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Zusammenfassung

In einer Vielzahl von Anwendungen trifft man auf mathematische Probleme, in denen sowohl

gewöhnliche Differentialgleichungen (ODE) als auch partielle Differentialgleichungen (PDE) auf-

treten. Oft sind diese Differentialgleichungen vollständig gekoppelt. In der Mathematik der Op-

timalen Steuerung existieren verschiedenste Resultate zur Optimalen Steuerung von ODE/DAE

(Differential-Algebraischen Gleichungen) oder PDE, sofern diese getrennt betrachtet werden

können und nicht vollständig gekoppelt sind. Im voll gekoppelten Fall sind nach Kenntnis des

Autors bisher nur einige Modellprobleme ausführlich untersucht worden, z.B. ein deformierba-

rer Satellit [BA86, BA89], das Laserhärten von Stahl [HS97, FHS01, HV03a, HV03b, GNP10],

und der Wiedereintritt eines Space Shuttle mit Hyperschallgeschwindigkeit [CPW+09, WRP10,

PRWW10, PRWW14, We14]. Beim Problem der Optimalsteuerung von Herz-Defibrillatoren

werden PDE lediglich als gekoppelt mit degenerierten PDE (d.h. mit fehlender Ortsableitung)

betrachtet [KR15, BK14, BK17].

Auch die Analysis und numerische Simulation von vollgekoppelten Systemen von Differential-

gleichungen ist noch nicht vollständig abgeschlossen. Hierzu hatte der Autor in seiner Disserta-

tion [Ki09] bereits voll gekoppelte ODE und PDEs betrachtet, wobei die ODE einen freien Rand

modelliert und die PDEs Diffusion und lineare Elastizität beschreiben. Ein Anwendungsbeispiel

hierzu ist die Phasenbildung von Galliumarsenid (GaAs)-Tröpfchen [DK10] in GaAs-Wafern,

wie sie in der Halbleiter-Herstellung Verwendung finden.

Hauptsächlich wird in dieser Habilitationsschrift die Optimale Steuerung von gekoppelten Dif-

ferentialgleichungen, einschließlich mathematischer Modellierung, Analysis, numerischen Verfah-

ren und Simulation untersucht. Aufgrund der hochgradigen Komplexität der Problemstellung

soll der Fokus vor allem auf eine Vielzahl von neuen Beispielen gelegt werden, die sowohl in An-

wendungen wichtig sind, als auch verschiedene Problemklassen repräsentieren. Daher ist diese

Arbeit in naheliegender Weise kumulativ gestaltet. Es werden hier exemplarisch betrachtet:

1) Ein Tankfahrzeug,

dessen Tank über eine Feder-Dämpfung befestigt ist und dessen flüssiger Inhalt durch die

Saint-Venant-Gleichungen modelliert wird, während die Fahrzeugdynamik durch die New-

tonschen Bewegungsgleichungen bestimmt wird. Bei Bremsvorgängen oder Kurvenfahrten

kann es zu einer unerwünschten Interaktion kommen und das Hin- und Herschwappen der

Flüssigkeit im Extremfall zum Kippen des Fahrzeugs führen. Die Beschleunigung und im

Prinzip der Lenkwinkel des Fahrzeugs sollen so gesteuert werden, dass das Tankfahrzeug

schnellstmöglichst eine Strecke bewältigt, ohne dass die Fahrstabilität gefährdet ist.

2) Ein elastisches Kran-Trolley-Last-System,

in dem die elastische Deformation des Kranauslegers vereinfacht durch die Lineare-Elastizi-

täts-PDE beschrieben wird. Die Bewegungsgleichungen von Trolley und Last ergeben ein

nichtlineares System von ODEs, wobei die Last als zwei- oder dreidimensionales Pendel

modelliert wird. Der Transport einer Last mithilfe des Trolleys von einer Anfangs- in eine

gewünschte Endposition soll zeit-optimal und sicher gesteuert werden. Ein verwandtes



Problem ist das elastische Brücke-Last-System, bei dem sozusagen der Kranbalken auch

an der gegenüberliegenden Seite eingespannt ist.

3) Ein Viertelfahrzeugmodell,

in dem ein linear elastischer Reifen in Straßenkontakt mit einem Feder-Dämpfer-System

gekoppelt ist. Durch Steuerung des elektrorheologischen Dämpfers sollen Sicherheit und

Komfort des Fahrzeug-Chassis optimiert werden. Hier tritt wiederum die PDE der linearen

Elastizität und ein ODE-System für das Feder-Dämpfer-Element auf. Zusätzlich liegt bei

diesem Problem eine Komplementaritätsbedingung für den freien Kontaktrand von Reifen

und Straße vor.

4) Ein Modell zur Tropfenbildung in Galliumarsenid,

das, wie oben schon angedeutet, die Evolution flüssiger Präzipitate, die bei der abschließen-

den Wärmebehandlung von GaAs-Kristallen entstehen, beschreibt. In diesem makroskop-

sichen Modell, ein sogenanntes Mean-Field-Modell, sind die Differentialgleichungen eine

hyperbolische Gleichung 1. Ordnung für die Verteilung der Tropfenvolumen und eine ODE

für die mittlere Zusammensetzung des Festkörpers, d.h. für das mean field. Steuergrößen

sind z.B. Anfangszustände oder Temperatur. Hier stellt sich die Frage, ob dieser Prozess

geeignet beeinflusst werden kann, um Endprodukte bzgl. gewisser Materialcharakteristika

zu optimieren. Man beachte, dass die Zustandsgröße für die Verteilung der Tropfenvolumen

ein Maß und keine Funktion im üblichen Sinne ist.

Da wir meist Neuland betreten, steht im Vordergrund, was bei der Optimalsteuerung gekop-

pelter Differentialgleichungen alles in Anwendungsproblemen auftreten kann, wie man an die-

se Schwierigkeiten herangeht und numerische Herausforderungen konkret meistert. Eine ab-

schließende Theorie für diese Problemklasse würde den Rahmen dieses Habilitationsvorhabens

selbstverständlich sprengen. Der naheliegende Wunsch, ausgehend von diesen Beispielen allge-

meingültige generelle Aussagen für die Optimale Steuerung gekoppelter Differentialgleichungen

zu treffen, erweist sich schon deswegen als schwierig bis gar nicht möglich, da sich die Beispie-

le als sehr heterogen erweisen und bereits verschiedene PDEs jeweils eine eigene Theorie und

Methoden benötigen. Immerhin kann allgemein gezeigt werden, dass sich bei Betrachtung der

adjungierten Probleme bei parabolischen Gleichungen die Kopplungsstruktur umdreht und dass

für die Analyse relativ beliebig gekoppelter Zustandsgleichungen sich gut Fixpunktiterationsver-

fahren anwenden lassen.

Obige Auswahl an gekoppelten Optimalsteuerungs-Problemen wurde bezüglich Modelllierung,

Theorie (d.h. notwendige Bedingungen 1. Ordnung), numerische Methoden untersucht und ins-

besondere numerisch simuliert und validiert. In vielen Anwendungen ist im Vorfeld aufgrund

der Komplexität eine sorgfältige Reduktion der eigentlichen Problemstellung auf ein mathema-

tisch behandelbares Modell, das aber die wesentlichen Eigenschaften des Problems widerspiegelt,

essentiell. Schließlich wurde eine Globalisierungsstrategie für semi-glatte Newtonverfahren ent-

wickelt, die bei zwei der gekoppelten Optimalsteuerungsprobleme erfolgreich eingesetzt werden

konnte.



Abstract

In many applications we encounter mathematical problems that exhibit ordinary differential

equations (ODE) as well as partial differential equations (PDE). Oftentimes these differential

equations are fully coupled. In mathematics of optimal control there exist various results for

optimal control of ODE/DAE (differential-algebraic equations), or PDE, as long as they are

considered separately and are not fully coupled. To the knowledge of the author, in the fully

coupled case only several model problems have been examined thoroughly, e.g. a deformable

satellite [BA86, BA89], the laser hardening of steel [HS97, FHS01, HV03a, HV03b, GNP10], and

the reentry of a space shuttle with hypersonic speed [CPW+09, WRP10, PRWW10, PRWW14,

We14]. For the optimal control of heart defibrillators the PDE are only considered as coupled

with degenerated PDE (i.e. with missing spatial derivatives) [KR15, BK14, BK17].

Moreover, the analysis and numerical simulation of fully coupled systems of differential equa-

tions has not been completely finished. To this the author had already considered in his PhD

thesis [Ki09] fully coupled ODE and PDEs, at which the ODE models a free boundary and

the PDEs model diffusion and linear elasticity. An application example for this is the phase

formation of gallium arsenide (GaAs) droplets in GaAs wavers that are used in the production

of semiconductors.

In this habilitation thesis, we examine mainly the optimal control of coupled differential

equations, including mathematical modelling, analysis, numerical methods and simulations. Due

to the high complexity of the problem statement the focus shall be set on a multitude of new

examples that are important in applications as well as representing various problem classes.

Thus this work has been organized cumulatively. Here we consider exemplarily:

1) A tank truck,

whose tank is fixed by means of a spring-damper element and whose liquid content is

modelled by the Saint-Venant equations, whereas the vehicle dynamics are determined by

the Newton laws of motion. During the braking operation or driving along curves undesired

interactions can occur and sloshing of the fluid from one side to the other may lead, in an

extreme case, to a roll over of the vehicle. The acceleration and, in principle, the steering

angle of a vehicle should be controlled such that the tank truck travels a certain distance

as fast as possible without threatening its driving stability.

2) An elastic crane-trolley-load system,

at which the elastic deformation of a crane cantilever beam is described in simplification

by means of the linear elasticity PDE. The equations of motion of trolley and load yield

a nonlinear system of ODEs where the load is modelled as two- or three-dimensional pen-

dulum. The transport of a load by means of a trolley from an initial position to a desired

terminal position should be controlled time-optimally and safely. A related problem is the

elastic bridge-load-system, at which quasi the crane beam is clamped also at the opposite

end.



3) A quarter car model,

at which a linear elastic tyre with road contact is coupled to a tyre-damper system. By

control of an electrorheological damper we wish to optimize safety and comfort of the

vehicular chassis. Here the PDE of linear elasticity appears again and an ODE system

for the spring-damper element. In addition for this problem, we have a complementarity

condition for the free road contact between tyre and road.

4) A model for precipitation in gallium arsenide,

that, as indicated above, describes the evolution of liquid precipitates that emerge at a

final heat treatment of GaAs crystals. In this macroscopic problem, a so-called mean-field

model, the differential equations are a hyperbolic equation of first-order for the distribution

of droplet volumes and an ODE for the mean composition of the solid, i.e. for the mean field.

Control quantities are, e.g., the initial states or the temperature. Here the question arises,

whether this process may be manipulated suitably, in order to optimize the final product

w.r.t. certain material characteristics. Please note that the state being the distribution of

droplet volumes is a measure and no function in the standard sense.

Since we are mainly in uncharted waters, our priority is what may happen in optimal control of

coupled differential equations at all in applications, how we approach these difficulties, and how

we cope the numerical challenges. A concluding theory for this class of problems is definitely

out of the scope of this habilitation project. The obvious wish, to derive general statements

for optimal control of coupled differential equations starting from these examples, turns out to

be very challenging or even as impossible, since the examples are very heterogeneous and yet

different PDEs require different theory and methods. At least we may demonstrate generally that

when dealing with adjoint problems for parabolic equations the coupling structure is reverted

and that fixed point methods can be applied well for the analysis of pretty arbitrary state

equations.

The above selection of coupled optimal control problems has been examined w.r.t. modelling,

theory (i.e. necessary first-order conditions), numerical methods, and, in particular, numerically

simulated and validated. Due to complexity, in many applications it is essential to perform a-

priori a careful reduction of the original problem statement to a mathematical treatable model

that though reflects the important features of the problem. Finally, we have developed a global-

ization strategy for semismooth Newton methods that has been applied successfully for two of

the coupled control problems.
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Chapter 1

Introduction

Technical systems become more and more complex since recent years. Accordingly, the challenge

of complex models and the demand for its accurate simulation and optimization has raised in

the last years. Many real-life applications yield mathematical problems that involve ordinary

differential equations (ODE) as well as partial differential equations (PDE) that are fully coupled.

We will refer to these coupled systems as coupled differential equations, abbreviated by CDE.

Whereas optimal control subject to ordinary differential equations or even differential-alge-

braic equations (DAE) on one hand and optimal control subject to PDEs on the other is well-

established considered alone, the optimal control of CDEs seems to be still in its infancy. Analysis

and optimal control of ordinary differential equations is considered as being part of “finite-

dimensional” control theory [La03, Ch. 1]. The typical function spaces are Hölder spaces or

Sobolev spaces relying on the supremum norm (for details on function spaces see Subsection

A.1.3). In case of a PDE as constraint this is considered as part of “infinite-dimensional” control

theory. Typical spaces are Sobolev spaces with square-integrable functions and the structure of

Hilbert spaces and the concept of Gelfand triples are exploited. Note that in optimization with

PDEs mostly linear or semilinear problems are feasible, while in optimal control with ODE fully

nonlinear problems are treated in general.

The aim of this work is not a complete and comprehensive treatment of optimal control of

coupled differential equations. Due to the complexity described so far this is out of reach here.

However, since to the best knowledge of the author only some examples have been examined in

this area, we think that this book will provide an important contribution for opening the door to

this class of control problems getting more and more important in applications. The focus is not

on abstract results for coupled optimal control problems of the considered type. Moreover, we

wish to illustrate the importance, complexity and numerical solution of the considered problem

class by considering several important applications from modern technologies.

This study is designated for interested readers not only from mathematics, but also from

applications, as engineering, computer science, physics, chemistry, economics, life science, and

other sciences. We cover modelling issues, like the introduction of an averaging-evaluation

operator (see Def. 3.1), algorithmic methods, numerical techniques, and optimal control of CDE.

Our approach is to illustrate by considering representative examples, what issues arise in this

1



new class of optimal control problems.

1.1 Coupled Systems of Ordinary and Partial Differential Equa-

tions

A differential equation involving only one derivative w.r.t. the same argument is usually referred

to as ODE. If in addition, purely algebraic equations are present, we speak of differential-

algebraic equations. The orders of the ODE considered here are typically 1 or 2. Note that

systems of order n may be rewritten equivalently as first order systems, typically with n times

the equations. Note that the contrary is not always possible. We emphasize that we focus on

initial value problems involving ODEs here.

In a PDE several partial derivatives may appear. PDEs are commonly classified by the

structure of the highest derivatives encoded by a matrix. Depending on the eigenvalues of this

matrix, we distinguish

• elliptic equations,

• hyperbolic equations,

• parabolic equations

with different orders (e.g. 1, 2 or 4) that correspond to the order of the highest derivative.

In partial differential equations the setting of boundary conditions is crucial as well. Note

that a heterogeneous class of problems as partial differential equations requires different theory,

depending on type (elliptic, parabolic, hyperbolic) or order, and are treated by different (nu-

merical) methods. However, there is some closer correspondence between elliptic and parabolic

PDEs, since a parabolic PDE may be interpreted as a sequence of elliptic problems in the light

of a semi-discretization in time. But in general, solutions of parabolic PDEs exhibit a higher

regularity as elliptic PDE with the same data and geometry, since the time evolution yields a

smoothing effect.

In this study we focus on fully-coupled ordinary and partial differential equations. In partic-

ular, the case of coupled systems of ODEs as well as PDEs is included.

The general purpose of optimization with differential equation constraints is to minimize (or

maximize) an objective. If the solutions entering the control problem exhibit a structure of

being either only solution functions, the so-called states, or functions being controls, then this

is called control. If we try to control for a prescribed possibly infinite time horizon without any

feedback, this is called optimal control, whereas in (classical) control a system runs for a certain

time interval, then depending on observed quantities the control input is chosen that is applied

for the next time interval and so on. The control theory of dynamical systems can be grouped

into three typical classes depending on the goal:

(i) optimal control,

2



(ii) controllability, and

(iii) stabilization problems.

In this study, we consider optimal control problems for a finite time horizon and there we fo-

cus on optimal control with an open loop (and not on closed loop problems as they appear,

e.g., in model predictive control). For control and stability of nonlinear dynamical systems see,

e.g. [Ba92, Co07, LT00, Co07], for model predictive control please see [GP17] for instance.

A particular class of optimal control problems are inverse problems. For models arising in

inverse problems and the numerical treatment of these typically ill-posed problems see, e.g.,

[IJ15]. Parameter identification problems, where only a parameter is to be reconstructed, are a

simple case of an inverse problem. The numerical approach of choice therefore uses the Tikhonov

regularization, being the most powerful and versatile method in this context. We will use the

Tikhonov technique in order to obtain projection formulas for the optimal control (see Lemma

2.44) and for our globalization strategy for semismooth Newton (see Section 2.9), where a suit-

able regularization parameter guarantees descent directions.

Furthermore, we classify by means how the control is exerted to the problem. If the control is

applied within the whole of the spatial domain or parts with full measure, e.g., as a right-hand

side force term, then this is called a distributed control . This a “nice” class yielding bounded

control operators [Li68]. However, it may be desirable or only feasible to control the boundary

of or points in the domain. This “rough” control is a boundary control (on the boundary of

the spatial domain or a part of this boundary) or point control (through a Dirac measure or its

derivative(!) in the interior of the domain). Usually the control space is larger than the state

space and equipped with a weaker topology.

Boundary/point control problems of coupled PDEs are considered in [La03], where the fo-

cus is on the structural acoustic problem (coupling a hyperbolic wave equation with an elastic

parabolic equation). For some recent results, problems and trends in optimization and control

of processes, where optimal control of PDE is applied, see, e.g., [LEG+12]. In [KLST09] optimal

control of coupled systems is considered, but the constraints are always partial differential equa-

tions. Note that here (coupled) PDEs of different type are considered as well. However, only

few results about combined ODE-PDE constrained optimal control exist so far, see Sect. 1.2 for

details.

As an illustrative introductory example, we choose the optimal control of a moving pendulum.

Example 1.1 (Introductory Example: Trolley-Load System)

We consider a load mL that is fixed to a trolley with mass mTr. The load may be modelled

as rigid pendulum in a 2D plane with length ` and it is subject to the gravity acceleration g.

The trolley may move (without friction) on an infinite rail and its acceleration force u may be

controlled. We consider as states the trolley position q1 and the angle q2 between the rigid rope

and the perpendicular. At t = 0 the initial position q1;0 ∈ R and initial angle q2;0 ∈ R are

3



prescribed and the system is at rest. At the terminal time t = tf we wish to achieve a given state

[q1;f , q2;f ]>. The optimal control problem reads:

Find u : [0, tf ]→ R such that J (u) =
∫ tf

0 u(t)2 dt is minimized,

subject to the constraints, being the ODE of a mathematical pendulum for [q1, q2, v1, v2]> :

[0, tf ]→ R4,

q̇1(t) = v1(t),

q̇2(t) = v2(t),

(mTr +mL)v̇1(t) +mL` cos(q2(t))v̇2(t) = mL` sin(q2(t))v2
2(t) + u(t),

mL cos(q2(t))v̇1(t) +mL`v̇2(t) = −mLg sin(q2(t)),

with initial conditions

q1(0) = q1;0,

q2(0) = q2;0,

and the terminal constraints

q1(tf ) = q1;f ,

q2(tf ) = q2;f .

Note that this problem may as well be considered with variables q̃ := [q1 = x1, x2, q2]> being

the coordinates of the load and the angle. This yields an optimal control problem subject to a

DAE (with differentiation index 3) where the further constraint x2
1 +x2

2 = `2 has to be respected,

cf. [Ge12, Ex. 1.1.10].

So far this is an optimal control problem subject to an ordinary differential equation. The

optimal control of a trolley-load system has been considered in [CG11, CG12]. Including the

elastic deformations of the crane beam, described by the linear elasticity PDE, into this model

yields in a natural way a fully coupled optimal control problem with ODE-PDE constraints that

is discussed here in Section 4.3 in detail.

1.2 Applications with Coupled Ordinary and Partial Differen-

tial Equations

In mathematical modelling there exist different approaches. One can start with kinematic mod-

els, relying on geometric properties. An alternative are dynamic models, considering forces.

The latter could be extended by considering, e.g., momentum balances or conservation laws. If,

in addition, we choose proportionality constants in such a way that the first and second law

of thermodynamics are fulfilled, this is called a model from first principles. If feasible, we will

follow the latter approach.

4



Coupled systems involving ODE and PDE can be found in many applications in engineering

and natural sciences. Recent applications involve, for instance, tracking a bus trajectory (de-

scribed by an ODE) in a traffic flow (modelled by a scalar hyperbolic conservation law) [MG14], a

reaction-diffusion model for tumor invasion where the tumors produce acid that attacks healthy

cells [TT16], or the mitochondrial swelling, where the ODE models the evolution of the mito-

chondrial sub-population and the PDE the spatial calcium propagation [EEO+15]. A further

example, among others, is a flexible cantilever structure actuated by piezoelectric macro-fiber

composite patches [STK11].

Within the concept of a digital twin and the co-simulation of engineering systems the numer-

ical simulation of these systems, in particular complex coupled systems, has found increased

interest, see e.g. [HHW18]. Another context where ODE-PDE problems appear are continuous

analogues of iterative methods for PDE-constrained optimization problems [BFHK18].

For coupled systems we mention the well-posedness result from the PhD thesis of Kimmerle

[Ki09], based on Niethammer [Ni99], that is stated in an abstract form here in Th. 3.4. For

further coupled systems that have been considered in optimal control see the next subsection.

How the coupled systems considered by the author differ w.r.t. the type of differential equations,

the means of coupling (e.g. by boundary conditions (b.c.) or right-hand side (r.h.s.)), the type

of coupling (one-sided/full) etc. is shown in Table 1.1.

1.3 Optimal Control Problems with Coupled Ordinary and Par-

tial Differential Equations

To the authors’ knowledge, not many optimal control problems for fully coupled ODE-PDE

systems have been considered thoroughly. We list the few examples that have been treated so

far.

A model for a satellite, whose dynamics are given by a ODE and its flexibility is modelled

by the PDE for a beam, has been controlled optimally by Biswas and Ahmed [BA86, BA89].

Furthermore, the optimal control of a gantry crane, where the load is described by a ODE and

the deformation by a PDE, has been considered in [Bi04]. Similar evolution problems for flexible

structures have been considered from a control theoretic point of view by Zuyev [Zu15]. His

focus is on partial stability and controllability of infinite-dimensional mechanical systems, like

rotating flexible structures and flexible-link manipulators. The mathematical techniques rely

on the Lyapunov function, an approach that we do not pursue in this study, since we confine

ourselves mainly to Lagrange function techniques and shortly to the minimum principle.

Chudej et al. [CPW+09] consider optimal control for coupling of the heat equation and

equations of motions. Similar as in the elastic-crane-trolley-load problem, the coupling from

ODE to PDE is achieved by means of a boundary condition, but the controls arise in the ODE

system only and the PDE is considered in one space dimension.

In our crane-trolley problem [KGH18a, KGH18b], the controls arise in the ODE as well as

5
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in the boundary condition. Our control acts on the PDE by means of a Neumann boundary

control. In our problem we encounter control constraints, too. For a particular class of ODE-

PDE-problem, a so-called hypersonic rocket car problem, including the problem of [CPW+09],

some new phenomena have been discovered by Pesch et al. [PRWW10]. In [WRP10] this

OCP is reformulated as a state constrained optimal control problem for PDE and necessary

optimality conditions for it are derived. In particular the situations, when state or control hit

their constraint, are crucial.

The hypersonic rocket car problem as well as another coupled problem related to molten

carbonate fuel cells can be viewed as partial differential algebraic equations (PDAE). Thus the

related optimal control problems can be considered in the context of optimal control of PDAE

[Ru12].

A model of coupled ODE-PDE systems in the form of monodomain equations arising in the

context of heart electrophysiology has been considered by Breiten, Kunisch, and Rund [KR15,

BK14, BK17]. Undesired effects like arrhythmia may be modelled as spiral waves and re-entry

phenomena. The aim is the stabilization of the system [BK14] around a desired state being free

of arrhythmia, similar to an external intervention by a defibrillator. Here a new mathematical

phenomenon appears, a finite accumulation point in the spectrum of the corresponding operator,

making the null-controllability of coupled ODE-PDE system impossible [BK17]. However, this

particular system may be stabilized locally by means of an algebraic Riccati equation for the

operator, relying only on the linearized PDE (and not on the ODE at all).

A model for laser hardening of steel, where the phase of steel (i.e. the volume fraction of

austenite) is encoded by an ODE and the PDE is a semilinear heat equation, has been considered

by Hömberg and Volkwein [HV03a, HV03b] among others. The latent heat required for the phase

transition and depending on the austenite phase is a volume term in the heat equation, whereas

the temperature enters as a coefficient into the ODE, thus the problem is fully coupled. Note

that the phase fraction depends on time and space, correspondingly the ODE is examined in

the whole parabolic cylinder. The goal is to track a desired phase fraction and the whole phase

transition is controlled by the laser energy that should be kept minimal. For details on the model,

see, e.g., [HS97, FHS01]. For a 3D model in [HV03b] necessary optimality conditions are derived

that are solved using POD (proper orthogonal decomposition) methods. In the earlier article

[HS97] a more enhanced model with five ODEs for different phases of steel is considered and for

pointwise state-constraints on the temperature the necessary optimality conditions are derived.

The studies [HS97, HV03a, HV03b] use a regularized Heaviside function for the part of the

domain where the phase transition takes place. In [GNP10] it is shown that the regularization

converges, but they consider only a 2D problem.

In [AKM14] the optimal control of a coupled ODE-PDE problem for supply chains is con-

sidered. Here the PDE is for describing the density of the processed parts, whereas the ODE

models the queue buffer occupancy. The aim is to minimize the queues and tracking a desired

outflow by means of a pointwise control subject to state constraints.

The optimal control of one-dimensional hyperbolic conservation laws coupled to ODEs in time

7



is considered in [BCG10]. This abstract optimal control problem is similar to our truck-container

problem, but they allow only for a coupling between the boundary condition of the PDE and

the ODE states.

How the optimal control problems for coupled differential equations in this study differ w.r.t. the

type of control, objective, constraints, and numerical optimal control methods is denoted in Ta-

ble 1.2.

1.4 Methods and Results

The numerical methods for simulation and, in particular, for optimal control are crucial for

accurate computations. For the ODE suitable Runge-Kutta methods, explicit, semi-explicit or

implicit may be considered. In several of our examples, it turns out that the second-order Heun

method is helpful and, if we deal with oscillations as in Problem 2, then semi-explicit methods

are appropriate, whereas implicit methods yield computational issues. For PDE we work with

finite element methods or finite volume methods (inclusive finite difference methods). Similar

as for ODE, here typically higher-order methods are advisable, e.g., in Problems 2 and 4 at

least quadratic elements are required in order to achieve a certain precision for derivatives in

boundary terms that enter into the coupling. Furthermore, when free boundaries are present as

in [Ki09, SKB17], special methods have to be applied as transformation techniques and fixed

point iterations [Ki09, Ki11, KSB17]. The stability of the scheme may be an issue. For example,

for the truck-container problem [GK15, KG16, WGKG18] we end up with factor of up to 30 by

that the time grid has to be finer than the space grid. This is due to Courant-Friedrichs-Lewy

condition [La06, Sect. 8.2 & 8.3] known for explicit solvers for hyperbolic first-order problems.

For instance, higher-order numerical methods for hyperbolic conservation laws coupled with

ODEs, covering networks as well, are constructed in [BK16].

Of course, the mentioned fixed point iteration technique, described in details in Section 3.2,

may be exploited for basic algorithms as well. But there exist other approaches for coupled

problems, too.

If in simulations of coupled systems the sub-systems are simulated apart and only some in-

formation is exchanged at fixed time steps, then this method is called a co-simulation, see

e.g. [AG01]. In some approaches for optimal control problems the Jacobians are transferred

between the part systems. This is related to the area of distributed systems that are considered

in computer science.

Another possibility could be the freezing of coefficients, i.e. for dependent coefficients the val-

ues from the last step enter, whereas other terms are evaluated at the current step. However,

within the control problems that are considered so far in literature the subsystems are consid-

ered mostly as black-box problems and the particular structure of the coupling is not exploited.

This is also one of the goals of the following habilitation thesis. For example, in [WGKG18]
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we compute the Jacobians and the Hessians explicitly and the structure of the problem is ex-

ploited in the algorithms. By applying a direct solver for sparse matrices the computational

precision and efficiency may be increased, however, for large problem sizes an indirect solution

method, like Least-Memory-BFGS (Broyden-Fletcher-Goldfarb-Shanno) [LN89] may still be re-

quired. We discuss first-discretize-then-optimize approaches vs. first-optimize-then-discretize

approaches and Lagrange vs. Pontryagin approaches.

We recall that we do not claim that this study is to some extent exhaustive w.r.t. coupled

optimal control problems. Moreover, we would like to show its importance, variety and chal-

lenges by different examples. In general, due to the full coupling the number of unknowns to be

treated simultaneously are much larger as in optimization with PDE. This illustrates that the

simulation and numerical optimal control alone for the examples presented here is non-standard.

As in [PRWW10] we observe in [KGH18a] for optimal control without Tikhonov regularization

that the bang-bang principle (for details see Def. 2.45) seems to be violated. However, so far

this is only a conjecture and it cannot be excluded that the effect is merely a numerical artifact

that would, however, still illustrate the importance of suitable accurate algorithms.

