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Abstract

This paper concerns the optimal control of a continuous-time dynamical system via
continuous and discrete-valued control variables, where the objective functional also
accounts for state-independent switching costs. The class of mixed-integer optimal
control problems is interpreted as a bilevel problem, involving both switching times
optimization, for a given sequence of modes, and purely continuous optimal control.
Additionally, an original nonconvex formulation for the switching costs is introduced,
in terms of cardinality, inspired by sparse optimization and compressed sensing tech-
niques. We then adopt proximal algorithms to solve the resulting bilevel optimal
control problem with composite objective function. An efficient routine for evaluat-
ing the proximal operator is developed. Two examples are numerically solved via a
proximal gradient method, discussed and compared with the literature. Although this
work focuses on switched linear time-varying dynamics and quadratic cost functionals
with a specific formulation of the switching costs, the proposed approach may also
apply to more general mixed-integer optimal control problems.

Keywords: Optimal control, numerical algorithms, hybrid systems.

1 INTRODUCTION

Optimal control problems (OCP) involving both continuous and discrete-valued control
variables are known as mixed-integer OCPs (MIOCP) and are challenging problems due to
their combinatorial nature [1, 2]. We consider MIOCPs constrained by ordinary differential
equations and take into account a cost for switching among discrete-valued control inputs
in order to avoid chattering [2, 3].

Several approaches exist to deal with such problems. Solving a discretized MIOCP
with methods from integer optimization, e.g., branch and bound, suffers the combinatorial
complexity [4, 5]. Relaxation of the original MIOCP and subsequent reconstruction of
the discrete-valued control variables has been successfully applied in many applications
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[1, 2, 6]. Moreover, in this framework some constraints can be imposed on the switching
structure, but switching costs cannot be easily accounted for [7, 6]. Recently, a similar
framework has been proposed in [3] to handle also switching costs and state jumps; it
overcomes some limitations but it still requires some sort of penalty term to avoid fractional
modes and to correctly identify switches.

On the other hand, different reformulations of the original MIOCP are possible. Based
on the idea of a time transformation [8], it is possible to recast a MIOCP into an equivalent
OCP without discrete-valued control variables. This approach is referred to as variable
time transformation [9, 10] and control parametrization enhancing technique [11]. Sim-
ilarly, but in a different spirit, those OCPs with discrete-valued control variables only
can be reformulated as switching time optimization problems, whenever a discrete-valued
control sequence is given [12, 13]. Analogous ideas have been adopted in a bilevel optimiza-
tion setting to deal with MIOCPs [14, 15]. These works also consider the mode scheduling
problem for generating the optimal discrete-valued control sequence and can account for
switching costs via the so called insertion gradient, which is based on needle-variations
methods [15, 16]. Compared to the approach proposed in this paper, in which a maximal
number of switches is fixed, these methods allow to introduce new switches where these
likely pay off. On the other hand, this technique requires the evaluation of the insertion
gradient on a time grid, which in turn depends on the costate [12]. Also, these methods
seem to not perform as fast and as reliably as the methods discussed above [6].

This work aims at introducing a novel approach to deal with such challenging prob-
lems. Despite its simplicity, it proves effective. As a proof-of-concept, we focus on linear-
quadratic problems, aiming at exploring the proposed approach before further develop-
ment. In fact, an extension can be readily achieved for switched nonlinear dynamical
systems (without continuous-valued control variables) with switching costs, based on [17].
Instead, dealing with nonlinear OCPs with both continuous-valued and discrete-valued
control inputs and switching costs requires further work and deeper understanding, espe-
cially for what concerns the sensitivity analysis of the lower level problem and possible
state-control constraints.

