
Nonsmooth Newton’s Method:

Some Structure Exploitation

Alberto De Marchi∗ Matthias Gerdts

June 8, 2019

Abstract

We investigate real asymmetric linear systems arising in the search direction gen-
eration in a nonsmooth Newton’s method. This applies to constrained optimisation
problems via reformulation of the necessary conditions into an equivalent nonlinear
and nonsmooth system of equations. We propose a strategy to exploit the problem
structure. First, based on the sub-blocks of the original matrix, some variables are
selected and ruled out for a posteriori recovering; then, a smaller and symmetric linear
system is generated; eventually, from the solution of the latter, the remaining vari-
ables are obtained. We prove the method is applicable if the original linear system
is well-posed. We propose and discuss different selection strategies. Finally, numeri-
cal examples are presented to compare this method with the direct approach without
exploitation, for full and sparse matrices, in a wide range of problem size.

Keywords: Structure Exploitation; Linear Algebra; Nonsmooth Newton’s Method;
Nonlinear Optimization.

1 Introduction

In this paper, we consider the real square nonsymmetric possibly large sparse linear system Q A> C>

A
−SC T

xy
z

 =

fg
h

 (1)

where Q ∈ Rnx×nx , A ∈ Rna×nx , C ∈ Rnc×nx and S, T ∈ Rnc×nc are given matrices and
f ∈ Rnx , g ∈ Rna , h ∈ Rnc are given vectors (nx, na, nc being some positive integers); S
and T are non-zero diagonal matrices. The contribution of this paper is the exploitation of
the structure in problem (1) and its transformation into a smaller symmetric linear system,
with a saddle-point structure, from which the solution to (1) can be easily recovered. In

∗Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg/Munich, Germany.
Corresponding author: alberto.demarchi@unibw.de.
Published in: Computational Science – ICCS 2019. Rodrigues J. et al. (eds). Lecture Notes in Computer
Science, vol 11538.
DOI: 10.1007/978-3-030-22744-9 32.

1

https://link.springer.com/book/10.1007/978-3-030-22744-9
https://link.springer.com/bookseries/558
https://link.springer.com/bookseries/558
https://doi.org/10.1007/978-3-030-22744-9_32

particular, two stages are discussed. First, a reduction step generates a smaller linear
system and a way to recover eliminated variables from the solution of this reduced system.
This step exploits the fact that matrix T is diagonal, and then symbolically solve for (some
of) the variables in z. Several different reduction strategies are discussed and compared.
The second step aims at rewriting the linear system in a symmetric form, allowing to adopt
solvers for symmetric systems, which are usually more time and memory efficient. Despite
these advantages, some computational overhead is needed, especially in the reduction step,
which might introduce a break-even point, that is, this exploitation may pay off, e.g., in
terms of computational time, only under certain conditions, e.g., large instances. In fact,
an optimal reduction strategy might exists, depending on the specific properties of the
problem; indeed, it may even depend on the specific values of the entries. Throughout the
paper, we investigate the influence of the reduction strategy on the performance of the
aforementioned two-steps exploitation; however, a detailed optimization of the reduction
policy is beyond the scope of this paper. We point out that the proposed method could
be combined with constraint-reduction approaches as, e.g., those presented in [5, 12].

Once the original problem (1), say V d = r for brevity, has been transformed, a reduced
symmetric linear system, say V̂ d̂ = r̂, is to be solved. To this end, any method can be
adopted. The choice may depend on the problem, in particular on its size, fill-in, sparsity
pattern, accuracy requirements and memory constraints, availability of good precondition-
ers, and so on. Within this work, we compare the effectiveness and the limitations of the
proposed method for structure exploitation when a direct solver is adopted to tackle the
linear system.

