
An iterative solution approach for a bi-level

optimization problem for congestion avoidance

on road networks

Andreas Britzelmeier Alberto De Marchi Matthias Gerdts∗

January 26, 2019

Abstract

The paper introduces an iterative solution algorithm for a bi-level optimization
problem arising in traffic control. The bi-level problem consists of a shortest path
problem on the upper level, which aims at minimizing the total path cost of a set of
cars in a road network. The cost coefficients in the shortest path problem represent
the expected driving time on each edge, accounting for congestions, and depend on
the solutions of a set of lower level optimal control problems, each one describing
the behavior of a single minimum-time driven car. On the other hand, each lower
level problem is built upon the path planned by the upper level. This leads to a
strong coupling between upper level problem and lower level problem. This coupling
is decomposed by an iterative procedure fixing either the costs or the paths in the
upper level and the lower level, respectively. Numerical experiments illustrate the
procedure and indicate that the iterative algorithm leads to suitable distribution of
cars in the network.

Keywords: Bi-level optimization; Traffic control; Time-optimal control; Network
optimization; Iterative methods.

1 Introduction

Increasing traffic loads due to a steadily growing population and rising commerce, poses
a problem especially to urban areas. Nevertheless the economical aspect of CO2 pollution
is an imminent threat to the health of humans. Reducing traffic seems to be the main
idea to solve these problems. However, banning cars from cities or cramming people into
public transportations, seems not to be an attractive and productive solution. A different
approach would be to reduce the total time a car needs to reach its destination in the

∗Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg/Munich, Germany.
Corresponding author: matthias.gerdts@unibw.de.
Published in: Numerical Methods for Optimal Control Problems. Falcone M., Ferretti R., Grüne L.,
McEneaney W. (eds). Springer INdAM Series, vol 29.
DOI: 10.1007/978-3-030-01959-4 2.

1

https://doi.org/10.1007/978-3-030-01959-4
https://doi.org/10.1007/978-3-030-01959-4_2

sense that the flux of cars is optimized. Considering the introduction of automatic or
autonomous cars, this could be achieved by controlling the cars such that their paths and
velocity is optimized with respect to avoid traffic jams. In this paper we propose a bi-level
optimal control problem and an iterative scheme for optimizing the network-wide traffic
flow. The upper level problem controls the overall vehicle distribution with an adaptive
shortest path algorithm. The route planning for each car is based on shared costs, derived
from coupling single cars behavior. The lower level is concerned with providing optimal
velocity profiles and density updates to the shortest path algorithm, such that speed limits
are simulated. [9] proposes two approaches for solving a bi-level optimization problem.
Either by treating the lower level problem as a parametric optimization problem, which is
solved whenever it is required for the upper level, or by reducing the problem to a single
level problem by replacing the lower level through its necessary conditions. A semi-analytic
solution approach for minimum-time velocity profiles can be found in [1].

It should be noticed that, within the aforementioned problem, drivers can be seen
as players in a differential game, insofar as they are aware of future traffic distribution
starting from the current one. In this case, if a solution exists, it likely represents a global
equilibrium among drivers on the network; it has been argued in [4] that this solution is
strictly related to Wardrop’s equilibrium [11]. More details and references can be found
in [4].

The paper is organized as follows. Section 2 provides an overview on the bi-level
optimization problem. Sections 3 and 4 formulate and propose numerical methods to
solve the upper and lower level optimization problems. Section 5 discusses how the two
levels interface with each other and finally in Section 6 we apply the iterative procedure
and report numerical results.

2 Problem Formulation and Solution Approach

A road network can be represented by a graph G = (V,E) consisting of a vertex set V
and an edge set E, see [2, 6]. An edge is the topological description of a road segment,
and a vertex corresponds to an intersection. Edges have properties like, e.g., length, speed
limit, maximum density (i.e. maximum number of vehicles per unit length). A set of cars
C move on the graph G, in the sense that cars are initially positioned on a vertex and aim
at reaching another vertex by following a suitable path (i.e. a sequence of edges) on the
graph G. These agents interact at the microscopic scale, yielding macroscopic effects like
congestions, traffic waves and self-organizational phenomena, compare [7, 10, 6, 3].