Furthermore, our results comprise the introduction of an evaluation operator, averaging over

spatially dependent PDE solutions that enter into the ODE; the reversal of the coupling structure

in the adjoint problem; and that it seems to be advisable in FOTD approaches (see Sect. 2.3)

to treat ODE as simple PDE and then to apply the theory of optimal control for coupled PDE

systems.

1.5 Outline

The outline of this habilitation thesis is due to our approach considering typical examples. We

include accepted articles and proceedings, namely [GHK17] in Chapter 2 and [KG16, KGH18a,

Ki16, KM14, Ki12] in Chapter 4. The first article is on a globalization strategy for semismooth

Newton methods (SSNM) for optimal control of PDE, but it has been developed for optimal

control of CDE and applied successfully in this context. The other included papers discuss

various real-world examples (see the list in the abstract and at the begin of Chapter 4) for

optimal control problems with coupled systems. The selection of the papers has been made

in the light to present typical problems with different features and only one article for each

problem type for brevity. The content of the proceedings [Ki18] has been included in Sect. 3.3,

particularly in Subsect. 3.3.4.

For instance not included are, for the truck-container problem the articles [GK15, WGKG18]

and for the second problem the paper [KGH18b] is not presented here. A prerequisite to the

last problem, Problem 4, are [Ki09, Ki11, DK10] that have been written within the PhD studies

of the author. They deal with modelling and analytical well-posedness. Also related to Problem

4 are the later publications [Ki15] or [SKB17, KSB17] that deal with the evolution or stability,

resp., of gaseous precipitates. Here the precipitates are hydrogen nanobubbles, but the focus is

10



on modelling and simulation, yet. In the last paper a coupled ODE-PDE system is derived from

a mean field model for interacting bulk and surface nanobubbles, not yet examined as optimal

control problem, being similar to the problem considered in [Ki12].

Another type of coupled control problems involving modelling, simulation and shape optimiza-

tion, in particular, have been treated in [LBKN11, KBN13, BNK11, KLNB14]. The application

is a low temperature polymer electrolyte membrane (PEM) for hydrogen fuel cells.

A topic of ongoing research in cooperation with a large automobile manufacturer is the trans-

port of charge carriers (protons and, e.g., platinum ions) in deformable nanochannels fully filled

with liquid. This models polymer electrolyte membrane (PEM) under operation and yields a

problem of PDE (Poisson equation for the electric field, Nernst-Planck equation for diffusion and

transport, Stokes equation for laminar flow) and DAE for the free boundary of the nanochannel.

The DAE and PDE are fully coupled since by means of the moving domain the ODE back

couples to the PDE. The aim is here the numerical simulation of this complex problem by finite

elements and finite volumes and the examination of different geometries as in [BKN14]. A pa-

rameter for the shape optimization is given, e.g., by the overall pressure.

In the next chapter we recall the classical theory for optimization and optimal control. In

particular we present analytic results and algorithms in function space. We begin with standard

results for optimization in Banach spaces in Section 2.2. Starting from Section 2.4 the focus

is on the special case of optimal control. Chapter 2 might be skipped by experts and readers

familiar with these topics, since we present the theory of coupled optimal control problems in

the next chapter. Only in the last section, Sect. 2.9, we present a new result for a globalized

algorithm for the semismooth Newton method in Section 2.9.

In Chapter 3, in which we consider the optimal control theory of coupled ODE-PDE , contains

our main theoretic contributions to this field. The main result is that either ODEs may be

treated as PDEs in a Hilbert space setting that is different to classical ODE theory or the

PDE may be considered as an ODE in function spaces, i.e. as an abstract evolution equation.

Under reasonable conditions both approaches coincide, however we recommend the “treat ODE

as PDE” approach in practice. Chapter 3 provides the theoretical fundament for the following

applications.

Chapter 4 summarizes several new examples in engineering and science for this class of coupled

optimal control problems that we have solved numerically in particular. For suitable numerical

approaches the results from the last two chapters are crucial. In particular we mention our

globalized semismooth Newton method, fixed point iterations, and the reverse coupling structure

in adjoints.

We close with a discussion in Chapter 5. Further basic results from analysis and functional

analysis are recalled in Appendix A for convenience. Appendix B collects some results on

numerical methods for PDEs. In Appendix C the connection between Lagrange and Hamilton

mechanics and optimization is presented and the last appendix, App. D gives an overview of the

11



used notation and symbols.
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Chapter 2

Classical Theory and Methods for

Optimization and Optimal Control

In this chapter we revisit the standard theory for optimization and optimal control that is

required in Chapter 3, where we adapt this theory for a new framework, being the special

case of optimal control with fully coupled ordinary and partial differential equations. We focus

mainly on analytic aspects and algorithms in function space, concerning infinite-dimensional

problems, and leave partially numerical aspects and the finite-dimensional case aside, since both

the latter are covered by a wide variety of books and lecture notes, for instance, [GK99, GK02,

LY08, Be10]. After a few general considerations, we start with optimization in Banach spaces

(Section 2.2), followed by general optimization algorithms (Section 2.3), and then we restrict

ourselves to the important special case of optimal control (Sections 2.4 and 2.5). Then we focus

on optimal control of differential algebraic equations (Section 2.6) and on optimal control of

partial differential equations (Section 2.7). In the last section we include our original article on

a globalization strategy for the semismooth Newton method.

2.1 Optimization, Optimal Control and Control

The general purpose of mathematical optimization is to optimize a certain quantity, called the

objective, subject to a model or to drive a system to a certain behaviour, where we assume that

the model or the system may be described mathematically. The mathematical model system

might be described by certain equations. In this chapter we consider only the situation of

ordinary and/or partial differential equations modelling a certain process. The model might be

from natural sciences, engineering, economics, or other disciplines, however, the mathematical

problem has a similar structure.

In optimal control the underlying model exhibits state variables (or just states), denoted by

y, and control variables (or controls), denoted by u. The idea is to choose the optimal control

u such that system, with solutions y of the differential equations, behaves optimally in a sense

prescribed by the objective.
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We consider a real system

y = S(u)

that is represented by the model

y = S(u).

Clearly, our goal is that S is in a (here deliberately undefined) sense close to S, but we cannot

expect that S = S is achieved. We might even encounter the situation of a black-box problem

with known in- and output, but without further knowledge of the mechanism S within.

Furthermore, we have to distinguish between optimal control1 and control. In control2, as

understood here, systems with a feed-forward control and feedback are considered. In open

loop control, the action of the controller is independent of the actual process. This is linked

to optimal control, where the optimal control is computed in advance corresponding to optimal

solutions, but no feedback is considered. Thus, when the computed optimal control is applied to

a real system, it is has to be combined with some feedback control, unless it is known that some

stability can be guaranteed. This motivates to consider feedback control as well. In a closed

loop approach for control, some output is measured and depending on it, some new input, i.e. a

feedback, is computed and applied. However, in many real-world applications the feedback is

subject to some significant delay. Within model predictive control (MPC)3 a time-discretized

dynamic model of the process to be controlled is employed in order to predict the behaviour of

the process in the near future, i.e. on a finite time horizon. This allows for the computation of

an optimal input subject to possible state and/or control constraints.

In this study we consider optimization problems with an open loop (and with an finite time

horizon) only. In general, the sought-after optimization variable is denoted by z, i.e. z = [y, u]

in the case of optimal control, where y represents a state and u an optimal control.

In this study w.l.o.g. minimization is considered. Then the general task is to minimize an

objective

Φ(t0, tf , z(t0), z(tf )) +

∫ tf

t0

φ(t, z(t)) dt (2.1)

with respect to z subject to differential equations complemented with initial and boundary

conditions and control and/or state constraints for z. Here t0 is the initial time, w.l.o.g. we

consider mostly t0 = 0, and tf is a possibly free terminal time.

Φ and φ are given sufficiently smooth functions. The first summand, Φ, is called Mayer term,

the second term is the Lagrange term. A combination of both terms is a so-called Bolza problem.

In principle, a Lagrange term may be expressed as another Mayer term by introducing another

state together with an ODE. However, this transformation is not always the best choice, when

considering optimization problems.

1“Optimalsteuerung” in German.
2“Regelung” as well as “Steuerung” (i.e. without feedback) in German.
3Also called receding horizon control.
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Important tasks in optimization are:

• Existence of optimal solutions,

• Uniqueness of optimal solutions,

• Optimality conditions, and

• Optimization algorithms.

As optimality conditions, in particular the Karush-Kuhn-Tucker (KKT) conditions are impor-

tant. Most modern optimization algorithms are based on KKT.

Our presentation of the theory for optimization and optimal control follows in particular Gerdts

[Ge12] w.r.t. ODE and the books of Tröltzsch [Tr10] and Hinze, Pinnau, Ulbrich, and Ulbrich

[HPUU09] w.r.t. PDE. The topics and the extent of the book [HPUU09] are well-selected. Parts

of this chapter follow this book, however we present and arrange the results in a different struc-

ture.

The outline of this chapter is as follows. At first, in Section 2.2 we consider general opti-

mization problems with some basic structure, then we focus on the case of optimal control, see

Section 2.4. Optimality conditions are discussed in Subsections 2.2.2, 2.2.3 and 2.4.2, respec-

tively. Optimization methods are presented in Sections 2.3 for general optimization problems

and in 2.5 for optimal control in particular.

Of course, our presentation of optimization theory is far from being complete. Inverse prob-

lems may be considered within the class of optimal control problems. Inverse problems have

the undesirable feature that they are usually ill-posed. Parameter identification problems are a

special case of optimal control or inverse problems, resp. The unknown parameter to be iden-

tified is constant in time, it may be treated by introducing another artificial state fulfilling a

trivial ODE, then the parameter is determined as a free initial condition. We have a short look

at time-optimal control problems that can be considered as parameter identification problems.

Time-Optimal Control and Transformation Techniques

The technique of choice for dealing with problems involving a free terminal time tf > 0, is to

consider a time transformation. By using a linear time transformation

t(τ) := t0 + τ(tf − t0), τ ∈ [0, 1],

and scaling states and controls, an equivalent problem with scaled time τ ∈ [0, 1] is obtained,

where the terminal time tf enters as an unknown parameter. By this means the problem is more

suitable for analysis, simulation and optimization. The parameter tf is incorporated into the

objective, commonly as a linear term.
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There are many works on time-optimal control of differential equations. For example, the

time-optimal control of the heat equation is considered by Kunisch and Wang [KW13]. We

consider time-optimal control of coupled problems in Sections 4.2 and 4.3.

Similarly non-autonomous problems may be transformed into autonomous problems, see, e.g.,

[Ge12, Subsect. 1.2.2]. This is achieved by introduction of an additional state τ̃ subject to the

differential equation

˙̃τ(t) = 1, τ̃(t0) = t0

yielding that Φ and φ in 2.1 do not depend explicitly on t, but a further state has been introduced.

In case of a time-dependent domain, e.g. by means of a free boundary, a standard approach

is to transform to a fixed domain, typically the initial domain (see, e.g. [Ki09, Ki11]). For

further transformation techniques (transformation of Tschebyscheff problems, L1-problems, and

interior point constraints) yielding a standard problem see [Ge12, Sect. 1.2]. Thus we consider

w.l.o.g. the theory of a non-autonomous problem with fixed terminal time, as Problem 2.1.

2.2 Optimization in Banach Spaces

2.2.1 Generic Optimization Problems and Preliminaries

In this subsection our presentation follows mainly [HPUU09, Ch. 2]. We start with the most

general form of optimization problem, considered here in this text.

Problem 2.1 (Optimization Problem in General Form)

Let Z be a vector space over K. Let J : Z → K be a functional, the so-called objective

(objective function or functional). The optimization problem reads:

Find z ∈ Z such that J (z) is minimized,

where z ∈ Zad,
with ∅ 6= Zad ⊂ Z.

If Z = Zad the problem is called unconstrained.

In this study we consider only the case K = R. Note that w.l.o.g. we consider only minimiza-

tion problems, since maximization problems can be transformed into equivalent minimization

problems.

Definition 2.2 (Optimality)

Consider Problem 2.1 for the case that Z is a Banach space.

a) We call ẑ ∈ Zad locally optimal (minimal) or local optimum (minimum/minimizer), if

J (ẑ) ≤ J (z) ∀z ∈ Zad ∩ V (ẑ)
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in some (open) neighbourhood V (ẑ) of ẑ.

b) If the latter holds with strict inequality for z 6= ẑ, we say ẑ is a strict local optimum

(minimum).

c) If there exists a V (ẑ) s.t. Zad ∩ V (ẑ) = Zad, then we have a global optimum (minimum).

Assume for the moment that we may split z = [y, u] ∈ Z = Y ×U as in optimal control, where y

is a state and u a control. Note that in a) then we consider a weak local optimum, since we allow

for a neighbourhood V (ŷ, û) = {[y, u] ∈ Zad | ‖[y, u]− [ŷ, û]‖Z < ε} for some ε > 0. However, a

strong optimum means that J (ŷ, û) ≤ J (y, u) for all [y, u] ∈ Zad such that ‖y − ŷ‖Y < ε (see,

e.g. [Ge12, Def. 7.1.3]). Strong optima are weak optima, but the converse is false in general.

In convex optimization problems (i.e. when J and Zad are convex), every local optimum is

a global optimum. For example, semilinear PDE lead to nonconvex optimization problems, un-

less the PDE is actually linear. For some examples of nonlinear PDE, we refer to our papers

[GHK17] (two semilinear problems) and [KG16] (the Saint Venant equations are yet quasilinear)

included here in Sect. 2.9 and Sect. 4.2, respectively.

Lower semi-continuity of J and compactness of Zad guarantee the existence of a solution of

Problem 2.1 due to the Weierstrass theorem. However, the latter two prerequisites are in gen-

eral difficult to verify [PT12].

Problem 2.3 (Standard Optimization Problem (With a Certain Structure of the Constraints))

Let Z, WG, and WH be vector spaces (over R) and let J : Z → R be a functional. Furthermore,

let G : Z →WG and H →WH be operators.

Find z ∈ Z such that J (z) is minimized,

where z ∈ Zad,
subject to the constraints

G(z) ∈ K,
H(z) = 0WH

,

where ∅ 6= Zad ⊂ Z is a closed convex set and K ⊂ WG is a closed convex cone (see Def. A.31)

with vertex at 0WG
.

Note that we write 0WH
for the zero element of the vector space WH in this study in Chapters

2, 3, and in the appendices. This also implies that the equation H(z) = 0WH
holds in the sense

of WH . For instance, if Z is a Lebesgue space like L2, then the equation holds up to sets of

L2-measure zero. We write 0R = 0.

Please note that the latter problem is formulated generally, including the infinite-dimensional

case. If, e.g., Z = Rnz , WG = RnG , and WH = RnH , we recover a finite-dimensional problem,

where G(z) ≤ 0RnG . Any standard nonlinear program (NLP) in finite-dimensional Euclidean

spaces can be treated as a special case of the latter situation.
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Remark 2.4 (Admissible Set; Feasible Set)

Zad ⊂ Z is called here the admissible set. Here G can be interpreted as inequality constraint and

H is an equality constraint. Note that there is a certain choice, which constraints are put into

Zad and which are formulated by means of G and H. This choice can be made such that it is

most suitable for the analysis, for the numerical solution approach or for the application. The

combination of Zad with both the constraints yields the feasible set

Σ(fs) := {z ∈ Z |G(z) ∈ K, H(z) = 0, z ∈ Zad}. (2.2)

Note that we make a distinction between the admissible and the feasible set as e.g. in [HPUU09,

p. 53], contrary to [Ge12, Sect. 2.3]. In the admissible set not necessarily all constraints are in-

corporated, whereas the feasible set includes all constraints of the problem. The different notions

are motivated, e.g., by the Def. A.38 of the tangent cone that requires Σ(fs) and Zad at the same

time.

An approach for numerical methods is to approximate locally Pb. 2.5 that is nonlinear by

Problem 2.5 (Convexified Optimization Problem (With a Certain Structure of the Constraints)

[GL11, 6.3.1])

Let Zad ⊂ Z = Rnz and let J : Z → R be a functional. Furthermore, let G : Z → RnG and

H : Z → RnH be functions.

Find ẑ ∈ Zad such that J (ẑ) + J (ẑ)(z − ẑ) is minimized,

where z ∈ ẑ + T̃ (Zad, ẑ),

subject to the constraints

G(ẑ) +G′(ẑ)(z − ẑ) ≤ 0RnG ,

H ′(ẑ)(z − ẑ) = 0RnH ,

where T̃ (Zad, ẑ)(⊂ T (Zad, ẑ)) is a convex partial cone of the tangent cone T (Zad, ẑ) as defined

in Def. A.37.

This approximation in finite dimensions is used, e.g., in the local Slater condition [GL11, 6.3.6],

or in the sequential quadratic programming (SQP) method (see Sect. 2.3.3), but in the latter

case with a quadratic objective. The idea is to prove global first-order necessary optimality

conditions for the convexified problem that are local first-order necessary optimality conditions

for the original nonlinear problem, for details see, e.g., [GL11, Sect. 6.3]. Note that the last

problem is finite-dimensional, but in numerics we always deal with finite dimensions.

For details on conic approximations and separation theorems, as required for a more general

derivation of necessary optimality conditions, see [Ge12, Sect. 2.3.2 & 2.3.3].

2.2.2 Necessary Optimality Conditions

Necessary optimality conditions (NOC) provide a criterion that allows to figure out candidates

for ẑ, under the assumption that a minimum ẑ exists at all. By sufficient conditions we could

18



ensure that we have actually found a minimum.

If first-order derivatives are involved, then we refer to the NOC as a first-order necessary

optimality condition. If derivatives up to second-order appear in the condition, then we call it

a second-order necessary optimality condition.

The structure, presupposed in Problem 2.3, allows to derive first-order necessary optimality

conditions of the following type, formulated by Fritz John in 1948 [FJ48]. We start with some

basic assumptions.

Assumption 2.6 (Basic Assumptions on Spaces and Regularity)

a) Z, WG, and WH are Banach spaces.

b) J : Z → R, G : Z → WG are F-differentiable and H : Z → WH is continuously F-

differentiable, respectively.

Assumption 2.7 (Basic Assumptions for First-Order Necessary Optimality Conditions)

a) The closed convex set Zad has interior points, i.e. Z̊ad 6= ∅.

b) The closed convex cone K (with vertex at 0WG
) has interior points, i.e. K̊ 6= ∅.

c) The image of H ′(ẑ) is not a proper dense subset of WH .

In the following theorem K+ denotes the positive polar cone of K, see Def. A.36.

Theorem 2.8 (Fritz John-Conditions (FJ-Conditions))

Assume ẑ is a local minimizer of Problem 2.3. Let Assumptions 2.6 and 2.7 hold, then there

exist multipliers λ := [λ0, λG, λH ] ∈ R×W ∗G ×W ∗H , λ 6= [0, 0WG
, 0WH

] s.t.

λ0 ≥ 0, (2.3)

λG ∈ K+, (2.4)

〈λG, G(ẑ)〉W ∗G,WG
= 0, (2.5)

〈λ0J ′(ẑ), d〉Z∗,Z + 〈λG, G′(ẑ)d〉W ∗G,WG
+ 〈λH , H ′(ẑ)d〉W ∗H ,WH

≥ 0 ∀d ∈ Zad − {ẑ}. (2.6)

For a proof of Th. 2.8 see, e.g., [Ge12] or [ZK79]. It relies on the open mapping theorem, stating

that a linear, continuous, and surjective operator maps open sets to open sets (see, e.g., [We95,

Th. IV.3.3]).

Every point [z, λ] with non-trivial λ is called a Fritz John-point. If further λ0 6= 0 (w.l.o.g. we

may consider λ0 = 1 by scaling), then (2.3) – (2.6) are called Karush-Kuhn-Tucker (KKT)

conditions and [z, λ] is called a KKT-point, correspondingly. The minimum principle for optimal

control problems may be derived from the FJ-conditions.

We use in this study the notation λ for the multiplier at the optimum. Note that, unless

indicated otherwise, we do not write λ̂, emphasizing that the multiplier is not unique in general.

The following version for necessary optimality conditions [HPUU09, Th. 1.46] requires weaker

assumptions, but less structure is obtained.
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Theorem 2.9 (First-Order Necessary Optimality Conditions for General Constraints)

Consider the optimization problem with general constraints z ∈ Zad, i.e. Problem 2.1. Assume

ẑ is a local minimizer of the problem. Let Z be a Banach space and the non-empty set Zad ⊂ Z
be closed and convex with a (open) neighbourhood V and let J : V → R be G-differentiable at ẑ.

Then there holds the variational inequality

ẑ ∈ Zad,
〈J ′(ẑ), d〉Z∗,Z ≥ 0 ∀d ∈ Zad − {ẑ}.

We consider slightly different assumptions than for the Fritz John-conditions for specifying the

last theorem in case of structured constraints.

Assumption 2.10 (Modified Assumptions for First-Order Necessary Optimality Conditions)

a) The closed convex set Zad is non-empty and is a subset of Z.

b) The closed convex cone K is a subset of WG.

c) The feasible set Σfs as defined in (2.2) is non-empty.

The following necessary optimality conditions using the tangent cone T (Σfs; z) of the feasible

set at z (see Def. A.37) can be proved.

Theorem 2.11 (First-Order Necessary Optimality Conditions for Structured Constraints)

Assume ẑ is a local minimizer of Problem 2.3, but with z ∈ Σfs. Let Assumption 2.6, but with

J being continuously F-differentiable, and Assumption 2.10 hold, then

ẑ ∈ Σfs,

〈J ′(ẑ), d〉Z∗,Z ≥ 0 ∀d ∈ T (Σfs; ẑ).

Proof. We extend here the proof stated for [HPUU09, Th. 1.52] to cover equality constraints

as well. For this purpose, we consider

G(z) := [G(z), H(z)]> ∈ K̃ (2.7)

with K̃ := K×{0} instead of G and K there. These constraints and z ∈ Zad are summarized by

z ∈ Σfs by definition.

We have to demonstrate the inequality. For any d ∈ T (Σfs; ẑ) there exist according to the

definition of a tangent cone sequences {zk}k∈N ∈ Σfs and {αk}k∈N in R with αk > 0 such that

zk → ẑ and αk(zk − ẑ)→ d. Thus by the continuous F-differentiability of J

0 ≤ αk(J (zk)− J (ẑ)) = 〈J ′(ẑ), αk(zk − ẑ)〉Z∗,Z + αko(‖zk − ẑ‖Z)→ 〈J ′(ẑ), d〉Z∗,Z

for sufficiently large k. �
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In the context of minimization subject to constraints, the Lagrange function appears in a nat-

ural way. The Lagrange function is not only used within optimization, but this concept is also

well-established in classical mechanics in a slightly different context, see Appendix C for more

details.

Definition 2.12 (Lagrange Function)

Let W := R ×WG ×WH , its dual will turn out to be the space for multipliers. The function

L : Z ×W ∗ → R,

L(z, λ0, λG, λH) := λ0J (z) + 〈λG, G(z)〉W ∗G,WG
+ 〈λH , H(z)〉W ∗H ,WH

is called Lagrange function (Lagrangian) for Problem 2.3, i.e. corresponding to the objective J
and the constraints G ∈ K and H = 0WH

.

Definition 2.13 (Saddle Point; Lagrange Multiplier)

Let Zad be a non-empty, convex set. Any [ẑ, λ] ∈ Z × W ∗ with λ = [1, λG, λH ], λG ∈ K+,

λH = 0W ∗H , satisfying

L(ẑ, µ) ≤ L(ẑ, λ) ≤ L(z, λ) ∀z ∈ Zad ∀µ = [µG, µH ] ∈W ∗, µG ∈ K+, (2.8)

is a saddle point of the Lagrange function L(z, λ).

λ is called a Lagrange multiplier associated to ẑ.

The existence of saddle points is most easily shown for convex optimization problems. But the

notion of Lagrange multipliers is in general not restricted to saddle points.

Note that in order to prove existence of Lagrange multipliers a certain compromise has to be

made w.r.t. the choice of Z. On one hand Z has to be small enough, such that differentiability

of the nonlinearities can be guaranteed, on the other hand Z should be large enough, such that

Z∗ is not too large and ensuring a certain regularity of the multipliers.

Further denotations for the Lagrange multiplier λ are adjoints, adjoint states, costates or,

within the context of economics, shadow prices. The multipliers represent the marginal costs of

violating the constraints. For a physical interpretation of the adjoint, see Appendix C.

Note that in literature, e.g. [HPUU09, Ge12], the multipliers are defined often as λ∗ emphasiz-

ing that they live in the dual space. Note that we consider the multipliers λ directly as elements

of the dual as e.g. in [Tr10].4

Remark 2.14 (Primal and Dual Representations of Adjoints and Gradients)

a) Using the dual operator G′(ẑ)∗ : W ∗G → Z∗ corresponding to G′(ẑ) : Z → WG, we may

write equivalently

〈λG, G′(ẑ)d〉W ∗G,WG
= 〈G′(ẑ)∗λG, d〉Z∗,Z .

Analogously, we may rewrite 〈λH , H ′(ẑ)d〉W ∗H ,WH
= 〈H ′(ẑ)∗λH , d〉Z∗,Z .

4Note that in general the space of adjoints could be a space of measures or exhibit even less structure.
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b) Note also that, if Z is a Hilbert space, then a derivative F ′(ẑ) : Z → R, i.e. F ′(ẑ) ∈ Z∗,
may be considered by its Riesz representation (see Th. A.8) that is called a gradient and

denoted by ∇F ∈ Z.

The Lagrange function allows to write necessary optimality conditions (2.3) – (2.6) in a more

concise formulation. Using Remark 2.14 a), we may replace the optimality condition (2.6) by

〈L′z(ẑ, λ0, λG, λH), d〉Z∗,Z ≥ 0 ∀d ∈ Zad − {ẑ}. (2.9)

The main advantage of Lagrange’s idea (originally developed for variational problems) is that

a problem with restrictions G(z) ∈ K, that are usually difficult to handle, is replaced by an

unrestricted problem. Other approaches following a similar idea, going back to [FM68], are

so-called penalty methods, where a sequence of penalty terms of the form

p(k)(·) = α(k)dist(G(·),K) (2.10)

is added to the objective turning a problem with the constraint G(z) ∈ K into an unre-

stricted minimization problem, but for J (z) + p(k)(z). Outer penalty methods allow infeasible

points for approximating the minimizer of the original problem, while inner penalty methods

or barrier methods only work with a sequence of points in the interior of the feasible set. For

penalty methods, we wish to find a minimizer for finite penalty parameters, shortly penalties,

α(k). This is the case for so-called exact penalty functions.

Definition 2.15 (`1-Penalty Function)

We consider the finite-dimensional case here. For a finite number of nG inequality constraints

G and nH equality constraints H the penalty function (2.10) w.r.t. the ‖ · ‖1 norm reads

pk(z) = α(k)




nG∑

i=1

max{Gi(z), 0}+

nH∑

j=1

|Hj(z)|


 .

`1-penalty functions may be proved to be exact, i.e. for a finite parameter α(k) a minimizer of

the original problem is obtained. For this and further details on penalty methods, see, e.g.,

[GL11, Sect. 7.6 & 7.7].

Unfortunately, exact penalty functions are in general non-differentiable. In order to keep

differentiability and exactness, the concept of Lagrangians and penalty methods are combined

as follows. Note that inequality constraints are eliminated here by the introduction of so-called

slack variables, see, e.g., [GL11, Subsect. 7.8.4].

Definition 2.16 (Augmented Lagrange Function)

The function

La(z, λ0, λH , α) := L(z, λ0, λH) +
α

2
‖H(z)‖2WH

is called augmented Lagrange function (augmented Lagrangian) for Problem 2.3.
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Under certain conditions, e.g., on second derivatives of H and second-order sufficient optimality

conditions, the exactness of the augmented Lagrangian may be proved [He75, Th. 4.2]. For an

iterative algorithm how to determine the multipliers and the penalties sensitively, see Subsection

2.3.2.

In finite-dimensional spaces, Assumption 2.7 c) on the non-density of image(H ′(ẑ)) is satis-

fied automatically. However, this is not clear in infinite-dimensional spaces, since the image of a

linear, continuous operator H is not closed in general. If the target space of H has the structure

WH = W 1
H × RnΨ (Ψ representing, e.g., initial and boundary conditions, see (2.60) and 2.79

below), we have the following result (for a proof, see [Ge12, Th. 2.3.29]):

Theorem 2.17 (Closed Image Space)

Let H ∈ L(Z,W ) with W = WH ×RnΨ, WH a Banach space and nΨ ∈ N. If, for the derivative

H ′(ẑ) = (T1, T2) with T1 ∈ L(Z,WH), T1 surjective, and T2 ∈ L(Z,RnΨ), then image(H ′(ẑ)) is

closed in W .

In order to guarantee λ0 6= 0 and the existence of Lagrange multipliers some so-called constraint

qualifications are required. Usually, ẑ is involved in the CQ and, thus, the CQ cannot be analyzed

a priori without further knowledge on ẑ. For further details on constraint qualifications we refer

to Appendix A.2.2).

In the following we consider L(z, λG, λH) := L(z, 1, λG, λH) as Lagrange function without

change of notation.