1.1 Motivation

Linear systems with the form (1) arise, e.g., from nonlinear complementarity problems [6],
nonlinear optimization problems with inequality constraints [7] and discretized optimal
control problems with state and control constraints [8, 9]. Usually, these are reformulated
through the Karush-Kuhn-Tucker (KKT) necessary optimality conditions, then equiva-
lently transformed into a nonlinear system of equations with the so called NCP-functions
[16] and finally solved with a nonsmooth version of Newton’s method [14]. Some global-
ization strategies [9, 11] and results in functions spaces [18] have been reported. It has

V , r V̂ , r̂ d̂

direct
solver

iterative
solver

d
reduction recovery

Figure 1: Solution diagram: direct methods with (solid) and without (dashed) structure
exploitation are compared; iterative methods (dotted) are not considered here.

2

been shown that, for some NCP-functions, this approach is equivalent to a primal-dual
active set strategy [10]. Indeed, different NCP-functions exhibit different properties and
might affect the convergence behaviour [1, 16]. With reference to the problem (1), matri-
ces Q, A and C can be considered as iterate-dependent linear-quadratic approximations
of an underlying nonlinear problem, while diagonal matrices S and T originate from the
NCP-function adopted and vectors f , g and h are the residuals of the aforementioned
nonlinear system of equations.

Example Let us consider a quadratic program (QP) with linear equality and inequality
constraints. Hence, we seek an x ∈ Rnx minimizing 1

2x
>Qx+q>x, subject to constraints

Ax = a, Cx ≤ c, where Q, A, C and q, a, c are given matrices and vectors, respectively.
Here the inequalities are understood componentwise. Linear constraints ensure that reg-
ularity conditions are met, then the KKT conditions are necessary for optimality; these
read:

Qx+ q +A>λ+C>µ = 0 (2a)

Ax = a (2b)

0 ≤ µ ⊥ Cx ≤ c (2c)

where λ and µ denote the Lagrange multipliers. In (2c), inequality and complementarity
constraints hold componentwise. Let us consider an NCP-function ϕ : R2 → R, e.g., the
original or the penalized Fischer-Burmeister function [1, 7], which by definition satisfies

ϕ(a, b) = 0 ⇔ 0 ≤ a ⊥ b ≥ 0 (3)

for any pair (a, b). Thanks to this property, the KKT system (2) is equivalently rewritten
as a nonlinear system ψ(z) = 0, collecting vector z = (x,λ,µ) ∈ Rnz , nz := nx +na +nc,
and with vector-valued function ψ : Rnz → Rnz defined by

ψ(z) =

Qx+ q +A>λ+C>µ
Ax− a

ϕ(c−Cx,µ)

 (4)

Here the NCP-function ϕ applies componentwise. A (globalized) possibly nonsmooth
Newton’s-type method generates a sequence {zk} through the recurrence zk+1 = zk +
αkdk, k = 0, 1, 2, . . . , where the step length αk > 0 is determined, e.g., by a line-search
procedure of Armijo’s type and the search direction dk is the solution of the linear equation
V kd = −ψ(zk) [7, 8, 9, 11, 14]. The matrix V k is an element of the Clarke’s generalized
Jacobian (that is the convex hull of the Bouligand differential [2]) of ψ at zk, namely
V k ∈ ∂ψ(zk) [8, 11]. The NCP-function ϕ is the only element in (4) which can possibly
make function ψ nonsmooth. Hence, from (4), one obtains

V k =

 Q A> C>

A

−SkC T k

 (5)

3

with diagonal matrices Sk = diag
(
sk1, s

k
2, . . . , s

k
nc

)
and T k = diag

(
tk1, t

k
2, . . . , t

k
nc

)
, whose

entries are pairwise coupled via the (possibly generalized) differential of the NCP-function
ϕ. Defining vk := c − Cxk the inequality constraint violation at the k-th iterate, for
i = 1, 2, . . . , nc, the coupling for the i-th inequality constraint reads [1, 7, 8]:(

ski , t
k
i

)
∈ ∂ϕ

(
vki , µ

k
i

)
(6)

We remark that matrices Sk and T k are diagonal because the NCP-function ϕ applies
componentwise in (4). Then, the linear system V kd = −ψ(zk) to compute the search
direction dk corresponds exactly to problem (1).

