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Abstract

The switching times optimization problem for switched dynamical systems, with
fixed initial state, is considered. A nonnegative cost term for changing dynamics is
introduced to induce a sparse switching structure, that is, to reduce the number of
switches. To deal with such problems, an inexact Newton-type arc search proximal
method, based on a parametric local quadratic model of the cost function, is proposed.
Numerical investigations and comparisons on a small-scale benchmark problem are
presented and discussed.
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1 Introduction

We focus on the switching times optimization (STO) problem for switched dynamical
systems, which consists in computing the optimal time instants for changing the system
dynamics in order to minimize a given objective function. A cost term penalizing changes
of the continuous dynamics, whose sequence is given, is added to encourage a sparse
switching structure. In this paper, for the sake of simplicity and without loss of generality,
we consider problems with autonomous dynamical systems, cost functions in Mayer form
and fixed final time. Building upon a cardinality-based formulation of the switching cost
[3], in Section 2 an equivalent composite nonconvex, nonsmooth optimization problem
is introduced, which is amenable to proximal methods [6, 5]. In Section 3 we propose a
novel proximal arc search method, which builds upon both proximal gradient and Newton-
type methods, aiming at fast and safe iterates. Numerical tests in Section 4 show that
it consistently performs well compared to established methods on several instances of a
benchmark problem.
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2 Problem

Let us consider a time interval [0, T ], with final time T > 0, and a dynamical system
switching between N > 1 modes, with initial state x0 ∈ Rn. Consider switching times
τ = (τ1, . . . , τN+1)> and switching intervals δ = (δ1, . . . , δN )>, satisfying 0 = τ1 ≤ τ2 ≤
· · · ≤ τN+1 = T and δi = τi+1−τi for i = 1, . . . , N . Hence, the set ∆ of feasible vectors δ is
the simplex of size T in RN . Our goal is to find feasible switching intervals δ? minimizing
an objective functional in composite form, consisting of a Mayer term m and a switching
cost term S, weighted by a scalar σ > 0. The STO problem reads

minimize
δ∈∆

m(x(T )) + σS(δ) (1)

subject to ẋ(t) = f i(x(t)), t ∈ [τi, τi+1), i = 1, . . . , N

x(0) = x0

with each f i : Rn → Rn assumed differentiable [9]. The cost S(δ) can be expressed
as the cardinality of the support of vector δ, for any δ ∈ ∆, that is, the number of
nonzero elements in δ, as proposed in [3]. The direct single shooting approach yields a
reformulation of problem (1) without constraints, even though it may be at a disadvantage
compared to the multiple shooting approach [7]. Due to initial conditions and dynamics
in (1), a unique state trajectory xδ is obtained for any feasible δ ∈ ∆, and the smooth
term M can be defined as M(δ) := m(xδ(T )). Then, problem (1) can be equivalently
rewritten as a finite dimensional problem, namely

minimize
δ∈∆

M(δ) + σS(δ) (Pσ)

which is composite nonsmooth nonconvex with a compact convex feasible set.

3 Methods

Let us consider the finite dimensional optimization problem Pσ with σ > 0. This can be
handled by proximal methods [6, 1, 5], which in general require at least the gradient of
the smooth term M and the proximal operator of the nonsmooth term S. Feasibility can
be ensured at each iteration by considering the constraints in the proximal operator itself,
so that the proximal point is always feasible [3]. Instead, for σ = 0, problem Pσ turns into
a standard nonlinear program (NLP). Even in this case, standard NLP solvers may end
up in local minimizers of Pσ, as STO problems are often nonconvex [7].

Remark 1 (Smooth cost and gradient). Evaluating the gradient of the smooth term M
requires computing the sensitivity of the state trajectory xδ(T ) [4]. This can be achieved,
e.g., by using the sensitivity equation or by linearization of the dynamics over a background
time grid and direct derivation. In the numerical tests the latter approach is adopted, which
can readily give second-order information too; for more details refer to [9].
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Remark 2 (Proximal operator). Given σ > 0, the proximal operator for problem Pσ is a
possibly set-valued mapping [6], defined as

proxγ(x) = arg min
u∈∆

{
σS(u) +

1

2γ
‖u− x‖22

}
, for any γ > 0. (2)

For ∆ = RN and ∆ = RN≥0, the proximal point can be expressed analytically and com-
puted entrywise in that the optimization problem is separable. Instead, for the simplex-
constrained case, entrywise optimization is not possible due to the coupling among entries.
An efficient method for its evaluation is discussed and tested in [2], with accompanying
code, and adopted in [3].

