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Abstract

In this paper we reformulate a switching times optimization problem with non-
uniform switching costs and dwell-time constraints via direct multiple shooting, sparsity-
inducing regularization and semi-continuous variables. The transformed problem has
composite smooth/nonsmooth objective function and smooth constraints. Necessary
optimality conditions for such problems are derived, resembling results from smooth
optimization. A safeguarded, primal-dual, augmented Lagrangian proximal method is
proposed for its numerical solution, and the global convergence toward points satis-
fying the necessary conditions is detailed. Finally, numerical results demonstrate the
efficacy and limitations of the method.

Keywords: Switching time optimization, mixed-integer optimal control, switched
systems, switching cost, augmented Lagrangian methods, proximal methods.

1 Introduction

Switched dynamical systems consist of a collection of continuous subsystems with a switch-
ing law defining the active one at each time instant [1]. A similar structure arises in dynam-
ical systems with discrete-valued control inputs [2]. Switching times optimization (STO)
problems deal with the choice of the time instants at which the system dynamics change
in order to minimize an objective function. In this paper, we consider STO problems
for continuous-time autonomous nonlinear switched dynamical systems, with boundary
conditions, non-uniform dwell-time constraints, and non-uniform switching (or activation)
costs. This work does not adopt the insertion gradient approach [3], but extends the
recently proposed cardinality-based formulation [4]. Dwell-time constraints are expressed
through feasible sets for the switching intervals, namely the difference between switching
times. Also, direct multiple shooting [2, 5] is preferred over single shooting [1, 4], which
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leads to a problem transcription with more structure and smoothness [6]. The decision
variables of the corresponding finite-dimensional problem are the time instants at which
the system dynamics switch, called switching times, and the system states at those times.
With this formulation, the objective function consists of two, possibly nonconvex, terms:
one is smooth and the other has an easy-to-compute proximal mapping. Some constraints
are included, extending previous works [7, 4], to satisfy dynamics at switching times,
boundary conditions, and final time constraints. A finite-dimensional constrained opti-
mization problem with composite objective function and smooth constraints is obtained.
Necessary optimality conditions are investigated for such class of problems, showing the
relationship with the corresponding results in constrained smooth optimization. A simple
algorithm is proposed based on embedding proximal methods [8, 9, 10] into the augmented
Lagrangian framework [11, 12], possibly primal-dual [13, 14], and safeguarded [15]. Under
mild assumptions, this method allows to avoid a pure penalty approach [16] and to deal
with nonconvex constraints [17].

2 Preliminaries and Notation

R, R+, and Z denote the sets of real numbers, non-negative real numbers, and integers,
respectively. The identity matrix and the vector of ones are denoted by I and 1, respec-
tively, and the extended real line as R := R∪{−∞,∞}. [a, b], (a, b), [a, b), and (a, b] stand
for closed, open, and half-open intervals, respectively, with end points a and b. [a; b], (a; b),
[a; b), and (a; b] stand for discrete intervals, e.g., [a; b] = [a, b]∩Z. We denote ‖·‖0 : R→ R
the function which satisfies ‖x‖0 = 0 if x = 0 and ‖x‖0 = 1 otherwise. Given a function
f : Rn → R and a point x with f(x) finite, a vector v ∈ Rn is a regular subgradient
of f at x, denoted v ∈ ∂̂f(x), if f(z) ≥ f(x) + v>(z − x) + o(‖z − x‖) [18]. Given a
nonempty closed set B ⊆ Rn, we denote χB : Rn → R its characteristic function, namely
χB(x) = 0 if x ∈ B and χB(x) = ∞ otherwise, distB : Rn → R+ its distance, namely
x 7→ minz∈B‖z−x‖, and its projection projB : Rn ⇒ Rn, namely x 7→ arg minz∈B‖z−x‖.
Given a positive scalar γ and a function g : Rn → R, let proxγg : Rn ⇒ Rn denote the
proximal mapping x 7→ arg minz

{
2γg(z) + ‖z− x‖2

}
.