Theorem 2.18 (KKT-Conditions)

Assume ẑ is a local minimizer of Problem 2.3. If Assumptions 2.6, 2.7, and A.40 (the Robinson

CQ) are fulfilled, there exist Lagrange multipliers λ := [λG, λH ] ∈W ∗G ×W ∗H .

a) Moreover λ fulfils the KKT-system

G(ẑ) ∈ K, (2.11)

〈λG, k〉W ∗G,WG
≥ 0 ∀k ∈ K, (2.12)

〈λG, G(ẑ)〉W ∗G,WG
= 0, (2.13)

H(ẑ) = 0WH
, (2.14)

ẑ ∈ Zad, (2.15)

〈L′z(ẑ, λG, λH), d〉Z∗,Z ≥ 0 ∀d ∈ Zad − {ẑ}. (2.16)

The combination of (2.11) – (2.13) is a so-called complementarity condition. In finite

dimensions, (2.11) reads G(ẑ) ≤ 0, thus (2.12) yields λG ≥ 0.

b) Without inequality constraints the KKT-system can be written as

G̃(ẑ, λ) :=

[
H(ẑ)

J ′(ẑ) +H ′(ẑ)∗λH

]
=

[
0WH

0

]
, ẑ ∈ Zad.
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c) Consider a finite-dimensional optimization problem, i.e. let Z ⊂ Rnz , WG = RnG, and

WH = RnH . Moreover, if the stronger constraint qualification LICQ (Assumption A.45)

holds, then (2.16) yields

∇zL(ẑ, λ) = 0Rnz

and λ is uniquely determined.

Proof.

a) This follows from Theorem 2.8 using λ0 6= 0. Furthermore, for the reformulation of

the KKT-conditions, we have used Def. 2.12, Remark 2.14 a) (yielding (2.9)), the cone

structure is exploited, and the original constraints are recalled in addition.

b) This is just the special case, when no inequality constraints are present.

c) See [Ge12, Coroll. 2.3.39].

�
For other constraint qualifications implying the Robinson CQ, we refer to Appendix A.2.2.

A similar result, but with a more complicated structure replacing (2.12) & (2.13), may be

obtained, if we require only K to be a closed convex set without a cone structure [BS98].

(2.11) – (2.13) can be reformulated by means of a NCP5 function yielding a nonsmooth equa-

tion. A useful NCP function is the Fischer-Burmeister function, whose square is differentiable,

see, e.g., [GH11].

Here we understand as KKT-conditions the conditions following from the Fritz John-conditions

together with the original constraints that follow trivially, but have to be fulfilled necessarily as

well. This is different to many references.

Remark 2.19 (Exact and Formal Lagrange Method) [Tr10, Sect. 2.10]

Here we have derived the necessary optimality conditions by the so-called exact Lagrange method.

This method requires to state the function spaces suitably, to figure out the right differentiability

of the operators, to derive the adjoint equations rigorously, and other challenges in functional

analysis have to be tackled.

Another approach is the formal Lagrange method. It means to put up the adjoint equation

in a way, where, e.g., differential operators are considered formally, all adjoints are assumed

to be actually functions, and all appearing functions are supposed to be square-integrable. In

general this allows for a more direct derivation of the adjoint equation, that may be justified

mathematically rigorously afterwards. In particular for complicated problems this approach might

help to establish some formal results at first.

In general necessary optimality conditions are not sufficient and further information is required.

If J is convex, the inequality constraints are continuously differentiable convex functions, and

5nonlinear complementarity problem
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the equality constraints are affine-linear, then the KKT-conditions are not only necessary, but

sufficient as well, see, e.g., [Ge12, Th. 2.3.41].

2.2.3 Sufficient Optimality Conditions

Briefly we discuss sufficient optimality conditions. We focus on second-order sufficient optimality

conditions for equality constrained problems, following Tröltzsch [Tr10, Lemma 6.4] and Maurer

and Zowe [MZ79, Ma81], resp. If the second-order conditions are formulated by means of the

Lagrange function, more structure may be observed.

Lemma 2.20 (Second-Order Sufficient Optimality Conditions for Pure Equality Constraints)

In addition to the Assumptions 2.6 & 2.7 for Problem 2.3, in which here G is neglected and

inequality constraints enter by means of Zad, we assume the Zowe-Kurcyusz CQ (Assumpt. A.41)

and that J : Z → R and H : Z →WH are twice continuously F-differentiable.

Let [ẑ, λ] fulfil the first-order necessary optimality conditions in Th. 2.18 a). If d ∈ Zad and

if for some ε > 0

L′′zz(ẑ, λ)[d, d] = J ′′(ẑ)[d, d] + 〈λ,H ′′(ẑ)[d, d]〉W ∗,W ≥ ε‖d‖2Z ∀d ∈ CZad(ẑ) (2.17)

such that

〈H ′(ẑ), d〉Z∗,Z = 0,

then ẑ is locally optimal for Problem 2.3 with equality constraints only.

The conical hull CZad , that enters here and is related to the Zowe-Kurcyusz CQ (Assumption

A.41), is defined in Def. A.33. For details on the notation of second-order F-derivatives, using

a bilinear form like H ′′(·)[d, d] here, see, e.g., [Tr10, Sect. 4.9].

The latter result may be generalized to inequality constraints, if in addition (i) strict com-

plementarity holds, i.e. for the associated multipliers λG <K 0, and (ii) 〈G′(ẑ), z〉Z∗,Z = 0, then

the second-order sufficient optimality condition (2.17) holds as well.

Lemma 2.21 (Second-Order Sufficient Optimality Conditions in Finite Dimensions [BZ82],

[BSS93, Th. 4.4.2])

In addition to the Assumptions 2.6 & 2.7 for Problem 2.3, we assume the Zowe-Kurcyusz CQ

(Assumpt. A.41). We consider the finite-dimensional case with Z = Rnz , WG = RnG, and

WH = RnH . Furthermore, let J : Rnz → R, G : Rnz → RnG, and H : Rnz → RnH be twice

continuously F-differentiable.

Let [ẑ, λ] fulfil the first-order necessary optimality condition (2.16). For z ∈ Rnz let

L′′zz(ẑ, λ)[d, d] > 0 ∀d ∈ C0(ẑ), (2.18)

where C0(ẑ) denotes the critical cone (see Def. A.35), then there exists a neighbourhood V (ẑ) of

ẑ and some α > 0 such that

J (z) ≥ J (ẑ) + α‖z − ẑ‖2,

i.e. ẑ is strictly locally optimal for Problem 2.3.
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A second-order necessary optimality condition on the critical cone is presented in [GK02,

Th. 2.54] for Z = Rnz . For problems with inequality constraints only, first-order sufficient

optimality conditions may derived [MZ79].

Note that in case of unrestricted optimization problems, we recover the first- and second-order

optimality conditions known from standard calculus.

2.3 Function Space Methods in Optimization

Optimization methods are iterative algorithms for finding minimizers(/maximizers) for the un-

derlying optimization problems. Usually, we are satisfied, if the method can be proved to

converge to stationary points. Note that stationary points, i.e. points that fulfil necessary opti-

mality conditions, are only candidates for minimizers(/maximizers) and might be saddle points

as well. The primary goal is to show fast local convergence, to demonstrate global convergence

might be out of reach. All fast algorithms rely to some extent on the Newton method for opti-

mization problems in Banach spaces.

Differential equations are posed in infinite-dimensional spaces and so the corresponding op-

timization problems involving differential equations are posed in a functional analytic setting in

general. However, infinite dimensions are not suitable for numerical algorithms, since analytic

solutions are in most cases not available. Thus at some point we have to “discretize” in order

to obtain a finite-dimensional problem.

When we have to solve a general optimization problem, we may discretize directly, and then op-

timize the discretized equations in a second step. This strategy is a so-called first-discretize-then-

optimize (FDTO) approach. On the other hand we may optimize within the function space set-

ting, obtain certain optimality conditions (see Subsections 2.2.2 and 2.2.3) and then discretize

these conditions to obtain a numerical optimal solution. This gives raise to a first-optimize-then-

discretize (FOTD) approach.

For the different optimization methods see Figure 2.1.

On a lower level “optimization” and “discretization” may commute, but in general this is not

the case and slight deviations in the discretized systems may turn up. For numerical schemes

in optimal control, where FOTD and FDTO do commute, see, e.g., [AF12]. FOTD algorithms

work in the same spaces as the problems are stated and the structure of the problem may be

exploited. Hence no discretization error is introduced at this stage, contrary to methods in

which we discretize firstly. When realized numerically, function space methods, yield mesh in-

dependence results and error estimators in addition.

In the next two subsections, we consider the gradient method in function spaces, the multiplier-

penalty method, and Newton-type methods.
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Optimal control problem

First discretize then optimize (FDTO) First optimize then discretize (FOTD)

Indirect methods

(Optimality system)

Direct

methods

Indirect methods

(Optimality system)

Sensitivity

approach

Adjoint

approach

Sensitivity

approach

Adjoint

approach

Reduced

formulation

All-at-once

formulation

All-at-once

formulation

Reduced

formulation

Direct

methods

Figure 2.1: Different optimization methods. In case of optimal control problems, there is a

choice between sensitivity- vs. adjoint-based approaches, for details see Subsect. 2.5.1. If we

may solve the state equation uniquely, then a reduced approach (see Subsect. 2.4.3) as well as

an all-at-once approach may be pursued. The direct FDTO approach in all-at-once formulation

is called full discretization or collocation, the direct FDTO approach in reduced formulation is

the direct shooting method.

2.3.1 Descent Methods

The gradient method (also method of steepest descent) is one of the most standard methods

for solving optimization problems. Since in finite dimensions it is obvious that the gradient

is perpendicular on contour lines, the negative gradient determines the direction of steepest

descent. It is intuitive to follow the descent, until a stationary point has been reached, at which

within a certain numerical tolerance, no further descent happens. Usually a line search strategy

is applied in order to obtain suitable step lenghts and to reduce a zig-zagging behaviour (though

it cannot be avoided completely, see the gradient method). This method is straightforward in

Rd or any space with finite dimensions, but the definition of a suitable gradient in a function

space (that is in general infinite-dimensional) is a subtle question. Note that we assume in this

subsection always that J is G-differentiable (cf. [Tr10, Subsect. 2.12.1]) and Z is a Banach space.

Unconstrained Optimization

In order to avoid projections at first, we start with the unconstrained case, i.e. Zad = Z. Then

the first-order optimality condition states that a local minimum (/maximum) ẑ ∈ Z satisfies

J ′(ẑ) = 0Z∗
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that is a standard result in calculus.

We present a general descent method, that in this context turns out to be globally convergent.

Let z(k) denote the variable at step k of the algorithm, k ∈ N0. For step k we introduce a

descent direction s(k) ∈ Z as

〈J ′(z(k)), s(k)〉Z∗,Z < 0. (2.19)

In the Banach space setting, there is no straightforward way to compute descent directions.

The derivative of J lives in the dual space,

J ′(z(k))(z) = 〈J ′(z(k)), z〉Z∗,Z ,

i.e. J ′(z(k)) ∈ Z∗, but it is in general not in Z.

If Z is a Hilbert space, then by the Riesz representation theorem (Th. A.8) we may identify

Z∗ by Z and there exists for every ẑ a unique element γ(ẑ) ∈ Z such that

J ′(z(k))(z) = (γ(z(k)), z)Z .

We write accordingly ∇J (z(k)) := γ(z(k)) and the negative gradient is a well-defined search

direction in Z. Indeed, the choice of wish, s(k) = −∇J (z(k)), yields directly

〈J ′(z(k)), s(k)〉Z∗,Z = −‖∇J(z(k))‖2Z < 0. (2.20)

If Z is not a Hilbert space, e.g., Z = L∞(Ω), there does not a hold a representation theorem

nor is the dual space really useful. However, in normed spaces a so-called metric gradient may

be introduced [GT72]. For this reason, we usually assume Z to be a Hilbert space in the following.

For determining possible minimizers, we consider the following algorithm including an adap-

tive step size rule.

Algorithm 2.22 (General Descent Method)

1.) Choose a starting point z(0) ∈ Z. Set k := 0.

2.) If J ′(z(k)) = 0, then STOP.

3.) Compute a descent direction s(k) ∈ Z s.t. 〈J ′(z(k)), s(k)〉Z∗,Z < 0.

4.) Determine a step size α(k) > 0 s.t. J (z(k) + α(k)s(k)) < J (z(k)).

5.) Update z(k+1) := z(k) + α(k)s(k).

6.) Set k := k + 1 and return to 2.).
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The decrease of J by means of a descent direction (2.20) can be arbitrarily small. Note that

the slope of J at z(k) in direction s(k) is given by

d

dt
J
(
z(k) + t

s(k)

‖s(k)‖Z

)∣∣∣∣∣
t=0

=
〈J ′(z(k)), s(k)〉Z∗,Z

‖s(k)‖Z
.

This motivates the following definition, loosely speaking it links small decreases to small steepest

slopes and to small step sizes simultaneously.

Definition 2.23 (Admissible Search Directions and Step Sizes)

a) For an admissible search direction, we require that the search direction s(k) fulfils

〈J ′(z(k)), s(k)〉Z∗,Z
‖s(k)‖Z

k→∞−→ 0 =⇒ ‖J ′(z(k))‖Z∗ k→∞−→ 0.

b) An admissible step size α(k) means that

J (z(k) + α(k)s(k))− J (z(k)) < 0 and

J (z(k) + α(k)s(k))− J (z(k))
k→∞→ 0 =⇒ 〈J ′(z(k)), s(k)〉Z∗,Z

‖s(k)‖Z
k→∞→ 0.

If Z is a Hilbert space and we consider s(k) = −∇J (z(k)), then the descent method is called the

gradient method (or method of steepest descent). The latter can be seen by the Cauchy-Schwarz

inequality. Note that the normalized negative gradient might be considered as search direction

as well.

If the angle condition

〈J ′(z(k)), s(k)〉Z∗,Z ≤ −η‖J ′(z(k))‖Z∗‖s(k)‖Z

for some η ∈ (0, 1) is satisfied, then the search direction s(k) is admissible.

As an example for a step size rule we consider the Armijo (or backtracking) line search, that

allows to generate admissible step sizes under certain conditions.

Algorithm 2.24 (Armijo Rule)

Let s(k) be a descent direction w.r.t. J at z(k). Furthermore βA ∈ (0, 1) and σA ∈ (0, 1/2).

We determine α(k) = β
(k)
A for the minimal k s.t.

Θ(z(k) + β
(k)
A ) ≤ Θ(z(k)) + σAβ

(k)〈Θ′(z(k)), s(k)〉Z∗,Z .

The functional Θ : Z → R is a so-called merit function. The most straightforward choice for

a merit function is considering J (z) + α (dist{G(z),K}+ ‖H(z)‖WH
) for a parameter α > 0

where dist means the distance of a point to a set. Note that in finite dimensions we find

dist{G(z),K} = max{G(z), 0}. Another typical choice for a merit function is Θ(z) = ‖f(z)‖2W /2,

since minimizing Θ is equivalent to a zero of a vector-valued function f : Z →W , that encodes,

e.g., optimality conditions.
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It is easy to see, that Armijo step sizes exist [HPUU09, Lemma 2.2], if J is uniformly contin-

uous in some neighbourhood. Typically values used in applications are βA = 0.5 or = 0.9 and

σA = 0.5.

Lemma 2.25 (Admissible Armijo Step Sizes)

Let Θ : Z → R be a merit function with Θ′ being uniformly continuous on

Vρ(z, s; Θ) := {z + s |Θ(z) ≤ Θ(z(0)), ‖s‖Z ≤ ρ} (2.21)

for some radius ρ > 0. Let z(k) and s(k) be generated by Algorithm 2.22 for J = Θ, where we

require the norm of the search direction to be bounded from below by

‖s(k)‖Z ≥ φ
(
−〈Θ

′(z(k)), s(k)〉Z∗,Z
‖s(k)‖Z

)
,

φ : R+
0 → R+

0 being monotonically increasing and strictly positive on R+. Then the step sizes

α(k), chosen by Algorithm 2.24, are admissible.

For a proof see, e.g., [HPUU09, Lemma 2.3], where J may be replaced by a more general Θ.

Note that there exist many other step size rules, e.g. bisection or Wolfe-Powell.

Under suitable assumptions, we may prove that every accumulation point of z(k) is a stationary

point, i.e., we have global convergence:

Theorem 2.26 (Global Convergence of General Descent Method)

We assume Z to be a Banach space. Let z(k), s(k) and α(k), the latter both admissible, be

generated by Algorithm 2.22. If J : Z → R is continuously F-differentiable and the generated

sequence {J (z(k))} is bounded from below, then

lim
k→∞

J ′(z(k)) = 0.

For a proof, see [HPUU09, Th. 2.2].

The steepest descent may turn out to be inefficient in the sense that many iterations in Algo-

rithm 2.22 are needed. In general, the step size cannot be determined analytically. Furthermore,

if the state equation is nonlinear, an iterative solver, e.g. of Newton-type has to be employed

anyways. In practice it is important in the sense that, if the Newton method or another method

does not work, then it makes sense that the algorithm switches to the steepest descent method.

Optimization on Closed Convex Sets

In addition to the last subsubsection we consider simply constrained problems

min f(z) s.t. z ∈ Zad, (2.22)

where we restrict the variable z to

Zad = {z ∈ Z | zmin(x) ≤ z(x) ≤ zmax(x) a.e. on Ω} (2.23)
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where zmin, zmax ∈ L∞(Ω), Ω ⊂ Rd an open set. Let Z be a Hilbert space with partial order, for

ease of presentation we consider Z = L2(Ω). We may compute the projection PZad : Z → Zad

pointwise by means of P̃ : R→ R:

PZad(z)(x) := P̃[zmin(x),zmax(x)](z(x)) = max(zmin(x),min(z(x), zmax(x))). (2.24)

Thus for Z = L2(Ω) and box constraints Zad, the last KKT-condition that is a variational

inequality may be reformulated.

Lemma 2.27 (Reformulation of Variational Inequality by Projection onto Box Constraints)

Let λ0 = 1, Z be a Hilbert space with partial order and we identify Z∗ = Z, such that ∇f(z) is

the Riesz representation of f ′(z). Furthermore, we have box constraints for z, i.e. Zad = {z ∈
Z | zmin ≤ z ≤ zmax} with zmin ≤ zmax and we write for the pointwise Euclidean projection (as

in (2.24)) onto the admissible set

PZad(z) := max{zmin,min{z, zmax}}.

Then the necessary optimality condition corresponding to (2.22) is a variational inequality. It

is equivalent to

ẑ = PZad(ẑ − γ̃∇f(ẑ)) ∀γ̃ > 0. (2.25)

If we consider f = L, then this yields directly that (2.9) may be written equivalently

ẑ = PZad(ẑ − γ̃∇L(ẑ)) ∀γ̃ > 0. (2.26)

In case of a reduced optimal control problem, where formally z = u, (2.23) may be interpreted

as box constraints for the control. This will be exploited further in Lemma 2.52 as well as

in Lemma 2.44 for the all-at-once approach. For the following algorithm γ̃ > 0 will be fixed,

w.l.o.g. we set here γ̃ = 1.

We distinguish between two types of methods, an admissible method (a feasible method6),

i.e. z(k) ∈ Zad for all k and an inadmissible method (unfeasible method), where we require

only convergence to an admissible (feasible) solution. Furthermore, we have the choice between

performing a line search first and then to project vs. to project and then do a line search, i.e. a

line search along the projected path

{PZad(z(k) + αs(k)) |α ≥ 0}.

The first idea is not efficient, yielding possibly small or zero step sizes. The matter with the

second ansatz is, that not any descent direction works, i.e. a descent direction might yield an

ascent along the projected path. For a detailed discussion of the second approach in finite

dimensions we refer to [Ke99]. We focus on the following admissible modification of Algorithm

2.22 for the projected path.

6Admissible method corresponds to our notion of an admissible set (Remark 2.4), but the notion feasible

method is common in literature.
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Algorithm 2.28 (Projected Descent Method)

1.) Choose a starting point z(0) ∈ Zad. Set k := 0.

2.) If J ′(z(k)) = 0, then STOP.

3.) Compute a descent direction s(k) ∈ Z s.t. 〈J ′(z(k)), s(k)〉Z∗,Z < 0.

4.) Determine a step size α(k) > 0 s.t. J (PZad(z
(k) + α(k)s(k))) < J (z(k)).

5.) Update z(k+1) := PZad(z
(k) + α(k)s(k)).

6.) Set k := k + 1 and return to 2.).

A step size rule for Step 4.) is the projected Armijo rule that is well-defined, see, e.g. [HPUU09,

2.2.2.1]. We may replace the objective by a merit function in the context of a projected Armijo

line search as well. Again global convergence can be proved.

Theorem 2.29 (Global Convergence of Projected Descent Method)

We assume Z to be a Hilbert space and Zad is non-empty, closed, and convex. Let z(k), s(k) and

α(k), the latter both admissible, be generated by Algorithm 2.28 with k ∈ N0. If J : Z → R is

continuously F-differentiable, the generated sequence {J (z(k))} is bounded from below, and let

for some α̃ > 0 the gradient ∇J be Hölder continuous of α̃-order on Vρ(z, s;J ) as defined in

(2.21), then

lim
k→∞

‖z(k) − PZad(z(k) −∇J (z(k)))‖Z = 0.

For a proof, compare [HPUU09, Th. 2.4].

2.3.2 Multiplier-Penalty Method

A method for unconstrained problems is the multiplier-penalty method, where the augmented

Lagrange function, see Def. 2.16, is minimized. We recall that inequality constraints may be

treated by the introduction of slack variables. An algorithm for determining penalty parameters

α(k) is

Algorithm 2.30 (Multiplier-Penalty Method)

1.) Choose starting points z(0), λ(0), a starting penalty α(0) > 0, and a parameter σM ∈ (0, 1).

Set k := 0.

2.) If [z(k), λ(k)] is a KKT-point of the originally restricted problem, then STOP.

3.) Update multipliers by λ(k+1) := λ(k) + α(k)H(z(k+1)).

4.) If ‖H(z(k+1)‖WH
≥ σM‖H(z(k+1)‖WH

, increase α(k+1), else α(k+1) := α(k).

5.) Set k := k + 1 and return to 2.).

Further details for an efficient implementation, that can be in this case quite tricky, see [KS03a,

KS03b].
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2.3.3 Newton-Type Methods

Variational equations and complementarity conditions may be rewritten as nonsmooth equations.

Generalizations of the Newton method are suitable for this case. However, we have to distinguish

between the finite-dimensional setting, presented, e.g., in [HPUU09, Sect. 2.3], and the function

space setting that is infinite-dimensional. In this book we focus on the infinite-dimensional case.

Lagrange-Newton Method

KKT-systems may be reformulated as possibly nonsmooth operator equations of the form

f(z) = 0W ,

for f : Z → W , Z, W Banach spaces, see, e.g., Eq. (2.25). Applying the Newton method to

the KKT-system is called the Lagrange-Newton method, one very powerful approach for solving

equality constrained optimization problems.

Algorithm 2.31 (Local Generalized Newton Method)

1.) Choose a starting point z(0) ∈ Z. Set k := 0.

2.) If a stopping criterion is satisfied, then STOP.

3.) Choose an invertible operator M (k) ∈ L(Z,W ).

4.) Compute a search direction s(k) ∈ Z by solving M (k)s(k) = −f(z(k)).

5.) Update z(k+1) = z(k) + s(k).

6.) Set k := k + 1 and return to 2.).

For the analysis of the latter algorithm a certain smallness assumption,

‖[M (k)]−1(f(x̂+ d(k))− f(x̂))− d(k)‖W = o(‖d(k)‖Z) as ‖d(k)‖Z → 0 (2.27)

is required. As common, we split this assumption into two parts.

Assumption 2.32 (Regularity Condition for the Local Generalized Newton Method)

All operators M (k) are continuously invertible, i.e.

‖[M (k)]−1‖L(W,Z) ≤ Const ∀k ∈ N0. (2.28)

Assumption 2.33 (Approximation Condition for the Local Generalized Newton Method)

Let the distance d(k) to the solution be small. If f ′ is Hölder continuous of α̃-order, where α̃ ≥ 0,

then the solution is approximated s.t.

‖f(x̂+ d(k))− f(x̂)−M (k)d(k)‖W = O(‖d(k)‖1+α̃) as ‖d(k)‖Z → 0. (2.29)

Note that α̃ = 0 corresponds just to the case that f ′ is continuous.
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For the local generalized Newton method we have the following convergence result [HPUU09,

Th. 2.9].

Theorem 2.34 (Fast Convergence of the Local Generalized Newton Method)

Let Z, W be Banach spaces and f : Z →W . Let z(k) be generated by Algorithm 2.31 in order to

approximate solutions ẑ of the operator equation f(z) = 0W . For a starting point z(0) sufficiently

close to ẑ, there holds:

a) If Assumption 2.32 holds, then z(k) → ẑ linearly.

b) If Assumption 2.33 holds and f ′ is α̃-order Hölder continuous, then z(k) → ẑ superlinearly

with order 1 + α̃. If α̃ = 0 this is simple superlinear convergence.

For globalized Newton methods see [Be99, Ke99] and for its superlinear convergence see [KS94].

If f is continuously F-differentiable, then we may choose M (k) = f ′(z(k)) and Algorithm 2.31

becomes the classical Newton method. In this case, Assumption 2.32 reduces to

‖f ′(z(k))−1‖L(W,Z) ≤ Const ∀k ∈ N0,

that is guaranteed by the continuity of f ′ at ẑ and that f ′ ∈ L(Z,W ) is continuously invertible.

Assumption 2.33 follows from the F-differentiability of f at x̂ for α̃ = 0. Thus we have locally

superlinear convergence.

In case of quasi-Newton methods we consider an approximation or perturbation, resp., of the

Jacobian, i.e. M (k) ≈ f ′(z(k)). The reason for this might be, e.g., that the Jacobian is expensive

to compute or due to insufficient accuracy in the implementation. If the Dennis-Moré condition

(see [DM74, DM77, DS83] and for the infinite-dimensional case [DR14])

lim
k→∞

‖(M (k) − f ′(z(k)))s(k)‖Z
‖s(k)‖Z

= 0

is satisfied, than the approximation or perturbation does not destroy the superlinear convergence.

If f is semismooth, see Def. A.29 e), then we may choose M (k) ∈ ∂∗f(z(k)) as an arbitrary

invertible element of the subdifferential of f and Algorithm 2.31 is the local semismooth Newton

method. In this case we obtain locally superlinear convergence as well.

The common primal-dual active set strategy is a special case in the class of semismooth New-

ton methods [BIK99, HIK03]. The primal-dual active set strategy is widely used for restricted

optimization problems involving PDE, since the weak formulation of an elliptic PDE yields a

quadratic optimization problem.

A globalization strategy for the semismooth Newton method is derived in our article [GHK17]

for Hilbert spaces Z and W = Z∗. The local semismooth Newton method is equipped with

an Armijo line search w.r.t. the merit function Θ(z) := ‖f(z)‖2Z∗/2. The proof is given under

reasonable assumptions and the result is illustrated by applications in optimal control. The

article is presented in the published version at the end of this chapter.
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Josephy-Newton Method and SQP Method

We consider f : Z → R, Z a Hilbert space where we identify Z∗ with Z. Another idea for

solving a simply constrained problem as (2.22) is to consider instead of (2.25) the variational

inequality

z ∈ Zad, ∇f(z)∗(ζ − z) ≥ 0 ∀ζ ∈ Zad

and then to linearize ∇f about the current iterate, cf. [HPUU09, 2.3.2 & 2.3.3]. This procedure

is generalized to variational inequalities with a Fréchet-differentiable F : Z → Z of the general

type

(F (z), ζ − z)Z ≥ 0 ∀ζ ∈ Zad.

Linearization around the current iterate z(k) ∈ Zad yields another variational inequality

(F (z(k)) + F ′(z(k))(z − z(k)), ζ − z)Z ≥ 0 ∀ζ ∈ Zad.

Its solution is the next iterate z(k+1) := z ∈ Zad.

Algorithm 2.35 (Josephy-Newton Method)

1.) Choose a starting point z(0). Set k := 0.

2.) If z(k+1) = z(k) within the numerical tolerance, then STOP.

3.) Compute the solution z(k+1) of

(F (z(k)) + F ′(z(k))(z(k+1) − z(k)), ζ − z(k+1))Z ≥ 0 ∀ζ ∈ Zad (2.30)

that is closest to z(k).

4.) Set k := k + 1 and return to 2.).

The variational inequality (2.30) is called strongly regular, if there exist open neighbourhoods

V0 ⊂ Z of 0 and Vẑ ⊂ Z of ẑ and a Lipschitz continuous function V0 3 p 7→ z(p) ∈ Vẑ

such that z = z(p) is the unique solution in Vẑ of the parametrized variational inequality

(F (ẑ) + F ′(ẑ)(z − ẑ) − p, ζ − z))Z ≥ 0 for all ζ ∈ Zad. It can be demonstrated that strong

regularity implies local superlinear convergence.

In the case Zad = Z, the Josephy-Newton method turns out to be the Newton method and,

moreover, then the invertibility of F ′(ẑ) is equivalent to the notion of strong regularity.

In the case F = ∇f , the variational inequality (2.30) is the first-order necessary optimality

condition of the problem

min
z∈Z

{
(∇f(z(k)), z − z(k))Z +

1

2
(z − z(k), f ′′(z(k))(z − z(k)))Z

}
s.t. z ∈ Zad. (2.31)

We have a quadratic objective. In this case Algorithm 2.35 is called sequential quadratic

programming (SQP) according to the definition in [HPUU09, Algorithm 2.7] or [Tr10, 4.11.2]. If
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the Hessian f ′′(z(k)) = ∇2f(z(k)) is positive definite, the objective in the quadratic subproblem

(2.31) is convex, and we have a unique minimizer.