The problem here is how to plan a route for each and every car, from the initial to
the desired point, taking into account traffic jam, driver’s behavior, vehicle dynamics and
speed limits. Drivers are supposed to aim at the minimum-time control of their own
car, while obeying speed limits and constraints on the vehicle dynamics. Thus, the overall
problem is here formulated as a bi-level optimization problem (BOP), where route planning
is represented by the upper level optimization problem and the lower level optimization
problem is adopted to predict how drivers will behave, given a certain path. The route
planning, also referred to as upper level optimization problem (UL-OP), aims at finding

2

the minimum-cost path for each car, given its initial and final position. Instead, the lower
level optimization problem (LL-OP) represents an optimal control problem with vehicle
and road constraints. These two problems exchange information in the sense that they
depend on each other. The UL-OP can be seen as constrained by solutions of the LL-OP,
because the cost of each edge depends on the actual traffic jam, in terms of car density.
On the other hand, the UL-OP affects the LL-OP, because the minimum-time control,
and consequent optimal speed profile, depends on the planned path with corresponding
length of edges and speed limits.

Some assumptions and simplifications are adopted throughout the present work: Road
geometry is time-invariant; speed limits are considered constant in time and space on each
single road segment.

In summary, the traffic control problem results in the following bi-level optimization
problem whose details are described in Sections 3 and 4:

The Upper Level Optimization Problem (UL-OP) reads as follows:

Minimize
∑
k∈C

ck(xk)>zk (1)

with respect to (zk, xk, vk, uk), k ∈ C,
subject to Azk = bk, zk ≥ 0, k ∈ C

(xk, vk, uk) ∈M(zk), k ∈ C.

Herein, M(zk) denotes the set of minimizers of the following Lower Level Optimization
Problem (LL-OP):

Minimize T (2)

subject to ẋ(t) = v(t), v̇(t) = fk(v(t), u(t)),

x(0) = 0, x(T) = Lk,

v(0) = v0k, v(t) ∈ [0, vk(x(t))],

u(t) ∈ Uk.

The index k indicates that the corresponding quantities depend on zk. The function fk
represents the vehicle dynamics, the box Uk defines control constraints, vk : R+ → R+ and
Lk are speed limits and length of the driving path, respectively. Further ck defines the
edge cost, which are depending on the result xk of the LL-OP. A denotes the (reduced)
node-edge incidence matrix of the network. The set of cars is described by C. The vector
bk denotes a unit vector, which indicates the starting position in the network and zk holds
the path indicator variables.

There are basically a few main techniques for solving bi-level optimization problems.
The first approach keeps the bi-level structure and treats the LL-OP as a parametric
optimization problem, which is being solved whenever the solution algorithm for the UL-
OP requires it [9]. The second technique, instead, is based on the formulation of first
order necessary optimality conditions for the LL-OP. Then, the LL-OP is replaced by its
necessary conditions, which are considered as constraints in the UL-OP. This reduces the

3

bi-level problem into a single-level nonlinear optimization problem, but in general this is
not equivalent to the original problem, since necessary conditions might be not sufficient
[9]. A third approach is based on the substitution of the LL-OP with its value function.
This generates an equivalent single-level optimization problem.

In this paper, we chose to follow an approach that resembles the first one discussed
above, but we treat the two levels as coupled optimization problems, while iteratively
solving one after the other. In general, during the iterative procedure, first the UL-OP is
solved to compute the required input variables for the LL-OP. Further solving the LL-OP
leads to an update of the weights of the UL-OP for the next iteration until a stopping
criterion is satisfied. Considering such an iterative procedure, the LL-OP and UL-OP are
solved the same number of times and the levels are treated as uncoupled problems, just
coupled at the interface by the procedure itself. The procedure is explained in more detail
in Algorithm 2.