1.2 Outline

This work is organized as follows. Section 2 outlines the structure exploitation strategy
and introduces an underlying assumption. In Sections 2.1 and 2.2 the two main steps
are developed and discussed. Section 3 validates the proposed approach numerically, for
both full and sparse matrices, with different reduction strategies, showing effectiveness
and limitations of the proposed algorithm. Section 4 concludes the paper and presents
ideas for future research.

2 Structure exploitation

Problem (1), also denoted V d = r for brevity, can be directly solved via any linear
algebra package, e.g., MA48 [4], PARDISO [15], SUPERLU [13], mldivide in MATLAB
[17]. However, we aim at exploiting our knowledge about the structure of matrix V ;
computational effort and achieved accuracy might benefit from this, especially for large-
scale and sparse linear systems. Firstly, we notice that matrix V and vector r are often
computed blockwise and then assembled. Hence, matrices Q, A, C and vectors s, t,
f , g and h are here considered as the starting ingredients for solving (1). Overall, two
directions are explored, mainly exploiting the diagonal structure of S and T . In Section
2.1 a reduction step is discussed, eliminating some variables and introducing a smaller
asymmetric linear system. Then, in Section 2.2, this is transformed into a symmetric one
which is equivalent. Nonetheless, these operations for reorganizing the linear system and
successive recovering of variables constitutes an overhead of computation. This means
that these procedures might be worthy only for certain problems, likely large instances
with lots of inequality constraints. In Section 3, numerical tests show that this break-even
point corresponds to relatively small problem instances (for the tested implementation).

We point out that the proposed method relies on the following assumption on the
diagonals of S and T ; it reads:

Assumption 1. For i = 1, 2, . . . , nc, it holds (si, ti) 6= (0, 0).

This is a mild requirement, in that it corresponds to problem (1) to be well-posed.
One can show the following result:

4

Lemma 1. If problem (1) admits a unique solution, then Assumption 1 holds.

by contradiction. Let us assume there exist d unique solution to (1) and i such that
(si, ti) = (0, 0). Hence, the row of V corresponding to the i-th inequality constraint
consists of zeros only. Then, the matrix V is rank deficient and the problem is undeter-
mined. Two cases are possible, depending on the value of hi on the right-hand side. If
hi = 0, then (1) admits infinitely many solutions, hence solution d is not unique. If hi 6= 0,
then the linear system is unsolvable (impossible) and d cannot be a solution.

Remark 1. Assumption 1 requires a mild condition to be satisfied by the NCP-function
ϕ. For instance, a sufficient condition is that for any given pair (a, b) ∈ R2 there exists a
pair (s, t) ∈ ∂ϕ(a, b) such that (s, t) 6= (0, 0); this allows to choose always suitable entries
for S and T . The Fischer-Burmeister function and the max function, among other NCP-
functions, have this property.

Let us denote I := {1, 2, . . . , , nc} the index set for the inequality constraints, I0re :=
{i ∈ I | ti 6= 0} and I0sy := {i ∈ I | si 6= 0} the largest index sets that allow respectively
the reduction step and the symmetrization step, discussed below. Thanks to Assumption
1, these satisfy I0re ∪ I0sy = I. Let us consider an index subset Ire ⊆ I0re, sufficiently large
to satisfy Ire ∪ I0sy = I. Then, for the associated complement Ire := I \ Ire, it holds
Ire ⊆ I0sy. With this construction, it is possible to apply the reduction step, ruling out a
given set Ire of variables, and subsequently the symmetrization step on the linear system
with the remaining variables, namely those in Ire.
Remark 2. We stress that in general it is I0re ∩ I0sy 6= ∅ and hence the choice of Ire is
not unique. This suggests there could be an optimal reduction strategy, possibly dependent
on V and with some degree of computation awareness. However, this issue is beyond the
scope of this paper.