The proposed approach is outlined as follows. By considering a given discrete-valued
control sequence, the original MIOCP is transformed into an OCP with the continuous-
valued control and the switching times as decision variables. The mode sequence can be
inspired by practical intuition about the problem or constructed to fit many combinations,
as in [9, 10]. Then, a bilevel optimization problem is formulated, aiming at optimizing
the switching times at the upper level and the continuous-valued control function at the
lower level. The switching times are optimized at the upper level, consisting of a nonlinear
program with linear constraints. We point out that in general this bilevel problem is not
equivalent to the problem it originates from [18]. Switching costs are a sneaky element in
the objective function, in that they introduce nonconvexity and discontinuity. Contrary
to the framework developed in [3], we propose to deal with switching costs by adopting
suitable formulations and by exploiting proximal methods. In doing so, the strenuous part
moves to the evaluation of a proximal operator [19]. Switching costs can be expressed via
the cardinality function, also known as the `0 norm, abusing of terminology. We high-

2



light that the goodness of this formulation depends on the structure of the discrete-valued
control sequence discussed above. For completeness, we mention that cardinality and
cardinality-constrained optimization problems have equivalent reformulations as mathe-
matical programs with complementarity constraints [20, 21]. In the linear-quadratic case
herein presented, some features are exploited. First of all, the lower level problem turns
out to be a time-varying linear-quadratic regulator, which admits an unique global min-
imum [22]; hence, the bilevel problem is an equivalent reformulation [18]. Secondly, for
a given discrete-valued control function, the closed-loop optimally controlled system is a
linear time-varying system itself; thus, sensitivity analysis can be performed with a direct
derivation.

The problem class of interest is stated in Section 2, and the bilevel formulation is
introduced. In Section 3, a method for the lower level OCP solution and sensitivity analysis
is detailed. Proximal methods for handling the upper level problem are discussed in
Section 4. Numerical experiments in Section 5 demonstrate the soundness of our approach.
Finally, Section 6 concludes the paper and suggests directions for future research.

2 PROBLEM

Consider a switched linear system with some continuous-valued control variables but with
one and only one discrete-valued control variable; this is not a restriction [9, 7]. The
former are unconstrained, while the latter takes value from a finite set V, i.e., u(t) ∈ Rnu
and v(t) ∈ V respectively, for t ∈ [0, T ], with final time T ≥ 0. Let us assume N switches
happen in the time interval [0, T ], with N positive and finite, and that a discrete control
sequence {vi}Ni=0 is given. Hence, the discrete control function v : [0, T ] → V can be
expressed as v(t) = vi, for t ∈ [τi, τi+1), i = 0, . . . , N . Thus, it depends only on the
switching times τ := (τ0, . . . , τN+1)>. As proposed in [17], we define δi := τi+1 − τi,
i = 0, . . . , N , and consider the switching intervals δ := (δ0, . . . , δN )> as decision variables;
in fact, for any given discrete control sequence, the vector δ uniquely identifies the discrete
control function. We set the initial time τ0 = 0 and define the final time Tδ := τN+1; it
holds τi =

∑i−1
j=0 δj for any i = 1, . . . , N + 1. The switching intervals δ are subject to some

constraints, i.e., for fixed T

∆ := {δ ∈ RN+1 | δi ≥ 0, i = 0, . . . , N ∧ Tδ = T} , (1)

which requires all switching intervals to be nonnegative and to sum up to the desired final
time T ; notice that the feasible set ∆ resembles a (N + 1) simplex. Then, the dynamics
under consideration can be expressed as

ẋ(t) = Aδ(t)x(t) +Bδ(t)u(t), t ∈ [0, Tδ), (2)

with piecewise constantAδ(t) = A(v(t)),Bδ(t) = B(v(t)) for t ∈ [0, Tδ), beingA : V → Rnx×nx ,
B : V → Rnx×nu the mode-dependent matrices describing a switched linear system. The
state x(·) is subject to coupled linear boundary conditions

C0x(0) +CTx(T ) = c (3)
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with C0, CT ∈ Rnc×nx and c ∈ Rnc . Our goal is to find the optimal switching intervals
δ? ∈ ∆ and the optimal continuous-valued control function u? : [0, T ] → Rnu minimizing
a composite objective function

J(x,u, δ) := L(x,u, δ) + γ S(δ) (4)

where the Lagrange term L is an integral state-control quadratic penalty,

L(x,u, δ) :=
1

2

∫ Tδ

0

(
x(t)
u(t)