Since we are not yet aware of any formal convergence result for such an iterative scheme,
one purpose of this paper is to experimentally investigate if the procedure converges or if
oscillations can be observed. Please note that the above bi-level problem is a hard problem
and also the alternative second and third solution approaches mentioned before are very
difficult to realize numerically owing to non-smoothness issues.

3 Upper Level: Route Planning

Let the road network be described through a directed graph G = (V,E, c, s, t), with vertices
V = {1, 2, . . . , n} and edges E. For simplicity we assume that the vertices are numbered
such that the initial vertex is given by s := 1 whereas the target vertex is t := n. The
cost cij of each edge (i, j) ∈ E is often associated to the length of the corresponding road
segment, such that c : E → R+ defines a cost function, see [2]. The shortest path problem
for an individual car starting at s and moving to t can be formulated mathematically as
follows, compare [8]:

Minimize
∑

(i,j)∈E

cijzij subject to Az = e1, zij ≥ 0, (i, j) ∈ E,

where zij is the load transported along the edge (i, j) ∈ E, e1 is the canonical unit vector,
and A denotes the reduced node-edge incidence matrix of G. Note that A is a totally
unimodular matrix and hence the linear optimization problem possesses a binary solution
with zij ∈ {0, 1} for all (i, j) ∈ E. The shortest path then consists of all edges (i, j)
with zij = 1. An efficient implementation for solving the above linear program is based
on a primal-dual algorithm as described in, e.g. [8], and leads to the famous Dijkstra’s
algorithm [5] in Algorithm 1. Please note that extensions like the A? algorithm exist.
After termination of Algorithm 1 d(i) contains the length of a shortest path from s to i
and p(i) contains the predecessor of i on such a shortest path.

Now we are interested in minimizing the total path length, which is obtained by sum-
ming up the lengths of all individual shortest paths of the cars in the road network. To
this end let ck = (ckij)(i,j)∈E > 0 denote the cost vector of car k ∈ C, zk = (zkij)(i,j)∈E the

4

Algorithm 1: Dijkstra’s Algorithm.

Input: Set W = {s}, d(s) = {0} and d(i) =∞ for all i ∈ V \ {s}.
forall i ∈ V \ {s} and (s, i) ∈ E do
−→ set d(i) = c1i, p(i) = s

end
while W 6= V do
−→ find k ∈ V \W where d(k) = min{d(i) : i ∈ V \W}
−→ W = W ∪ k
forall i ∈ V \W with (k, i) ∈ E do

if d(i) > (d(k) + cki) then
−→ d(i) = d(k) + cki
−→ p(i) = k

end

end

end

corresponding path indicator variables, and bk = (bki)i∈V the unit vector that indicates
the starting node of car k ∈ C. With this notation, the task to minimize the total path
length for all cars in C yields the following upper level problem UL-OP:

Minimize
∑
k∈C

(ck)>zk =
∑
k∈C

∑
(i,j)∈E

ckijz
k
ij

subject to Azk = bk, zk ≥ 0, k ∈ C.

Please note that UL-OP is a separable optimization problem and its solution can be
obtained by solving individual shortest path problems for all cars in C and summing up
the lengths.

So far, we assumed that the cost vectors ck, k ∈ C, are given vectors. This assumption
will be dropped in the sequel by taking into account individual trajectories for each car on
the shortest paths. To this end, the costs of each edge follow an evolution, depending on
the congestion of the roads and therefore on the speed of the vehicles on the same edge e.
Thus, the cost vectors will depend on the solution of lower level optimal control problems,
which will be discussed in the following Section 4.

4 Lower Level: Minimum Time Driving

We aim at computing minimum-time trajectories on a given path in the road network.
The vehicle dynamics are described by a second-order time-invariant linear system for
simplicity. We take into account a linear drag force. The validity of this assumption
significantly depends on the velocity regime, but it simplifies the derivation of a semi-
analytical solution to the LL-OP. There exist results also accounting for both, linear and
quadratic drag forces, see [1]. We point out that this simplification is not necessary for

5

the proposed iterative scheme, but it reduces the computational time required for solving
the lower level problem LL-OP.