We wish to solve Problem 2.3 in case that G(z) ∈ K simplifies to the inequality constraint

G(z) ≤ 0WG
and for Hilbert spaces Z, W . Considering ξ := [z, λ], F (ξ) = −∇zL(ξ) for the

Lagrangian L(ξ) as in Def. (2.12) and linearizing around ξ(k) := [z(k), λ(k)] yields the subproblem:

∇zL(ξ(k)) + L′′zξ(ξ
(k))(ξ − ξ(k)) ≥ 0,

λG ≥ 0W ∗G ,

(G(z(k)) +G′(z(k))(z − z(k)), ζ − λG)Z ≤ 0 ∀ζ ≥ 0W ∗G ,

H(z(k)) +H ′(z(k))(z − z(k)) = 0WH
.

Using that (G(z(k)) +G′(z(k))(z− z(k)), ζ − λG)Z ≤ 0 for all ζ ≥ 0W ∗G iff (G(z(k)) +G′(z(k))(z−
z(k)), λG)Z = 0, we check that this is equivalent to the KKT-conditions (Th. 2.18) of the follow-

ing quadratic program (with linearized constraints):

Find z ∈ Z such that

(∇J (z(k)), z − z(k))Z +
1

2
(z − z(k), L′′zz(z

(k), λ(k))(z − z(k)))Z (2.32)

is minimized,

where z ∈ Zad,
subject to the constraints

G(z(k)) +G′(z(k))(z − z(k)) ≤ 0WG
,

H(z(k)) +H ′(z(k))(z − z(k)) = 0WH
.

Note that in literature the latter is also used for the definition of the SQP method.

If the Hessian L′′zz(z
(k)) is positive definite, then (2.32) is uniquely solvable. In order to proof

local superlinear convergence, a certain regularity of J is required, see, e.g., [Al02]. For further

details and references on sufficient conditions see [Tr10, Subsect. 4.11.2].

For the extension of the Lagrange-Newton method and the SQP method to Banach spaces

see [Al90, Al91].

2.4 Optimal Control in Banach Spaces

Optimal control problems are a particular, but important case of optimization problems. In

this situation, the problem has a certain structure and we distinguish between states y that

solve a differential equation (or other (in)equality constraints) and control (design) variables u

that influence the system in an optimal sense. The variable z to be optimized thus is split as

z = [y, u]. Consequently, we consider the space Z = Y × U .
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2.4.1 Generic Optimal Control Problems and Existence of Optimal Controls

We reformulate Problem 2.3 as follows

Problem 2.36 (Standard Optimal Control Problem)

Let Y , U , WG, and WH be vector spaces (over R) and let J : Y × U → R be a functional.

Furthermore, let G : Y →WG and H : Y × U →WH be operators.

Find [y, u] ∈ Y × U such that J (y, u) is minimized,

where y ∈ Y , u ∈ Uad ⊂ U ,

subject to the constraints

G(y) ∈ K,
H(y, u) = 0WH

,

where K ⊂WG is a closed convex cone.

We set

G :

[
y

u

]
∈ Z = Y × U 7→

[
G(y)

H(y, u)

]
∈WG ×WH ,

K̃ := K × {0},
Zad := Y × Uad.

Thus the dual cone to K̃ is K̃+ = K+ ×W ∗H .

Let Yad and Uad denote the sets of admissible states and controls, respectively. Sometimes

it is useful to put the inequality constraints into the subsets Yad and Uad of spaces Y and U ,

respectively. The set of admissible states Yad represents the so-called state constraints and Uad

the control constraints. Note that in Problem 2.36, we have not restricted the states y ∈ Yad.
Furthermore, there the inequality constraints depend only on the states and not on the control.

Hence, we may choose to consider only equality constraints. In this case H(z) = 0WH
(with

H : Z → WH , z 7→ H(z)) is replaced by the state equation E(y, u) = 0W with E : Y × U →
W, [y, u] 7→ E(y, u). Then Problem 2.36 turns into the problem:

Problem 2.37 (Standard Optimal Control Problem with Equality Constraints)

Let Y , U , and W be vector spaces (over R) and let J : Y ×U → R be a functional. Furthermore,

let E : Y × U →W be an operator.

Find [y, u] ∈ Y × U such that J (y, u) is minimized,

where y ∈ Yad ⊂ Y , u ∈ Uad ⊂ U ,

subject to the constraint

E(y, u) = 0W .
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Note that nonlinear problems are included in this setting.

The optimality from Def. 2.2 translates into

Definition 2.38 (Optimal State and Optimal Control)

Consider Problem 2.37 and let U be a Banach space. Assume there exists a unique state y(u) ∈
Yad for any given control.

a) We call û ∈ Uad a (locally) optimal control, if

J (y(û), û) ≤ J (y(u), u) ∀u ∈ Uad ∩ V (û)

in some neighbourhood V (û) of û.

b) If there exists a V (û) s.t. Uad ∩ V (û) = Uad, then we have a globally optimal control.

c) ŷ := y(û) ∈ Yad is called the associated optimal state.

Note that we write also ŷ(û) for the associated optimal state to underline that we follow a

reduced approach.

For proving the existence of optimal controls, we follow mainly [HPUU09, Sect. 1.5.2] and

we make the following Assumptions:

Assumption 2.39 (Basic Assumptions on Spaces and Regularity for Existence of Optimal Con-

trols)

a) Y and U are reflexive Banach spaces and W a Banach space.

b) Uad(⊂ U) are non-empty, convex, bounded, and closed.

c) The functional J : Y ×U → R is sequentially weakly lower semicontinuous and the operator

E : Y × U →W is weakly continuous, respectively.

Assumption 2.40 (Further Assumptions for Existence of Optimal Controls)

a) The non-empty, closed convex set Yad has a feasible point for Problem 2.37.

b) The equation E(y, u) = 0W has a bounded control-to-state operator (solution operator)

S : Uad → Y, u 7→ S(u) := y(u).

Theorem 2.41 (Existence of Optimal Controls (with Equality Constraints))

Let Assumptions 2.39 and 2.40 hold, then the optimal control problem, Problem 2.37, has a

solution [ŷ, û].
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We compare with our Assumptions 2.6 and 2.7 considered for the necessary optimality conditions

of a general optimization problem. Here we assume additionally that the Banach spaces Y and

U are reflexive. Note that no F-differentiability of J and E is required here so far, but we

need assumptions on the control-to-state operator. The existence of interior points is dropped,

but the existence of a feasible point in Yad is required. This implies that the feasible set Σfs is

non-empty.

For checking the Assumption on E in 2.39 c), it is useful to consider compact embeddings

Y
c
↪→ Ỹ , that convert weak into strong convergence. We remark that this setting is typical for

optimal control subject to PDE, see Section 2.7 for further examples and further details.

2.4.2 First-Order Necessary Optimality Conditions for Optimal Control

Here we turn back to Problem 2.36, where both inequality constraints G(y) ∈ K and equality

constraints H(y, u) = 0WH
are present. We derive necessary optimality conditions for optimal

control in a so-called all-at-once approach (or full approach), where we solve for states and

controls simultaneously. We have introduced the Lagrange function in Definition 2.12. In the

setting here, it reads

L(y, u, λG, λH) := J (y, u) + 〈λG, G(y)〉W ∗G,WG
+ 〈λH , H(y, u)〉W ∗H ,WH

. (2.33)

Assumption 2.42 (Basic Assumptions on Spaces and Regularity for First-Order NOC in Op-

timal Control)

a) Y , U , WG, and WH are Banach spaces.

b) Uad(⊂ U) are non-empty, convex, and closed.

c) J : Y × U → R, G : Y →WG, and H : Y × U →WH are continuously F-differentiable.

This corresponds to Assumption 2.6, but we require the continuity of the F-derivatives of J and

G in addition.

The necessary optimality conditions in optimal control (above see Th. 2.18 for the general

case in optimization, below see Th. 2.73 for the special case of optimal control with PDE) in an

all-at-once formulation read

Theorem 2.43 (KKT-Conditions for Optimal Control Problem (with General Constraints))

Assume ẑ is a local minimizer of Problem 2.36. If Assumptions 2.42 and 2.7, translated to the

case Z = Y ×U , hold, and if the Robinson CQ (Assumpt. A.40) is fulfilled at [ŷ, û], reading here

[
0WG

0WH

]
∈ int

{[
G(ŷ) +G′(ŷ)y − k

H ′y(ŷ, û)y +H ′u(ŷ, û)(u− û)

] ∣∣∣∣∣ [y, u] ∈ Y × Uad, k ∈ K
}
,
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then there exist Lagrange multipliers λ = [λG, λH ] ∈ W ∗ := W ∗G ×W ∗H such that λ fulfils the

KKT-system

G(ŷ) ∈ K, (2.34)

λG ∈ K+, (2.35)

〈λG, G(ŷ)〉W ∗G,WG
= 0, (2.36)

H(ŷ, û) = 0WH
, (2.37)

û ∈ Uad, (2.38)

L′y(ŷ, û, λ) = 0Y ∗ , (2.39)

〈L′u(ŷ, û, λ), du〉U∗,U ≥ 0 ∀du ∈ Uad − {û}. (2.40)

The equations (2.34) – (2.37) are the so-called primal equations, the next-to-last equation is the

adjoint equation and the last equation is the optimality (condition).

Proof. This follows by exploiting Theorem 2.18 for z = [y, u] and the special case G(y, u) =

G(y) (using, furthermore, Eq. (2.33) for the Lagrangian). �

Objectives, where the control cost term

α

2
‖u‖2U (2.41)

is present, are easier to handle, e.g., yielding an explicit formula for the control as an projection

of an adjoint, see (2.26). Thus sometimes this term is added artificially with a small regular-

ization parameter α > 0. This is called Tikhonov regularization. α is called Tikhonov parameter.

In case of box constraints for the control, the variational inequality may be expressed more

concisely according to Lemma 2.27.

Lemma 2.44 (Reformulation of Optimality Inequality by Projection onto Box Control Con-

straints)

Let U be a Hilbert space with a partial order (e.g. U = L2(Ω) for an open set Ω ⊂ Rd) and we

identify U∗ = U , such that ∇L(y, u, λ) is the Riesz representation of L′(y, u, λ). Furthermore,

we consider box constraints for the control, i.e.

Uad = {u ∈ U |umin ≤ u ≤ umax} with umin ≤ umax (2.42)

and we write for the pointwise Euclidean projection (as in (2.24)) onto the admissible controls

PUad(u) = max{umin,min{u, umax}}.

Then (2.40) is equivalent to

û = PUad(û− γ̃∇L(ŷ, û, λ)) ∀γ̃ > 0. (2.43)

Assume we have the structure L(y, u, λ) = αu+ B̃(y, λ) with α > 0, then setting γ̃ = 1/α allows

for the elimination of û in (2.43).
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If the control does not enter into the objective, e.g. if the control cost term (2.41 is not present

(α = 0), an optimal control of so-called bang-bang type may be expected. By a bang-bang

control we mean control functions that almost everywhere take only values on ∂Uad.

Definition 2.45 (Bang-Bang Property (for Linear-Quadratic Problems in Time and Space),

cf. [KW13, Th. 2.1])

Let t̂f < ∞ be the optimal final time, Ωtf := (0, tf ) × Ω, U = L∞(Ωtf ), and û be the optimal

distributed control for a linear PDE problem in time and space under box constraints for the

control, i.e. |u| ≤ M for almost all [t, x] ∈ Ωtf and a linear-quadratic objective. For example,

in [KW13] the linear heat equation is considered. The optimal control is said to be of bang-bang

type, iff

|û(t, x)| = M for a.a. [t, x] ∈ Ωtf .

For bang-bang control for elliptic PDE see [MM00, MM01]. Bang-bang controls exist for optimal

control problems with DAE as well, see, e.g., [Ge12, Sect. 7.1.1]. We remark that in the context

of sparsity and L1-terms in the objective, so-called zero-bang controls are observed.

Lemma 2.46 (Reformulation of Optimality Inequality in Case of No Control Costs)

Let the necessary optimality conditions from Th. 2.43 with equality constraints E(y, u) = 0

only hold. We consider box constraints for the control as in (2.42) where umin and umax are

essentially bounded functions. If J ′u = 0U∗, then (2.40) reduces to

〈E′u(ŷ, û)∗λ, du〉U∗,U ≥ 0 ∀du ∈ Uad − {û}.

For instance, we consider the distributed control of the quadratic tracking type problem subject

to a Poisson PDE on Ω with homogeneous Dirichlet b.c. where U = L2(Ω), Ω ⊂ Rd a bounded

Lipschitz domain, see [Tr10, Lemma 2.26] for further details. We assume that E′u(ŷ, û)∗λ is

well-defined pointwise. Then the last inequality yields

û(x) =





umin(x) if E′u(ŷ(x), û(x))∗λ(x) > 0,

∈ [umin(x), umax(x)] if E′u(ŷ(x), û(x))∗λ(x) = 0 on some subset I ⊂ Ω with |I| > 0,

umax(x) if E′u(ŷ(x), û(x))∗λ(x) < 0.

Thus if |I| = 0, then the optimal control is of bang-bang type. If |I| we call u a bang-bang control

with singular arc.

2.4.3 Reduced Optimal Control Problems

In the following we consider only equality constraints and write again E instead of H (cf. the

lead text for Pb. 2.37). The basic assumptions, Assumption 2.39, simplify in this context.

Assumption 2.47 (Basic Assumptions for Existence of a Control-to-State Operator)

a) The equation E(y, u) = 0W has for each u ∈ U a unique solution y(u) ∈ Y .
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b) E′y(y(u), u) ∈ L(Y,W ) is continuously invertible.

The Assumption 2.40 b) is here replaced by the stronger Assumption 2.47 a), requiring unique-

ness of the corresponding states y. This guarantees the existence and uniqueness of a bounded

control-to-state operator S : U → Y, u 7→ S(u) := y(u). By Assumption 2.47 b) the im-

plicit function theorem (Th. A.30) guarantees that y(u) is continuously F-differentiable w.r.t. u.

S′(u) = y′(u) may be obtained from differentiation of the state equation w.r.t. u,

E′y(y(u), u)y′(u) + E′u(y(u), u) = 0U∗ . (2.44)

We see directly that a reduced problem is helpful in case of equality constraints only. Then the

reduced approach is an alternative to the all-at-once approach (see Subsect. 2.4.2).

We insert y(u) in Problem 2.37 and, writing J̃ (u) := J (y(u), u) for the reduced objective and

Ũad := {u ∈ U | [y(u), u] ∈ Zad = Yad × Uad}, we obtain

Problem 2.48 (Reduced Optimal Control Problem)

Let U and W be vector spaces, and let J̃ : U → R be a functional.

Find u ∈ U such that J̃ (u) is minimized,

where u ∈ Ũad ⊂ Uad ⊂ U ,

subject to the constraint

E(y(u), u) = 0W .

For ease of presentation, we write again Uad instead of Ũad in the next section.

Example 2.49 (Linear-Quadratic Optimal Control Problem)

Let H, U be Hilbert spaces and Y , W be Banach spaces.

Find [y, u] ∈ Y × U such that the quadratic objective

J (y, u) =
1

2
‖RHy − yH,ref‖2H +

α

2
‖u‖2U

is minimized,

where u ∈ Ũad ⊂ U ,

subject to the constraint

Ay −Bu = f.

The objective consists of a tracking type term, where yH,ref := RHyref ∈ H should be tracked,

and of control costs, where α ≥ 0. We assume that the given right-hand side of the PDE has the

regularity f ∈W . For the operators we assume A ∈ L(Y,W ), B ∈ L(U,W ) and RH ∈ L(Y,H).

Typically, we have Y ⊂ H and RH embeds from the state space Y into the Hilbert space H. A

Hilbert space is required for a quadratic objective term. We set

E(y, u) = Ay −Bu− f.
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Then the Assumption 2.39 is satisfied, if Ũad is convex, closed, and bounded. Furthermore, we

assume that E′y(y, u) = A has a bounded inverse. In this case the control-to-state operator reads

S : U → Y, u 7→ A−1(Bu+ f).

We find as reduced objective

J̃ (u) =
1

2
‖RHA−1(Bu+ f)− yH,ref‖2H +

α

2
‖u‖2U .

Note that the existence of optimal controls, provided by Theorem 2.41, follows here directly under

Assumptions 2.39 and 2.47.

We formulate the necessary optimality conditions for optimal control of the reduced problem,

Pb. 2.48.

Theorem 2.50 (First-Order Necessary Optimality Conditions for Reduced Optimal Control

Problem (with Control Constraints))

Assume û is a local minimizer of Problem 2.48. We assume that only control constraints are

implied, i.e. Yad = Y . Let Assumption 2.39 hold. Furthermore, let V be a neighbourhood of Ũad

and for each u ∈ V instead of u ∈ U let Assumption 2.47 hold. Then there holds

û ∈ Ũad,
〈J̃ ′(û), du〉U∗,U ≥ 0 ∀du ∈ Ũad − {û}.

Proof. Assumption 2.47 implies that the control-to-state operator S : V → Y, u 7→ y(u) is con-

tinuously F-differentiable by the implicit function theorem (Th. A.30). Then we apply Th. 2.9. �

We may use the adjoints in order to calculate explicitly J̃ ′ (see [HPUU09, Sect. 1.6]). For

any λ ∈W ∗, we have J̃ (u) = L(y(u), u, λ) since the state equation holds according to Assump-

tion 2.47 a). Differentiation w.r.t. u (in direction d ∈ U) yields

〈J̃ ′(u), d〉U∗,U = 〈L′y(y(u), u, λ), y′(u)d〉Y ∗,Y + 〈L′u(y(u), u, λ), d〉U∗,U .

We assume that E′y(y(u), u)∗ is well-defined. L′y(y(u), u, λ) = 0 is equivalent to the adjoint

equation

E′y(y(u), u)∗λ = −J ′y(y(u), u), (2.45)

that yields λ(u) as solution of this linear system due to Assumpt. 2.47 b). Moreover, by means

of (2.45) the term y′(u) drops out (see the discussion in Subsect. 2.5.1).

Using the so-called adjoint representation for J̃ ′,

J̃ ′(u) = E′u(y(u), u)∗λ(u) + J ′u(y(u), u)

we may rewrite Th. 2.50:
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Theorem 2.51 (KKT-Conditions for Reduced Optimal Control Problem with Control Con-

straints: Variational Form)

Assume [ŷ(û), û] is a local minimizer of Problem 2.48. If Assumption 2.39 and Assumption 2.47

for all u ∈ V , V a neighbourhood of Ũad, are fulfilled, and only control constraints are implied,

then there exist Lagrange multipliers λ ∈W ∗ such that λ fulfils the KKT-system

〈w,E(ŷ(û), û)〉W ∗,W = 0 ∀w ∈W ∗, (2.46)

〈L′y(ŷ(û), û, λ), v〉Y ∗,Y = 0 ∀v ∈ Y, (2.47)

û ∈ Ũad, (2.48)

〈L′u(ŷ(û), û, λ), du〉U∗,U ≥ 0 ∀du ∈ Ũad − {û}. (2.49)

Note that (2.46) is trivial. However, we state it here in order to emphasize that a PDE is usually

considered in variational (weak) form.

Proof. The statement follows from Theorem 2.50 and Remark 2.14 a). More precisely,

the first equation of the KKT-system is the state equation being identical to L′λ(ŷ(û), û, λ) =

E(ŷ(û), û) = 0W . The second equation defines the adjoint since L′y(ŷ(û), û, λ) = J ′y(ŷ(û), û) +

〈λ,E′y(ŷ(û), û)〉W ∗,W = 0 according to (2.45). Finally, this adjoint equation implies J̃ ′u(u) =

L′u(y(u), u, λ(u)), thus from Th. 2.50 follows the last equation of this theorem. �

In case of a reduced approach we may rewrite Lemma 2.44:

Lemma 2.52 (Reformulation of Reduced Optimality Inequality by Projection onto Box Control

Constraints)

Let U be a Hilbert space with partial order and we identify U∗ = U , such that ∇J̃ (u) is the Riesz

representation of J̃ ′(u). Furthermore, we consider the box constraints (2.42) for the control.

Then (2.49) is equivalent to

û = PŨad(û− γ̃∇J̃ (û)) ∀γ̃ > 0. (2.50)

For other equivalent reformulations of (2.49) in this context, see, e.g., [HPUU09, Lemma 1.12

(i) & (ii)].

Example 2.53 (KKT-Conditions for Reduced Linear-Quadratic Optimal Control Problem)

We continue with Example 2.49 and exploit the KKT-conditions. The Lagrange function reads

L(y, u, λ) =
1

2
‖RHy − yH,ref‖2H +

α

2
‖u‖2U + 〈λ,Ay −Bu− f〉W ∗,W .

As Riesz representations we work with H∗ = H and U∗ = U . Thus

J ′y(y, u) = (RHy − yH,ref , RH ·)H = 〈R∗H(RHy − yH,ref ), ·〉Y ∗,Y = R∗H(RHy − yH,ref ),

J ′u(y, u) = α(u, ·)U = αu.
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According to the latter theorem, Th. 2.51, there exists a Lagrange multiplier λ ∈W ∗ such that

at the optimal solution [ŷ(û), û] ∈ Y × U the λ fulfils the KKT-system (in variational form)

〈w,Aŷ −Bû− f〉W ∗,W = 0 ∀w ∈W ∗,
〈A∗λ+R∗H(RH ŷ − yH,ref ), v〉Y ∗,Y = 0 ∀v ∈ Y,

û ∈ Uad,
〈αû−B∗λ, du〉U∗,U ≥ 0 ∀du ∈ Ũad − {û}.

The first equation is the state equation itself, the second is the adjoint state equation yielding λ,

and the last equation is the optimality, that can be simplified, if α > 0, by Lemma 2.44 as

û = PŨad

(
1

α
B∗λ

)
(2.51)

by choosing γ̃ = 1/α. This is an explicit formula linking the optimal control to the multiplier, thus

it remains to solve the coupled state-multiplier system. In the case α = 0, if the preliminaries

of Lemma 2.46 (among other things B∗λ is defined pointwise for x ∈ Ω and umin, umax are

essentially bounded) hold, then this lemma yields

û(x) =





umin(x) if (B∗λ)(x) < 0,

∈ [umin(x), umax(x)] if (B∗λ)(x) = 0 (could be a subset with measure zero only),

umax(x) if (B∗λ)(x) > 0.

In reduced form the adjoint equation reads

〈A∗λ, v〉Y ∗,Y = −〈R∗H(RHA
−1(Bû+ f)− yH,ref ), v〉Y ∗,Y ∀v ∈ Y,

or with QH := RHA
−1

λ(u) = −Q∗H(QH(Bû+ f)− yH,ref ) ∈ Y ∗.

Then the optimal control û can be determined by the optimality condition (2.49).

Note that due to the structure Lu(y, u, λ) = αu−Bλ with α > 0, the projection formula (2.51)

transfers the possibly higher regularity of the adjoint (that may be proven for a suitable PDE) to

the control.

Remark 2.54 (Sign Convention)

In principle, we could multiply an inequality or equality constraint by −1. If E(y, u) = 0W

represents a differential equation, then our convention is to choose the sign of E just that the

principal part of the differential operator has the “right”, i.e. positive, sign. For instance, if

we consider a parabolic PDE like the heat equation, then E(y, u) = ∂ty − ∆xy − f , where

f is the source term that might be subject to control. If we have the Poisson equation, then

E(y, u) = −∆xy − f is the consistent choice of sign.

If we chose the sign differently (e.g., corresponding to [CRT18]), then the adjoint equation

would have the other sign as well and, since we would encounter the other sign in (2.49) and
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thus in the projection formula for the control as well, we obtain finally the same sign for the

control as before.

This can be illustrated easily by Example 2.53. The question of sign turns up in the all-at-once

approach as well as in the reduced approach.

The reduced problem allows for a sensitivity-based approach and an adjoint-based approach for

computing the derivative of J̃ , see Subsection 2.5.1.

2.5 Function Space Methods for Optimal Control

In this section, we assume that the state equation admits for every control u ∈ U a unique

solution y(u) - this means that the differential equation (that might be a system as well) is well-

posed. Moreover, let Assumpt. 2.47 hold. We consider the reduced optimal control problem,

Pb. 2.48,

min
u∈U
J̃ (u), (2.52)

where J̃ : U → R is the reduced objective.

Assumption 2.55 (Basic Assumption for Function Space Methods for Optimal Control)

We assume that J̃ are twice continuously F-differentiable. Moreover, let the Assumptions of

Th. 2.50 or Th. 2.51, resp., hold, i.e. the KKT-conditions are valid.

2.5.1 Calculation of Derivatives of the Objective

The gradient method has been introduced in Subsection 2.3.1 as classical descent method. Ac-

tually, not the whole gradient but only the derivative in direction of the search direction is

required. In optimal control there are two nearby approaches for computing the directional

derivative of an objective.

Sensitivity Approach

For the sensitivity-based approach for computing the derivative of the reduced objective, shortly

just sensitivity approach, we follow the presentation in [HPUU09, Subsect. 1.6.1]. The chain rule

yields for the directional derivative of the reduced objective

δu;dJ̃ (u) := 〈J̃ ′(u), d〉U∗,U = 〈J ′y(y(u), u), y′(u)d〉Y ∗,Y + 〈J ′u(y(u), u), d〉U∗,U , (2.53)

where d ∈ U is a direction. The directional derivatives δu;dy(u) = y′(u)d are called sensitivities.

They can be computed by solving the linear equation

E′y(y(u), u) δu;dy(u) = −E′u(y(u), u)d

that follows from (2.44).

This approach is computationally expensive if the whole J̃ ′(u) is required. All sensitivities

δu;by(u) have to be computed for all basis elements b in B, supposed B is a basis of U . Thus

the effort is proportional to the dimension of U .
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Adjoint Approach

The adjoint-based approach for computing the derivative of the reduced objective, shortly just

adjoint approach, can be derived in a natural way from the Lagrange function, see the derivation

of (2.45). Rewriting (2.53), we find

J̃ ′(u) = y′(u)∗J ′y(y(u), u) + J ′u(y(u), u).

Thus not y′(u) is actually required, but only y′(u)∗J ′y(y(u), u) ∈ U∗. According to the adjoint

equation (2.45), we finally have

J̃ ′(u) = E′u(y(u), u)∗λ(u) + J ′u(y(u), u).

In general the adjoint approach is computationally cheaper as the sensitivity approach unless

many constraints are applied.

Note that a sensitivity-based and an adjoint-based approach can be pursued for FDTO ap-

proaches as well [Ge12, Sect. 5.3]. In Fig. 2.1, for FDTO the all-at-once approach is called a

full discretization (collocation), whereas the reduced approach corresponds to a direct shooting

method. For instance, the latter approach has been exploited in [GK15].

Second-Order Derivatives

For second-order derivatives of J̃ , assuming that J and E are twice continuously F-differen-

tiable, we obtain

J̃ ′′(u) = T (u)∗L′′zz(y(u), u, λ(u))T (u) = L′′zz(y(u), u, λ(u))[T (u), T (u)] (2.54)

with

T (u) :=

[
y′(u)

IdU

]
∈ L(U, Y × U), L′′zz :=

[
L′′yy L′′yu
L′′uy L′′uu

]
.

Here it has been exploited that due to the definition of the adjoint the term y′′(u) drops out

(see, e.g., [HPUU09, Subsect. 1.6.5] for details).

Example 2.56 (Derivatives for Reduced Linear-Quadratic Optimal Control Problem)

We revisit Example 2.53, abbreviating QH = RHA
−1, Q := QHB, and obtain

J̃ ′(u) = (αIdU +Q∗Q)u+Q∗(yH,ref −QHf). (2.55)

Otherwise, according to (2.54) we find

T (u) :=

[
A−1B

IdU

]
, L′′zz =

[
R∗HRH 0

0 αIdU

]

and thus, as we may check directly by (2.55),

J̃ ′′(u) = B∗A−∗R∗HRHA
−1B + αIdU = αIdU +Q∗Q.
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2.5.2 Newton-Type Methods

We consider the iterative solution of the Newton equation

J̃ ′′(u(k))s(k) = −J̃ ′(u(k)).

Let s denote a step for an update, then not the whole Hessian J̃ ′′(u), but only operator-vector

products of the type J̃ ′′(u)s are required. These can be computed efficiently as follows.

Algorithm 2.57 (Efficient Computation of the Hessian of the Lagrange Function)

1.) Solve E′y(y(u), u)(T (u)1s) = −E′u(y(u), u)s for the sensitivity T (u)1s = y′(u)s = δu;sy(u).

2.) Compute ξ = L′′zz(y(u), u, λ(u))(T (u)s).

3.) Solve E′y(y(u), u)∗λ(u) = −ξ1 for the adjoint λ(u).

4.) Compute ξ3 = y′(u)∗ξ1 by ξ3 = E′u(y(u), u)∗λ(u).

5.) Compute J̃ ′′(u)s = ξ2 + ξ3.

The first step requires one solve of the linearized state equation and the third step one solve of

an adjoint equation.

Semismooth Newton Methods for Optimal Control

We apply the semismooth Newton method introduced in Subsection 2.3.3 to the KKT-conditions

of the optimal control problem, Problem 2.36. In order to obtain the semismoothness of the

KKT-system, the idea is to get a smoothing operator inside the projection. Therefore additional

structure is required, either a so-called two-norm gap or a smoothing step as in [GH11] is

required.