3.1 Sweeping Hessian Proximal Method

Let us consider a composite function ϕ := f + g and the problem of finding a vector x
minimizing ϕ(x), provided an initial guess x0, with function f smooth, function g possibly
extended real-valued, and ϕ lower bounded; further assumptions are discussed below. We
propose a Sweeping HEssian ProXimal (SHEPX) method, which is an iterative proximal
arc search method, inspired by the proximal arc search procedure in [5] and the averaging
line search in [8]. At the k-th iteration, k = 0, 1, 2, . . . , we build a local, parametric,
quadratic model f̆ tk of the smooth term f around the current vector xk, namely

f̆ tk(x) := f(xk) +∇f(xk)
>(x− xk) +

1

2
(x− xk)>Bt

k(x− xk) (3)

with Bt
k a symmetric matrix. Parameter t allows to generate a family of quadratic models,

depending on Bt
k, which we define as a weighted combination

Bt
k := tBk +

1− t
t
I, t ∈ (0, 1], (4)

between the identity matrix I and a symmetric matrix Bk which models the curvature
of f in a neighborhood of xk; this can be the exact Hessian ∇2f(xk) or, e.g., a BFGS
approximation [5]. Given (3) and (4), the method generates sequences {tk}k, {xk}k such
that each update is a solution to a composite subproblem, namely

xk+1 = arg min
x

{
f̆ tkk (x) + g(x)

}
, (5)

which is amenable to (accelerated) proximal gradient methods. Concurrently, a backtrack-
ing arc search procedure finds tk = βik , β ∈ (0, 1), with ik the lowest nonnegative integer
such that the sufficient descent condition

ϕ (xk+1) < ϕ (xk)−
η

2
tk ‖xk+1 − xk‖22 (6)

is satisfied,for some η ≥ 0. Warm-starting the composite subproblems (5) could greatly
reduce the computational requirements; however, this issue is not further developed in the
following, where the current vector xk is chosen as initial guess.
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Remark 3. Lee at al. [5] adopted a backtracking line search procedure to select a step
length that satisfies a sufficient descent condition, given a search direction obtained with
Bt
k := Bk. Also, they mentioned a proximal arc search procedure, which has some benefits

and drawbacks over the line search, such as the fact that an arc search step is an opti-
mal solution to a subproblem but requires more computational effort. As a model for the
proximal arc search, they considered Bt

k := Bk/t [5, Eq. 2.20], for decreasing values of
t ∈ (0, 1], in place of (4).

For t → 0+, the model proposed in (4) yields Bt
k ≈ I/t, which corresponds to what

is assumed by proximal gradient methods. Hence, for sufficiently small t > 0, solutions
to subproblem (5) converge on the proximal gradient step, with stepsize controlled by t,
with no need to additionally estimate the Lipschitz constant of ∇f [6, 5]. On the other
hand, for t = 1, the second-order information is fully exploited, as B1

k = Bk, possibly
accelerating convergence. Thanks to these features, SHEPX seamlessly combines proximal
gradient and Newton-type methods, exploiting faster convergence rate of the latter while
retaining the convergence guarantees of the former [1, 6, 5]. Adopting a quasi-Newton
scheme for Bk and adaptive stopping conditions for subproblems (5), as discussed in [5],
makes SHEPX an inexact Newton-type proximal arc search method.

Remark 4. A detailed analysis and further development of the algorithm are ongoing
research. Currently, we are interested in the requirements for having global convergence to
a (local) minimizer. To this end, the forward-backward envelope could be used as a merit
function to select updates with sufficient decrease, as in [8, Eq. 9], to handle nonconvex
problems.

4 Numerical Results

We consider several instances of an exemplary problem and adopt different methods and
variants to solve them: FISTA, an accelerated proximal gradient method [1], PNOPT, a
proximal Newton-type line search method [5], and SHEPX, the aforementioned sweeping
Hessian proximal method. Both exact Hessian and BFGS approximation are tested. As
initial guess for problem Pσ with σ > 0, we use the solution to Pσ with σ = 0, obtained via
the fmincon MATLAB routine, with interior-point method and initial guess δi = T/N ,
i = 1, . . . , N . We stress that, in general, as both terms in the composite cost function
are nonconvex, only local minimizers can be detected. The results are obtained with
MATLAB 2018b, on Ubuntu 16.04, with Intel Core i7-8700 3.2 GHz and 16 GB of RAM.