Each individual car minimizes the time required to arrive at the destination subject to
acceleration and speed limits. It is noticeable that at this level agents do not interact, in
fact, no coupling between cars is present in LL-OP (2). This inaccuracy is more negligible
as density gets lower and traffic congestions are avoided. In this section we focus on a single
car. Each vehicle is characterized by its mass mD > 0, its linear drag coefficient cD ≥ 0,
its initial speed v0 ≥ 0 and its maximum braking and pushing forces Fbrake ∈ (−∞, 0) and
Fpush ∈ (0,+∞). Let us introduce the drag parameter c := cD/mD ≥ 0 and control bounds
u := Fbrake/mD and u := Fpush/mD. Let a path p = (p0, . . . , pN) with vertices pj ∈ V ,
j = 0, . . . , N , be given. With each edge ej = (pj , pj+1) on the path we associate a (physical)

distance `j , j ∈ {0, . . . , N − 1}. The total length of the path is then Lp =
∑N−1

j=0 `j .
We assume that a piecewise constant speed limit function v : [0, Lp] → R is given with

v(x) := vj > 0 for x ∈ [aj , aj + `j), j ∈ {0, . . . , N − 1}, and aj :=
∑j−1

k=0 `k.
Each vehicle aims at solving the following path minimum-time optimization problem:

Minimize T (3)

subject to ẋ(t) = v(t), v̇(t) = u(t)− cv(t),

x(0) = 0, x(T) = Lp,

v(0) = v0, v(t) ∈ [0, v(x(t))],

u(t) ∈ [u, u].

Because of its particular structure, mostly the time cost and the edge-wise constant speed
limit, it is possible to reduce Problem (3) to an ordered sequence of simpler edge minimum-
time optimization problems. These have to be solved starting from the first edge and
iterating until the end of path p. Let us consider edge e = ej with length L := `j > 0,
speed limit v := vj > 0 and end-point speed limit vT := min (vj , vj+1) > 0. On edge e we
have to solve the following optimal control problem:

Minimize T (4)

subject to ẋ(t) = v(t), v̇(t) = u(t)− cv(t),

x(0) = 0, x(T) = L,

v(0) = v0, v(T) ∈ [0, vT],

v(t) ∈ [0, v], u(t) ∈ [u, u].

Problem (4) resembles the minimum-time optimal control problem subject to velocity
constraints and limited acceleration discussed in [1]. However, an additional constraint
is present, that is the final speed constraint. In the following we focus on the solution
of Problem (4) for the case v0 < v > vT , which is the most crucial case. An analogous
derivation for the other cases is straightforward.

6

As suggested in [1], let us introduce the following auxiliary functions, both for numer-
ical stability and notational clarity:

E(t, w) :=
1− ewt

w
, E2(t, w) :=

ewt − 1− wt
w2

. (5)

Then, analogously to [1], we claim there exist two distinct time instants, denoted τ1 and
τ2 and such that 0 < τ1 < τ2 < T , that are switching times for the optimal control, whose
expression reads

u(t) =

u, 0 < t < τ1,

cv, τ1 < t < τ2,

u, τ2 < t < T,

(6)

for a.e. t ∈ [0, T]. We like to emphasize that u : [0, T] → R is uniquely identified by
switching times and final time T . The optimal control (6) consists of an initial pushing
phase, up to the maximum allowed speed, a second phase where speed is kept constant at
the speed limit until the final braking phase. The structure of (6) resembles a bang-bang
control, but it shows an intermediate phase due to the velocity constraint. Problem (4)
is transformed into a boundary value problem (BVP) collecting optimal control (6) and
differential-algebraic constraints in (4). The unknowns of this BVP are switching times
τ1 and τ2 and final time T . We remark that Problem (4) and the BVP are equivalent
if and only if control (6) locally minimizes the Hamiltonian function of Problem (4), as
claimed above (the proof is left to the reader). By considering the vehicle model and initial
conditions in (4) along with the optimal control (6), it is possible to compute the time
evolution of vehicle velocity and position, for t ∈ [0, T], i.e.