3 Problem Reformulation

Let Mayer cost m : Rnx × Rnx → R, boundary conditions b : Rnx × Rnx → Rnb , and
time interval [0, T ], T > 0, be given; herein nx is the state dimension. Let us consider a
switched autonomous dynamical system with N modes, namely dynamics fi : Rnx → Rnx
for i ∈ [1;N ]. Switching times τ ∈ RN+1, with τ1 = 0 and τN+1 = T , refer to the time
instants at which the system dynamics change [1]. Switching intervals d ∈ RN are defined

2



by di := τi+1 − τi, i ∈ [1;N ]. The problem of interest is to

find x ∈W 1,∞([0, T ],Rnx), d ∈ RN (P1)

minimizing m(x(0),x(T )) + s(d)

such that ẋ(t) = fi(x(t)), for t ∈ [τi, τi+1), i ∈ [1;N ]

b(x(0),x(T )) = 0

d ∈ D, 1>d = T.

Herein, the feasible set D := D1 × · · · × DN ⊆ RN+ models dwell-time constraints on
switching intervals d and the cost term s : RN → R is defined as

s(d) :=
N∑
i=1

σi‖di‖0 (1)

for a given vector σ of non-negative switching costs, extending [4]. The Mayer cost m can
account for running costs by augmenting the system state [5]. For free final time problems,
the simplex constraint coupling the switching intervals d can be dropped from (P1).

3.1 Direct Multiple Shooting

Let us reformulate (P1) via direct multiple shooting, considering switching times as shoot-
ing nodes [5]; this unusual choice gives the problem a simpler structure. Then, a finite-
dimensional problem is obtained, with switching intervals d ∈ D and states at switching
times, namely ξ := {ξk|k ∈ [1;N + 1]}, with ξk := x(τk) ∈ Rnx , as decision variables. We
consider functions Φi : Rnx×R→ Rnx , i ∈ [1;N ], as Φi(x0, d) = xi(d), being xi : R→ Rnx
the solution to the initial value problem

ẋ(t) = fi(x(t)), x(0) = x0, t ∈ [0, d] (2)

for any x0 ∈ Rnx , d ∈ R. The constraint involving the ordinary differential equation in
(P1) is substituted, with functions Φi, by equalities induced by the shooting intervals [2, 5].
In order to deal with possibly disconnected feasible set D, we embed the constraint d ∈ D
in (P1) into the nonsmooth term via characteristic function χD, defining sD := s + χD.
Hence, the problem is to

find ξ ∈ Rnx×(N+1), d ∈ RN (P2)

minimizing m(ξ1, ξN+1) + sD(d)

such that ξi+1 = Φi(ξi, di) i ∈ [1;N ]

b (ξ1, ξN+1) = 0

1>d = T.

Functions Φi are evaluated via numerical integrators, thus discretizing the time domain
and applying suitable integration schemes. Computing the sensitivity of Φi(ξi, di) to ξi is a
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standard task in multiple shooting methods; see [2, 5]. The sensitivity to switching interval
di comes from dynamics at final state. Notice that there is often a gap between continuous-
and discrete-time dynamics, possibly converging with finer discretizations [5]. We con-
sider the sensitivities for the discrete-time dynamics, matching the numerical integration
scheme. Moreover, by decoupling dynamics fi through Φi and associated constraints, the
direct multiple shooting approach helps avoiding issues related to nonsmoothness [6].

One can readily extend (P2): cost function m̃(ξ,d) can have switching states and
intervals as arguments, not initial and final state only; simple constraints on switching
states can be included in the nonsmooth term s̃(ξ,d); coupled boundary and switching
conditions on switching states can be considered as b̃(ξ) = 0.

3.2 Proximal Operator

The proximal mapping of sD can be evaluated component-wise, thanks to the separable
structure of both the switching cost s and the feasible set D. Denoting si := σi‖ ·‖0 +χDi ,
it holds zi :=

[
proxγsD(d)

]
i

= proxγsi(di), i ∈ [1;N ]. Since characteristic function χDi
guarantees the projection onto Di, for i ∈ [1;N ], it holds

zi = arg min
ui∈Di

{
2γσi‖ui‖0 + (ui − di)2

}
.

If either 0 6∈ Di or σi = 0, then the first term attains a constant value in Di, hence the
problem turns into a projection, yielding zi = projDi(di) =: pi. On the other hand, if
0 ∈ Di and σi > 0, the switching cost plays a role. Comparing the costs associated to
ui 6= 0 and ui = 0, namely their ratio ri :=

[
2γσi + dist2Di(di)

]
/d2i , a minimizer can be

found: zi = pi if ri < 1, zi = {0} ∪ pi if ri = 1, and zi = 0 otherwise.

