive (negative),
Z is empty and the projected gradient method terminates at x? = x` (xu). These cases
are investigated in the next Section with numerical examples on two standard problems.

4 Numerical Results.

The methods proposed in Section 3 are tested with two examples on different scenarios.
The aim is to validate the approach, show its effectiveness and disclose its limitations and
drawbacks. The two case problems involve the point-to-point motion of either a vehicle
or a trolley with a load, with a cost functional based on both the control effort and the
final time. These OCPs can easily be casted into the form of Problem 1. In particular, an
additional differential state is introduced to express the cost in Mayer form [12].

Algorithm 3 is adopted with Lg = δx = δh = 10−6 (SI units are omitted). The influ-
ence of parameter κ is discussed in Section 4.1. In view of the bilevel approach, inputs
g, xs and X are nothing but the reduced Hamilton function H̃, Eq. (6), an initial guess
Ts of the optimal final time and a set [T`, Tu] of feasible final times, Eq. (4). Each eval-

6

Algorithm 3 UpperLevel: a free final time optimization method.

procedure UpperLevel(g, xs, X, Lg, κ, δx, δh)
2: x`, xu ← X

i← 0, xi ← x`, gi ← g(x`) . lower bound
4: i← 1, xi ← xu, gi ← g(xu) . upper bound

Z← posZero({(xk, gk)}ik=0)
6: if Z = ∅ then

i← 2, xi ← xs, hi ← g(xs) . guess
8: Z← posZero({(xk, gk)}ik=0)

end if
10: while Z = ∅ do

xi+1 ← fpg(g, xs,X, Lg, κ)
12: gi+1 ← g(xi+1)

if |xi+1 − xi| < δx or |gi+1| < δh then
14: x? ← xi+1

return x?

16: end if
i← i+ 1

18: Z← posZero({(xk, gk)}ik=0)
end while

20: x? ← Brent(g,Z, δx, δh) . Brent’s method
return x?

22: end procedure

uation of function g involves solving the corresponding LLP, formulated in Section 2.1,
and evaluating the associated Hamiltonian. The LLPs are solved by the software package
OCPID-DAE1 [13], with a direct single shooting approach, on a discretization of equidis-
tant grid points, with piecewise linear control approximation; optimality and feasibility
tolerance are set to 10−8 and 10−10 respectively; gradient information is obtained through
the sensitivity DAE.

4.1 Vehicle.

Let us consider the longitudinal motion of a vehicle, along a straight horizontal line, whose
dynamics read

ẋ1 = x2 , (8)

ẋ2 = u− c1x2 − c2x22 , (9)

with c1 = c2 = 0.01. Herein, states x1 and x2 and control u denote the vehicle position and
velocity and the control thrust, respectively. We aim at minimizing the cost functional

J(u, T) =

∫ T

0
wuu

2(t)dt+ T , (10)

7

25 30 35 40
30

35

40

45

J̃
[s
]

25 30 35 40
−4

−2

0

H̃
[-
]

25 30 35 40
0

2

4

6

8

T [s]

It
er
a
ti
on

[-
]

Figure 1: Vehicle — Reduced cost J̃ , reduced Hamiltonian H̃ with finite difference approxi-
mation (cross), and final time T during iterations, with κ = 1 (triangle) and κ = (1+

√
5)/2

(circle), for T ∈ [21, 40] (solid) and T ∈ [30, 40] (dashed).

with wu = 0.618033991, while satisfying boundary conditions x1(0) = x2(0) = x2(T) = 0,
x1(T) = 100, and control bounds u(t) ∈ [−1, 1], t ∈ [0, T]. For the LLPs, a discretization of
101 equidistant grid points and a fixed-step fourth-order Runge-Kutta integration method
are adopted. The reduced cost and Hamiltonian (5)–(6) for this example are depicted
in Fig. 1, for T ∈ [21, 40]. Notice that without drag forces, namely c1 = c2 = 0, the
minimum feasible time to satisfy both the boundary conditions and the control bounds
is T = 20. The reduced cost J̃ exhibits a minimum, around T ≈ 23, and the reduced
Hamiltonian H̃ crosses zero with positive slope, accordingly. In a sense, this is the problem
from the upper level perspective, see Section 3.2. Condition (7) is numerically tested by
means of a finite difference approximation of H̃ based on J̃ ; it matches very well, see
Fig. 1. Also, the sequence of final time T during iterations are reported in different
scenarios. For T ∈ [21, 40], the Brent’s method is immediately called and converges
to the (unconstrained) minimum T ? = 23.2554. Instead, for T ∈ [30, 40], the reduced
Hamiltonian is always positive and thus only the tailored gradient method is executed and
converges to the (constrained) minimum T ? = 30. In this case, lower values of κ show

1This is approximately the reciprocal of the golden section. Life is too short for boring numbers.