In Section 3, we compare the following definitions of Ire through numerical investiga-
tions:

Itre :=
{
i ∈ I

∣∣∣ |ti| ≥ ε} (7a)

Isre :=
{
i ∈ I

∣∣∣ |si| ≤ ε} (7b)

Itsre :=
{
i ∈ I

∣∣∣ |ti| ≥ |si|} (7c)

where ε > 0 is a given, sufficiently small value, introduced as a numerical tolerance in
(7a)–(7b). For ε→ 0+, these sets approach the largest and the smallest possible reduction
sets, respectively, namely reducing the most and the least of the variables. Instead, the
set defined in (7c) represents an arbitrary trade-off, introduced for the sake of comparison;
see Fig. 2.

Remark 3. One could think about performing either the reduction or symmetrization
step. However, (i) under Assumption 1, once the system is reduced, the symmetrization
step is straightforward, inexpensive and likely effective; (ii) the symmetrization step might
be impossible without preliminary reduction, depending on the invertibility of S.

5

0 ε
0

ε

|s|

|t|

0 ε
0

ε

|s|

|t|

0 ε
0

ε

|s|

|t|

Figure 2: Reduction sets (7) in the |s|-|t| plane: Itre (left), Isre and Itsre (right).

2.1 Reduction

The idea behind the reduction step stems from the observation that problem (1) may be
separable, i.e. that it may be possible to compute the value of some variables a posteriori,
namely once the others are given. In fact, a solution to problem (1) must satisfy

Tz = SCx+ h (8)

where matrix T is diagonal. Given an index set Ire ⊆ I0re, it is possible to compute zi,
for every i ∈ Ire, from (8) once the solution vector x is known. To be sure, let us build
matrices T re := diag (ti | i ∈ Ire) and T re := diag (ti | i 6∈ Ire) and define zre and zre the
corresponding vectors of unknown variables which can and cannot be reduced, respectively.
Then, partitioning the linear system (1) accordingly with these definitions yields:

Q A> C>re C>re
A

−SreCre T re

−SreCre T re



x
y
zre
zre

 =


f
g
hre

hre

 (9)

where matrices Cre, Cre, Sre, Sre and vectors hre and hre are constructed analogously,
based on Ire. The matrix T re is nonsingular, by definition, and then, from (9), one can
formally solve for zre, obtaining

zre = T−1re (SreCrex+ hre) , (10)

whose evaluation is straightforward because T re is diagonal. Plugging (10) back into
(9) leads to a smaller linear system, after rearrangements, without reduced variables zre,
namely:  Q̂ A> C>re

A
−SreCre T re

 x
y
zre

 =

 f̂
g
hre

 (11)

where matrix Q̂ and vector f̂ are defined by:

Q̂ := Q+C>reT
−1
re SreCre (12a)

f̂ := f −C>reT−1re hre (12b)

6

The larger the set Ire, the more reduced variables, the smaller the obtained linear system
(11). In turn, the computation of Q̂ may be costly, involving a matrix-matrix multiplica-
tion, Eq. 12a. Also, for sparse problems, the fill-up of matrix Q̂ may become significant.
These drawbacks suggest there might be a trade-off in the reduction step, and hence an
optimal reduction strategy, as pointed out in Remark 2.

2.2 Symmetrization

Linear systems with a symmetric matrix can be solved more efficiently, in terms of time
and memory. In order to get a symmetric matrix out of (11), it would suffice to left-
multiply the rows associated with inequality constraints, namely with zre, by the inverse
of −Sre. As discussed above, it is Ire ⊆ I0sy, hence the matrix Sre is nonsingular, by
construction; moreover, its inversion is straightforward, since it is diagonal. Then, the
reduced symmetric linear system V̂ d̂ = r̂ reads: Q̂ A> C>re

A

Cre −S−1re T re

 x
y
zre

 =

 f̂
g

−S−1re hre

 (13)

The matrix V̂ is symmetric and smaller than V ; the vector d̂ collects the unknowns
corresponding to optimization variables (x), equality constraints’ multipliers (y) and not-
reduced inequality constraints’ multipliers (zre).