)> [
Q 0
0 R

](
x(t)
u(t)

)
dt, (5)

weighted by a symmetric block-diagonal matrix, with positive semidefinite Q ∈ Rnx×nx
and positive definite R ∈ Rnu×nu . The switching cost term S is defined by

S(δ) := card(δ) = |{i | δi 6= 0, i = 0, . . . , N}| , (6)

hence it is nonconvex and penalizes the occurrence of nonempty switching intervals. The
nonnegative parameter γ rules the relative importance of L and S. Some comments are
in order.

Remark 1. Considering a given discrete control sequence is questionable. However, given
a finite upper bound for the number of switches, one can build a sequence to capture any
solution and to let the solver to search among all the possible switching combinations,
discarding some dynamics and adapting the switching sequence without recourse to inte-
ger optimization [13]. Other formulations may introduce different feasible sets ∆, e.g.,
considering additional linear equalities due to minor grids [9, 10].

Remark 2. The final time T can be considered as fixed to a desired value or as an
optimization variable, yielding a free final time MIOCP. In the latter case, the constraint
Tδ = T in (1) must be excluded from the definition of the feasible set ∆.

Remark 3. The dynamics in (2) represent a linear piecewise time-invariant system. How-
ever, matrix-valued A and B can be considered both time and mode-dependent, with minor
changes. In the linear time-varying case, the state transition matrix can be adopted but
without exploiting the exponential matrix.

Remark 4. State and control cost matrices Q and R in (5) can be considered time and
mode-dependent, analogously to A and B. Furthermore, a mixed state-control cost can
be easily introduced. Additionally, a quadratic Mayer term can be introduced in the cost
function J in order to penalize deviations of the initial and final state. These extensions
require minor changes and are omitted for brevity, see [23].

Remark 5. In the spirit of compressed sensing and sparse optimization, the cardinality-
cost S in (6) plays the role of a regularization term in (4). In fact, it cancels out many
feasible vectors δ with equivalent associated state trajectories.
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Let us consider a single-objective bilevel optimization problem. At the lower level,
the switching intervals are fixed and the continuous-valued control is to be optimized;
concurrently, the switching times are decision variables at the upper level, which reads

Minimize Jδ(δ) (7)

subject to δ ∈ ∆,

with the reduced cost function Jδ(δ) := J(xδ,uδ, δ), where xδ and uδ solve the lower level
problem, namely

Minimize L(x,u, δ) (8)

subject to ẋ(t) = Aδ(t)x(t) +Bδ(t)u(t), t ∈ [0, Tδ),

C0x(0) +CTx(Tδ) = c,

for any given δ ∈ ∆. The term γ S(δ) can be neglected in (8) because it is a constant.

Remark 6. As mentioned above, in the linear-quadratic case the lower level problem can
be solved to global optimality for any δ ∈ ∆, thanks to convexity [22, 24]. Nonetheless,
even disregarding the switching costs, the upper level problem is nonlinear and nonconvex
in general, thus one may obtain locally optimal switching times and continuous-valued
control [17, 3]. In fact, most nonlinear optimizers are only able to detect local minima.

Remark 7. The ideas just presented show correspondence with those in [23] on the final
time optimization in finite horizon LQR. Analogously here, the final time for each opera-
tional mode is subject to optimization. Also, these works share the bilevel perspective.

3 LOWER LEVEL PROBLEM

The time-varying linear-quadratic problem (8) is well known in literature; here it is briefly
discussed to introduce notation and highlight crucial features. From Pontryagin’s min-
imum principle [25], there exists an adjoint function λ : [0, Tδ] → Rnx and a multiplier
η ∈ Rnc , such that a solution to (8) satisfies the first-order necessary optimality conditions
[24]:

λ̇(t) = −Qx(t)−Aδ(t)
>λ(t), t ∈ [0, Tδ), (9a)

0 = Ru(t) +Bδ(t)
>λ(t), t ∈ [0, Tδ), (9b)