4 CONSTRAINED COMPOSITE OPTIMIZATION

In Section 3, we have discussed a reformulation for the problem of interest, obtaining (P2).
In a more general setting, the problem is to

find x ∈ Rn (P3)

minimizing f(x) + g(x)

such that c(x) = 0

with f : Rn → R and c : Rn → Rm sufficiently smooth, and g : Rn → R with an easily
computable proximal mapping. Dimensions in (P3) are related to (P2) by n = nx(N +
1) + N and m = nxN + nb + 1. In this context, inequality constraints can be considered
by adding equality constraints with slack variables and a characteristic function in the
nonsmooth cost term. As mentioned in Section 1, penalty methods [16] or interior point
methods [17] have been used to deal with constrained composite optimization, with either
softened or convex constraints. The augmented Lagrangian approach is considered here
because (i) it is based on a sequence of unconstrained or simply constrained subproblems,
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(ii) it is often superior to pure penalty methods, (iii) it can handle nonconvex constraints,
and (iv) it enjoys good warm-starting capabilities; see [11, 12]. In fact, this approach
for solving (P3) is supported by Theorem 1 below, which extends results from smooth
optimization. In particular, we adopt the primal-dual augmented Lagrangian function
[14, 13], with safeguard [15]. Topics such as higher-order updates and infeasibility detection
are beyond the scope and not considered here.

4.1 Necessary Criticality Conditions

Note 1. Consider problem minx{f(x) + g(x)}. A point x? is called optimal if x? ∈
arg minx{f(x) + g(x)}, critical if x? ∈ proxγg (x? − γ∇f(x?)) for some γ ∈ (0, 1/Lf ), Lf

being the Lipschitz constant of ∇f , and stationary if 0 ∈ ∇f(x?) + ∂̂g(x?) [10]. Consider
constraints c(x) = 0 and the feasible set C := {x|c(x) = 0}. A point x? is called feasible if
x? ∈ C. Consider (P3). A point x? is a global solution if x? ∈ arg minx∈C{f(x) + g(x)},
and a (local) solution if it is feasible and there exists a closed ball B := {x|‖x− x?‖ ≤ ε},
ε > 0, such that, for all x ∈ B ∩ C, it holds (f + g)(x) ≥ (f + g)(x?).

Notice the similarity between L-stationarity [7] and criticality [10], and the relationship
with optimality and stationarity concepts. Let us consider the following assumptions:

(A1). functions f : Rn → R, c : Rn → Rm are differentiable with Lipschitz continuous
gradient;

(A2). function g : Rn → R is proper and closed;

(A3). function f + g is bounded below in Rn;

(A4). there exists a (local) solution x? to (P3);

(A5). gradients of the equality constraints are linearly independent at x? (LICQ);

(A6). there exists a set G compact and a scalar ε > 0 such that ∀x ∈ {x|‖x− x?‖ ≤ ε} it
holds ∂̂g(x) ⊆ G.

Some assumptions could be relaxed [10], but these are considered here for simplicity.
Necessary conditions for optimality closely follow results from smooth optimization, as
well as the proof outline [12].

Theorem 1 (Necessary conditions). Consider (P3). Let x? denote a (local) solution and
Assumptions (A1)–(A6) be satisfied. Define function L : Rn × Rm → R as the mapping
(x,y) 7→ f(x)−y>c(x). Then, (i) there exists y? ∈ Rm such that the following (criticality)
condition holds

x? ∈ proxγg (x? − γ∇xL(x?,y?)) (3)

for some γ ∈ (0, 1/LL), LL being the Lipschitz constant of L(·,y?). Furthermore, (ii) the
following (stationarity) condition holds

0 ∈ ∇f(x?) + ∂̂g(x?)−∇c(x?)y?. (4)
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Proof. Introduce for k = 1, 2, . . . the cost function φk : Rn → R defined by