Remark 4. In (12)–(13), the matrix-matrix products T−1re Sre, S
−1
re T re and the matrix-

vector products T−1re hre, S
−1
re hre can be evaluated as entry-wise vector-vector products. In

fact, this is possible because matrices Sre, Sre, T re and T re are diagonal. Furthermore,
one can exploit this feature by choosing a specific multiplication ordering, aiming at the
lowest possible computational complexity.

Algorithm 1 Abstract structure-exploiting linear solver.

Input: Q, A, C, s, t, f , g, h; ε
Output: x, y, z
Ire ← s, t, ε; // reduction strategy, Eq. 7

Cre, sre, tre,hre,Cre, sre, tre,hre ← C, s, t,h, Ire; // partitioning

Q̂← Q,Cre, tre, sre ; // Eq. 12a

f̂ ← f ,Cre, tre,hre ; // Eq. 12b

V̂ ← Q̂,A,Cre, sre, tre ; // Eq. 13

r̂ ← f̂ , g, sre,hre ; // Eq. 13

x,y, zre ← V̂ , r̂ ; // linear system

zre ← Cre, sre, tre,hre,x ; // recovering, Eq. 10

z ← zre, zre, Ire; // assembling

7

3 Numerical results

This Section reports and discusses the results obtained from a MATLAB [17] implemen-
tation of Algorithm 1, considering Remark 4. The plain code (as well as a Julia 1.0 and
a Python 3.6 implementation) are publicly available [3].

We are interested in comparing the computation time for solving problem (1), through
direct methods, with and without the proposed structure exploitation method, see Fig. 1
above. Also, we investigate how it is affected by the problem size N := nx + na + nc and
the relative number of equality and inequality constraints, α := na/nx and γ := nc/nx,
respectively.

A problem instance consists of matrices Q, A, C and vectors s, t (the diagonal of S
and T , respectively), f , g and h. In the case of full matrices, starting from given values
of N , α and γ, an instance is generated as follows:

nx =

[
N

1 + α+ γ

]
na = [αnx]

nc = N − nx − na
Q̄ij ∼ N (0, 1) i = 1, . . . , nx , j = 1, . . . , nx

Q =
1

2

(
Q̄+ Q̄

>
)

Aij ∼ N (0, 1) i = 1, . . . , na , j = 1, . . . , nx

Cij ∼ N (0, 1) i = 1, . . . , nc , j = 1, . . . , nx

ρi ∼
√
U(0, 1) i = 1, . . . , nc

θi ∼ U(0, 2π) i = 1, . . . , nc

si = 1 + ρi cos θi i = 1, . . . , nc

ti = 1 + ρi sin θi i = 1, . . . , nc

fi ∼ N (0, 1) i = 1, . . . , nx

gi ∼ N (0, 1) i = 1, . . . , na

hi ∼ N (0, 1) i = 1, . . . , nc

where N (µ, σ) denotes the normal continuous probability distribution with mean value
µ and standard deviation σ, and U(a, b) the uniform distribution with support in [a, b].
Entries of S and T are pairwise coupled in that they are sampled from a disk in the s-t
plane, centered in (1, 1) with unitary radius, with uniform probability distribution. This
setting is motivated by and mimics the generalized differential of the Fischer-Burmeister
function [8]. Both, the direct and the structure-exploiting methods setup the linear system
starting from these inputs. Notice that the reduced approach does not build V nor
r, but their reduced and symmetric counterpart V̂ and r̂. In our implementation, the
direct method builds V and r and then adopts the mldivide routine to solve V d = r.
Instead, for the reduced approach (with full matrices), the linsolve routine is adopted
and explicitly informed that matrix V̂ is symmetric. The problem size N varies between

8

101 102 103 104

10−4

10−2

100

N [-]

t
[s
]

direct
reduced

Figure 3: Execution time: direct approach (tdir, dot) and reduced approach (tred, cross)
with reduction set Itre; full matrices. Median value.