8

0 2 4 6 8
10−10

10−4

102

J̃
−

J̃
?
[s
]

0 2 4 6 8
10−10

10−4

102
|H̃
|[
-]

0 2 4 6 8
10−6

10−2

102

Iteration [-]

|T
−

T
?
|[
s]

Figure 2: Vehicle — Reduced cost J̃ , reduced Hamiltonian H̃ and final time T during
iterations, with κ = (1 +

√
5)/2 (circle) and κ = 1 (triangle), for T ∈ [21, 40] (solid) and

T ∈ [30, 40] (dashed).

faster convergence but may be less robust, while higher values may be more conservative,
see Fig. 1 (bottom) and Fig. 2.

For the sake of comparison, the original free final time problem was also solved with
OCPID-DAE1 [13] through time transformation. We are interested in the number of
iterations it takes to solve the problem. The results are reported in Table 1. Starting from
different initial guesses, it ends up with the optimal solution in all cases, running through
32–37 iterations. Setting the guess as the fixed final time, it takes a comparable number
of iterations. Hence, for this simple problem, the bilevel approach requires in total around
6 times more iterations (for the OCP solver) and returns the same solution. Then, in this
case there is no clear benefit.

4.2 Trolley–load.

Let us consider a trolley moving on an horizontal straight line, with a load mass and
a massless rod. This system can be modelled by an index-three DAE [5, Example 10];
in the following, computations are performed considering the system with Gear-Gupta-

9

Table 1: Vehicle — results with OCPID-DAE1.
guess fixed time free time
T [s] iterations [-] iterations [-] T ? [s]

21 32 36 23.2554
23 31 32 23.2554
25 32 34 23.2554
30 37 33 23.2554
40 33 37 23.2554

Leimkuhler (GGL) stabilization. The dynamics read

ẋ1 = x4 − 2x8(x1 − x2) , (11)

ẋ2 = x5 + 2x8(x1 − x2) , (12)

ẋ3 = x6 − 2x8x3 , (13)

ẋ4 = [u− 2x7(x1 − x2)]/m1 , (14)

ẋ5 = 2x7(x1 − x2)/m2 , (15)

ẋ6 = −g − 2x7x3/m2 , (16)

0 = (x1 − x2)2 + x23 − `2 , (17)

0 = (x1 − x2)(x4 − x5) + x3x6 , (18)

with g = 9.81, rod length ` = 0.61803399, trolley mass m1 = 10 and load mass m2 =
2.71828182 ≈ e. Herein, states x1, x2 and x3 define the system configuration, x4, x5 and
x6 the velocity and x7, x8 are algebraic variables used to impose joint constraints; input
u is the control force acting on the trolley. We aim at minimizing the cost functional

J(x, u, T) =

∫ T

0
wuu

2(t)dt+ T + wxx
2
1(T) + wvx

2
4(T) , (19)

with wx = 100, wv = 100, wu = 3.14159265 ≈ π, while satisfying boundary conditions

x1(0) = x2(0) = 1 , x3(0) = −` , (20)

x4(0) = x5(0) = 0 , x6(0) = 0 , (21)

x1(T) = x2(T) , x4(T) = x5(T) , (22)

and control and final time bounds u(t) ∈ [−1, 1], t ∈ [0, T], T ∈ [0.05, 12]. For the LLPs, a
discretization of 201 equidistant grid points and a implicit integration method are adopted.
In Algorithm 3 we set κ = (1 +

√
5)/2.

The reduced cost and Hamiltonian (5)–(6) for this example are depicted in Fig. 3. The
reduced cost J̃ exhibits a (global) minimum around T ≈ 9 and a (global) maximum around
T ≈ 0.5; as expected, the reduced Hamiltonian H̃ crosses zero with positive and negative
slope, respectively. Notice that T = 0.05 is a (local) constrained minimizer for J̃ . Once

10

2 4 6 8 10 12
0

50

100

J̃
[s
]

2 4 6 8 10 12
−30

−20

−10

0
H̃

[-
]

2 4 6 8 10 12
0

5

10

T [s]

It
er
at
io
n
[-
]

Figure 3: Trolley–load — Reduced cost J̃ , reduced Hamiltonian H̃ with finite difference
approximation (cross), and final time T during iterations, with initial guess Ts = 2.5
(dotted), Ts = 5 (dash-dotted), Ts = 7.5 (dashed) and Ts = 10 (solid).

again, condition (7) is numerically tested by means of a finite difference approximation of
H̃ based on J̃ ; it matches very well, see Fig. 3. At both, the lower and the upper bound
of the final time box constraint, the reduced Hamilton function is positive; hence, for this
problem, the initial guess for the final time is always tested by Algorithm 3. Then, for
different initial guesses, the sequence of reduced cost J̃ , reduced Hamiltonian H̃ and final
time T during iterations are reported in Fig. 3. In all cases the bilevel solver converges to
the (unconstrained) minimum T ? = 9.1914.

The comparison results for this example are reported in Table 2. Starting from different
initial guesses, the direct single shooting code, with time transformation, ends up with
the (global) optimal solution only in one case, namely with initial guess Ts = 4, running
through 43 iterations. For Ts ∈ {8, 9, 10}, it converges to the (local, constrained) minimum
at T = 0.05, after 27–31 iterations. On the other hand, for the fixed final time problem, it
takes 10–12 iterations to converge. Hence, for this problem, the bilevel approach requires
in total around 3 times more iterations (for the OCP solver) but it exhibits a more reliable
and robust behavior, which is a valuable benefit.