Here we follow the first approach. Let Ω be non-empty, open, bounded and U = L2(Ω) is a

Hilbert space that is identified with U∗. We consider box constraints Uad = {u ∈ U |umin ≤
u(x) ≤ umax a.e. in Ω} (with umin < umax) for the control and we exploit (2.40) by introducing

similar to (2.24) and (2.26) an operator Π : Y × U ×W → U to be defined pointwise as

Π(y, u, λ)(x) := π(y(x), u(x), λ(x)) := u(x)− P̃Uad(u(x)− γ̃∇uL(y(x), u(x), λ(x))). (2.56)

The KKT-system from Th. 2.43 may be written in the following form

f(y, u, λ) =



L′y(y, u, λ)

Π(y, u, λ)

E(y, u)


 = 0Y ∗×U×W .

Assumption 2.58 (Assumption for Semismooth KKT-System [Ul01, Assumpt. 5.20])

a) E : Y × U →W and J : Y × U → R are twice continuously F-differentiable.
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b) L′u has the structure L′u(y, u, λ) = αu + B̃(y, u, λ) and there exist α > 0 and p > 2 such

that

(i) B̃ : Y × U ×W ∗ → U is continuously F-differentiable and

(ii) The operator (y, u, λ) ∈ Y × U × W ∗ 7→ B̃(y, u, λ) ∈ Lp(Ω) is locally Lipschitz-

continuous.

For example, the part b) of this assumption is fulfilled for linear-quadratic optimal control

problems (Examples 2.49 and 2.53) for W = H1(Ω), Ω open bounded, and B = IdU . Then we

have B̃(y, u, λ) = −B∗λ and γ̃ is the reciprocal of the Tikhonov parameter α.

A generalized differential is not given naturally (see for instance the discussion following

[GHK17, Def. 2.1]), we consider the set-valued mapping

∂C : Y × U ×W ∗ ⇒ L(Y × U×,W ∗, Y ∗ × U ×W ∗∗)

with the differential

∂Cf := {M ∈ L(Y × U ×W ∗, Y ∗ × U ×W ∗∗) :

M(y, u, λ) =



L′′yy(y, u, λ) L′′yu(y, u, λ) E′y(y, u)∗

γ̃DB̃′y(y, u, λ) IdU + γ̃DB̃′u(y, u, λ) γ̃DB̃′λ(y, u, λ)

E′y(y, u) E′u(y, u) 0W ∗∗


 ,

D ∈ L∞(Ω), D(x) ∈ ∂CPUad(−γ̃B̃(y, u, λ)(x))∀x ∈ Ω
}
.

This differential is motivated by Qi’s C-subdifferential in finite dimensions.

If Assumption 2.58 holds, then the projection PUad : Lp(Ω) → Uad ⊂ L2(Ω), p > 2, maps

between spaces with a norm gap. Then PUad and thus the superposition operator Π is ∂CPUad-

semismooth and, furthermore, f is locally Lipschitz continuous and ∂Cf -semismooth [Ul01,

Th. 5.21]. We assume to start with an initial control u(0) ∈ Uad. Thus the local semismooth

Newton method, i.e. Algorithm 2.31 with M (k) ∈ ∂Cf(y(k), u(k), λ(k)), may be applied. For

further details and results for this application see, e.g., [Ul11, GHK17]. Note that the latter

reference is embedded at the end of this chapter.

The semismooth Newton method may be applied to a reduced optimal control problem as

well. We mention that there might be numerical issues due to ill-conditioned Newton matrices.

SQP Method Applied to Optimal Control

In case of a reduced optimal control problem as Problem 2.48 the SQP method introduced in

Subsection 2.3.3 can be applied as well. We consider the Banach space U , the admissible set of

controls Uad ⊂ U , J̃ is the reduced objective, and here the Lagrangian reduces to J̃ . We choose

u(0) ∈ Uad.
We distinguish between the classical SQP method as it is defined in literature (again commonly

called the Newton method) and the SQP method following [Tr10, Subsect. 4.11.2] that we present

here. We recall that S : y → u is the control-to-state operator corresponding to E(y, u) = 0W .
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In the classical approach for SQP, once u(k+1) is computed a new state y(k+1) is calculated as the

solution y(k+1) = S(u(k+1)) of the possibly nonlinear state equation E(y(k+1), u(k+1)) = 0W , e.g.,

by the classical Newton method. This additional effort may be avoided by using the linearized

state equation

y(k+1) = y(k) + S′(u(k))(u(k+1) − u(k)).

Of course, in case of a linear state equation, both approaches coincide.

For concrete examples applying the SQP method to optimal control of PDE, see, e.g., [Tr10,

Subsect. 4.11.2].

2.5.3 Optimization Methods for State Constraints

Up to this point we have considered methods mainly for optimization methods without con-

straints or with control constraints. The topic of Newton-type methods for state constrained

problems is subject of ongoing research and recent advances have been made. However, we

would like to discuss briefly the different approaches only, following [HPUU09, Sect. 2.7].

In SQP methods the state constraints enter in linearized form and then the issues due to the

state constraints appear in the subproblems. However, both second-order optimality theory and

proving fast local convergence of SQP methods are challenging in presence of state constraints.

Recent results in this direction can be found in [CRT08, HMR10].

Semismooth Newton methods for optimal control problems with state constraints exhibit

principal issues since these methods rely on pointwise formulations. In general, the multiplier

associated to a state constraint is only a regular Borel measure, i.e. µ ∈M(Ω), and the comple-

mentarity condition between the state and µ cannot be understood pointwise.

Another approach is the so-called Lavrentiev regularization, where the state constraint of the

type

y ≤ ymax (2.57)

is replaced by

y + εu ≤ ymax
for a sufficiently small ε > 0, supposing Y = U . Introducing a new control uε := y + εu, then

uε ≤ ymax and, thus, a typical optimal control problem is transferred into a control-constrained

optimal control problem as considered so far. However, after the regularization the control cost

term reads
α

2ε2
‖uε − y‖2U .

The hope is that under suitable assumptions, see [MPT07], the regularized solution converges

strongly as ε ↓ 0, requiring a suitable choice of the Tikhonov parameter α.

In the Moreau-Yosida regularization the state constraint (2.57) is incorporated as a penalty

term, yielding the regularized version of an optimal control problem without inequality con-

straints:

50



Find [y, u] ∈ Y × U such that J (y, u) + 1
2γ ‖max{0, σ + γ(y − ymax)}‖2L2(Ω) is minimized,

where y ∈ Y , u ∈ U ,

subject to the equality constraint

E(y, u) = 0W ,

with a penalty parameter γ > 0 and a shift parameter function σ ∈ {f ∈ L2(Ω) | f ≥ 0L2(Ω)}.

For this problem the KKT-conditions may be formulated as in Subsection 2.4.2, we may apply

a semismooth Newton method and, finally, we let γ tend to infinity. This approach is analyzed,

e.g, in [HK06a, HK06b].

Finally, we would like to mention that there exist interior point methods that are well adapted

for optimization problems in Banach spaces as well, see, e.g., [SW08, UU09, WGS08].

2.6 Optimal Control of Ordinary Differential Equations and Dif-

ferential Algebraic Equations

In this section we follow mainly the presentation as in [Ge05]. On optimal control of DAE see

the books [Ge12, Wa72] for instance, but also the paper [ILWW18] that links the control of DAE

to the control of ODE.

In order to distinguish between ODE and PDE in the next chapter on coupled ODE-PDE

systems, we write q for ODE states and y for the (PDE) states in the following. In DAE the

state may be split into differential states q1, subject to an differential equation, and algebraic

states q2, subject to algebraic equations.

2.6.1 Optimal Control of an Index-1 DAE

The general form of a typical optimal control problem for a DAE is

Problem 2.59 (DAE Optimal Control Problem in Standard Form)

Let the time interval I = [t0, tf ] ⊂ R be non-empty with a fixed tf <∞.

Find [q1, q2, u] such that the objective

J (q1, q2, u) = Φ(q1(t0), q1(tf )) +

∫ tf

t0

φ(t, q1(t), q2(t), u(t)) dt

is minimized,

where [q1, q2, u] ∈ Z := Y1 × Y2 × U := [W 1,∞]nq,1 × [L∞]nq2 × [L∞]nu
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subject to

q̇1(t)− f1(t, q1, q2, u) = 0WH1
, (2.58)

f2(t, q1, q2, u) = 0WH2
, (2.59)

Ψ(q1(t0), q1(tf )) = 0WH3
, (2.60)

G(t, q1, q2, u) ≤ 0WG
, (2.61)

u(t) ∈ Ũ , a.e. in I (2.62)

for suitable Banach spaces WH = WH1 × WH2 × WH3 and WG, in which the equations are

considered, to be specified. As common we set for the equality constraints

H(t, q1, q2, u) =



f1(t, q1, q2, u)− q̇1

f2(t, q1, q2, u)

−Ψ(q1(t0), q1(tf ))


 .

For the admissible controls we consider the set U = {u ∈ [L∞(I)]nu |u(t) ∈ Ũ for a.a. t ∈ I} for

Ũ ⊂ Rnu.

Here we encounter a semi-explicit DAE with the general constraint (2.61) that may be mixed

control-state constraints or include pure state constraints also.

In principle we could introduce parameters p to be identified in the latter problem. However,

p could be substituted by a further ODE state, then the solution for p appears as a free initial

condition.

We work with the functions Φ : Rnq1×Rnq1 → R, φ : I×Rnq1×Rnq2×Rnu → R, fi : I×Rnq1×
Rnq2 × Rnu → Rnq1 , i = 1, 2, Ψ : Rnq1 × Rnq1 → RnΨ , and G : I × Rnq1 × Rnq2 × Rnu → Rnm .

Moreover, we drop the mixed control-state constraints and the pure state constraints in the

following and set

Z = [W 1,∞(I)]nq1 × [L∞(I)]nq2 × [L∞(I)]nu ,

W = WH = [L∞(I)]nq1 × [L∞(I)]nq2 × RnΨ ,

U = [L∞(I)]nu ,

Uad = {u ∈ L∞(I)]nu |umin,i(t) ≤ ui(t) ≤ umax,i(t), i = 1, . . . , nu, a.e. in I},
Zad = [W 1,∞(I)]nq1 × [L∞(I)]nq2 × Uad.

We presume the involved functions to be sufficiently smooth:

Assumption 2.60 (Smoothness Assumptions for DAE Problems [Ge12, Assumpt. 2.2.8])

a) Φ and Ψ are continuously differentiable w.r.t. all arguments.

b) For a sufficiently large convex compact neighbourhood V of ẑ := [q̂1, q̂2, û] ∈ [W 1,∞(I)]nq1×
[L∞(I)]nq2 × [L∞(I)]nu

(i) The maps φ, f1, f2, and G, are measurable (as maps) in t for all [q1, q2, u] ∈ V and

continuously differentiable in [q1, q2, u] uniformly for all t ∈ I, and
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(ii) The derivatives of φ, f1, f2, and G w.r.t. q1, q2, and u are bounded in I × V .

Note that no explicit continuity w.r.t. t is required, only measurability. The latter assumption

implies the F-differentiability of J , G, and H.

Since this study is on CDE, we discuss mainly semi-explicit index-1 DAE systems that occur

often, e.g., in vehicle simulation [Ge03] or process engineering [Hi97]. Note that multibody

systems as in Example C.5 could be considered as DAE of index 3, but often simpler models are

available, see e.g. Example 1.1 that may be reformulated as a pure ODE system. Index-1 DAE

are characterized by the following postulation.

Assumption 2.61 (Index-1 DAE)

The matrix

M(t) := f ′2;q2(t, q̂1(t), q̂2(t), û(t)) (2.63)

is non singular almost everywhere in I and

M−1(t) is essentially bounded in I.

This is equivalent to Pb. 2.59 exhibiting a index-1 DAE.

Note that this assumption allows to solve the algebraic equation for q2, obtaining an expression

for the algebraic variable q2 as a function of t, q1, and u. For the definition of the (perturbation)

index of a DAE and a discussion on other definitions of indices of a DAE see [Ge12, p. 24].

For applying Th. 2.8, we write z = [q1, q2, u] and the local minimizer is ẑ = [q̂1, q̂2, u]. Us-

ing Assumption 2.60, Assumption 2.6 can be verified directly. Here Assumption 2.7 b) is not

applicable. We use Theorem 2.17 for verifying Assumption 2.7 c): we prove that T1 defined by

T1(ẑ)(z) :=

[
H ′1(ẑ)(z)

H ′2(ẑ)(z)

]
=

[
f ′1;q1

(t, q̂, û)q1 + f ′1;q2
(t, q̂, û)q2 + f ′1;u(t, q̂, û)u− q̇1

f ′2;q1
(t, q̂, û)q1 + f ′2;q2

(t, q̂, û)q2 + f ′2;u(t, q̂, û)u

]

is surjective, see, e.g., [Ge12, Lemma 3.1.4] under Assumption (2.61). Note that, if we considered

a space of continuous functions as target for H2, then the image of H ′2 is no proper dense subset

of this space and we could not prove the non-density by this means.

Due to the Fritz John-conditions, Th. 2.8, we have demonstrated

Theorem 2.62 (NOC of Fritz John-type for Index-1 DAE Optimal Control Problem (with Pure

Equality Constraints))

Assume ẑ = [q̂, û] is a local minimizer of Problem 2.59 that we consider without (2.61). If the

Assumptions 2.7 a) (reading here umin,i < umax,i for all i = 1, . . . , nu), 2.60, and 2.61 hold,

then there exist multipliers λ := [λ0, λH ] = [λ0, λ1, λ2, λΨ] ∈ R+
0 ×W ∗, λ 6= [0, 0W ], s.t.

λ0 ≥ 0, (2.64)

H(ẑ) = 0W , (2.65)

〈λ0J ′(ẑ), d〉Z∗,Z + 〈λH , H ′(ẑ)d〉W ∗,W ≥ 0 ∀d := [q1, q2, u] ∈ Zad − {ẑ}. (2.66)
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The multiplier λH = [λ1, λ2, λΨ] belongs to a dual of state spaces, namely W ∗ = [L∞(I)∗]nq1 ×
[L∞(I)∗]nq2 × RnΨ , where the first two subspaces do not allow for suitable representations.

However, by exploiting the variational inequality (2.66) and using solution formulae that are

available for DAE of index 1, we may prove a certain representation of the multiplier [Ge05].

Lemma 2.63 (Representations of Adjoints)

Let Assumptions 2.7 a), 2.60, and 2.61 hold, then there exist Λ1 ∈ W1 = [W 1,∞(I)]nq1 and

Λ2 ∈W2 = [L∞(I)]nq2 , s.t.

〈λ1, φ1〉W ∗1 ,W1 = −
∫ tf

t0

Λ1(t)>φ1(t) dt ∀φ1 ∈ [L∞(I)]nq1 ,

〈λ2, φ2〉W ∗2 ,W2 = −
∫ tf

t0

Λ2(t)>φ2(t) dt ∀φ2 ∈ [L∞(I)]nq2 ,

for λ1, λ2 as given by Th. 2.62.

This shows that our multipliers exhibit actually more regularity than being elements of the dual

space only.

2.6.2 Minimum Principles

Necessary optimality conditions for optimal control of ODE are known as minimum principles

or maximum principles. The first proofs of these go back to Pontryagin et al. [PBGM64] and

Hestenes [He66].

We consider local minimum principles, i.e. the NOC are here interpreted w.r.t. a local mini-

mum of the Hamilton function By global minimum principles we mean that the NOC w.r.t. a

global minimum of the Hamilton function are considered. If a Hamilton functions was to be

maximized, the obtained NOC would be called a maximum principle.

The importance of local minimum principles is due to the fact, that the discrete adjoints

corresponding to the discretized local minimum principle approximate the adjoints of the NOC

[Ge12, Sect. 5.4]. This relation does not hold for global minimum principles, unless strong

conditions are additionally satisfied.

Definition 2.64 (Hamilton Function for DAE Optimal Control)

The function

H(t, q1, q2, u, λ0, λ1, λ2) := λ0φ(t, q1, q2, u) + λ1f1(t, q1, q2, u) + λ2f2(t, q1, q2, u)

is called the Hamilton function (Hamiltonian) corresponding to Problem 2.59 without (2.61),

i.e. the optimal control problem for semi-explicit index-1 DAE, in which mixed-control state

constraints and pure state constraints are excluded.

From Theorem 2.62 we may prove

54



Theorem 2.65 (Local Minimum Principle for DAE Optimal Control)

Assume ẑ = [q̂, û] is a local minimizer of Problem 2.59. Let the Assumptions 2.7 a), 2.60,

and 2.61 hold. Then there exist multipliers λ := [λ0, λ1, λ2, σ] ∈ R+
0 ×W ∗1 ×W ∗2 × RnΨ, λ 6=

[0, 0W ∗1 , 0W ∗2 , 0R
nΨ ], s.t.

a)

λ0 ≥ 0,

b) (Adjoint differential equations)

λ̇1(t) = −H′q1(t, q̂1(t), q̂2(t), û(t), λ0, λ1(t), λ2(t)) a.e. in I, (2.67)

0 = H′q2(t, q̂1(t), q̂2(t), û(t), λ0, λ1(t), λ2(t)) a.e. in I, (2.68)

c) (Transversality conditions)

λf (t0) = −(λ0Φ′q1(t0)(q̂1(t0), q̂1(tf )) + σ>Ψ′q1(t0)(q̂1(t0), q̂1(tf ))),

λf (tf ) = λ0Φ′q1(tf )(q̂1(t0), q̂1(tf )) + σ>Ψ′q1(tf )(q̂1(t0), q̂1(tf )),

d) (Stationarity of the Hamilton function)

〈H′u(t, q̂1(t), q̂2(t), û(t), λ0, λ1(t), λ2(t)), u− û(t)〉U∗,U ≥ 0 a.e. in I ∀u ∈ Ũ .

(2.67) & 2.68) are an index-1 DAE for the differential variable λ1 and the algebraic variable λ2.

In order to guarantee that λ0 6= 0, a constraint qualification is required. We translate RCQ, see

Appendix A.2.2 for details, into the situation of Problem 2.59 without inequality constraints.

Note that here RCQ is equivalent to the Mangasarian-Fromowitz condition (MFCQ).

The surjectivity of H ′(q̂1, q̂2, û) follows by Assumption 2.61 and by

rank(Ψ′q1(t0)F (t0) + Ψ′q1(tf )F (tf )) = nΨ, (2.69)

where F denotes the fundamental solution of the ODE Ḟ = ÃF , F (t0) = Idnq1 in I, here

Ã(t) = f ′1;q1
(t, q̂(t), û(t)) − f ′1;q2

(t, q̂(t), û(t))M(t)−1f ′2;q1
(t, q̂(t), û(t)), see [Ge05, Lemma 6.1].

The two latter assumptions yield what is called complete controllability of linearized dynamics

within control theory.

Theorem 2.66 (Regularity of DAE Optimal Control)

Let Assumptions 2.7 a), 2.60, 2.61 and Eq. (2.69) hold. If there exist q̃1 ∈ [W 1,∞(I)]nq1 ,

q̃2 ∈ [L∞]nq2 , and d̃u ∈ int(Uad − û) fulfilling

˙̃q1 = f ′1;q1(t, q̂, û)q̃1 + f ′1;q2(t, q̂, û)q̃2 + f ′1;u(t, q̂, û)d̃u a.e. in I, (2.70)

0Rnq2 = f ′2;q1(t, q̂, û)q̃1 + f ′2;q2(t, q̂, û)q̃2 + f ′2;u(t, q̂, û)d̃u a.e. in I, (2.71)

0Rnq1 = Ψ′q1(t0)q̃1(t0) + Ψ′q1(tf )q̃1(tf ), (2.72)

then Theorem 2.62 and Theorem 2.65 hold with λ0 = 1.
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Proof. The surjectivity yields Assumption 2.7 c). Under the above assumptions, (2.69) and

(2.70) – (2.72) yield MFCQ that is equivalent to RCQ (as required in Th. 2.18)), since no cone

constraints are present. �

The numerical methods discussed in Sect. 2.3 and Sect. 2.5 could be applied to the particu-

lar case of optimal control with DAE as well unless the methods are restricted to Hilbert spaces.

The natural function spaces for ODE and DAE, W 1,∞ and L∞, are no Hilbert spaces.

The gradient method w.r.t. typical spaces for DAE is presented in [Ge12, Sect. 8.1] for optimal

control of DAE with index 1. For details of the Lagrange-Newton method applied to typical

spaces for DAE see [Ge12, Sect. 8.2].

2.7 Optimal Control of Partial Differential Equations

In this section we reconsider the results from Section 2.4, when the constraints are partial

differential equations. In principle, variational inequalities could be considered as constraints

as well, see, e.g., [BZ99]. In the following we present only the case of a PDE E(y, u) = 0W as

a special case of an equality constraint H(y, u) = 0WH
, whereas we do not consider inequality

constraints like G(y) ≤ 0WG
and thus no variational inequalities here. We follow an abstract

approach as pursued in [IK08, Sect. 1.5].

2.7.1 Optimal Control of PDE without Inequality Constraints

Problem 2.67 (Optimal Control Problem with PDE)

Let Y , U , and W be vector spaces, Ỹ ⊂ Y , and let J : Y ×U → R be a functional. Furthermore,

let E : Ỹ × U →W be an operator, typically representing a PDE.

Find [y, u] ∈ Y × U such that J (y, u) is minimized,

where y ∈ Y , u ∈ Uad ⊂ U ,

subject to the constraints

E(y, u) = 0W . (2.73)

Usually, it is helpful to consider the partial differential equation (system) E(y, u) = 0W in

an abstract operator formulation. The latter being typically the PDE in weak formulation

(variational formulation), since this requires least regularity of the states, plus, e.g., initial

conditions, if applicable. If the PDE is considered in the strong formulation, the corresponding

spaces have to be chosen suitably, e.g. W = H1(Ω) and W ∗ = H1(Ω)∗ for the Laplace/Poisson

problem.

Example 2.68 (Formulations of an Elliptic Second-Order PDE Problem)

a) Let Ω ∈ Rd, d ≥ 1, be open bounded with Lipschitz boundary7. The boundary part with

7Note that in 1D (i.e. d = 1) a single point is a Ck−1,1, k ≥ 1, (Lipschitz) boundary by definition in our study.

This is different to [Tr10], but simplifies the formulation. Anyways in 1D an open bounded interval Ω is assumed.
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Neumann boundary conditions is ΓN ⊂ ∂Ω and the boundary part with Dirichlet boundary

conditions is ΓD := ∂Ω \ ΓN .

The classical formulation is: for given f ∈ C0(Ω) and g ∈ C0(ΓN ), we wish to find a y ∈
Cell(Ω,ΓN ,ΓD) := C2(Ω) ∩ C1(Ω ∪ ΓN ) ∩ C0(Ω) s.t.

L0y = f, in Ω,

−A∂νy + cΓ(x, y) + dΓ = g, on ΓN ,

y = 0, on ΓD,

with a linear second-order partial differential operator (in divergence form)

L0y := −Ay +
d∑

i=1

bi(x)y′xi + c0(x, y) + d0, (2.74)

where

Ay :=

d∑

i,j=1

(aij(x)y′xi)
′
xj . (2.75)

b) For brevity we consider here the case Γ = ΓD and c0(x, y) = c0(x)y. The corresponding weak

formulation of this initial-boundary value problem reads

a(y, v) = 〈f, v〉H−1,H1
0
∀v ∈ H1

0 (Ω), (2.76)

where the bilinear form associated to (2.74) is

a : H1
0 (Ω)×H1

0 (Ω)→ R,

[y, v] 7→ a(y, v) :=

∫

Ω

d∑

i,j=1

(aij(x)y′xi)v
′
xj +

d∑

i=1

bi(x)y′xiv + (c0(x) + d0)yv dx.

For a bounded and coercive bilinear form a and f ∈ H−1(Ω), this weak formulation admits a

unique solution y ∈ H1
0 (Ω). Furthermore, H1

0 (Ω) embeds into H1/2(Γ), thus prescribing a Dirich-

let boundary condition makes here indeed sense. Please see Subsection A.1.3 in the appendix for

details.

Let the coefficients be bounded, i.e. aij, bi, c0, d0 ∈ L∞(Ω). The weak formulation is equivalent

to the operator formulation, i.e., a bounded linear operator

E : H1
0 (Ω)→ H−1(Ω),

y 7→ L0y

is defined in the sense that

Ey = f ⇐⇒ (2.78) holds.

The existence of a unique solution of the weak formulation yields that the operator E (“= L0 &

hom. Dirichlet b.c.”) has a bounded inverse.
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Example 2.69 (Formulations of a Parabolic Second-Order PDE Problem)

a) Let Ω ∈ Rd, d ≥ 1, be open bounded with Lipschitz boundary8 and let I = (0, tf ) with tf > 0

be a fixed time interval. The time-space cylinder is denoted by Ωtf = (0, tf )× Ω and its spatial

boundary by Σtf = (0, tf ) × ∂Ω. Let the boundary part with Neumann boundary conditions be

ΣN ⊂ Σtf and the boundary part with Dirichlet boundary conditions ΣD := Σtf \ ΣN . We

consider on Ωtf the general case of a semilinear parabolic (second-order) PDE.

The classical formulation is: for given f ∈ C0(Ωtf ), g ∈ C0(ΣN ), and y0 ∈ C0(Ω), we wish

to find a y ∈ Cpar(I,Ω,ΓN ,ΓD) := C1(I;Cell(Ω,ΓN ,ΓD)) ∩ C0(I;Cell(Ω,ΓN ,ΓD)) s.t.

y′t + L1y = f, in Ωtf ,

−A∂νy + cΣ(t, x, y) = g, on ΣN ⊂ Σtf

y = 0, on ΣD := Σtf \ ΣN ,

y(0, ·) = y0 on Ω,

with a second-order partial differential operator (in divergence form)

L1y := −Ay +
d∑

i=1

bi(t, x)y′xi + c0(t, x, y) (2.77)

with A as defined in (2.75) where the aij may depend additionally on time, too.

b) Here we consider Σtf = ΣD and the case of a linear PDE by assuming c0(t, x, y) = c0(t, x)y.

The corresponding weak formulation of this initial-boundary value problem reads

〈y′t(t), v〉H−1,H1
0

+ a(y(t), v; t) = 〈f(t), v〉H−1,H1
0
∀v ∈ H1

0 (Ω) ∀t ∈ I, (2.78)

y(0, ·) = y0 on Ω, (2.79)

where the bilinear form associated to (2.77) is

a : H1
0 (Ω)×H1

0 (Ω)× I → R,

[y, v, t] 7→ a(y, v, t) :=

∫

Ω

d∑

i,j=1

(aij(t, x)y′xi)v
′
xj +

d∑

i=1

bi(t, x)y′xiv + c0(t, x)yv dx.

For a bilinear form a, being bounded and coercive for almost all t, f ∈ L2(0, tf ;H−1(Ω)),

and y0 ∈ L2(Ω), this weak formulation admits a unique solution y ∈ W (I;L2, H1
0 ), where

W (I;L2, H1
0 ) is defined as in Def. A.17. Furthermore, W (;L2, H1

0 ) embeds compactly into

C0(I;L2(Ω)), thus prescribing an initial condition makes here sense.

Let the coefficients be bounded, i.e. aij , bi, c0 ∈ L∞(Ωtf ).The weak formulation is equivalent to

the operator formulation, i.e., a bounded linear operator

E : W (I;L2, H1
0 )→ L2(I;H−1(Ω))× L2(Ω),

y 7→
[
y′t + L1y

y(0, ·)

]

8For d = 1 see the footnote in Ex. 2.68 a).
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is defined in the sense that

Ey =

[
f

y0

]
⇐⇒ (2.78) ∧ (2.79) holds.

The existence of a unique solution of the weak formulation yields that the operator E (“= ∂t+L1

& hom. Dirichlet b.c. & initial condition”) has a bounded inverse.

The Lagrange function, defined in Def. 2.12, corresponding to Problem 2.67, reads

L(y, u, λ) := J (y, u) + 〈λ,E(y, u)〉W ∗,W ,

where we just write λ = λH and the equality constraint H is just the PDE complemented with

initial conditions.

Here Assumption 2.42 is replaced by

Assumption 2.70 (Basic Assumptions on Spaces and Regularity for Optimal Control with

PDE)

a) Y , U , and W are Hilbert spaces and Ỹ be a Banach space densely embedded in Y .

b) Uad(⊂ U) is a non-empty, closed convex subset.

c) J is F-differentiable in a neighbourhood (w.r.t. the Y ×U topology) of [ŷ, û]. This Fréchet

derivative J ′ is locally Lipschitz continuous.

d) E is assumed to be F-differentiable at [ŷ, û], in particular E′y(ŷ, û) ∈ L(Ỹ ,W ). According

to Th. A.5 the operator E′y : Ỹ → W may be extended uniquely to a densely defined

operator G̃ with domain in Y .

Assumption 2.71 (Assumptions for Weakly Singular Optimal Control Problems with PDE

[IK08, Sect. 1.5])

a) We assume that the adjoint operator

G̃∗ : D(G̃∗) ⊂W → Y

is densely defined and thus it is necessarily closable. The closed operator is denoted with

the same letter for ease of presentation.

b) Furthermore, we need the regularity assumption

J ′y(ŷ, û) ∈ Range(G̃∗),

implying the existence of a solution λ ∈ D(G̃∗) of the adjoint equation

J ′y(ŷ, û) + G̃∗λ = 0.
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c) There exists a dense subset UDad ⊂ Uad, such that for every u ∈ UDad there exists a τu > 0

implying the existence of y(τ) ∈ Ỹ for all τ ∈ [0, τu] such that

E(y(τ), û+ τ(u− û)) = 0W ,

and lim
τ→0+

‖y(τ)− ŷ‖2Y
τ

= 0.

d) For every u ∈ UDad and y(·) as introduced in c), E is directionally differentiable at every

element of the plane

{(ŷ + σ(y(t)− ŷ), û+ στ(u− û)) |σ ∈ [0, 1], τ ∈ [0, τu]}

w.r.t. all directions (ŷ, û) ∈ Ỹ × U and, moreover,

〈
λ,

∫ 1

0

[
E′(ŷ + σ(y(τ)− ŷ), û+ στ(u− û))− E′(ŷ, û)

]
(y(τ)− ŷ, τ(u− û)) dσ

〉

W ∗,W

converges to 0 for τ → 0+.