The Fuller’s control problem has a solution which shows chattering behaviour, making
it a small-scale benchmark problem [7]. We consider N = 40 modes, and the i-th dynamics
read ẋ1 = x2, ẋ2 = vi, with the discrete-valued control vi taking values in the given
sequence {v1, v2, v3, v4, v1, v2, . . . }, with values v1 = 1, v2 = 0.5, v3 = −1 and v4 =
−2. Initial state x0 = (0.01, 0)> and final time T = 1 are fixed. The cost functional,∫ T

0 x2
1(t)dt+‖x(T )−x0‖22, can be transformed in Mayer form by augmenting the dynamics.

We choose the background time grid with 100 time points [9], a maximal number of
iterations (200, or 1000 for FISTA, for a fair comparison, because it is a first-order method
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Figure 1: Differential states x1 (top) and x2 (bottom) versus time t, for switching cost
σ = 0.001 (left) and σ = 0.01 (right): initial guess (dotted black), FISTA (200 iterations,
dashed blue), PNOPT (dash-dotted orange) and SHEPX (solid green).

and does not consider second-order information), and a stepsize tolerance (‖δk+1−δk‖2 <
10−6). For SHEPX, we set β = 0.1 and η = 0.

Table 1 summarizes the solutions found for different values of the switching cost σ,
in terms of cost and cardinality of δ?. Statistics regarding the optimization process are
also reported, such as required iterations and time. In Figure 1 the state trajectories
are depicted for two cases, highlighting the sparsity-inducing effect of the switching cost.
The results show that SHEPX performs similarly to FISTA and better than PNOPT in
terms of solution quality. We argue the line search procedure adopted by PNOPT is
detrimental for cardinality optimization problems, which benefit from updating by solving
a proximal subproblem. Also, SHEPX requires much less iterations than FISTA, meaning
that some second-order information is exploited. Interestingly, the quasi-Newton variant of
PNOPT seems to work better than the one with exact Hessian, while it holds the opposite
for SHEPX. The latter might be able to exploit the second-order information which the
former cannot handle with the line search, for which the positive-definite approximation
obtained via BFGS is beneficial.
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Table 1: Solutions and computational performances, with different methods, for switching
cost σ ∈ {10(i/3)−3 | i = 0, 1, 2, 3}. Variant with more iterations in { }, and with BFGS in
( ). Symbol ? denotes that the iteration limit is reached.

σ Method Cost value Cardinality Iterations CPU time [s]

0.001

Initial guess 0.0400 40 402 4.85
FISTA 0.0340 {0.0340} 34 {34} 200? {1000?} 5.90 {28.16}
PNOPT 0.0150 (0.0340) 15 (34) 200? (6) 3.85 (0.30)
SHEPX 0.0330 (0.0340) 33 (34) 17 (148) 0.42 (3.84)

0.0022

Initial guess 0.0880 40 402 4.81
FISTA 0.0726 {0.0726} 33 {33} 200? {1000?} 5.96 {27.72}
PNOPT 0.0220 (0.0311) 10 (14) 200? (14) 3.90 (0.43)
SHEPX 0.0176 (0.0229) 8 (10) 52 (200?) 1.56 (5.08)

0.0046

Initial guess 0.1840 40 402 4.89
FISTA 0.0329 {0.0236} 7 {5} 200? {351} 5.39 {8.86}
PNOPT 0.0330 (0.0470) 7 (10) 200? (5) 3.96 (0.37)
SHEPX 0.0236 (0.0333) 5 (7) 12 (200?) 0.28 (5.15)

0.01

Initial guess 0.4000 40 402 4.82
FISTA 0.0509 {0.0306} 5 {3} 200? {449} 5.24 {11.14}
PNOPT 0.0513 (0.0712) 5 (7) 200? (4) 3.90 (0.36)
SHEPX 0.0306 (0.0515) 3 (5) 10 (200?) 0.26 (4.99)

6



5 Outlook

We proposed a proximal Newton-type arc search method for dealing with cardinality
optimization problems. Numerical tests on a sparse switching times optimization problem
with switching cost have demonstrated the viability of the approach. A comparison to
other proximal methods, in terms of computation time and solution quality, has shown
its effectiveness. Future research needs to further analyze the proposed method and to
extend the present work to a more general class of problems. In particular, we aim at
embedding proximal methods in the augmented Lagrangian framework for dealing with
constraints and eventually tackling mixed-integer optimal control problems.
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