10 and 104 for full and between 103 and 2 · 104 for sparse matrices. For each problem
size, a set of 100 problem instances are generated (only 10 if N > 104), checked for ill-
conditioning and eventually solved. The composition of constraints is chosen to be (α, γ) ∈
{(0, 1), (0, 1.5), (0.5, 1), (0.5, 1.5)} (colored in blue, red, green and violet, respectively). The
index sets defined in (7) are adopted and compared, with the tolerance ε = 10−3. Sparse
matrices are generated in such a way that they approximately have 10 entries for each
row; this makes the number of nonzero entries to increase linearly and not quadratically
with the problem size N .

The computation time for the direct and reduced case are depicted in Fig. 3, consid-
ering full matrices and the (large) index set Itre. This gives an idea about the adopted
implementation and computing hardware; also, one can guess the computational complex-
ity of the underlying algorithm for solving a linear system. As expected in Section 2, the
overhead due to partitioning, reducing and recovering, introduces a break-even point, at
around N = 60 (for Itre and Itsre, but not for Isre); hence, the reduced approach is not ben-
eficial only for small-sized problems. This and other considerations can be drawn based
on Fig. 4, where it is depicted the (median value of the) ratio of the execution time with
the reduced approach, tred, with the different reduction strategies, over the direct one,
tdir. Therein, the break-even point corresponds to the unitary ratio; also, the additional
computational burden is significant for low values of N . For large N , instead, the ratio
decreases to approximately one-half for Itre and Itsre, while for Isre it stays around the unit.
As one could expect, the reduction set Isre is not as effective as Itre and Itsre because it does
not benefit very much from the reduction step, in that it eliminates only few variables. The
relative number of constraints has an impact on the execution time but it does not dras-
tically affect the overall behaviour (for both, full and sparse case). In fact, all else being
equal, either decreasing the number of equalities and increasing the number of inequalities
reduces the execution time ratio, meaning that the reduced approach is more effective
and worthy for (large) problems with many inequality constraints. For what concerns the
case of sparse matrices, similar observations are valid, see Fig. 5. In order to show the

9

101 102 103 104
0

0.5

1

2

3

N [-]

t r
e
d
/
t d

ir
[-
]

101 102 103 104
0

0.5

1

2

3

N [-]

t r
e
d
/t

d
ir
[-
]

101 102 103 104
0

0.5

1

2

3

N [-]

t r
e
d
/t

d
ir
[-
]

Figure 4: Ratio of execution time: Itre (top), Itsre (bottom left), Isre (bottom right); full
matrices. Median value (line) and 9%-91% quantiles (filled area).

distribution of the results obtained from the executed tests, along with the median value,
the 9% and 91% quantiles are also reported. For full matrices, Fig. 4, the distribution
is relatively narrow, while for sparse matrices, Fig. 5, the results are relatively scattered.
Thus, we argue the sparsity pattern greatly affects the computation time. Nevertheless,
for relatively large sparse matrices, the ratio tred/tdir approaches one-half and promisingly
decreases.

These numerical results suggest the set Itre defined in (7a) to be the most effective
reduction strategy among those tested. In fact, it generates the smallest linear system
and then post-solves the most variables. However, as argued in Section 2.1, we claim
it might be not the case for (much) larger problem instances, because of the required
overhead for the reduction step.

4 Conclusions

This paper proposed and studied a structure-exploiting approach for solving linear systems
arising in the context of nonsmooth Newton’s method. The applicability of this method
was established under well-posedness of the original problem. Numerical examples showed
that the developed approach reduces the computational time, with both, full and sparse

10

103 104
0

0.5

1

N [-]

t r
e
d
/t

d
ir
[-
]

103 104
0

0.5

1

N [-]

t r
e
d
/t

d
ir
[-
]

Figure 5: Ratio of execution time: Itre (top) and Itsre (bottom); sparse matrices. Median
value (line) and 9%-91% quantiles (filled area).

linear systems. Some of the tested reduction strategies resulted in halving the execution
time.