v(t) =

v0e
−ct + uE(−t, c), 0 ≤ t ≤ τ1,

v(τ−1), τ1 ≤ t ≤ τ2,
v(τ−2)e−c(t−τ2) + uE(τ2 − t, c), τ2 ≤ t ≤ T,

(7)

x(t) =

x0 + v0E(−t, c) + uE2(−t, c), 0 ≤ t ≤ τ1,
x(τ−1) + v(τ−1)(t− τ1), τ1 ≤ t ≤ τ2,
x(τ−1) + v(τ−1)(τ2 − τ1) + v(τ−1)E(τ2 − t, c) + uE2(τ2 − t, c), τ2 ≤ t ≤ T.

(8)

The analytical solution of this Cauchy problem greatly simplifies the solution of the afore-
mentioned BVP, transforming it into an equivalent non-linear system. This task can be
achieved by enforcing boundary conditions and state constraints in (4) to speed profile
and trajectory (7)-(8). In particular, the following conditions must be satisfied by the
solution of Problem (4):

v(τ1) = v, v(T) = vT , x(T) = L. (9)

The first makes the pushing phase to stop when the speed limit is reached; similarly, the
second constraint means that, at the final time T , the vehicle speed has to be as high
as possible, otherwise it would not be a minimum-time speed profile. Finally, the third

7

condition ensures that the final position is reached at the final time T . Conditions (9)
can be rewritten by using (7)-(8), yielding the non-linear system φ(z) = 0, where z =
(τ1, δ, T)>, δ := T − τ2, and φ : R3 → R3 is defined by

φ(z) :=

 v0e
−cτ1 + uE(−τ1, c)− v

ve−cδ + uE(−δ, c)− vT
x0 + v0E(−τ1, c) + uE2(−τ1, c) + v(T − δ − τ1) + vE(−δ, c) + uE2(−δ, c)− L

 .

(10)
It is possible to explicitly write the Jacobian φ′ and then to take advantage of it by using
Newton-type solvers to find z? such that φ(z?) = 0, where

φ′(z) =

 (u− cv0)e−cτ1 0 0
0 (u− cv)e−cδ 0

v0e
−cτ1 − v + uE(−τ1, c) v(e−cδ − 1) + uE(−δ, c) v

 . (11)

Non-linear solvers typically require an initial guess. A reasonable and easy-to-compute
initial guess can be estimated by considering the limit c → 0+; in fact, typically the
parameter c is small. Let us define φ0 : R3 → R3, such that φ0(z) := limc→0+ φ(z) for any
z ∈ R3. Then, a reasonable initial guess is given by the solution of φ0(z

?) = 0, that is

z? =

(
v − v0
u

,
vT − v
u

,
L− x0
v

+
(v − v0)2

2 v u
− (vT − v)2

2 v u

)>
. (12)

The following Section 5 describes how the lower level optimal control problems are
coupled with the upper level shortest path problem in Section 3.

5 Levels Coupling

The interface between levels, namely UL-OP and LL-OP, plays a key role in the solution
process of the bi-level optimization problem. In fact, this crucially affects the exchange of
information among levels.

Considering the k-th car, the information flow from UL-OP to LL-OP consists of the
ordered sequence of edge lengths and speed limits uniquely identified by the planned path
pk, that is the solution of UL-OP. These values constrain the LL-OP, both as boundary
conditions and state constraints.

On the other hand, given optimal speed profiles vk(·) and a trajectories xk(·) for every
car k ∈ C, an edge cost ck, compare Section 3, has to be defined, based on an estimate of
travel time, accounting for possible traffic jam and driver’s behavior. Given the solutions
to LL-OP for every car, one can reconstruct the number of cars ne(t) in any edge e ∈ E
as a function of time, ne : R+ → R+ with

ne(t) := card{k | xk(t) ∈ e} (13)

(herein, we identified the edge e with its physical distance range for notational simplicity).
For any edge e ∈ E, having length Le > 0 and speed limit ve > 0, the edge density function