Remark 2.72 (Simplifications and Comments for Assumption 2.71)

a) If E : Ỹ × U → W is F-differentiable w.r.t. y with locally Lipschitz derivative and if As-

sumption 2.71 c) holds for Y instead of Ỹ , then Assumption 2.71 d) follows automatically

from c).

b) Please note that we do not require that E′(ŷ, û) : Ỹ × U →W is surjective.

c) Analogously, we do not require that E′(ŷ, û) is well-defined everywhere on Y × U .

d) Typically, we think of Ỹ = Y ∩L∞(Q), where Y is a function space over Q = Ω or = Ωtf

being a Hilbert space. This motivates to allow for the spaces Y and Ỹ with Ỹ ( Y .

These assumptions allow to prove the existence of a Lagrange multiplier w.r.t. the equality

constraints.

Theorem 2.73 (KKT-Conditions for Optimal Control with PDE)

Assume [ŷ, û] ∈ Y × U is a local minimizer of Problem 2.67. If Assumptions 2.70 and 2.71

hold, and if the state equation has a unique solution in a neighbourhood V with Uad ⊂ V ⊂ U ,

where E′y(y(u), u) ∈ L(Y, Z) has a bounded inverse for all u ∈ V , then there exists a Lagrange

multiplier λ ∈W ∗ that fulfils the KKT-system

E(ŷ, û) = 0W ,

û ∈ Uad,
J ′y(ŷ, û) + G̃∗λ = 0Y ∗ ,

〈J ′u(ŷ, û) + E′u(ŷ, û)∗λ, du〉U∗,U ≥ 0 ∀du ∈ Uad − {û}.
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For a proof of Theorem 2.73 see [IK08, Sect. 1.5]. For the applicability of the Assumptions 1) –

4), see [IK08, Examples 1.18 – 1.20, 1.22, 1.23].

The last but one equation is the equation for the adjoint λ that reads in the case Y = Ỹ

J ′y(y, u) + E′y(y, u)∗λ = 0Y ∗ .

Note that Th. 2.73 does not yield the uniqueness of the Lagrange multiplier. In the following this

theorem is only used for Th. 3.6 that covers coupled ODE and parabolic PDE. The latter theorem

is merely stated for completeness. However, we discuss its applicability to the truck-container

example that is treated diffferently. For coupled CDE problems involving semilinear parabolic

PDE and ODE, we follow a different approach relying on the implicit function theorem, see

[CRT18], that requires weaker assumptions, but is restricted to the spatial dimensions d = 1, 2, 3.

Note that the examples in [HPUU09, Ch. 1] exhibit a Hilbert space structure, where we may

choose Y = Ỹ . Thus Th. 2.51 can be applied directly and the particular setting of Th. 2.73 is

not exploited.

Note that Th. 2.51 cannot be applied in general to our coupled CDE problems. We illustrate

this by the following example that demonstrates some limits of applying the general optimization

theory in Banach spaces to PDE. It has been thankfully brought to the authors’ attention by

F. Tröltzsch:

Example 2.74 (Bratu Problem)

We consider a special case of Example 2.68 for a semilinear elliptic PDE. Let Ω ⊂ Rd, d ≥ 1.

For given u ∈ Lp(Ω) for some p ∈ [1,∞], find y in a suitable state space Y , s.t.

−∆xy + exp(y) = u, in Ω

y = 0 on ∂Ω,

i.e.

E : Y × U →W, [y, u] 7→ E(y, u) = −∆xy + exp(y)− u = 0W ,

where we encode in Y the homogeneous Dirichlet boundary conditions for y.

At first glance we would choose H1
0 (Ω)∩L∞(Ω) for the state space Y , but the image space for

the equation is W = H−1(Ω), even for u ∈ L∞(Ω). E is F-differentiable from H1
0 (Ω) ∩ L∞(Ω)

to W , but E′y is no isomorphism from H1
0 (Ω) ∩ L∞(Ω)→ H−1(Ω) for d 6= 1.

This issue can be resolved by considering Y = {y ∈ H1
0 (Ω) | −∆xy ∈ Lp(Ω)}, p > d/2 which

is a Banach space with the corresponding norm. Moreover, there holds Y ↪→ C0(Ω). We have

to choose U = Lp(Ω) such that p > d/2. Now E : Y × U → W is continuously F-differentiable

and Ey : Y → W is an isomophism, thus the implicit function theorem is applicable and the

control-to-state operator S : U → Y is differentiable on U = Lp(Ω) to Y .

Then the problem is linearized and formally extended to H1
0 (Ω)×L2(Ω) that allows for working

with dual spaces. We find E′y : H1
0 → H−1 and the F-derivative in the direction w ∈W = H1

0 (Ω)

at [ŷ, û] ∈ Y × U is given by

〈E′y(ŷ, û)y, w〉W ∗,W = (∇y,∇w)L2(Ω) + (exp(ŷ)y, w)L2(Ω) ∀w ∈W.
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In case of an optimal control problem as Problem 2.67, we would finally find as corresponding

adjoint equation

−∆xλ+ exp(ŷ)λ = −J ′y(ŷ, û)

that holds in sense of Y ∗.

We compare with [IK08, Ex. 1.19] where the Bratu problem with distributed control u ∈ U =

L2(Ω) for d = 1, 2, 3 is discussed. We consider only the case of pure Dirichlet b.c. They work

with Y = H1
0 (Ω) and Ỹ = H1

0 (Ω) ∩ L∞(Ω) in contrast and W = H−1(Ω). In this case Assump-

tion 2.71 can be verified using among other things that the exponential function is pointwise

Lipschitz. Thus Theorem 2.73 is applicable. Note that for d ≤ 3 we have p > 3/2, thus p = 2 is

feasible as in the antecedent approach.

We remark that this type of PDE has been examined thoroughly in the context of a shape opti-

mization problem by the author in [BKN14].

As a special feature of optimal control with PDE, the underlying Banach spaces are typically

Sobolev spaces or even Hilbert spaces, like L2 or H1 := W 1,2. Often the following situation

is encountered that separable Hilbert spaces H, V form a Gelfand triple V
cd
↪→ H

cd
↪→ V ∗ with

continuous and dense embeddings (cf. Def. A.17). These structures may be exploited.

Remark 2.75 (Constraint Qualifications and Optimal Control of PDE)

In optimal control subject to PDE we consider here in this section no inequality constraints for

the states. In this case it can be shown that the Robinson constraint qualification, then reading

for surjective E′y(ŷ, û) ∈ L(Y,W )

E′y(ŷ, û)(y − ŷ) + E′u(ŷ, û)(u− û) = 0W , y ∈ Y, u ∈ Uad,

is satisfied and we obtain the KKT-conditions instead of the Fritz John-conditions [HPUU09,

Remark 1.22].

We annotate that for semilinear PDE the existence of a bounded inverse E′y(ŷ, û) often may

be demonstrated, using a Nemytskii operator Φ from the state to the nonlinearity. For instance,

if Ω ⊂ Rd, d ∈ {1; 2; 3}, a bounded Lipschitz domain and E(y, u) = −∆xy + y3 − u (together

with homogeneous Neumann b.c.), then Φ : V = H1(Ω) → L2(Ω), y 7→ y3 is F-differentiable in

H1(Ω). For details, see [Tr10, 6.1.3].

Theory and methods for optimal control of PDE depend on the type of PDE and on the type of

control. Here we discuss only elliptic and parabolic PDE. For the optimal control of hyperbolic

equations of first-order we refer, e.g., to [Ul02, Ul03]. For hyperbolic equations of second-order

see [Zu05, GGP08, Kr11] among many others. Note that the viscosity solution of a hyperbolic

equation of first-order is determined by solving a parabolic problem.

If the control enters by a source term within the domain, this case is called distributed control,

or if it acts by means of a Neumann or Dirichlet boundary, it is called boundary control.
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We present some specific examples (see [HPUU09]).

Example 2.76 (Neumann Boundary Control of a Linear Elliptic PDE)

Let Ω ⊂ Rd be a bounded Lipschitz domain. Furthermore, let yref ∈ L2(Ω) be a reference state,

α > 0, d0 ∈ L∞(Ω), d0 > 0, umin, umax ∈ L∞(∂Ω), and f ∈ H1(Ω)∗.

Find y ∈ Ỹ = Y = V = H1(Ω), u ∈ U = L2(∂Ω) such that

J (y, u) =
1

2
‖y − yref‖2L2(Ω) +

α

2
‖u‖2L2(∂Ω)

is minimized,

subject to the constraints

−∆xy + d0y = f in Ω,

∂νy = u on ∂Ω,

u ∈ [umin, umax] on ∂Ω,

where ∂ν denotes the normal derivative.

The weak formulation of this linear elliptic PDE reads9

∫

Ω
∇y · ∇v + d0y v dx =

∫

Ω
fv dx+

∫

∂Ω
uv dσ(x) ∀v ∈ H1(Ω)

or equivalently, in operator formulation,

Ay = Bu+ f,

introducing (using the trace embedding L2(∂Ω) ↪→ H1(Ω), see Th.A.21)

A ∈ L(H1(Ω), H1(Ω)∗), 〈Ay, v〉H1(Ω),H1(Ω)∗ :=

∫

Ω
∇y · ∇v + d0y v dx,

B ∈ L(L2(∂Ω), H1(Ω)∗), 〈Bu, v〉H1(Ω),H1(Ω)∗ :=

∫

∂Ω
uv dσ(x).

This yields that A is self-adjoint and that B∗v = v|∂Ω. Note that we have W = Y ∗ = H1(Ω)∗.

We set according to our standard notation

E(y, u) = Ay −Bu− f,

being continuous and F-differentiable.

This constitutes a linear-quadratic optimal control problem as in Example 2.49, where Uad =

{u ∈ L2(∂Ω) |umin(x) ≤ u(x) ≤ umax(x)}, H = L2(Ω), RH = IdL2(Ω), and yH,ref = yref . The

necessary optimality conditions yield as in Example 2.53,

〈A∗λ+ ŷ − yref , v〉H1(Ω)∗,H1(Ω) = 0 ∀v ∈ H1(Ω), û = PUad

(
1

α
B∗λ

)
.

9The surface measure on Γ = ∂Ω is denoted here by dσ.
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using a pointwise projection as in (2.43) with γ̃ = 1/α. Written as a PDE the adjoint equation

is

−∆xλ+ d0λ = −(ŷ − yref ) in Ω,

∂νλ = 0L2(∂Ω) on ∂Ω,

with

û = PUad

(
1

α
λ|∂Ω

)
.

Since this implies that the adjoint has the regularity H1(Ω), the trace λ|∂Ω ∈ H1/2(∂Ω) is actually

well-defined.

Moreover, using that the Sobolev embedding H1/2(∂Ω) ↪→ Lp(∂Ω) actually holds for p > 2 as

well, we find a norm gap as required for the theory of semismooth Newton systems. Consequently,

we reconsider B∗ ∈ L(H1(Ω), Lp(Ω)). We choose a subdifferential D ∈ L∞(∂Ω) with D(x) ∈
∂CPUad(

1
αB
∗λ(k)) for almost all x ∈ ∂Ω. Then we find the semismooth Newton system



IdH1(Ω)∗ 0L2(∂Ω) A∗

0H1(Ω)∗ IdL2(∂Ω) −D(k)

α B∗

A −B 0H1(Ω)


 s(k) = −



y(k) − yref +A∗λ(k)

u(k) − PUad( 1
αB
∗λ(k))

Ay(k) −Bu(k) − f


 .

Assumption 2.77 (Assumption for Semilinear Parabolic PDE)

We consider Example 2.69 a) where c0 and cΓ may be nonlinear in y.

The function c0(t, x, y) : Ωtf × R → R is measurable w.r.t. [t, x] ∈ Ωtf for any fixed y ∈ R
and almost everywhere in Ωtf it is monotone increasing, locally bounded and locally Lipschitz

continuous w.r.t. y.

The function cΣ(t, x, y) : ΣN × R → R is measurable w.r.t. [t, x] ∈ ΣN for any fixed y ∈ R
and almost everywhere in ΣN it is monotone increasing, locally bounded and locally Lipschitz

continuous w.r.t. y.

For details on the definition of local boundedness and local Lipschitz continuity see [Tr10, As-

sumpt. 5.4].

Example 2.78 (Distributed Control of a Semilinear Parabolic PDE)

Let the assumptions from Example 2.69 a) hold and for the nonlinearities c0 and cΓ let Assump-

tion 2.77 hold. Contrary to Ex. 2.69 b) we consider Σtf = ΣN . Note that here aij = δij yielding

the Laplace operator, i.e. A = ∆x, and that b ≡ 0.

Furthermore, let yref ∈W (I;L2, H1), α > 0, y0 ∈ C0(Ω) and g ∈ Ls(Σtf ), s > d+ 1.

The set of controls is Uad = {u ∈ L∞(Ωtf ) |umin(t, x) ≤ u(t, x) ≤ umax(t, x) for a.a. [t, x] ∈
Ωtf }, where umin, umax ∈ L∞(Ωtf ).

Find y ∈ Ỹ = Y = W (0, tf ;L2, H1), u ∈ U = Lr(Ωtf ), r > d/2 + 1 and r ≥ 2, such that

J (y, u) =
1

2
‖y − yref‖2W (I;L2,H1) +

α

2
‖u‖2L2(Ωtf )
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is minimized,

subject to the constraints

y′t −∆xy + c0(t, x, y) = u in Ωtf ,

∂νy + cΣ(t, x, y) = g on Σtf ,

y(0, ·) = y0 in Ω,

u ∈ [umin, umax] in Ωtf .

Note that here the Gelfand triple is V = H1(Ω), H = L2(Ω), and V ∗ = H1(Ω)∗.

2.7.2 Optimal Control of a Parabolic PDE

We recall a well-known existence and uniqueness result for a semilinear parabolic PDE , see,

e.g., [Tr10, Lemma 5.3].

Theorem 2.79 (Existence and Uniqueness for a Parabolic PDE (L2-theory) )

Let the assumptions in Example 2.78 hold for r = s = 2, d arbitrary, and let in addition c0(t, x, y)

and cΓ(t, x, y) be uniformly bounded and globally Lipschitz w.r.t. y for almost all [x, t] ∈ Ωtf and

ΣN , respectively. For any u ∈ L2(Ωtf ), g ∈ L2(ΣN ), and y0 ∈ L2(Ω), the initial-boundary value

problem from Example 2.69 has a unique weak solution y ∈W (I;L2, H1).

The standard existence and uniqueness of weak solutions for parabolic PDE has been extended

in the context of optimal control by Casas [Ca97] and Raymond and Zidani [RZ99], see Th. A.28.

We continue with the optimal control problem in Example 2.78.

Theorem 2.80 (Existence of Optimal Controls for OCP subject to a Parabolic PDE)

Let the assumptions in Example 2.78 hold. Then for the distributed and the boundary control

problem, where uΣ = g is another optimal control, there exists at least one optimal pair [û, ûΣ]

and an optimal state ŷ.

For a proof see, e.g., [Tr10, Th. 5.7].

Theorem 2.81 (NOC for Distributed OCP subject to a Semilinear Parabolic Problem)

We consider Example 2.78 (with Neumann b.c.) and let the assumptions there hold. The weak

formulation of this semilinear parabolic PDE reads [Tr10, Sect. 5.1], find y ∈ W (I;L2, H1) ∩
L∞(Ωtf ) such that10

∫

Ωtf

−yv′t +∇y · ∇v + c0(t, x, y)v dx dt+

∫

Σtf

cΣ(t, x, y)v dσ(x), dt

=

∫

Ωtf

uv dx dt+

∫

Σtf

gv dσ(x) dt+

∫

Ω
y0v dx ∀v ∈ {v ∈ H1(Ωtf ) | v(tf , x) = 0}.

10The surface measure on Σtf is denoted here by dσ.
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It can be proved [Tr10, Th. 5.5], [RZ99] (see also Th. A.28) that under the above assumptions

together with y0 ∈ C0(Ωtf ), there exists a unique y ∈W (I;L2, H1) ∩C0(Ωtf ). Furthermore, we

have the embedding W (I;L2, H1) ↪→ C0(I;L2(Ω)).

The equivalent operator formulation is

Ay = Bu+ Cg +Dy0,

y(0, ·) = y0,

where we have introduced

A :Y → Y ∗, 〈Ay, v〉Y,Y ∗ :=

∫

Ωtf

−yv′t +∇y · ∇v + c0(t, x, y)v dx dt+

∫

Σtf

cΣ(t, x, y)v dσ(x) dt,

and

B ∈ L(Lr(Ωtf ), Lr
′
(Ωtf )), 〈Bu, v〉Lr(Ωtf ),Lr′ (Ωtf ) :=

∫

Ωtf

uv dx dt,

C ∈ L(Ls(Σtf ), Ls
′
(Σtf )), 〈Cg, v〉Ls(Σtf ),Ls′ (Σtf ) :=

∫

Σtf

gv dσ(x) dt,

D ∈ L(L2(Ω), L2(Ω)), 〈Dy0, v〉L2(Ω),L2(Ω) :=

∫

Ω
y0v dx.

Note that we have W = Y ∗ = W (I;L2, (H1)∗). We set according to our standard notation

E(y, u) = [Ay −Bu− Cg −Dy0, y(0, ·)− y0]>.

This operator is continuous and F-differentiable.

If we assume further c0, cΣ to be twice differentiable w.r.t. y, the necessary optimality condi-

tions yield

〈A∗λ+ ŷ − yref , v〉W (I;L2,(H1)∗),W (I;L2,H1) = 0 ∀v ∈W (I;L2, H1),

û = P[umin,umax]

(
1

α
λ

)

using a pointwise projection as in (2.43).

Written as a PDE the adjoint equation is

−λ′t −∆xλ+ c′0;y(t, x, ŷ)λ = −(ŷ − yref ) in Ωtf ,

∂νλ+ c′Σ;y(t, x, ŷ)λ = 0L2(Σtf ) on Σtf ,

λ(tf , x) = 0L2(Ω) in Ω.

This implies that the adjoint actually has the regularity W (I;L2, H1) ∩ C0(Ωtf ) as well.

Remark 2.82 (Adjoint Corresponding to Neumann Boundary Conditions or Initial Condi-

tions)

Note that, in general, it turns out that the adjoints corresponding to a Neumann boundary con-

dition of a PDE coincide with the adjoint introduced for the partial differential equation itself

66



[Tr10, Sect. 3.1]. The same reference illustrates that we may include initial conditions into

the Lagrange function as well and the corresponding adjoint fits to the adjoint of the PDE. An

analogous result holds for incorporating the initial condition of an ODE into the Lagrangian.

For a bang-bang example for parabolic PDE see [Tr10, Subsect. 3.2.4] and [Tr84a, Tr84b].

2.8 Comparison of Lagrange and Pontryagin Approach

The Pontryagin minimum(/maximum) principle avoids the differentiation w.r.t. the control and

is valid under natural assumptions without any assumption on convexity, as it is used often for

the exact Lagrange approach [Tr10, Sect. 4.8]. Typically the Pontryagin minimum principle is

applied in the context of optimal control with ODE. However, an approach using Pontryagin’s

minimum principle is also used in optimal control of partial differential equations.

Pontryagin Principle Applied to Optimal Control with PDE

Under natural assumptions it can be expected that optimal controls for problems subject to

semilinear elliptic and to semilinear parabolic PDE satisfy the minimum principle. The first

results [Wo76, Wo77] were obtained for semilinear parabolic PDE, and then for semilinear elliptic

PDE [BC91]. Recent extensions, in particular for state constraints, can be found in [Ca86, BC95]

for elliptic and in [Ca97, RZ99] for semilinear parabolic PDE.

In the latter article by Raymond and Zidani the controls might turn out to be unbounded.

Let W (I) := W (I;L2, H1) = {y ∈ L2(I;H1(Ω)) | y′t ∈ L2(I;H1(Ω)∗)}, see Def. A.17. They

use the existence and uniqueness of a PDE solution in W (I) ∩ L∞(Ωtf ) and that the setting

for the distributed, boundary and initial controls are subsets of function spaces of the type

{u ∈ Lq(Ωtf ) |u(t, x) ∈ UK for a.e. [t, x] ∈ Ωtf }, where UK is a non-empty, closed subset of R.

We recall that I = (0, tf ). They define a distributed Hamilton function, a boundary Hamilton

function, and an initial Hamilton function and show that they each obey a minimum principle

of Pontryagin’s type. An application of their result is the optimal control with pointwise state

constraints.

Lagrange Approach Applied to Optimal Control with ODE

The formal and the exact Lagrange method could be applied to ODE as well. We reconsider

Problem 2.59 but without algebraic states q2, rewriting q = q1 for the differential states, f = f1

and H2 = −Ψ consequently. The Lagrange function reads

L(q, λ, u) = λ0J (q, u) + 〈λH1 , q̇ − f〉W ∗H1
,WH1

− (λH2 ,Ψ)RnΨ + 〈λG, G〉W ∗G,WG

and we obtain the necessary optimality conditions as in Th. 2.62. The question remains what

are suitable spaces Y , U , and W in this setting. Neglecting the inequality constraints, according

to Sect. 2.6 we work with Y = [W 1,∞(I)]nq , WH = [L∞(I)]nq × RnΨ , U = [L∞(I)]nu . We have

demonstrated a posteriori in Lemma 2.63 that the adjoints exhibit a higher regularity than just
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being elements of duals, this yields here λH1 ∈ W ∗H1
. As it turns out in the next chapter, we

may also consider Y = [L2(I)]nq , U = [L2(I)]nu , and WH = Y ∗ × RnΨ , where the dual Y ∗ is

identified with Y itself.

2.9 Article: Globalized Semismooth Newton Method for Oper-

ator Equations in Hilbert Spaces

We close this chapter with our article, published as [GHK17]. In this paper we present a

globalization strategy for the semismooth Newton method for solving the operator equation

f(z) = 0Z∗ in a Hilbert space Z. This is achieved by equipping the local semismooth Newton

method with an Armijo line search w.r.t. the merit function Θ(z) := ‖f(z)‖2Z∗/2. The result

is applied to optimal control of semilinear elliptic PDE, where the control costs 2.41 enter the

objective with a weight11 α > 0. In this setting it turns out that, if we may choose the Tikhonov

parameter α = 1/γ̃ (γ̃ as given in Eq. (2.26)) sufficiently large, then the search direction of

the Newton method is always a descent direction and we have transition from our globalized

algorithm to the fast local Newton method. As far to the knowledge of the author from an

algorithmic point of view, this is the most efficient globalization strategy for Newton methods

applied to optimal control of semilinear elliptic differential equations. By a semi-discretization

in time this may be applied to parabolic differential equations as well, see [KG16].

11(α corresponds to λ in the notation of the paper.)
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Abstract. We consider the numerical solution of nonlinear and nonsmooth
operator equations in Hilbert spaces. A semismooth Newton method is used
for search direction generation. The operator equation is solved by a globalized
semismooth Newton method that is equipped with an Armijo linesearch using
a semismooth merit function. We prove that an accumulation point of the
globalized algorithm is a solution and transition to fast local convergence un-
der a directional Hadamard-like continuity assumption on the Newton matrix.
In particular, no auxiliary descent directions or smoothing steps are required.
Finally, we apply this method to a control-constrained and also to a regular-
ized state-constrained optimal control problem subject to partial differential
equations.

1. Introduction. In this article, we consider the problem of finding a z̄ ∈ Z with

f(z̄) = 0, (1)

where Z is a Hilbert space, Z∗ denotes its topological dual, and f : Z → Z∗ is
a locally Lipschitz continuous operator. In particular, we allow f to be nonlinear
and nonsmooth. Problems of this type arise, e.g., from the reformulation of the
necessary optimality conditions in control-constrained optimal control subject to
partial differential equations (PDE), see Section 4.

Semismooth Newton methods for operator equations of the type of (1) have been
examined in [4, 10, 15, 16, 18, 19, 21, 22, 23, 24]. A trust-region globalization of this
method was presented in [22], global convergence is proved for a primal-dual active
set method in finite dimensions in [15, 16]. A primal-dual active set strategy and
semismooth Newton methods may lead to identical algorithms [8]. The application
of semismooth Newton methods to optimal control of PDE was considered, e.g.,
in [9, 10, 12, 13, 20, 22, 23, 24]. For variationally discretized control-constrained
optimal control problems subject to elliptic differential equations a globalization

2010 Mathematics Subject Classification. Primary: 49J20, 49J52, 49M15; Secondary: 90C56,
65K10, 65N12.

Key words and phrases. Semismooth Newton method, line search globalization, superlinear
convergence, optimal control of partial differential equations, control constraints, state constraints.
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strategy was developed by Hinze and Vierling [12, 13]. Discretized nonlinear op-
timal control problems subject to control and state constraints can be solved by
globally convergent nonsmooth Newton methods, see for instance [7]. It has been
demonstrated that a norm gap between range and domain of a projection operator is
required for semismoothness, see e.g. [21, Th. 3.3], [22, Remark 3.34] or [24, Ch. 4].
In [21] the semismooth Newton method is revisited from a different point of view
involving semismooth superposition operators and replacing Lipschitz continuity by
weaker grow conditions.

We extend the local semismooth Newton method, see M. Ulbrich [22], by a
globalization strategy in Hilbert spaces from [14]. We prove that if our global
algorithm produces an accumulation point, then we have global convergence to a
zero of f , see our main results Theorem 3.4 and Theorem 3.5, that, to our best
knowledge, have not been proved so far. As in [22] we do not require a strict
complementarity assumption for these results.

Our article is organized as follows. The concept of a semismooth Newton method
is briefly presented in Section 2. In Section 3 we prove our main result. This
globalization result is applied to optimal control problems with control constraints
in Sect. 4, using an all-at-once approach. We close with numerical examples for
control constraints and for state constraints in Sect. 5.

2. Semismooth Newton method. For applying a Newton method on (1) an
appropriate substitute for the Fréchet-derivative f ′ has to be found. Therefore we
work with the following abstract semismoothness concept, cf. Def. 3.1 in [22]:

Definition 2.1 (∂∗f -Semismoothness). Let f : Z ⊃ V → Z∗ be defined on an open
subset V of Z. Further, let be given a set-valued mapping ∂∗f : V ⇒ L(Z,Z∗). f
is called

(a) ∂∗f -semismooth at z ∈ V if f is continuous near z and

sup
M∈∂∗f(z+s)

‖f(z + s)− f(z)−M s‖Z∗ = o(‖s‖Z) as ‖s‖Z → 0,

i.e. ∀ε > 0 ∃δ > 0 : ‖s‖Z < δ ⇒ ‖f(z + s)− f(z)−M s‖Z∗ ≤ ε ‖s‖Z
∀M ∈ ∂∗f(z + s).

(b) α-order ∂∗f -semismooth at z ∈ V , 0 < α ≤ 1, if f is continuous near z and

sup
M∈∂∗f(z+s)

‖f(z + s)− f(z)−M s‖Z∗ = O(‖s‖1+α
Z ) as ‖s‖Z → 0.

i.e. ∃ε > 0∃δ > 0 : ‖s‖Z < δ ⇒ ‖f(z + s)− f(z)−M s‖Z∗ ≤ ε ‖s‖1+α
Z

∀M ∈ ∂∗f(z + s).
(c) uniformly ∂∗f -semismooth for all z ∈ V , if f is continuous in V and

∀ε > 0 ∃δ > 0 ∀z ∈ V : ‖s‖Z < δ ⇒ ‖f(z + s)− f(z)−M s‖Z∗ ≤ ε ‖s‖Z
∀M ∈ ∂∗f(z + s), i.e. δ does not depend on z.

The multifunction ∂∗f is called generalized differential of f .

Please note that the uniform semismoothness of f in part (c) of Definition 2.1 is
only required later on in the particular case that a (sub)sequence of stepsizes in the
globalized Newton method tends to zero, compare Part b) of Theorem 3.4. However,
there exist projectors s.t. uniform semismoothness implies Fréchet differentiability.
For this and a discussion of non-uniform semismoothness of projectors see [21,
Sect. 3]. Note that a different definition of uniform semismoothness is used by
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Correa and Joffre [5, Remark 6.3] in which the uniformity refers to a family of
functions. For a uniform semismoothness within the context of mesh independence
see [24, Ch. 6].

It is easy to prove that the direct product of (α-order) semismooth operators is
(α-order) semismooth itself with respect to the direct product of the generalized
differentials of its components. An equivalent relation holds for the composition of
semismooth operators. For details see [22]. For Z = Rn thanks to Rademacher’s
theorem such a substitute for locally Lipschitz continuous functions is given by
Clarke’s generalized Jacobian. In infinite dimensional spaces such a generalized
differential is not given naturally and has to be defined separately, see e.g. [6, 22].

A semismooth Newton method for equation (1) is given by

Algorithm 2.2 (Local semismooth Newton method).