φk(x) := (f + g)(x) +
k

2
‖c(x)‖2 +

α

2
‖x− x?‖2,

where α > 0. Since x? is a solution, there exists a closed, nonempty ball B such that
(f+g)(x?) ≤ (f+g)(x) for all x ∈ B∩C; see Note 1. Consider xk ∈ arg minx∈B φ

k(x) and
the sequence {xk}. Since φk(xk) ≤ φk(x?) = (f + g)(x?) for all k, taking the limit k →∞
gives c(x?) = 0, due to (A3), (A4) and continuity of norms, and {xk} → x?; see [12].
Then, for k sufficiently large, xk is interior to B and hence an unconstrained minimizer of
φk. Then, it is also a critical point [10, Prop. 3.5], namely it satisfies

xk ∈ proxγg

(
xk − γ∇`k(xk)

)
(5)

for any γ ∈ (0, 1/L`), being `k := φk − g the smooth part of φk and L` the Lipschitz
constant of ∇`k. Furthermore, xk is also a stationary point [10, Prop. 3.5], i.e., it satisfies

0 ∈ ∂̂φk(xk) (6)

thanks to (A2). Under (A5), for k sufficiently large, matrix J(xk) := ∇c(xk)>∇c(xk)
is invertible, since {xk} → x?; see [12]. Expanding the term ∂̂φk(xk) using properties of
subgradients, left-multiplying by ∇c(xk)> and solving, an inclusion for kc(xk) is obtained.
Hence, for all k = 1, 2, . . . , there exists a pk ∈ ∂̂g(xk) such that the equality holds. The
limit k →∞ gives

{kc(xk)} → −J(x?)−1∇c(x?)> [∇f(x?) + p?] =: −y?

with p? an accumulation point of {pk}, thanks to (A6). Thus, {∇`k(xk)} → ∇f(x?) −
∇c(x?)>y? for k → ∞, which, taking the limit in (5)–(6) and substituting, gives (3)–
(4).

In general, if function g is nonconvex, the proximal mapping is set-valued, and it might
be difficult to verify condition (3) in practice. The following result helps in this direction.

Lemma 1. Consider the mappings in Section 2. Then

0 = distproxγg(x?−γ∇xL(x?,y?)) (x?) (7)

is equivalent to condition (3), for any γ.

Proof. Due to definition in Section 2 and continuity of norms, (7) implies that x? is an
element of proxγg (x? − γ∇xL(x?,y?)), which proves (7) ⇒ (3). Conversely, the fact that
x? is the unique global minimizer of the distance to x? itself, due to properties of norms,
together with condition (3), implies (7), thus proving (3) ⇒ (7). The two implications
give the equivalence.
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Based on definitions in Note 1, necessary conditions in Theorem 1, and Lemma 1, we
introduce the concept of approximate solution. Given positive tolerances on feasibility and
criticality, denoted η? and ε?, respectively, we refer to a point (xk,yk) as an approximate
(local) solution to (P3) if it satisfies∥∥∥distproxγg(xk−γ∇xL(xk,yk)) (xk)

∥∥∥ ≤ γε? (8a)

‖c(xk)‖ ≤ η? (8b)

for some γ ∈ (0, 1/LL), LL being the Lipschitz constant of ∇xL(·,yk).

5 Primal-Dual Augmented Lagrangian Proximal Method

Necessary conditions provided by Theorem 1 resemble results from smooth optimization,
in particular the Lagrange function L and the existence of Lagrange multipliers y?. Based
on this, in the spirit of augmented Lagrangian methods [11, 12], we aim at solving (P3)
through a sequence of subproblems which

find x ∈ Rn,y ∈ Rm (P4)

minimizing F (x,y,yek, µk) +G(x,y, βk)

where {yek} is a sequence of estimates of the Lagrange multipliers, {µk} is a sequence of
positive penalty parameters (a positive definite, diagonal matrix could be adopted too
[11]) and {βk} is a sequence of positive bound parameters. Function F , defined by

F (x,y,ye, µ) := f(x) +
1

2µ
‖c(x)− µye‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2 , (9)

recalls the primal-dual augmented Lagrange function [14]. Function G consists of the
nonsmooth term g and the characteristic function χbβe, denoting bβe the closed hyper-
interval [−β, β]m, namely

G(x,y, β) := g(x) + χbβe(y). (10)