8

ρe : R+ → R+ is defined, such that ρe(t) := ne(t)/Le for any t. Inspired by the LWR
model in [7], that is a first-order PDE-based macroscopic model widely used for traffic
flow, let us introduce also the edge speed function ve : R+ → R+, such that

ve(t) := ve

(
1− ρe(t)

ρe

)
(14)

for any t, where ρe > 0 is the maximum edge density. Note that the edge speed ve does
not reflect vehicles speed along this edge, but it is just an estimate accounting for traffic
jam (ve is a non-increasing function of ne and ρe). We notice also that for ne(t) = 1, using
Eq. (14), the edge speed ve(t) is lower than the speed limit ve, which is not what we want
to achieve. One possible way to fix this inaccuracy is to replace ne with max(ne − 1, 0),
in order to make the driver not to interact with itself.

As an edge cost we consider an estimate of the time needed to run across the edge
itself. To evaluate this time duration, a representative edge speed value is needed, here
denoted by v̂e and chosen to be

v̂e := (1− θ) 1

Th

∫ Th

0
ve(t) dt+ θ min

t∈[0,Th]
ve(t) (15)

given hyper-parameter θ ∈ [0, 1] and time horizon Th > 0. With this definition it always
holds

0 ≤ min
t∈[0,Th]

ve(t) ≤ v̂e ≤
1

Th

∫ Th

0
ve(t) dt ≤ ve

for any edge speed function ve, in any edge e ∈ E. The hyper-parameter θ has been
introduced to estimate an edge speed v̂e representative of the predicted evolution of vehicle
trajectories and their interactions. Note that this estimate may be really rough and in
general it leads to sub-optimal solutions, especially when long edges are present.

The edge cost ce, for e ∈ E, is expressed in terms of the time needed to travel along
edge e, based on estimate v̂e. This cost is defined as the minimum-time run, plus an
augmentation of the traffic-related time, to possibly give more importance to congestions,
through a parameter λ ≥ 0:

ce :=
Le
ve

+ λ

(
Le
v̂e
− Le
ve

)
(16)

Using (16) in the shortest path problem in Section 3 leads to a nonlinear coupling with
the lower level problem LL-OP in Section 4. This coupling acts in both directions and the
resulting bi-level optimization problem is very hard to solve in general. As a first approach
towards its solution we propose the iterative procedure in Section 2, which results in the
following Algorithm 2.

Numerical experiments are documented in the following Section 6.

9

Algorithm 2: Iterative procedure as a method to solve BOP.

Input: Road network G = (V,E, c, s, t), with cars position, speed and target,
{sj , v0j , tj}j∈C , parameters {cj , uj , uj}j∈C , hyper-parameters θ ∈ [0, 1],
λ ≥ 0.

k ← 0;
for e← E do

cke ← Le/ve; // edge cost initialization

end
while not converged do

for j ← C do
pkj ← shortestPath

(
{cke}e∈E , sj , tj

)
; // UL-OP

end
for j ← C do

lkj ←
{
Le | e ∈ pkj

}
; // upper → lower

vkj ←
{
ve | e ∈ pkj

}
;(

xkj , v
k
j , u

k
j

)
← minTime

(
lkj , v

k
j , v

0
j , cj , uj , uj

)
; // LL-OP

end
for e← E do

ck+1
e ← edgeCost

(
{xkj }j∈C , θ, λ

)
; // lower → upper

end
k ← k + 1;

end

6 Numerical Results

In the previous Sections we presented the algorithms for solving the upper and lower level
of the proposed bi-level optimization problem, the coupling of those levels, especially the
cost function, was discussed in Section 5.
First we want to test the overall functionality of the proposed iterative bi-level algorithm.
Thereafter, regarding the proposed parameters θ and λ in the cost function, which implies
the connection from the lower to the upper level, we want to analyze the impingement of
these parameters on the numerical results as well as the convergence. Therefore we vary
one parameter while fixing the other one and vice versa. Finally we take a closer look at
the behavior of a single car.