λ(0) = C>0 η, (9c)

λ(Tδ) = C>T η, (9d)

along with dynamics (2) and boundary conditions (3). One can algebraically solve for
the continuous-valued control u in (9b) obtaining a linear two-point boundary value
problem. The controlled state z := (x,λ) has linear homogeneous dynamics, namely
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ż(t) = Hδ(t)z(t), with the piecewise constant Hamilton matrix Hδ defined for any t ∈
[0, Tδ] by

Hδ(t) :=

[
Aδ(t) −Bδ(t)R

−1Bδ(t)
>

−Q −Aδ(t)
>

]
. (10)

By means of the state transition matrix Φδ(t, t0), t ≥ t0, based on z(t0), one can write
z(t) = Φδ(t, t0)z(t0), see [22, 23]. Then, considering the final controlled state given as
z(Tδ), boundary conditions (3) and transversality conditions (9c)–(9d) form a linear sys-
tem, namely As(δ)s(δ) = bs, with As(δ) given by

As(δ) =

 0 I −C>0
0 0 C>T
C0 0 0

+

 0 0
0 −I
CT 0

 [Φδ(Tδ, 0) 0
]

and bs = (0,0, c). For any given δ, the unique solution vector s(δ) collects the (globally
optimal) initial controlled state z(0) and the associated multiplier η, encapsulating the
whole evolution of the closed-loop controlled system.

In order to efficiently solve the upper level problem, some information about the lower
level solution sensitivity with respect to the upper level decision variables is needed. In
[13, 17] the cost function, gradient and Hessian are efficiently computed for switched
autonomous linear and nonlinear systems. In order to take advantage of that work, we
make the key observation that, from the upper level viewpoint, the lower level controlled
system is autonomous; furthermore, it is even linear and homogeneous. However, there
is the need to slightly generalize the problem and extend the results of [17]. In fact, in
our mixed-integer case, the initial controlled state z(0) is not fixed but depends on the
switching times δ via the aforementioned linear system.

3.1 State Evolution and Derivatives

For any given δ ∈ ∆, the controlled state z at any time t ∈ [τ`, τ`+1], ` = 0, . . . , N , can
be expressed as z(t) = Φδ(t, τi)z(τi), with 0 ≤ i ≤ `. Notice that Hδ in (10) is piecewise
constant as are Aδ and Bδ; then, let us denote Hi the constant Hamilton matrix in the
time interval [τi, τi+1), for i = 0, . . . , N . Hence, the state transition matrix reads

Φδ(t, τi) = eH`(t−τ`)eH`−1δ`−1 . . . eHiδi . (11)

Defining Ei := eHiδi and denoting zi = z(τi), it holds zi+1 = Eizi for i = 0, . . . , N . With
direct derivation, the controlled state sensitivity to δ can be expressed recursively, through
the chain rule, as

∂zi+1

∂δj
= Ei

∂zi
∂δj

+
dEi
dδj

zi (12)

for j = 0, . . . , N , where dEi/dδi = Hie
Hiδi = HiEi from the definition, otherwise dEi/dδj =

0 for i 6= j. Sensitivity of initial state z0 with respect to δ can be computed by solving an
additional linear system [23], namely

As(δ)
∂s

∂δi
(δ) = −∂As

∂δi
(δ)s(δ) , (13)
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for which one could store a factorization of As(δ), e.g., the LU decomposition. In turn,
constructing the right hand side vector requires the sensitivity of the state transition
matrix Φδ(Tδ, 0). Because of (11), matrix Φ(τb, τa) does not depend on δj , j = 0, . . . , N ,
if either j < a or j ≥ b; instead, if a ≤ j < b, expansion of Φ(τb, τa) based on (11) and
direct differentiation yield:

∂Φδ

∂δj
(τb, τa) =

∂

∂δj
[Φ(τb, τj+1)Φ(τj+1, τj)Φ(τj , τa)]

= Φ(τb, τj+1)HjΦ(τj+1, τa) . (14)

Once the state sensitivity is available, the cost function can be easily analyzed.