Analogous ideas apply when an iterative linear solver is of choice, e.g., for very large
systems; tailored preconditioners are subject of future research. It remains to assess
the effectiveness and the drawbacks of the method when embedded into larger routines
for numerical optimization. Moreover, it would be interesting to investigate an optimal
reduction strategy, possibly computationally aware.

Acknowledgements

A.D.M. heartily thanks his marafiki for the unforgettable memories and wishes them a
happy marriage.

References

[1] Bintong Chen, Xiaojun Chen, and Christian Kanzow. A penalized Fischer-Burmeister
NCP-function. Mathematical Programming, 88(1):211–216, Jun 2000.

[2] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York,
1983.

[3] Alberto De Marchi. Code supporting “Nonsmooth Newton’s method: some structure
exploitation”. https://doi.org/10.5281/zenodo.1486064, Nov 2018.

[4] Iain S. Duff and John K. Reid. MA48 — a Fortran code for direct solution of sparse
unsymmetric linear systems of equations. Technical Report RAL-93-072, Rutherford
Appleton Laboratory, Oct 1993.

[5] Francisco Facchinei, Andreas Fischer, and Christian Kanzow. On the accurate iden-
tification of active constraints. SIAM Journal on Optimization, 9(1):14–32, 1998.

11

[6] Francisco Facchinei and Christian Kanzow. A nonsmooth inexact Newton method
for the solution of large-scale nonlinear complementarity problems. Mathematical
Programming, 76(3):493–512, Mar 1997.

[7] Andreas Fischer. A special Newton-type optimization method. Optimization, 24:269–
284, 1992.

[8] Matthias Gerdts and Martin Kunkel. A nonsmooth Newton’s method for discretized
optimal control problems with state and control constraints. Journal of Industrial &
Management Optimization, 4(2):247–270, 2008.

[9] Matthias Gerdts and Martin Kunkel. A globally convergent semi-smooth Newton
method for control-state constrained DAE optimal control problems. Computational
Optimization and Applications, 48(3):601–633, Apr 2011.

[10] Michael Hintermüller, K. Ito, and Karl Kunisch. The primal-dual active set strategy
as a semismooth Newton method. SIAM Journal on Optimization, 13(3):865–888,
2002.

[11] Houyuan Jiang. Global convergence analysis of the generalized Newton and Gauß-
Newton methods of the Fischer-Burmeister equation for the complementarity prob-
lem. Mathematics of Operations Research, 24(3):529–543, 1999.

[12] M. Paul Laiu and André L. Tits. A constraint-reduced MPC algorithm for convex
quadratic programming, with a modified active set identification scheme. Computa-
tional Optimization and Applications, Mar 2019.

[13] Xiaoye Sherry Li. An overview of SuperLU: Algorithms, implementation, and user
interface. ACM Transactions on Mathematical Software, 31(3):302–325, Sep 2005.

[14] Liqun Qi and Jie Sun. A nonsmooth version of Newton’s method. Mathematical
Programming, 58(1):353–367, Jan 1993.

[15] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear equa-
tions with PARDISO. Future Generation Computer Systems, 20(3):475–487, 2004.

[16] Defeng Sun and Liqun Qi. On NCP-functions. Computational Optimization and
Applications, 13(1):201–220, Apr 1999.

[17] The MathWorks, Inc. MATLAB Release 2017b. Natick, Massachusetts, United
States.

[18] Michael Ulbrich. Nonsmooth Newton-like Methods for Variational Inequalities and
Constrained Optimization Problems in Function Spaces. PhD thesis, Technische Uni-
versität München, Feb 2002.

12

	Introduction
	Motivation
	Outline

	Structure exploitation
	Reduction
	Symmetrization

	Numerical results
	Conclusions