6.1 General evaluation of the Bi-level Algorithm

The algorithms discussed above are implemented in a MATLAB program. For a first test
we set the number of cars nc = 500, θ = 0.5 and λ = 1000, the drag is neglected (c = 0).
The road network is randomly generated on a 2000×2000 [m] grid, the connections between

10

Figure 1: Randomly generated road network, connections through Delaunay triangulation.

the chosen gridpoints are derived through applying a Delaunay triangulation, Fig.1. The
limits on the acceleration for the LL-OP is set to u ∈ [−3, 2] [m/s2], the maximum velocity
therefore is chosen randomly for each car from a set [10, 20] [m/s], as well as the initial
speed v0 ∈ [6, 10] [m/s], and the number of iterations Niter = 10. Fig. 2 shows the result

(a) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(b) of final time for every car,
θ = 0.5 and λ = 1000.

Figure 2: Numerical results for the cost function and final time over 10 iterations, nc = 500
cars

of the bi-level algorithm as in the behavior of the cost function and the evolution of the
final time of every car. Considering the cost function, due to the weighing with λ, the
meaning of the values is negligible. Nevertheless we notice a reduction in the cost for
every car during the first 3 steps. The algorithm converges to different optimal solutions
for sets of cars with the same costs. This can be explained such that to avoid congestions
the algorithm distributes the cars over the road network with respect to keeping the costs
low. This leads to sets of vehicles with the same minimal cost to pass from start to their
destination. However we also notice that there remains an oscillating behavior, which

11

seems to resemble two equally good solutions regarding the overall distribution of the
vehicles. One solution however yields higher costs. This oscillating characteristic is also
mirrored in the final time. In the first three steps the final time decreases. After that,
the jumping between two solutions occurs. This oscillating effect was also observed in
[4], herein the oscillations might occur between two competing equilibria, respectively
Wardrop’s equilibria.

Concluding, the algorithm finds optimal paths as well as velocity profiles for every
car, while avoiding congestions, through consideration of the vehicle density on every edge
which is taken into account as an update on the edge cost in every iteration.

6.2 Influence of the parameters θ and λ

Considering the path planning in the UL-OP, which highly depends on the cost of the
edges, the parameters θ and λ, which control the cost function, impact the result of the
upper level path planning algorithm. Therefore we compare different parameter settings
and analyze their effect on the cost function and the final time. Note that especially in
the case of the cost function the values are not directly comparable, due to the different
scaling factors. Hence we are more interested on the trend of the cost function itself.

Initially we examine λ, while fixing θ = 0.5. The number of cars nc = 400 is slightly
reduced to speed up the computation. The other values remain as they were set in Section
6.1. Fig. 3 shows the comparison of the progression of the final time and the cost function
for λ = 1 and λ = 1000 over the iterations.

Comparing the cost profiles, the increase of λ and therefore emphasizing the congestion
as an increase in the cost of certain edges, leads to a convergence in the cost function.
Thus the algorithm generates bundles of cars with the same cost, meaning multiple optima
are achieved for such car bundles, and more important with a drastic decrease in the cost.
Considering the final time, we notice an increase in the final time along side the increase
in λ. For λ = 1 the cost functions as well as the final time remain almost constant, this is
due to the underestimation of the traffic load. The traffic gets almost neglected, since the
addition to the density on an edge is in the range of 0.1. Hence the increase in time for
λ = 1000 is justified, since some cars get redirected on longer routes to their destination
to avoid congestions. Through the stronger weight the traffic jam becomes emphasized.
As a result we can draw the conclusion that a higher weight factor λ is recommended to
achieve convergence and for a better distribution of the cars on the network.

Considering the hyper-parameter θ, which influences the estimated representative edge
speed v̂e, a higher value of θ shifts the representative edge speed in the direction of the
minimum edge velocity, whereas a lower θ emphasizes the mean velocity along the edge
over time, see eq. (15). The influence of θ on the cost function as well as the final
time is shown in Fig. 4. Comparing the evolution of the cost function, we notice that the
convergence and bundling effect grows with rising θ. However the magnitude of aberrations
simultaneously rises, this effect can be countered by introducing additional constraints such
that not only the average majority improves while others pay the price for it. Considering
the evolution of the final time, the average final time decreases with increasing θ. With
θ = 1 the representative edge velocity is given through the minimum velocity value, which

12

(a) Evolution of cost function for every car,
θ = 0.5 and λ = 1.