In fact, through χbβe in (10), explicit bounds are imposed on the dual variables y, thus,
regularizing the associated subproblems, as discussed in [13, Section 4]. Also, requiring
bounded estimates ye for (9) leads to a safeguarded method [15]. Between iterations, such
estimates can be obtained with a first-order multiplier update. The primal and primal-dual
updates [14], denoted ŷp and ŷ, respectively, read

ŷpk := yek − c(x?k)/µk, (11a)

ŷk := 2ŷpk − y?k, (11b)

given solution (x?k,y
?
k) to (P4), multiplier estimate yek, and penalty parameter µk. Since

(P4) is unconstrained, and χbβe is a characteristic function, the following necessary con-
ditions hold, for some γ > 0 [9, 10]:

x?k ∈ proxγg (x?k − γ∇xF (x?k,y
?
k,y

e
k, µk)) , (12a)

y?k ∈ projbβke (y?k − γ∇yF (x?k,y
?
k,y

e
k, µk)) , (12b)
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and, similarly to (8), an approximate solution to (P4) is characterized by∥∥∥∥∥
(

distproxγg(x?k−γ∇xF (x?k,y
?
k))

(x?k)

distprojbβke(y
?
k−γ∇yF (x?k,y

?
k))

(y?k)

)∥∥∥∥∥ ≤ γεk (13)

given an optimality tolerance εk > 0.

Note 2. The method we are proposing does not differ substantially from well-established
methods in the augmented Lagrangian framework. Indeed, looking at proximal mappings
as generalized projections, (P4) seems a generalization of bound-constrained subproblem in
BCL [11] and pdBCL [14] methods. Furthermore, by modifying functions F and G in (9)–
(10) or estimates ye, classical (Hestenes-Powell’s) augmented Lagrangian and quadratic
penalty approaches can be recovered, see [13, Table 1]. Nonetheless, (P4) is significantly
dissimilar to classical subproblems, in that it is an unconstrained composite problem, which
is amenable to proximal methods, such as FISTA [8], PNOPT [9] and PANOC [16], among
others.

5.1 Algorithm

We illustrate Algorithm 1, also referred to as pdALX, based on the primal-dual Augmented
Lagrangian proXimal method considered above. This resembles a proximal version of
the primal-dual bound-constrained Lagrangian (pdBCL) method [14, 13], based upon
the bound-constrained Lagrangian (BCL) method [11]. Algorithm 1 consists of outer
and inner iterations: the latter for solving the subproblems via any suitable proximal
method, the former for reducing the constraint violation while estimating the Lagrange
multipliers. The approximate solution in Step 6 is defined according to (13) and is obtained
via any suitable proximal method, adopting (xk,y

e
k) as initial guess. Many parameters are

used in Algorithm 1, which are defined as follows [11, 14]: initial penalty µ0 ∈ (0, 1) and
bound β0 ∈ (0,∞) parameter, initial feasibility η0 ∈ [η?, 1/2) and optimality ε0 ∈ [ε?, 1/2)
tolerance; feasibility η? ∈ [0, 1/2) and optimality ε? ∈ [0, 1/2) tolerance; margin ρy ∈ [0, 1],
penalty αµ, αµ ∈ (0, 1), and bound αβ, αβ > 1 factors; feasibility αη ∈ (0,min(αε, 1)),
αη ∈ (0,min(αε, 1)), and optimality αε, αε > 0 tolerance factors. The proof of global
convergence in Section 5.2 requires αµαβ, αµαβ < 1.

Another algorithm, here referred to as ALX, is obtained by neglecting the last term
in (9)–(10) and discarding decision variables y. The resulting method is similar to the
classical augmented Lagrangian approach: it solves smaller subproblems, it cannot take
advantage of the dual regularization [14] but it can be safeguarded [15]. These two algo-
rithms, namely ALX and pdALX, which relate to each other as BCL [11] to pdBCL [14], are
compared in Section 6.