3.2 Cost Function and Gradient

Let us define the piecewise constant, symmetric controlled state-cost matrix

Πδ(t) :=

[
Q 0
0 Bδ(t)

>R−1Bδ(t)

]
(15)

for t ∈ [0, Tδ], based on (9b); denote Πi = Πδ(t) for t ∈ [τi, τi+1), i = 0, . . . , N . Then, for
any given δ, the reduced Lagrange cost function Lδ(δ) := L(xδ,uδ, δ) can be expressed
from (5) and (15) as

Lδ(δ) =
1

2

∫ Tδ

0
z(t)>Πδ(t)z(t)dt =

N∑
i=0

1

2
z>i Υizi (16)

where Υi :=
∫ δi

0 eH
>
i tΠie

Hitdt for i = 0, . . . , N . Notice that each matrix Υi is symmet-
ric and depends on δi only. From the fundamental theorem of calculus, it follows that
dΥi/dδi = eH

>
i δiΠie

Hiδi = E>i ΠiEi. Furthermore, we point out that matrices Ei and Υi,
i = 0, . . . , N , can be computed pairwise by means of a single exponential matrix evalua-
tion [26, 17]. For i = 0, 1, . . . , N , from (16) through the chain rule, direct differentiation
yields

∂Lδ
∂δi

(δ) =
1

2
z>i+1Πizi+1 +

N∑
j=0

z>j Υj
∂zj
∂δi

, (17)

where the identity zi+1 = Eizi is used.
Finally, notice that second derivatives can also be obtained, as in [13, 17]; however,

they are not reported here for brevity, nor exploited in the numerical results.

4 UPPER LEVEL PROBLEM

The upper level problem (7) has a nonlinear separable objective function (4), consisting
of the smooth convex term L and the nonconvex term S, and it is subject to a simplex
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constraint (1). If switching costs are included, i.e., γ > 0, we propose to solve (7) via a
proximal gradient method [27, 19], which is based on a recursive update:

δk+1 ∈ proxS,∆α

(
δk − α∇L

(
δk
))

. (18)

This requires that the gradient of L with respect to δ and the (possibly constrained, set-
valued) proximal operator of S are provided as oracles. An analytic expression of the
former has been derived in Section 3, while the latter is defined as

proxS,∆α (δ) := arg min
p∈∆

(
α card(p) +

1

2
‖p− δ‖2

)
(19)

for any δ ∈ RN+1, any feasible set ∆ and any positive scalar stepsize α [19]. Hence,
the proximal operator is an optimization problem itself and this needs to be solved at
least once per each iteration of the adopted first-order method. Thus, the whole proposed
approach, as well as proximal algorithms in general, benefit from the availability of efficient
routines for solving the proximal problem. To our knowledge, the cardinality function has
attracted little research effort compared to other sparsity-inducing penalties, especially in
the sparse optimization and image processing community [28]. Furthermore, the presence
of a simplex-constraint in the proximal operator seems unusual. For free time MIOCPs,
only nonnegativity is required in (1) and the proximal point π of δ has a closed-form
expression, namely πi 3 0 if δi ≤

√
2α and πi 3 δi if δi ≥

√
2α, i = 0, . . . , N . Instead,

in the case of fixed time MIOCPs, this is not possible, mainly because of the additional
equality in the simplex constraint in (1). However, an efficient procedure can be devised
by exploiting the problem structure. In fact, the combinatorial nature of the proximal
problem can be overcome by noticing that, for any fixed number of zero elements, it turns
into a simplex-constrained least-squares problem; the zero elements correspond to the
lowest entries of δ. Then, through the Lagrange function of the constrained continuous
problem, it is possible to express proximal point π[m] and multiplier λ[m] as a function of
the number of zeros m ∈ {0, . . . , N} (if T > 0, otherwise m = N + 1). Assuming, without
loss of generality, vector δ sorted in ascending order, the cost c[m] associated with each
value of m can be evaluated:

π
[m]
i =

{
0 if i < m,

δi + λ[m] if i ≥ m
, i = 0, . . . , N , (20)

λ[m] =
1

N + 1−m

(
T −

N∑
i=m

δi

)
, (21)

c[m] = α(N + 1−m) +
1

2

∥∥∥π[m] − δ
∥∥∥2

. (22)

A feasible, optimal value m? satisfies δm? + λ[m?] > 0 and m? = arg minm c
[m], and the

resulting proximal point is π = π[m?]. The implemented algorithm1 exhibits quasilinear
time complexity and requires approximately 70 µs for an instance with 100 entries. Some
comments are in order.