(i) Choose a starting point z0 ∈ Z and set k = 0.
(ii) Is a stopping criterion satisfied: STOP.

(iii) Choose an arbitraryM(zk) ∈ ∂∗f(zk) and compute the search direction sk ∈ Z
by solving

M(zk) sk = −f(zk). (2)

(iv) Set zk+1 = zk + sk, k := k + 1 and goto (ii).

Here we need some regularity condition for the operatorsM(zk) ∈ ∂∗f(zk) similar
as in [22, Assumption 3.11 (i)].

Assumption 2.3 (Uniform non-singularity of the Newton matrix). The operators
M(zk) ∈ ∂∗f(zk) are continuously invertible elements of L(Z,Z∗) and there exists
a constant CM−1 > 0 with

∥∥M(zk)−1
∥∥
L(Z∗,Z)

≤ CM−1 ∀k ∈ N.

This assumption is a standard assumption for Newton methods and can be veri-
fied specifically for various examples e.g. [9, 10, 17]. In a finite dimensional setting,
this assumption will be satisfied close to a zero z̄ of f , if all elements M of ∂∗f(z̄)
are non-singular, where ∂∗f denotes the compact-valued and upper semicontinuous
subdifferentials of Bouligand, Clarke or Qi, compare [23, Remark 2.8].

For our globalization result we need Assumption 3.1, see below, for the subdif-
ferentials. Furthermore we need a certain structure of the superposition operator
arising within the context of the application to optimal control, see Assumption 4.2
below, that avoids a smoothing step in Algorithm 2.2 required in [6] within this
context.

We recall the local convergence of Algorithm 2.2 that has been shown in [6] and
[22].

Theorem 2.4 (Local convergence of Algorithm 2.2). Let V ⊂ Z be open and
f : V → Z∗. Let Assumption 2.3 hold. Assume z̄ ∈ V is a zero of (1), then the
following assertions hold:

(a) If f is ∂∗f -semismooth in z̄, then there exists a constant δ > 0, such that for
all z0 ∈ z̄ + δBZ Algorithm 2.2 generates a sequence {zk} ⊂ V that converges
superlinearly to z̄.

(b) If f in (a) is α-order ∂∗f -semismooth in z̄, 0 < α ≤ 1, the rate of convergence
is 1 + α.
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(c) If f(zk) 6= 0 for all k, the sequence of residuals converges superlinearly, i.e.

lim
k→∞

‖f(zk+1)‖Z∗

‖f(zk)‖Z∗
= 0.

3. Globalization. To construct a globally convergent Newton method Algorithm
2.2 is extended by an Armijo line search. An appropriate merit function Θ : Z → R
with Θ(z)→ 0 for ‖f(z)‖Z∗ → 0 is given by

Θ(z) :=
1

2
‖f(z)‖2Z∗ . (3)

Due to the fact that Z is a Hilbert space one can prove the semismoothness of (3).
To this end, let 〈·, ·〉Z∗,Z denote the dual pairing between Z∗ and Z while (·, ·)Z is
the inner product on Z. We need

Assumption 3.1 (Directional Hadamard-like continuity of the Newton matrix).

(a) For any k ∈ N there exist Mρ := M(zk + ρsk) ∈ ∂∗f(zk + ρsk) for every ρ
sufficiently small with a ε̃ ∈ [0, 1) such that

lim
ρ↓0
‖(Mρ −M(zk))sk‖Z∗ = ε̃‖f(zk)‖Z∗ .

In particular, this assumption is fulfilled in the case ε̃ = 0, corresponding to a
directional Hadamard-like continuity of M .

(b) For k → ∞, αk → 0 and a subsequence of {zk} converging to z̄ there exists
M̄ ∈ ∂∗f(z̄) with

lim
k→∞

‖(Mk − M̄)sk‖Z∗ = 0

for Mk ∈ ∂∗f(zk + αksk).

The conditions in Assumption 3.1 have some similarity with the definition of
Hadamard differentiability [1, Def. 2.45] along curves. In our context, however, these
conditions ensure the continuity or the smallness of jumps of certain elements of the
subdifferentials at least in the directions sk. Assumptions (a) and (b) are satisfied
generically at all points of differentiability of f . At points of non-differentiability
of f the assumptions do impose restrictions on the choice of the elements from the
subdifferentials and enforce a continuous selection. There might be cases where such
a selection is not possible, because the search direction sk may be obtained with
some M(zk) and points into a direction where Mρ is bounded away from M(zk). In
the latter case we need at least bounds on the jump of M along a search direction.

However, we are able to monitor this situation algorithmically since Assump-
tion 3.1 (a) will be exploited in the subsequent lemma to prove that the search
direction is a direction of descent. Hence, if the search direction turns out to be
a direction of ascent, then Assumption 3.1 (a) will be violated. In our numerical
experiments that, however, rely on a discretized version of Algorithm 3.3 we haven’t
encountered this situation, though.

Lemma 3.2 (Semismoothness of Θ). Let f : Z → Z∗ be (α-order) ∂∗f -semismooth.

Furthermore, let H : Z∗ → R be given by H(·) := 1
2 ‖·‖

2
Z∗ = 1

2 (·, ·)Z∗ , where (·, ·)Z∗

denotes the inner product in Z∗. Then the following assertions hold:

(a) H is Fréchet-differentiable on Z∗ with H ′(f)h = (f, h)Z∗ for f : Z → Z∗,h ∈
Z∗.
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(b) The merit function Θ : Z → R in (3) is (α-order) ∂∗Θ-semismooth, where the
generalized differential ∂∗Θ := {H ′} ◦ ∂∗f : Z ⇒ L(Z,R) is defined by

∂∗Θ(z) = ({H ′} ◦ ∂∗f) (z) = {H ′(f(z))M(z) : M(z) ∈ ∂∗f(z)} .
(c) Let {zk} ⊂ Z be a sequence generated by Algorithm 2.2 and let Assumption

2.3 hold. For any sk being defined by M(zk) sk = −f(zk) and the associated
V (zk) = H ′(f(zk))M(zk) ∈ ∂∗Θ(zk), it holds that

〈V (zk), sk〉Z∗,Z = −‖f(zk)‖2Z∗ = −2 Θ(zk). (4)

Furthermore, if Assumption 3.1 (a) holds, then sk is a descent direction of Θ
in zk unless Θ(zk) = 0.

Proof. (a) As common we identify the dual space Z∗∗ with Z∗ by means of the
Riesz representation. We find

H(f + h)−H(f)− (f, h)Z∗

‖h‖Z∗
=

1
2 (f + h, f + h)Z∗ − 1

2 (f, f)Z∗ − (f, h)Z∗

‖h‖Z∗

=
1

2
‖h‖Z∗ .

Taking the limit ‖h‖Z∗ → 0 yields the assertion.
(b) Due to the (α-order) ∂∗f -semismoothness and local Lipschitz continuity of f ,

the validity of assertion (a) and the boundedness of H ′(f), all requirements of
Proposition 3.7 in [22] are satisfied and Θ is (α-order) ∂∗Θ-semismooth. Thus
assertion (b) holds.

(c) With (a) we find

〈V (zk), sk〉Z∗,Z = H ′(f(zk))(M(zk)sk) = (f(zk),M(zk)sk)Z∗ = −‖f(zk)‖2Z∗

and thus 〈V (zk), sk〉Z∗,Z = −2Θ(zk).
The ∂∗Θ-semismoothness of Θ according to (b) implies

0 = lim sup
ρ↓0

∣∣∣∣
Θ(zk + ρsk)−Θ(zk)

ρ
− 〈V (zk + ρsk), sk〉Z∗,Z

∣∣∣∣

≥ lim sup
ρ↓0

∣∣∣∣∣

∣∣∣∣
Θ(zk + ρsk)−Θ(zk)

ρ
− 〈V (zk), sk〉Z∗,Z

∣∣∣∣

− |〈V (zk), sk〉Z∗,Z − 〈V (zk + ρsk), sk〉Z∗,Z |
∣∣∣∣∣

= lim sup
ρ↓0

∣∣∣∣∣

∣∣∣∣
Θ(zk + ρsk)−Θ(zk)

ρ
+ 2Θ(zk)

∣∣∣∣

− |〈V (zk), sk〉Z∗,Z − 〈V (zk + ρsk), sk〉Z∗,Z |
∣∣∣∣∣.

This relation holds for arbitrary choices of M(zk + ρsk) ∈ ∂∗f(zk + ρsk) in
V (zk + ρsk) = H ′(f(zk + ρsk)M(zk + ρsk).

According to Assumption 3.1 (a) there exists Mρ := M(zk+ρsk) ∈ ∂∗f(zk+
ρsk) such that

lim
ρ↓0
‖(Mρ −M(zk))sk‖Z∗ = ε̃‖f(zk)‖Z∗ .
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Then, together with the continuity of H ′ we find

|〈V (zk), sk〉Z∗,Z − 〈V (zk + ρsk), sk〉Z∗,Z |

=
∣∣∣(H ′(f(zk)),M(zk)sk)Z∗,Z∗ − (H ′(f(zk + ρsk)),M(zk + ρsk)sk)Z∗,Z∗

∣∣∣

≤
∣∣∣(H ′(f(zk)),M(zk)sk)Z∗,Z∗ − (H ′(f(zk + ρsk)),M(zk)sk)Z∗,Z∗

∣∣∣

+
∣∣∣(H ′(f(zk + ρsk)),M(zk)sk)Z∗,Z∗ − (H ′(f(zk + ρsk)),M(zk + ρsk)sk)Z∗,Z∗

∣∣∣
≤ ‖H ′(f(zk))−H ′(f(zk + ρsk))‖L(Z,Z∗) · ‖f(zk)‖Z∗

+ ‖H ′(f(zk + ρsk))‖L(Z,Z∗) · ‖(M(zk)−Mρ)sk‖Z∗

→ ‖f(zk)‖2Z∗ ε̃ as ρ ↓ 0.

Hence,

lim
ρ↓0

∣∣∣∣
Θ(zk + ρsk)−Θ(zk)

ρ
+ 2Θ(zk)

∣∣∣∣ = 2ε̃Θ(zk)

and since ε̃ < 1, sk is a direction of descent of Θ at zk unless Θ(zk) = 0.

Hence with f(zk) 6= 0 the Armijo line search in the following algorithm is well
defined. The descent property of sk w.r.t. Θ(zk) follows particularly from the con-
struction of the merit function Θ.

Algorithm 3.3 (Global semismooth Newton method).

(i) Choose z0 ∈ Z, β ∈ (0, 1), σ ∈ (0, 1/2) and set k = 0.
(ii) Is a stopping criterion satisfied: STOP.
(iii) Choose an arbitraryM(zk) ∈ ∂∗f(zk) and compute the search direction sk ∈ Z

by solving

M(zk) sk = −f(zk).

(iv) Calculate V (zk) = H ′(f(zk))M(zk) ∈ ∂∗Θ(zk), find the smallest ik ∈ N0 with

Θ(zk + βik sk) ≤ Θ(zk) + σ βik 〈V (zk), sk〉Z∗,Z (5)

and set αk = βik .
(v) Set zk+1 = zk + αk sk, k := k + 1, and goto (ii).

Using (4) the inequality in (5) can equivalently be written as

Θ(zk + βik sk) ≤
(
1− 2σ βik

)
Θ(zk).

Hence 〈Vk, sk〉Z∗,Z has not to be computed explicitly. Global convergence of Al-
gorithm 3.3 can be shown by adapting Theorem 4.2 in [6] that has been derived
within the frame of optimal control of ordinary differential equations.

Theorem 3.4 (Global convergence of Algorithm 3.3). Let f be semismooth. Let
z̄ ∈ Z be an accumulation point of the sequence {zk} generated by Algorithm 3.3
and let Assumption 2.3 hold.

(a) If Assumption 3.1 (a) holds and

α := lim inf
j→∞

αkj > 0,

then z̄ is a zero of f .
(b) If α = 0, if Assumption 3.1 holds and if f is locally uniformly semismooth in a

neighbourhood of z̄, then z̄ is a zero of f .
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For clarification, we would like to mention already here that the locally uniform
semismoothness and Assumption 3.1 (b), are not fulfilled by the numerical examples
in Sect. 5. However, it turns out that the pathological case (b) of the theorem, in
which the Armijo step αk tends to zero, can be ruled out by the following Theorem
3.5 under Assumption 3.1 (a) and is not met within both our examples.

Proof. We adapt the argumentation of Theorem 4.2 in [6]. Therefore let {zkj}j∈N be
a subsequence with zkj → z̄ and f(zkj ) 6= 0. Then, 〈V (zkj ), skj 〉Z∗,Z = −2 Θ(zkj ) =

−‖f(zkj )‖2Z∗ < 0. According to Lemma 3.2 (c), skj is a descent direction of Θ at
zkj and the line search is well defined. There are two cases:

(a) Assume α > 0. We have

0 ≤ Θ(zkj+1
) ≤ Θ(zkj+1) ≤ Θ(zkj ) + σ αkj 〈V (zkj ), skj 〉Z∗,Z = (1− 2σ αkj ) Θ(zkj ).

With σ ∈ (0, 1/2) and α ≤ αkj ≤ 1 it follows that 0 < 1−2σ αkj ≤ 1−2σ α < 1.
Repeated application yields

0 ≤ Θ(zkj ) ≤ (1− 2σ α)j Θ(zk0)→ 0.

By the continuity of f , z̄ is a zero of f .
(b) Assume that there is a subsequence {zk}k∈J , J ⊆ {kj : j ∈ N} with αk → 0,

k ∈ J . The sequence {sk} is bounded since {M(zk)−1} is bounded and

0 ≤ ‖sk‖Z =
∥∥M(zk)−1f(zk)

∥∥
Z
≤ CM−1 ‖f(zk)‖Z∗ ≤ CM−1 ‖f(z0)‖Z∗ .

Z is a Hilbert space and thus reflexive. According to the Eberlein-Smulian
theorem, there exists a weakly convergent subsequence {sk}, k ∈ I ⊆ J . Hence,
there exists some s̄ ∈ Z such that for every V (z̄) ∈ Z∗ we have

〈V (z̄), sk〉Z∗,Z → 〈V (z̄), s̄〉Z∗,Z as k →∞. (6)

We get

∣∣∣∣
Θ(zk+1)−Θ(zk)

αk
− 〈V (z̄), s̄〉Z∗,Z

∣∣∣∣

≤
∣∣∣∣
Θ(zk+1)−Θ(zk)

αk
− 〈V (zk+1), sk〉Z∗,Z

∣∣∣∣
+ |〈V (zk+1), sk〉Z∗,Z − 〈V (z̄), s̄〉Z∗,Z |

≤ 1

αk
|Θ(zk+1)−Θ(zk)− 〈V (zk+1), αksk〉Z∗,Z |

+ |〈V (zk+1), sk〉Z∗,Z − 〈V (z̄), sk〉Z∗,Z |
+ |〈V (z̄), sk〉Z∗,Z − 〈V (z̄), s̄〉Z∗,Z | .

The first term vanishes owing to the locally uniform semismoothness of Θ, the
last term vanishes owing to (6) as k → ∞. For the remaining term we obtain
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with M̄ , as defined in Assumption 3.1 (b), the following estimate

|〈V (zk+1), sk〉Z∗,Z − 〈V (z̄), sk〉Z∗,Z |
=
∣∣H ′(f(zk+1))(M(zk+1)sk)−H ′(f(z̄))(M̄sk)

∣∣
=
∣∣(f(zk+1),M(zk+1)sk)Z∗ −

(
f(z̄), M̄sk

)
Z∗

∣∣
≤ |(f(zk+1),M(zk+1)sk)Z∗ − (f(z̄),M(zk+1)sk)Z∗ |

+
∣∣(f(z̄),M(zk+1)sk)Z∗ −

(
f(z̄), M̄sk

)
Z∗

∣∣
≤ ‖f(zk+1)− f(z̄)‖Z∗ · ‖M(zk+1)‖L(Z,Z∗) · ‖sk‖Z∗

+ ‖f(z̄)‖Z∗ · ‖(M(zk+1)− M̄)sk‖Z∗ .

The first term vanishes owing to the continuity of f and the boundedness of
{M(zk)} and {sk}. The second term vanishes because of Assumption 3.1 (b).
In summary we have shown that

lim
k→∞,k∈I

Θ(zk+1)−Θ(zk)

αk
= 〈V (z̄), s̄〉Z∗,Z .

The line search in step (iv) of Algorithm 3.3 yields

Θ(zk + αk sk)−Θ(zk)

αk
≤ σ 〈V (zk), sk〉Z∗,Z <

Θ(zk + αk

β sk)−Θ(zk)
αk

β

.

Passing to the limit and exploiting the previous considerations yields

σ 〈V (z̄), s̄〉Z∗,Z = 〈V (z̄), s̄〉Z∗,Z .

Since σ ∈ (0, 1/2) this only holds for 〈V (z̄), s̄〉Z∗,Z = 0. Thus, we have shown

−‖f(zk)‖2Z∗ = 〈V (zk), sk〉Z∗,Z → 〈V (z̄), s̄〉Z∗,Z = 0.

By the continuity of f , z̄ is a zero of f .

Now we can prove the transition of Algorithm 3.3 to fast local convergence,
provided it converges at all. We present the proof here in details in order to show
that we do not need Assumption 3.1 (b) and the locally uniform semismoothness
in Definition 2.1 (c).

Theorem 3.5 (Transition to fast local convergence). Let Assumptions 2.3 and
3.1 (a) hold. Let {zk} be a sequence generated by Algorithm 3.3 with f(zk) 6= 0 for
all k ∈ N0. Furthermore, let z̄ be an accumulation point of {zk} and a zero of f .

If f is ∂∗f -semismooth the sequence {zk} converges superlinearly to z̄ and αk
finally becomes 1. If f is α-order ∂∗f -semismooth the rate of convergence is 1 + α.

The idea of the proof is as follows. According to the local convergence result
(Theorem 2.4), we know that the local semismooth Newton method (with αk =
1) converges superlinearly in some neighbourhood of a zero. Now, since z̄ is an
accumulation point of the sequence {zk} there is a subsequence converging to z̄,
which is assumed to be a zero. For k sufficiently large, zk is in a neighbourhood
of z̄, where we have superlinear convergence of the local method. For one step of
the local method we show that αk = 1 satisfies the Armijo condition. Hence, the
globalized method at zk will accept αk = 1 and from that point on the sequences
of the local method and the globalized method coincide.
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Proof. Let ε > 0 be arbitrary. The superlinear convergence result of the local
algorithm (Theorem 2.4) with f being semismooth implies the existence of a δ > 0
such that for all ‖zk − z̄‖Z ≤ δ we have

‖zk + sk − z̄‖Z ≤ ε ‖zk − z̄‖Z . (7)

Since f(z̄) = 0 the Lipschitz continuity of f yields

‖f(zk + sk)‖Z∗ ≤ L ‖zk + sk − z̄‖Z
with a constant L > 0. Combining this estimate with (7) we have

‖f(zk + sk)‖Z∗ ≤ Lε ‖zk − z̄‖Z . (8)

On the other hand with Assumption 2.3

‖sk‖Z = ‖M−1
k ‖L(Z∗,Z) ‖f(zk)‖Z∗ ≤ CM−1‖f(zk)‖Z∗ ,

and moreover

‖zk − z̄‖Z ≤ ‖zk − (zk + sk)‖Z + ‖zk + sk − z̄‖Z ≤ CM−1‖f(zk)‖Z∗ + ε‖zk − z̄‖Z .
This yields

‖zk − z̄‖Z ≤
CM−1

1− ε ‖f(zk)‖Z∗ . (9)

Together with (8) we have the estimate

‖f(zk + sk)‖Z∗ ≤ LεCM−1

1− ε ‖f(zk)‖Z∗ .

If we choose

ε ≤
√

1− 2σ

LCM−1 +
√

1− 2σ
< 1,

then
‖f(zk + sk)‖Z∗ ≤

√
1− 2σ ‖f(zk)‖Z∗ ,

i.e. αk = 1 is accepted. With (7) and ε < 1 we can repeat the argument and
obtain convergence of the whole sequence. If f is ∂∗f -semismooth the convergence
is superlinear according to Theorem 2.4 (a). If f is α-order ∂∗f -semismooth the
rate of convergence is 1 + α according to Th. 2.4 (b).

Thereby we have proved the transition to fast local convergence of Algorithm 3.3
requiring only Assumption 3.1 (a) on the directional Hadamard-like continuity of
the Newton matrix and a standard assumption on its uniform non-singularity.

4. Application to optimal control. In control-constrained optimal control sub-
ject to PDE constraints the reformulation of the necessary optimality conditions
leads to problems of the type of (1). For Hilbert spaces Y , W , U and the feasible
set Uad ⊂ U such an optimal control problem, in general, is given as

min
(y,u)∈Y×U

J(y, u) s.t. E(y, u) = 0, u ∈ Uad (P1)

with objective functional J : Y ×U → R and state equation E : Y ×U →W ∗. Here y
denotes the state while u is the control. Semismooth Newton methods for optimal
control problems in the general setting of (P1) are investigated in [22], for more
special cases see also [9, 12, 13, 20, 24]. Globalization strategies for semismooth
Newton methods applied to a reduced formulation of (P1) are investigated, e.g., in
[12, 13, 22]. Although Algorithm 3.3 would be applicable to this reduced problem
as well, we want to solve the full Karush-Kuhn-Tucker (KKT) system related to
(P1). In [22] this is referred to as the all-at-once approach.
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As usual the Lagrange function L : Y × U ×W → R is defined as

L(y, u, w) = J(y, u) + 〈E(y, u), w〉W∗,W . (10)

Then the KKT-system is given by

Lemma 4.1 (cf. Corollary 1.3 in [11]). Let (ȳ, ū) be a solution of (P1). Further-
more, let J : Y ×U → R and E : Y ×U →W ∗ be continuously Fréchet-differentiable.
Then there exists a Lagrange multiplier w̄ ∈ W , such that the following optimality
conditions hold:

Lw(ȳ, ū, w̄) = E(ȳ, ū) = 0, (11)

Ly(ȳ, ū, w̄) = Jy(ȳ, ū) + Ey(ȳ, ū)∗w̄ = 0, (12)

ū ∈ Uad, 〈Lu(ȳ, ū, w̄), u− ū〉U∗,U

= 〈Ju(ȳ, ū) + Eu(ȳ, ū)∗w̄, u− ū〉U∗,U ≥ 0 ∀u ∈ Uad. (13)

We consider the Euclidean projection PUad
onto the set of admissible controls

and introduce the continuous function π : R×R×R→ R, ξ = (ξ1, ξ2, ξ3) 7→ π(ξ) =
ξ2−PUad

(ξ2−γLu(ξ1, ξ2, ξ3)). With the superposition operator Π : Y ×U×W → U ,
given as

Π(y, u, w)(x) := π(y(x), u(x), w(x))

= u(x)− PUad
(u(x)− γ Lu(y(x), u(x), w(x))) , γ > 0,

(14)

the variational inequality in (13) can be rewritten [22, Prop. 5.8] as

Π(y, u, w) = 0.

Thus, with z := (u, v, w) and

f(z) :=



Ly(y, u, w)
Π(y, u, w)
E(y, u)


 (15)

the solution of (P1) is equivalent to finding a z̄ := (ȳ, ū, w̄) ∈ Z := Y ×U ×W with

f(z̄) = 0.

For further analysis let Ω ⊂ Rn be an open, bounded, measurable set with measure
µ(Ω) > 0. We define the set of control functions as U := L2(Ω). For simplicity we
consider pointwise convex controls by using

Uad :=
{
u ∈ L2(Ω) : a ≤ u(x) ≤ b a.e. in Ω; a, b ∈ R

}

as the feasible set. The pointwise projection PUad
: R→ R, ξ 7→ max{a,min{ξ, b}}

is (1-order) semismooth [22, Ex. 5.23]. Note that PUad
is not locally uniformly

semismooth in any neighbourhood of a resp. b. In order to establish semismoothness
of the superposition operator Π we follow [22, Assumption 5.20] and assume the
following:

Assumption 4.2. The following conditions hold:

(a) E : Y × L2(Ω) → W ∗ and J : Y × L2(Ω) → R are twice continuously Fréchet-
differentiable.

(b) Lu has the form Lu(y, u, w) = λu+G(y, u, w) and there exist λ > 0 and p > 2,
such that

(i) G : Y × L2(Ω)×W → L2(Ω) is continuously Fréchet-differentiable.
(ii) The operator (y, u, w) ∈ Y × L2(Ω) ×W 7→ G(y, u, w) ∈ Lp(Ω) is locally

Lipschitz-continuous.
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k αk ‖f(zk)‖Z∗ ‖sk‖Z
0 − 5.43111E-02 −
1 9.76563E-04 5.43015E-02 5.00085E+00
2 3.12500E-02 5.36304E-02 1.82556E+00
3 5.00000E-01 2.91839E-02 1.55585E+00
4 6.25000E-02 2.75202E-02 3.87423E-01
...

16 0.25000E+00 1.65715E-02 2.48095E-02
17 0.50000E+00 1.38976E-02 1.28644E-02
18 1.00000E+00 1.24060E-02 6.81858E-03
19 1.00000E+00 9.44693E-03 1.63072E-03
20 1.00000E+00 5.60965E-06 4.47294E-05
21 1.00000E+00 2.27743E-15 1.57318E-11

Table 1. Iteration history for the solution of problem (P2) for
h = 1/256. Step size αk, norm ‖f(zk)‖Z∗ and norm of the search
direction ‖sk‖Z for the k-th iterate. These numerical results exhibit
the superlinear convergence.

As already mentioned in Section 2, a generalized differential of (15) is not given
naturally. Motivated by the sum and chain rule in finite dimensions in [22], the
set-valued mapping ∂Cf : Y ×L2(Ω)×W ⇒ L(Y ×L2(Ω)×W,Y ∗×L2(Ω)×W ∗)
with

∂Cf :=
{
M ∈ L(Y × L2(Ω)×W,Y ∗ × L2(Ω)×W ∗) :

M(y, u, w) =



Lyy(y, u, w) Lyu(y, u, w) Ey(y, u)∗

γDGy(y, u, w) I + γDGu(y, u, w) γDGw(y, u, w)
Ey(y, u) Eu(y, u) 0


 ,

D ∈ L∞(Ω), D(x) ∈ ∂CPUad
(−γG(y, u, w)(x)) in Ω

}
(16)

is used as a generalized differential for (15). Here the subscript “C” emphasizes the
close relation to Qi’s C-subdifferential in finite dimensions.

Theorem 4.3 (Semismoothness of f). Let Assumption 4.2 hold and choose γ in
(14) as γ = 1/λ. Then f : Y × L2(Ω) ×W → Y ∗ × L2(Ω) ×W ∗ in (15) is locally
Lipschitz continuous and ∂Cf -semismooth.

For a proof of Th. 4.3 the reader is referred to [22, Th. 5.21]. Therefore f as in
(15) meets the requirements needed for Algorithms 2.2 and 3.3. The merit function
in (3) for problem (P1) is thus given as

Θ(z) :=
1

2
‖f(z)‖2Z∗ =

1

2
‖Ly(y, u, w)‖2Y ∗ +

1

2
‖Π(y, u, w)‖2L2(Ω) +

1

2
‖E(y, u)‖2W∗ .

(17)

5. Numerical examples. In this section we start with a numerical example for
the application of Algorithm 3.3 to problems of the type of (P1).
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5.1. Semilinear elliptic PDE with control constraints. For simplicity we re-
strict ourselves at first to the following control-constrained optimal control problem
subject to a semilinear elliptic PDE that was taken from [10, Ch. 6] and is motivated
by an application in superconductivity:

Minimize J(y, u) :=
1

2

∫

Ω

(y(x)− yd(x))
2

dx+
λ

2

∫

Ω

u(x)2 dx

w. r. t. (y, u) ∈ H1
0 (Ω)× L2(Ω)

subject to E(y, u) := −∆y + y3 + y − u = 0 in Ω := (0, 1)2,

u ∈ Uad :=
{
u ∈ L2(Ω) : −4 ≤ u(x) ≤ 0 a.e. in Ω

}
.

(P2)

The desired state is yd := 1
6 sin(2πx1) sin(2πx2) exp(2x1), the Tikhonov parameter

is chosen as λ := 10−3. We convince ourselves that Assumption 4.2 is fulfilled for this
example, where Y = W = H1

0 (Ω), Y ∗ = W ∗ = H−1(Ω) and Lu(y, u, w) = λu − w
yielding that G(y, u, w) = −w has the required regularity. Hence Z∗ = H−1(Ω) ×
L2(Ω)×H−1(Ω).

It is not clear, how to check a priori whether Assumption 2.3 and Assumption
3.1 (a) hold in general in an infinite dimensional function space.

However, for both our examples the well-posedness of the linear operator M and
the optimal control problem in a function space setting can be shown by means
of the Lax-Milgram theorem (see [10, Sect. 4 & 5] and [9, Sect. 3], respectively),
exploiting a sufficient second-order condition [3] for the semilinear state equation.
Otherwise, we can see within our numerics whether Assumption 2.3 holds.