(b) of final time for every car,
θ = 0.5 and λ = 1.

(c) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(d) Evolution of final time for every car,
θ = 1.0 and λ = 1000.

Figure 3: Implication of the weight factor λ ∈ [1; 1000] on the cost function and final
times, with fixed θ = 0.5, nc = 400 and 25 vertices - 96 edges.

represents the worst case. The vehicles velocity on the same edge becomes devalued. This
way the algorithm strives for a better distribution of the cars on the network, with the
result that the vehicles on average reach their destination faster. We conclude that a
higher value, respectively closer to θmax = 1.0 is recommended.

7 Conclusions

In this paper we presented an iterative algorithm for solving a bi-level optimal control
problem. Furthermore we presented a model for a combined single car and network control
through density updates and optimal time control. Considering the numerical results we
could show that an increase in the hyper-parameters θ, λ affect the optimal solution and
emphasize the convergence. The upper level control leads to an optimal distribution of
cars among the edges of the network, such that in the lower level OCP an optimal speed
profile for each car can be computed with the upper level solution as a constraint. Despite
the increase in the final time, which results from longer paths due to a compromise for
congestion avoidance, we showed that the density update on the edge cost affects the
solution of each car and as a result to bundling of cars with the same cost.

13

(a) Evolution of cost function for every car,
θ = 0.0 and λ = 1000.

(b) of final time for every car,
θ = 0.0 and λ = 1000.

(c) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(d) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(e) Evolution of cost function for every car,
θ = 1.0 and λ = 1000.

(f) Evolution of final time for every car,
θ = 1.0 and λ = 1000.

Figure 4: Implication of the hyper-parameter θ ∈ [0.0; 0.5; 1.0] on the cost function and
final times, with fixed λ = 1000, nc = 400 and 25 vertices - 96 edges.

References

[1] E. Bertolazzi and M. Frego. Semi-analytical minimum time solution for the optimal
control of a vehicle subject to limited acceleration, arXiv:1603.06245 [math.NA], 2016.

[2] A. Bressan, S. Čanić, M. Garavello, M. Herty, and B. Piccoli. Flows on networks:
recent results and perspectives. EMS Surveys in Mathematical Sciences, 1(1):47–111,
2014.

14

[3] E. Cristiani, B. Piccoli, and A. Tosin. How can macroscopic models reveal self-
organization in traffic flow? In 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), pages 6989–6994, 12 2012.

[4] E. Cristiani and F. S. Priuli. A destination-preserving model for simulating Wardrop
equilibria in traffic flow on networks. Networks and Heterogeneous Media, 10(4):857–
876, 2015.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[6] M. Garavello and B. Piccoli. Traffic Flow on Networks. AIMS Series on Applied
Mathematics, Springfield, MO, USA, 2006.

[7] M. Lighthill and J. Whitham. On kinematic waves. Proc. R. Soc. Lond., 229(A):281–
345, 1955.

[8] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[9] K. D. Palagachev and M. Gerdts. Numerical approaches towards bi-level optimal
control problems with scheduling tasks. in: Math for the Digital Factory, Editors: L.
Ghezzi, D. Hömberg, C. Landry, Springer, Berlin, to appear 2017.

[10] P. I. Richards. Shock Waves on the Highway. Operations Research, 4(1):42–51, 1956.

[11] J. G. Wardrop. Some theoretical aspects of road traffic research. in Proc. Inst. Civ.
Eng., Part II, 1(3):325–362, 1952.

15

	Introduction
	Problem Formulation and Solution Approach
	Upper Level: Route Planning
	Lower Level: Minimum Time Driving
	Levels Coupling
	Numerical Results
	General evaluation of the Bi-level Algorithm
	Influence of the parameters and

	Conclusions