1The source code is deposited on Zenodo at DOI: 10.5281/zenodo.2567457.
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Remark 8. At some iterations of the accelerated proximal gradient method [27], infeasible
switching intervals may be passed to the lower level problem. In fact, even for a convex
feasible set ∆, the recursion can generate a point not lying in ∆ [27, 19]. If needed,
an additional call to the proximal operator or a fallback to the proximal gradient method
may overcome this issue, possibly degrading the convergence properties of the accelerated
method.

Remark 9. If switching costs are omitted, as in [13, 17], one can resort to standard
nonlinear optimization methods such as, e.g., interior point and sequential quadratic pro-
gramming.

5 NUMERICAL RESULTS

For the numerical investigations we adopt the fista routine as from the publicly available
FOM package [29], implementing an accelerated proximal gradient method [27], with de-
fault optional parameters (nonmonotone algorithm with backtracking, maxiter = 1000,
eps = 1e-5). As initial guess, we consider the solution to the problem with γ = 0, ob-
tained with the fmincon routine in MATLAB [30], which starts from a feasible initial
guess with equal entries, with value T/(N + 1), and whose optional parameters are set as
follows: interior point method with BFGS Hessian approximation; specified cost function
gradient; optimality, constraint violation and step tolerance set to 10−10. All examples are
implemented in MATLAB 2018b [30] and run on Ubuntu 16.04, with Intel Core i7-8700
3.2 GHz and 16 GB of RAM.

Table 1 summarizes the optimization process, performed by either fmincon or fista,
in terms of number of iterations, computation time and time spent (in percentage) for
evaluating function L and its gradient or function S and its proximal operator. Also, it
matches switching cost and cardinality2 of the optimal vector of switching intervals.

5.1 An Academic Example Involving Switching Costs

Consider the switched system (without continuous-valued control) from [3, Example 1]
described by

ẋ(t) =

{
+1 if v(t) = 1

−1 if v(t) = 2
, t ∈ [0, T ],

with fixed final time T = 5, initial state x(0) = 0 and state cost Q = 1. Also, consider
the fixed discrete-valued control sequence comprising N = 24 switches and starting as
{1, 2, 1, 2, . . . }, and a switching cost γ ∈ {0, 0.1, 0.5, 1}. The system state and dynamics
are augmented to fit (2), as in [13]. The optimal state trajectories are reported in Fig. 1.
The tracking error grows with the switching cost γ, while the number of switches decreases.
Although these results are similar to those obtained in [3], no timing is reported in that

2When γ = 0, we set card(δ) := |{δi|δi > 10−4 , i = 0, . . . , N}|.
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work. As one may expect from first-order methods, the fista routine requires many
iterations before convergence. The optimization process seems to converge faster for higher
values of γ, see Tab. 1. We argue that, when the switching cost prevails, the proximal
operator of the cardinality-based regularization term removes many degrees of freedom by
setting many decision variables to zero.

0 1 2 3 4 5

−0.5

0

0.5

1

Time t

S
ta
te

x
γ = 0 γ = 0.1

γ = 0.5 γ = 1

Figure 1: State x versus time t, for γ ∈ {0, 0.1, 0.5, 1}.