5.2 Convergence analysis

This section gives results about sequences generated by pdALX and shows its global con-
vergence, under standing Assumptions (A1)–(A6) and supposing that
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Algorithm 1 pdALX

Input: x0, y0

Output: x?, y?

set µ0, β0, η0, ε0, η
?, ε?

set ρy, αµ, αβ, αη, αε, αµ, αβ, αη, αε
k ← 0
while (xk,yk) does not satisfy (8) do

5: yek ← projbβke(yk)
(x?k,y

?
k)← approximate solution to (P4)

ŷk ← 2 [yek − c(x?k)/µk]− y?k
if ‖c(x?k)‖ ≤ ηk then

if ‖y?k‖∞ ≥ ρyβk then
10: µk+1 ← αµµk, βk+1 ← αββk

else
µk+1 ← µk, βk+1 ← βk

end if
ηk+1 ← ηkµ

αη
k+1, εk+1 ← εkµ

αε
k+1

15: else
µk+1 ← αµµk, βk+1 ← αββk

ηk+1 ← η0µ
αη
k+1, εk+1 ← ε0µ

αε
k+1

end if
(xk+1,yk+1)← (x?k, ŷk)

20: k ← k + 1
end while
return (x?,y?)← (xk,yk)

(A7). a compact set Bx ⊂ Rn contains the sequence {x?k};

(A8). denoting K a subsequence of integers such that limk∈K x?k = x?, a compact set
By ⊂ Rm contains the subsequence {y?k}K .

Lemma 2. Consider ŷpk and ŷk defined in (11). Then, executing Algorithm 1, for k
sufficiently large, the following holds: ŷk = ŷpk = y?k.

Proof. Consider necessary condition (12b). The fact that, by construction, βk is eventually
sufficiently large and γ ∈ (0,∞) gives 0 = ∇yF (x?k,y

?
k,y

e
k, µk). Using definitions (9) and

(11) yields 0 = c(x?) + µk(y
?
k − yek), and then y?k = yek − c(x?k)/µk = ŷpk = ŷk.

Lemma 3. Consider Algorithm 1 and let Assumptions (A1)–(A8) hold. Let {µk}, {βk},
and {εk} be given sequences of positive numbers such that {εk} → 0, and let {yek} be any
sequence of vectors in Rm. Let {(x?k,y?k)} be a sequence of points satisfying (13). Denoting
x? a limit point of {x?k}, let K be a subsequence of the integers such that limk∈K x?k = x?

and set y? := limk∈K ŷk, considering ŷk defined in (11b). If c(x?) = 0, then (x?,y?)
satisfies (3), ii.e., it is a critical point for (P3).
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Proof. Since {εk} → 0, γ ∈ (0,∞), and condition (13) is satisfied at Step 6, it holds

lim
k∈K

∥∥∥∥∥
(

distproxγg(x?k−γ∇xF (x?k,y
?
k))

(x?k)

distprojbβke(y
?
k−γ∇yF (x?k,y

?
k))

(y?k)

)∥∥∥∥∥ ≤ lim
k∈K

γεk = 0,

which implies (12), due to continuity of norms, for k →∞ in K. Using definition (9) and
Lemma 2, (12a) yields

x?k ∈ proxγg (x?k − γ (∇f(x?k)−∇c(x?k)y
?
k)))

for k sufficiently large. Condition (3) is obtained by substituting function L as defined in
Theorem 1, proving the result.

Lemma 3 shows that convergence to critical points occurs provided the constraint violation
is forced to zero. Some lemmas are stated to simplify the global convergence proof.

Lemma 4. Algorithm 1 generates sequences {βk}, {yek}, and {y?k} such that ‖yek‖∞ ≤ βk,
‖y?k‖∞ ≤ βk for all k.

Proof. Projection projbβke at Step 5 and characteristic function χbβke in (10) guarantee
the result.

Lemma 5. Suppose that {µk} → 0 as Algorithm 1 is executed. Then {µkβk} → 0.

Proof. By construction, it holds µkβk = αnkαnkµ0β0, with α := αµαβ < 1 and α :=
αµαβ < 1, for all k and for some non-decreasing sequences {nk} and {nk}. By inspection,

since {µk} → 0, it is {nk + nk} → ∞. This yields µkβk ≤ [max(α, α)](nk+nk)µ0β0 → 0,
since µ0β0 <∞.

Lemma 6. Suppose that {µk} → 0 as Algorithm 1 is executed. Then {µk‖yek‖} → 0 and
{µk‖y?k‖} → 0.

Proof. See [14, Section 4.3].