11

Table 2: Trolley–load — results with OCPID-DAE1.
guess fixed time free time
T [s] iterations [-] iterations [-] T ? [s]

4 12 43 9.1914
8 11 27 0.05
9 10 29 0.05
10 11 31 0.05

References

[1] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl.
CasADi: a software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation, Jul 2018.

[2] Amir Beck and Marc Teboulle. Gradient-based algorithms with applications to signal-
recovery problems, pages 42–88. Cambridge University Press, Cambridge, 2009.

[3] Paolo Bosetti and Francesco Biral. Application of optimal control theory to milling
process. In IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics
Society, pages 4896–4901, Oct 2014.

[4] Richard P. Brent. An algorithm with guaranteed convergence for finding a zero of a
function. Computer Journal, 14(4):422–425, 1971.

[5] Michael Burger and Matthias Gerdts. A survey on numerical methods for the simula-
tion of initial value problems with DAEs. In Achim Ilchmann and Timo Reis, editors,
Surveys in Differential-Algebraic Equations IV, chapter 5, pages 221–300. Springer
International Publishing, Cham, 2017.

[6] John Burkardt. ZERO RC: Nonlinear equation solver, reverse communication.
https://people.sc.fsu.edu/~jburkardt/m_src/zero_rc/zero_rc.html, 2013.

[7] Benôıt Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimiza-
tion. Annals of Operations Research, 153(1):235–256, Sep 2007.

[8] Alberto De Marchi and Matthias Gerdts. A bilevel approach for nonlinear optimal
control problems with free final time. https://doi.org/10.5281/zenodo.2602459,
Nov 2018.

[9] Alberto De Marchi and Matthias Gerdts. Traffic flow on single-lane road networks:
Multiscale modelling and simulation. IFAC-PapersOnLine, 51(2):162–167, 2018. 9th
Vienna International Conference on Mathematical Modelling.

[10] Stephan Dempe. Foundations of Bilevel Programming, volume 61 of Nonconvex Op-
timization and Its Applications. Kluwer Academic Publishers, Dordrecht, 2002.

12

https://people.sc.fsu.edu/~jburkardt/m_src/zero_rc/zero_rc.html
https://doi.org/10.5281/zenodo.2602459

0 2 4 6 8 10
10−10

10−4

102

J̃
−

J̃
?
[s
]

0 2 4 6 8 10
10−10

10−4

102
|H̃
|[
-]

0 2 4 6 8 10
10−6

10−2

102

Iteration [-]

|T
−

T
?
|[
s]

Figure 4: Trolley–load — Reduced cost J̃ , reduced Hamiltonian H̃ and final time T during
iterations, with initial guess Ts = 2.5 (dotted), Ts = 5 (dash-dotted), Ts = 7.5 (dashed)
and Ts = 10 (solid).

[11] Olivier Devolder, Fran cois Glineur, and Yurii Nesterov. First-order methods of
smooth convex optimization with inexact oracle. Mathematical Programming, 146:37–
75, 2014.

[12] Matthias Gerdts. Optimal Control of ODEs and DAEs. De Gruyter, 2011.

[13] Matthias Gerdts. OCPID-DAE1 — optimal control and parameter identification with
differential-algebraic equations of index 1. Technical report, Bundeswehr University
Munich, 2013. User’s Guide, http://www.optimal-control.de.

[14] Arturo Locatelli. Optimal control: An introduction. Basel: Birkhäuser, 2001.

[15] Roberto Lot and Francesco Biral. A curvilinear abscissa approach for the lap time
optimization of racing vehicles. IFAC Proceedings Volumes, 47(3):7559–7565, 2014.
19th IFAC World Congress.

[16] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends R© in
Optimization, 1(3):127–239, 2014.

13

[17] Lev Semenovich Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and
E. Mishchenko. The mathematical theory of optimal processes. Interscience Pub-
lishers, 1962.

[18] Inria Saclay Team Commands. BOCOP: an open source toolbox for optimal control.
http://bocop.org, 2017.

[19] L. Van den Broeck, Moritz Diehl, and J. Swevers. Time optimal MPC for mechatronic
applications. In Proceedings of the IEEE Conference on Decision and Control (CDC),
pages 8040–8045, Shanghai, China, Dec 2009.

[20] R. Verschueren, S. De Bruyne, Mario Zanon, J. V. Frasch, and Moritz Diehl. To-
wards time-optimal race car driving using nonlinear MPC in real-time. In 53rd IEEE
Conference on Decision and Control, pages 2505–2510, Dec 2014.

14

http://bocop.org

	Introduction.
	Problem and Approach.
	Lower Level.
	Upper Level.

	Methods.
	Lower Level.
	Upper Level.

	Numerical Results.
	Vehicle.
	Trolley–load.