5.2 Switched Viscous-Elastic System

Consider a one-dimensional, horizontal system composed by n = 10 point-masses, con-
nected in series by elements consisting of an elastic spring and a viscous damper in parallel.
Position xi and speed si = ẋi describe the state of the i-th point-mass, for i = 1, . . . , n.
The first mass is connected to x0 = 0 through a spring-damper element. A horizontal,
continuous-valued force u acts on the n-th point-mass. Each point-mass has mass mi = 1;
each spring has elastic constant ki = 1 and null equilibrium length; each damper has mode-
dependent viscous coefficient bi(v) = 1, if v = i, otherwise bi(v) = 0.1, for i = 1, . . . , n
and v = 1, . . . , n. Consider the final time T = 20 and the sequence {1, . . . , n, 1, . . . }, with
N = 3n− 1 = 29 switches. Dynamics are expressed as in (2); for the i-th point-mass,
1 < i < n, it holds (omitting time t)

miṡi = −ki(xi − xi−1)− bi(v)(si − si−1)− ki+1(xi − xi+1)− bi+1(v)(si − si+1) . (23)

Starting from a far-from-equilibrium configuration (xi = i, si = 0, for i = 1, . . . , n),
the optimal control problem consists in reaching s5(T ) = s10(T ) = 0 while minimizing a
quadratic cost on both positions xi, i = 1, . . . , n, and continuous-valued control u (both
with unitary cost weight). Solutions for γ ∈ {0, 20, 50, 75, 100} are depicted in Fig. 2.
Notice that, even with continuous state and adjoint, the continuous-valued control would
jump if the control matrix Bδ changed at the switching times, due to (9b).

Evaluating the smooth cost function L and its gradient takes most of the computation
time, see Tab. 1. In fact, this corresponds to solving an instance of the lower level problem
(8). Some enhancements may be possible, by exploiting the linear structure of the problem
and pre-computing some matrix operations [17]. Lastly, by comparing the CPU times for
γ = 0 and γ > 0 in Tab. 1, we stress that, due to the combinatorial nature, approaches
based on extensive search do not seem competitive, as shown in [4].
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Figure 2: Positions x, continuous-valued u and discrete-valued v optimal controls versus
time t, for γ ∈ {0, 20, 50, 75, 100}.

Table 1: Performance Profile for the Example Problems

Example
Sw. cost card δ Iter. CPU time CPU time

γ [-] [-] [-] [s] L / S [%]

Academic
[3]

0 25 72 0.43 75.6 / -

0.1 22 876 5.98 98.3 / 0.7

0.5 9 369 1.80 97.9 / 1.0

1 4 70 0.29 93.5 / 2.5

Switched
viscous-
elastic
system

0 14 62 1.93 90.8 / -

20 4 73 1.28 97.9 / 0.8

50 3 131 2.01 98.5 / 0.6

75 2 26 0.39 95.2 / 1.7

100 1 2 0.04 76.4 / 6.3
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6 CONCLUSIONS

We presented an alternative, novel approach for dealing with mixed-integer optimal control
problems constrained by ordinary differential equations and accounting for switching costs.
Our original approach mingles ideas from bilevel programming, optimal control and sparse
optimization, allowing to tackle the challenges offered by switching costs in MIOCPs.
Numerical investigations on linear-quadratic problems have demonstrated the viability of
the approach.

Future research needs to extend the present work to a more general class of prob-
lems and to address some questions: can sensitivity analysis be exploited to incorporate
nonlinear dynamics? How can state-dependent and sequence-dependent switching costs be
handled? Also, it is appealing to adopt second-order methods, e.g., proximal Newton-type
methods.
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[17] B. Stellato, S. Ober-Blöbaum, and P. J. Goulart, “Second-order switching time opti-
mization for switched dynamical systems,” IEEE Transaction on Automatic Control,
vol. 62, no. 10, pp. 5407–5414, 2017.

13



[18] S. Dempe, Foundations of Bilevel Programming, ser. Nonconvex Optimization and
Its Applications. Dordrecht: Kluwer Academic Publishers, 2002, vol. 61.

[19] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends R© in Opti-
mization, vol. 1, no. 3, pp. 127–239, 2014.

[20] M. Feng, J. E. Mitchell, J.-S. Pang, X. Shen, and A. Wächter, “Complementarity
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