Lemma 7. Executing Algorithm 1, iterates satisfy ‖c(x?k)‖ ≤ µk ‖yek‖ + µk ‖y?k‖ /2 +
µk ‖ŷk‖ /2 for all k.

Proof. Use (11) and the triangle inequality.

Theorem 2 (Global subsequential convergence). Let Assumptions (A1)–(A8) hold and
{(x?k,y?k)} be the sequence of points generated by Algorithm 1 with tolerances η? = 0 and
ε? = 0. Then Lemma 3 holds, and (x?,y?) as defined in Lemma 3 is a feasible critical
point for (P3).

Proof. Algorithm 1 generates sequences {µk}, {βk}, {εk}, and {yek} such that {εk} → 0,
and points (x?k,y

?
k) satisfying condition (13). Hence, Lemma 3 holds. Then, to show that

(x?,y?) is a feasible critical point for (P3), it remains to prove that x? is feasible, i.e.,
c(x?) = 0. There are two cases to consider: (a) {µk} → 0, and (b) {µk} is bounded away
from zero.
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(a. Lemma 2 and Lemma 6 give {µk‖ŷk‖} → 0 as {µk} → 0. Then, Lemma 7 implies
{‖c(x?k)‖} → 0, since the right-hand side goes to zero.

(b. Since {µk} is bounded away from zero, there exists an integer kµ such that ‖c(x?k)‖ ≤
ηk for all k ≥ kµ. Since {ηk} → 0, this implies {‖c(x?k)‖} → 0.

Properties of norms and continuity of c yield c(x?) = 0, concluding the proof.

Although a detailed analysis of the proposed methods is beyond the scope of this paper,
we conjecture most properties of classical or primal-dual augmented Lagrangian methods
are retained, e.g., local convergence rates.

6 NUMERICAL RESULTS

In this section, we illustrate the proposed method through the optimal switching control
problem of Lotka-Volterra dynamics [2, 1]. Including the tracking cost via differential
state x3, the Mayer cost is m(x(0),x(T )) = x3(T ).

ẋ1 = x1 − x1x2 − x1v1
ẋ2 = x1x2 − x2 − x2v2
ẋ3 = (x1 − 1)2 + (x2 − 1)2

(14)

Referring to (P1), dynamics fi are based on (14) and the control sequence {v−,v+,v−, . . . },
with v− = (0, 0)> and v+ = (0.4, 0.2)>, for i ∈ [1;N ], N = 20. We consider fixed final time
T = 12, fixed initial state x(0) = (0.5, 0.7, 0)>, terminal conditions x[1;2](T ) ∈ [0.95, 1.05],
feasible set D consisting of Di = {0} ∪ [d,∞) and switching cost σi = σ, for i ∈ [1;N ].
We are interested in three problem setups: I with (d, σ) = (0, 0), II with (d, σ) = (0.1, 0),
and III with (d, σ) = (0, 0.2). Notice that the non-negative parameter d corresponds to
the dwell-time.

We adopt a background time grid with n = 200 points to integrate dynamics and
sensitivities, with the explicit Euler method; we set tolerances η? = 10−6 and ε? = 10−9.
Subproblems are solved using FISTA [8], with a maximum number of (inner) iterations
and estimating the Lipschitz constant via backtracking.

Table 1 summarizes the solution process and results for different problem setups and
solver settings. Starting from a simple initial guess, solutions are found with relatively
few (outer) iterations and within the feasibility tolerance. The maximum number of inner
iterations (i.i. in Table 1) affects both the solution process and results, due to the different
subproblems’ solution, especially for pdALX. Concerning pdALX, allowing for more inner it-
erations leads to improved objective value, less outer iterations and less computation time;
see Table 1. The corresponding state trajectories and switching intervals are depicted in
Fig. 1–2. Recall that these may be associated to local minima, which are likely introduced
by the switching time formulation [2]. Furthermore, as standard proximal methods are
based on necessary criticality conditions, obtained solutions are optimal in a weak sense,
especially for problems with discrete choices [7, 4].
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Figure 1: Differential states x1, x2, and x3 versus time t, obtained for problems I, II,
and III, and initial guess, adopting ALX (solid), pdALX (dashed), and maximum 750 inner
iterations.
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Table 1: Summary of numerical results

Setup Algorithm Iter. Time [s] Obj. val. Constr. viol.

I ALX 11 14.27 1.5268 5.1 · 10−8

500 i.i. pdALX 16 32.51 1.5001 2.2 · 10−7

I ALX 10 15.98 1.8004 4.0 · 10−7

750 i.i. pdALX 10 19.11 1.4895 5.1 · 10−7

II ALX 10 12.83 1.7285 8.9 · 10−7

500 i.i. pdALX 16 32.05 1.7210 2.5 · 10−7

II ALX 10 16.94 1.9765 5.5 · 10−7

750 i.i. pdALX 10 17.92 1.7115 5.1 · 10−7

III ALX 12 19.85 4.8849 7.0 · 10−7

500 i.i. pdALX 16 31.90 4.9001 2.2 · 10−7

III ALX 11 28.31 4.8791 5.4 · 10−7

750 i.i. pdALX 11 20.36 4.6903 3.7 · 10−7
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Figure 2: Switching intervals d obtained for problems I, II, and III, adopting pdALX and
maximum 750 inner iterations.
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7 CONCLUSIONS

Sparse switching times optimization, via direct multiple shooting, yields constrained com-
posite problems. An original method for such problems has been introduced, embedding
proximal methods in the augmented Lagrangian framework. A numerical example in-
dicated some challenges for future research: optimality concepts need to be sharpened
and local minima to be escaped, structure exploitation and extensions to mixed-integer
optimal control could be investigated.

ACKNOWLEDGMENT

A. D. M. thanks the anonymous reviewers, for their valuable comments, and Matthias
Gerdts, for his acute remarks and ingenious questions.

References
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discretized hybrid dynamical systems,” in 51st IEEE Conference on Decision and
Control (CDC), 12 2012, pp. 707–712.

[7] A. Beck and N. Hallak, “Optimization problems involving group sparsity terms,”
Mathematical Programming, 4 2018.

[8] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202,
2009.

14



[9] J. D. Lee, Y. Sun, and M. A. Saunders, “Proximal Newton-type methods for min-
imizing composite functions,” SIAM Journal on Optimization, vol. 24, no. 3, pp.
1420–1443, 2014.

[10] A. Themelis, L. Stella, and P. Patrinos, “Forward-backward envelope for the sum
of two nonconvex functions: Further properties and nonmonotone linesearch algo-
rithms,” SIAM Journal on Optimization, vol. 28, no. 3, pp. 2274–2303, 2018.

[11] A. R. Conn, N. I. M. Gould, and P. L. Toint, “A globally convergent augmented
lagrangian algorithm for optimization with general constraints and simple bounds,”
SIAM Journal on Numerical Analysis, vol. 28, no. 2, pp. 545–572, 4 1991.

[12] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 2016.

[13] P. E. Gill and D. P. Robinson, “A primal-dual augmented lagrangian,” Computational
Optimization and Applications, vol. 51, no. 1, pp. 1–25, 1 2012.

[14] D. P. Robinson, “Primal-dual methods for nonlinear optimization,” Ph.D. disserta-
tion, University of California, San Diego, 9 2007.

[15] C. Kanzow and D. Steck, “An example comparing the standard and safeguarded
augmented lagrangian methods,” Operations Research Letters, vol. 45, no. 6, pp.
598–603, 2017.

[16] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos, “A simple and efficient algorithm
for nonlinear model predictive control,” in 56th IEEE Conference on Decision and
Control (CDC). IEEE, 2017, pp. 1939–1944.

[17] M.-C. Corbineau, E. Chouzenoux, and J.-C. Pesquet, “PIPA: A new proximal
interior point algorithm for large scale convex optimization,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary,
Canada, 4 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01803422

[18] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Berlin: Springer, 2011,
vol. 317.

15

https://hal.archives-ouvertes.fr/hal-01803422

	Introduction
	Preliminaries and Notation
	Problem Reformulation
	Direct Multiple Shooting
	Proximal Operator

	CONSTRAINED COMPOSITE OPTIMIZATION
	Necessary Criticality Conditions

	Primal-Dual Augmented Lagrangian Proximal Method
	Algorithm
	Convergence analysis

	NUMERICAL RESULTS
	CONCLUSIONS