We verify Assumption 3.1 (a) for our undiscretized example, assuming that the
Tikhonov parameter λ is sufficiently large. In the matrix M we have only the
non-differentiable component γDGw(y, u, w) (see (16)), in which in our example
G(y, u, w) = −w. Thus, exploiting that Ey depends continuously on z in our
example and αk ≤ 1, we estimate

lim
ρ↓0
‖(Mρ −M(zk))sk‖Z∗

≤ γ lim
ρ↓0
‖∂CPUad

(γ(wk + ρsk,3))− ∂CPUad
(γwk)‖L(Z,Z∗)‖sk,3‖Z

≤ 1

λ
CM−1‖fk‖Z∗ ,

where we use (2) in the last estimate. In case of ‖∂CPUad
(γ(wk + ρsk,3)) −

∂CPUad
(γwk)‖L(Z,Z∗) = 0, Assumption 3.1 (a) holds immediately with ε̃ = 0. How-

ever, once the subdifferential M(zk) has been fixed at a point of non-differentiability,
∂CPUad

(γwk) ∈ (0, 1] (or ∈ [0, 1) alternatively), it may happen that Mρ can only be
chosen such that ∂CPUad

(γwk) = 0 (or = 1 otherwise) at a point of differentiability.
In the latter situation ‖∂CPUad

(γ(wk + ρsk,3))− ∂CPUad
(γwk)‖L(Z,Z∗) ∈ (0, 1] and

this does not vanish as ρ tends to zero from above. However the constant CM−1 is
uniform and for sufficiently large λ = 1/γ, we may guarantee Assumption 3.1 (a).
This estimate is also supported by numerical evidence, where we observe always
descent directions, unless we reduce λ significantly.

For the approximation of the state as well as the control, piecewise linear finite
elements are used. In this context, let Th be a triangulation of Ω for which the
usual regularity assumptions hold. Furthermore, let h := maxT∈Th

diam(T ) denote
the size of the mesh. For details we refer to [2]. Analogously for a finite element
discretization the well-posedness of the Newton step and the discretized problem
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Figure 1. Discrete solution of (P2) for h = 1/64. Left-hand side:
Optimal state yh(x1, x2) on x3 axis vs. x1 and x2. Right-hand side:
Optimal control uh(x1, x2) on x3 axis vs. x1 and x2.

can be derived for both examples [10, 9], together with a mesh independence result
for the local algorithm under the further assumption that the set where the strict
complementarity is violated has measure zero. As a starting point we use z0 = 0.
Our stopping condition is ‖f(zk)‖Z∗ ≤ 10−10. Table 1 shows the iteration history
for h = 1/256. In iterations 1 to 17 the step sizes are chosen with αk < 1 due to
the Armijo line search. As predicted by Theorem 3.5, the acceptance of αk = 1
by the Armijo line search leads to the transition of Algorithm 3.3 into Algorithm
2.2. The expected superlinear convergence is confirmed by the evolution of the
values ‖f(zk)‖Z∗ and ‖sk‖Z . We observe that α is uniformly bounded below and
corresponding to Th. 3.4 (a) and Th. 3.5 the numerical accumulation point is a
solution. Figure 1 shows the discrete solution of the optimal state yh and the
optimal control uh for h = 1/64.

5.2. Semilinear elliptic PDE with state constraints. Problem (P2) has illus-
trated the performance of our algorithm. However, problems of the type of (P2)
have been solved so far, see e.g. [10, 12, 13]. Hence we close with an example for a
semilinear elliptic PDE with state constraints [9, Ch. 6] where, to our knowledge,
previous globalization strategies cannot be applied:

Minimize J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

λ

2
‖u‖2L2(Ω)

w. r. t. (y, u) ∈ H1
0 (Ω)× L2(Ω)

subject to E(y, u) := −∆y + y3 exp(10 y) + y − u = 0 in Ω := (0, 1)2,

− 10−2 ≤ y(x) ≤ 0 a.e. in Ω.

(P3)

We would like to track the state yd := 1
2 cos(π x1) cos(π x2) exp(x1). As Tikhonov

parameter we consider λ := 10−4. We use a Lavrentiev regularization of the state-
constraint in (P3)

−10−2 ≤ ε u+ y ≤ 0,

where ε > 0 is a sufficiently small parameter, yielding a mixed control-state con-
straint.

Note that we consider the same objective functional as in (P2), but in addition
to the regularized state constraints, we allow for a term y3 exp(10y) instead of y3
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k α ‖f(zk)‖Z∗ ‖sk‖Z∗

0 − 7.59736E+05 −
1 1.00000E+00 1.14024E+05 1.93458E+03
2 1.00000E+00 3.61620E+04 7.83427E+02
3 1.00000E+00 1.59280E+04 1.62132E+03
...
9 2.50000E-01 3.03640E-02 1.48894E-01
10 1.00000E+00 9.69843E-03 3.23249E-02
11 1.00000E+00 2.42234E-05 9.90030E-06
12 1.00000E+00 3.15754E-06 2.56947E-07
13 1.00000E+00 1.14583E-07 1.59876E-09
14 1.00000E+00 1.70426E-13 5.17916e-13

Table 2. Iteration history for the solution of problem (P3) for
h = 1/128. Step size αk, norm ‖f(zk)‖Z∗ and norm of the search
direction ‖sk‖Z for the k-th iterate. We observe transition to local
superlinear convergence.
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Figure 2. Discrete solution of (P3) for h = 1/32. Left-hand side:
Optimal state yh(x1, x2) on x3 axis vs. x1 and x2. Right-hand side:
Optimal control uh(x1, x2) on x3 axis vs. x1 and x2.

in the PDE. However, the mixed control-state constraint yields a slightly different
setting as in Sect. 4. Concerning the validation of Assumption 2.3 and Assumption
3.1 (a) see the discussion for the first example. However, with respect to Assumption
3.1 (a) we have to keep in mind that the Lavrentiev regularization parameter ε and
the Tikhonov parameter λ should not be chosen independently.

Again, we work with the stopping condition ‖f(zk)‖Z∗ ≤ 10−10. For numerical
results for ε = 10−3 as Lavrentiev regularization parameter, see Table 2 and Fig. 2.
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Chapter 3

Optimal Control of Coupled

Ordinary and Partial Differential

Equations

In this chapter we bring together the results known separately for ordinary and partial differential

equations, respectively. Of course, we cannot expect better results for optimal control of coupled

ODE and PDE than for optimal control of ODE and for optimal control of PDE alone.

This new contribution provides the fundament for the numerical solution of real-world prob-

lems in the next chapter. We consider the approach to treat ODEs like PDEs in a Hilbert space

setting versus to treat PDEs as ODEs in function spaces. Though under reasonable assump-

tions both approaches coincide, it turns out in applications (see Chapter 4) to prefer the strategy

“treat ODE as PDE” for conceptual and numerical reasons.

3.1 Modelling of Coupling and Averaging-Evaluation Operators

In a fully coupled problem a PDE solution y1(t, x) (in time and space) may enter directly

into the ODE (in time), but y1 depends on x and thus the ODE has x as a parameter. In

many contexts this makes no sense from a modelling point of view, see, e.g., the elastic crane-

trolley-load example in Section 4.3 or the quarter car model in Section 4.4. Furthermore from

a technical point of view, we are not interested in a family of ODEs that have the spatial point

x as parameter here. Thus we consider here the case that some spatial average over the PDE

solution y1 or some point evaluation of y1 enters the ODE for y2.

As before we consider the time interval I = (0, tf ) with tf > 0 and for the spatial coordinate

Ω ⊂ Rd, d ∈ N, open, bounded.

Definition 3.1 (Averaging-Evaluation Operator)

Let Y1 be a Banach space and y1 ∈ Y1 such that y1 : Ωtf = I × Ω → Rny1 . We call a linear

operator E : Y1 → L(I,Rny1 ) with y1(t, x) 7→ (Ey1)(t), a (spatial) averaging-evaluation operator.
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Example 3.2 (Averaging Operator)

Consider a subset A ⊂ Ω or A ⊂ ∂Ω with a corresponding measure dA on A. We denote

|A| :=
∫
A 1 dA(x) and assume |A| > 0. Let Y1 = Lp(Ωtf ) ∩ L∞(I, Lp(A)) with 1 ≤ p ≤ ∞. The

operator

(Ey1)(t) := −
∫

A
y1(t, x) dA(x) :=

1

|A|

∫

A
y1(t, x) dA(x) (3.1)

averages y1 over x on A. For instance, if Ω ⊂ R3 and A ⊂ ∂Ω, then dA is a surface measure.

Averaging operators appear in our model for the elastic crane-trolley-load problem and in the

quarter car model that may be rewritten such that an averaging operator over a boundary part

is used, see Eq. (4.10).

Note that this operator is different to the so-called Steklov averaging technique [OR79, §8, 2.],

since we do not consider an operator averaging locally around every space point.

Typically, an averaging operator has a smoothing property. It can be approximated by a con-

volution with a mollifier, see [OR11, Sect. 2.10], yielding an infinitely smooth approximation.

Example 3.3 (Evaluation Operator)

Let Y1 ↪→ Lp(I, C0(Ωtf )), 1 ≤ p ≤ ∞. Another operator in the sense of Def. 3.1 is obtained by

a linear combination of evaluations of y1 at certain points a, b ∈ Ω, e.g.

(Ey1)(t) := y1(t, b)− y1(t, a). (3.2)

This operator may also be interpreted as a generalized version of a trace operator, see Th. A.21.

This operator appears naturally in the truck-container example, see Section 4.2, where a = 0

and b = L are boundary points and we evaluate at boundary values. In the quarter car model an

evaluation operator is introduced by Eq. (4.9) as the restriction to a boundary part.

First of all we ask the question what is known on the analytic well-posedness of coupled ODE-

PDE systems.

3.2 Analytic Results for Coupled Ordinary and Partial Differ-

ential Equations

We start with a quite general strategy for local existence and uniqueness of fully coupled systems

due to the Banach fixed point theorem (Th. A.3). It has been applied to coupled systems: in

[Ki09, Ki11] to a parabolic, an elliptic and a free boundary evolution equation, in [KG16] to

a parabolic system and an ODE system, and in [KGH18a] to an elliptic system and an ODE

system. In [Ki09, Ki11] the local result is extended to global well-posedness using uniform

bounds that can be derived for this specific problem. Here we focus on the case of a parabolic

PDE.

Theorem 3.4 (A Local Existence and Uniqueness Result for Coupled ODE-PDE Systems)

Let Y = Y1 × Y2 be the state space, Yi a separable (real) Hilbert space, and ui ∈ Ui, Ui a (real)
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Hilbert space, i = 1, 2. We assume the PDE to be parabolic of second order and a Gelfand triple

structure V
cd
↪→ H

cd
↪→ V ∗ (see Def. A.17) with V = Y1 and H a separable Hilbert space. The

control space is U = U1 × U2. We consider an operator E1 : Y × U1 →W1 for a parabolic PDE

, living on Ωtf = (0, tf ) × Ω, Ω ⊂ Rd open, bounded, and E2 : Y × U2 → W2 for a first-order

ODE with a time evolution on (0, tf ) (where tf > 0), i.e.

E1(y, u1) = ẏ1 − F1(y, u1) = 0W1 , (3.3)

E2(y, u2) = ẏ2 − F2(y, u2) = 0W2 , (3.4)

where ẏi ∈ Wi, i = 1, 2, for the time derivative of the states and Fi, i = 1, 2, is an operator

Fi : Y × U2 → W2. We suppose this is complemented with initial and boundary data that fulfil

sufficient regularity assumptions that are encoded in the operators E1, E2 and in the state space.

We make the strong assumption (∗) that (i) the PDE for itself is well-defined for given ODE

state y2 ∈ Ỹ2 and for every u1 ∈ U1 and (ii) the ODE for itself is well-defined for given PDE

state y1 ∈ Ỹ1 and for every u2 ∈ U2. Here Ỹ = Ỹ1 × Ỹ2 with Ỹi ⊂ Yi, i = 1, 2, are suitable

subspaces, typically we find Ỹ1 = Y1 ∩ L∞(Ωtf ) and Ỹ2 = Y2 ∩ L∞(I). Assume (3.3) and (3.4)

yield the estimates

‖y1‖Ỹ1
≤ c1

(
‖y1;0‖H1 + tκf‖y2‖Ỹ2

+ ‖u1‖U1

)
, (3.5)

‖y2‖Ỹ2
≤ c2

(
‖y2;0‖H,2 + ‖y1‖Ỹ1

+ ‖u2‖U2

)
, (3.6)

with κ > 0 and some constants ci, i = 1, 2, independent of tf . Note that the last two assumptions

are related to the semilinearity of F1 and F2, i.e. ẏ does not enter into F1 and neither ẏ nor y′′1,x
does enter into F2.

Moreover, for two states y
(k)
i , i, k = 1, 2 with given different right-hand side states ỹ

(k)
i but

identical yi;0 and ui we assume that the equations (3.3) and (3.4) yield the following estimates

of Lipschitz-type

‖y(1)
1 − y

(2)
1 ‖Ỹ1

≤ cL1 tκf‖y
(1)
2 − y

(2)
2 ‖Ỹ2

, (3.7)

‖y(1)
2 − y

(2)
2 ‖Ỹ2

≤ cL2 ‖y(1)
1 − y

(2)
1 ‖Ỹ1

(3.8)

with some constants cLi , i = 1, 2, independent of tf .

If u1 ∈ U1 (typically a control) and initial values y1;0 ∈ H and y2;0 ∈ Rn are given, then for

sufficiently small terminal times tf > 0 there exists a unique solution of the coupled system (3.3)

& (3.4) in the space Ỹ .

Note that the strong assumption (∗) on the well-posedness of the ODE and PDE, resp., and

the validity of (3.5) – (3.8) has to be checked for every problem. Thus this theorem is of

limited practical use, but it exhibits the general coupling structure that is exploited in several

applications within this study. At the end of this section we discuss examples, where this strategy

has been applied.

We remark that in our notation y1;0 denotes the prescribed initial value for the PDE state

y1 at time t = 0, whereas y1,1 would be the first component of a vector-valued PDE state.
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Derivatives are denoted like y′1;t, being the partial time derivative of y1.

Proof. The assumptions and the estimates (3.5) & (3.6) say that the PDE has a solution

in Ỹ1 for given suitable data of the ODE as well as the ODE has a solution in Ỹ2 for given suit-

able data of the PDE. Thus both uncoupled solution operators Ě−1
1 : Ỹ2×U → Ỹ1, [y2, u1] 7→ y1

and Ě−1
2 : Ỹ1 ×U2 → Ỹ2, [y1, u2] 7→ y2 are well-defined but only since we have replaced Yi by Ỹi,

i = 1, 2.

Indeed, by plugging in the solution of the second differential equation into the first (or vice

versa) successively, starting, e.g., with the initial data y
(0)
i = yi;0, i = 1, 2, this defines the fixed

point iteration1

M :=

[
y

(k)
1

y
(k)
2

]
→
[
y

(k+1)
1

y
(k+1)
2

]
=

[
Ě−1

1 (Ě−1
2 (y

(k)
1 , u2), u1)

Ě−1
2 (y

(k)
1 , u2)

]
, k ∈ N. (3.9)

In order to apply the Banach fixed point theorem we have to show that the mapping

M : Ỹ → Ỹ ,

is actually a self-mapping on Ỹ and that this mapping is strictly contractive.

We consider the differences y
(k+1)
∆ := y

(k+1)
1 − y(k)

1 , k ∈ N, that solve the coupled equations

with zero initial and boundary data. Applying (3.7) and (3.8) to the iteration defined by (3.9),

we find the estimate

‖y(k+1)
∆ ‖Ỹ1

≤ cL1 cL2 tκf‖y
(k)
∆ ‖Ỹ1

. (3.10)

W.l.o.g. cL1 c
L
2 6= 0, otherwise there is nothing to prove. Together with the corresponding estimate

for y
(k+1)
2 − y(k)

2 that is obtained analogously, choosing tf < 1/(cL1 c
L
2 )1/κ gives the desired strict

contraction.

When considering only a solution y
(k)
1 instead of differences y

(k)
∆ of the solution in iteration k,

from (3.5) and (3.6) follows

‖y(k+1)
1 ‖Ỹ1

≤ c1c2t
κ
f‖y

(k)
1 ‖Ỹ1

,

that proves together with the analogous estimate for y2 the self-mapping. The Banach fixed

point theorem yields not only the existence of a fixed point, due to the construction of the fixed

point iteration M the uniqueness follows directly. For further details on the technique of proof

see [Ni99] or [Ki09]. �

This theorem may be adapted to elliptic PDE or coupled elliptic and parabolic PDE. Note

that the derivation of the presupposed estimates can be quite tricky for certain problems, see,

for instance, [KG16, Sect. 3] for the truck-container problem or [KGH18a, Subsect. 3.3] for the

elliptic elastic crane-trolley-load problem. Typically, we may use the following crucial estimate

for a first-order ODE of the type ẏ2 = F2(y, u2) on the time interval (0, tf ) in order to obtain the

factor tκf in the second estimate. Let Y2 = W 1,p(0, tf ), 1 < p < ∞, thus due to the embedding

1Note that this is similar to the classical Picard iteration known for ODE in integral form.
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in 1D the typical candidate for the space Ỹ2 = Y2 ∩ L∞(0, tf ) allows for the choice Ỹ2 = Y2.

Moreover, by the Hölder inequality

|y2(t)− y2;0| =
∣∣∣∣
∫ t

0
ẏ2 dt

∣∣∣∣ ≤ tκ ‖ẏ2‖Lp′ (0,tf ) ≤ tκf ‖ẏ2‖Lp′ (0,tf ), (3.11)

for any κ = 1/p < 1, where p′ = p/(p − 1) = 1/(1 − κ) is the dual exponent to p. We set

p = 2 yielding Y2 = H1(0, tf ). The question remains to ensure ‖y1‖Y1 ≤ c1(‖y1;0‖H + ‖y2 −
y2;0‖L2(0,tf ) + ‖u1‖U1) for (3.3), then we exploit (3.11) on the right-hand side.

In addition, typically in this situation we expect to find

‖ẏ2‖L2(0,tf ) = ‖F2(y, u2)‖L2(0,tf ) ≤ c2

(
‖y1‖Y1 + ‖y2‖L2(0,tf ) + ‖u2‖U2

)

for the ODE, then the term with y2 on the right-hand side may be estimated by (3.11) and

absorbed due to the smallness of tf and (3.6) follows.

Another tool for deriving estimates of the type (3.5) – (3.8) for evolution equations is the

Gronwall inequality (Lemma A.11).

Though tf might be arbitrarily small, in many specific problems we may either demonstrate

global bounds on the states or choose suitable controls in Uad such that no blow up may happen

in finite time. Then we can extend the time interval successively again and again and obtain

global existence and uniqueness of the states up to a prescribed terminal time tf . However, this

cannot be always the case, since for certain ODEs, e.g., a blow up in finite time is generic and

bounds on the control might prevent us from avoiding the blow up.

In case of certain averaging-evaluation operators, e.g. as in [KGH18a], another “internal” fixed

point iteration over the averaging procedure (see, e.g., [KGH18a, Th. 3.2]) might be in order

before applying our “external” fixed point iteration (3.9). Here E1 is an elliptic PDE where time

enters as a parameter.

Furthermore, our fixed point strategy is applied for an existence and uniqueness result, [KG16,

Th. 3.2], for the coupled ODE-PDE problem arising in the truck-container problem (see Sect. 4.2

for a reprint of [KG16]). Using the notation of this work, in this example we have the state

spaces

Y = W (I;L2, H1)×W (I;L2, H1
0 )× [H2(0, 1)]2 × [H1(0, 1)]2

and

Ỹ = [W (I;L2, H1) ∩ L∞(0, 1;H1(0, L))]

× [W (I;L2, H1
0 ) ∩ L∞(0, 1;H1

0 (0, L))]× [H2(0, 1)]2 × [H1(0, 1)]2,

the control spaces U = U1 = L2(0, 1) and Uad ⊂ U , the latter containing standard box con-

straints for the control. The Gelfand triple reads V ∗, H, V with V = Y1 and H = L2(0, L).

Note that I = (0, tf ) and Ω = (0, L). The operators Ei, i = 1, 2, correspond to the Saint-Venant

equations [KG16, (2.3) – (2.8)] that are parabolic and the Newton dynamics [KG16, (2.9) –
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(2.11)]. For instance, the estimates [KG16, (3.3) & (3.4)] are the crucial estimate corresponding

to (3.10) for the ODE.

Another example (not included in this work) for demonstrating existence and uniqueness by

our fixed-point strategy can be found in [Ki09, Th. 4.7], where a parabolic PDE, an elliptic PDE

and a single ODE for the time evolution of R are fully coupled. In this GaAs droplet problem

the crucial estimate follows from the so-called Stefan condition for a free radius R. In this case

the existence and uniqueness may be extended globally in time [Ki09, Th. 4.8], since uniform

bounds in tf are available.

3.3 Combined Results for Optimal Control of Coupled ODE-

PDE Systems

We combine the abstract approaches presented in Sections 2.6 and 2.7 and adapt this for cou-

pled ODE-PDE systems. It turns out that it makes sense to treat ODEs as PDEs, yielding a

(possibly fully) coupled PDE system, but with some peculiarities. On the other hand PDEs

might be treated as ODEs in suitable function spaces, see Subsection 3.3.3. In this chapter we

denote by y = [y1, y2] PDE states y1 and ODE states y2(= q) together. The main idea is to

consider ODEs, subject to initial value problems, in spaces similar to the typical spaces, used for

PDE-constrained optimization with parabolic PDE or elliptic PDE of first-order. However, we

annotate that it is not straightforward, how to consider DAE as PDE (and vice versa) in general.

It might be an option to establish a relation between an algebraic equation and a degenerated

elliptic PDE of second-order.2

3.3.1 Treat ODEs as PDEs

Typically, we think of Y = Y1 × Y2 being a Hilbert space (separable) and Ỹ = Y ∩ L∞ and

consider controls U1 = L2 in space and/or time and U2 = L2 in time only, and Uad = Uad,1×Uad,2
representing box constraints (Uad,i, i = 1, 2 defined analogously as in (2.42)). In particular, Ỹ

is densely embedded in Y . Our problem reads

Problem 3.5 (Constrained Optimal Control Problem for Coupled ODE-PDE Systems)

Solve

min
[y,u]∈Y×U

J (y, u)

subject to E1(y, u1) = 0W1 ,

E2(y, u2) = 0W2 ,

u ∈ Uad ⊂ U = U1 × U2. (3.12)

2Note that for the (Navier-)Stokes system the incompressibility equation (i.e. the PDE for the pressure) may

be interpreted as an algebraic equation as well.

90



with E1 : Ỹ ×U1 →W1 and E2 : Ỹ ×U2 →W2. Let Y , U , W = W1×W2 be Hilbert spaces and the

Banach spaces Ỹi are densely embedded in Yi, i = 1, 2. Uad is a closed convex subset of U . The

objective J : Y ×U → R, is assumed to be F-differentiable in a neighbourhood (w.r.t. the Y ×U
topology) of [ŷ, û]. This Fréchet derivative J ′ is assumed to be locally Lipschitz continuous.

The system of differential equations is denoted by the abstract operator equations

E(y, u) =

[
E1(y, u1)

E2(y, u2)

]
= 0W , (3.13)

for E : Ỹ × U → W , where E1 represents a PDE and E2 represents an ODE that may be fully

coupled. Note that E and Ei, i = 1, 2, are considered on Ỹ and not on Y . E is assumed to be

F-differentiable at [ŷ, û], in particular E′y(ŷ, û) ∈ L(Ỹ ,W ). Note that E′y might be extended to a

densely defined operator G̃ = [G̃1, G̃2]> with domain in Y = Y1 × Y2.

Note that F-differentiability is quite restrictive for differential equations. For optimization with

PDE usually semilinear equations are considered, whereas for optimization with ODE nonlinear

equations are common. For fully nonlinear ODE F-differentiability in spaces like L2 or H1 can-

not be guaranteed in general. Concerning objectives, we have that linear-quadratic functionals

in Hilbert spaces are F-differentiable.

Again, we assume that Assumption 2.71 holds. Please note that we do not require that

E′(ŷ, û) : Ỹ × U →W is surjective.

Without considering a specific structure of the ODE-PDE system, we can state for the coupled

optimal control problem only the same result as for a general PDE. Only here we follow the

approach from Ito and Kunisch [IK08], see Th. 2.73. Again, under these assumptions we may

prove the existence of a Lagrange multiplier3 w.r.t. the equality constraints:

Theorem 3.6 (First-Order Necessary Optimality Conditions for Coupled ODE-PDE Systems)

Let [ŷ, û] be a local minimizer of Problem 3.5 and let the assumptions there and Assumption

2.71 hold, then there exists a Lagrange multiplier λ ∈W ∗1 ×W ∗2 that fulfils

E1(ŷ, û1) = 0W1 ,

E2(ŷ, û2) = 0W2 ,

G̃∗1λ1 + J ′y1
(ŷ, û) = 0Y ∗1 ,

G̃∗2λ2 + J ′y2
(ŷ, û) = 0Y ∗2 ,〈

E′u1
(ŷ, û1)∗λ1 + J ′u1

(ŷ, û1), u1 − û1

〉
U∗1 ,U1

≥ 0 ∀u1 ∈ Uad,1,
〈
E′u2

(ŷ, û2)∗λ2 + J ′u2
(ŷ, û2), u2 − û2

〉
U∗2 ,U2

≥ 0 ∀u2 ∈ Uad,2.

The proof follows directly from Theorem 2.73, if the solution space of the coupled system can

be considered as a product in the framework Ỹi ( Yi, i = 1, 2, with dense embeddings, whereas

3Note that in general the space W ∗ might be a space of measure or even without this structure. Then equations

involving multipliers cannot be exploited sensibly.
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Yi are Hilbert spaces.

We check the applicability of Assumption 2.71 a) – d) for one of our examples. We consider here

the truck-container example [GK15, KG16]. For this problem the latter theorem, Th. 3.6, may

be applied, though the proof in our paper [KG16] is slightly different. Indeed, here we work in

contrary to Section 4.2 for the time interval I = (0, 1) and the space interval Ω = (0, L) with

Y1 = W (I;L2, H1)×W (I;L2, H1
0 )×H1(Ω)×H1

0 (Ω),

Y2 = [H2(I)]2 × [H1(I)]2 × R4,

Ỹ = Y1 ∩ [L∞(I;H1(Ω))× L∞(I;H1
0 (Ω))× L∞(Ω)× L∞(Ω)]× Y2,

U = L2(I), and Uad represents box constraints for the control (see (2.42)). Note that in 1D

we have the embedding H1 ↪→ L∞. In particular, Ỹ1 = Y1 ∩ [[L∞(Ωtf )2] × [L∞(Ω)]2 is densely

embedded in Y1, being a separable Hilbert space, and thus Ỹ
d
↪→ Y .

We have to check that the adjoint solution is in the domain D(G̃∗) and that E is F-differen-

tiable with locally Lipschitz derivative (implying c) ⇒ d) in Assumpt. 2.71). In addition we

need for the solvability of the state equations, that the solution depends C0,1/2-continuous on

u for sufficiently small perturbations τu (part c) of Assumpt. 2.71). Indeed, the adjoint system

is linear and exhibits at least the same regularity as the nonlinear system for the states and

E is F-differentiable w.r.t. [y, u] with Lipschitz continuous derivative. Furthermore, the state

equation has at least one solution and this solution depends Lipschitz continuously on u.

3.3.2 Optimal Control of Coupled ODE (Treated as PDE) and Parabolic

PDE

We annotate that for the following problem we use known results for the more general situation

of optimal control of reaction-diffusion systems [Ry16, CRT18], where Neumann b.c. (in space)

for the PDEs are considered and distributed controls of the PDEs or controls of the r.h.s. of the

ODEs, resp., are considered. In the case of Dirichlet boundary conditions (for the PDE) they

could be incorporated into function spaces in principle.

Problem 3.7 (Optimal Distributed Control of Coupled ODE (Treated as PDE) and Parabolic

PDE)

For the notation concerning the geometry and the parabolic PDE we refer to Example 2.69 .

We consider PDE states y1 : Ωtf → Rny1 , ODE states y2 : I → Rny2 , the distributed control

u1 : Ωtf → Ru1 for the PDE, and the control u2 : I → Rnu2 for the right-hand side of the ODE

that might be interpreted formally as a distributed control as well. We set ny = ny1 + ny2 and

nu = nu1 + nu2.

For the operators in the PDE let A1 ∈ L∞(Ωtf ,Rny1×ny1 ), B1 ∈ L∞(Ωtf ,Rny1×nu1 ), let C1 :

Ωtf × Rny → Rny1 have Carathéodory component functions and for the initial data y1;0 : Ω →
Rny1 . For the ODE let A2 ∈ L∞(I,Rny2×ny2 ), B2 ∈ L∞(I,Rny2×nu2 ), let C2 : I × Rny → Rny2
have Carathéodory component functions, y2;0 ∈ Rny2 , and E is an averaging-evaluation operator
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as introduced in Def. 3.1.

We wish to find [y, u] ∈ Y × U such that

J (y, u) = Φ(y(0), y(tf )) +

∫ tf

0

∫

Ω
φ1(t, x, y, u1) dx dt+

∫ tf

0
φ2(t, Ey1, y2, u2) dt,

where Φ : R2ny → R, φ1 : Ωtf × Rny × Rnu1 → R, and φ2 : I × Rny × Rnu2 → R, is minimized

w.r.t. y ∈ Y , u ∈ Uad := Uad,1 × Uad,2 ⊂ U = U1 × U2 with

Uad,1 := {u1 ∈ U1 |u1,min ≤ u1(t, x) ≤ u1,max, a.e. in Ωtf },
Uad,2 := {u2 ∈ U2 |u2,min ≤ u2(t) ≤ u2,max, a.e. in I},

subject to the constraints

y′1;t − k∆xy1 +A1(t, x)y1 = B1(t, x)u1 + C1(t, x, y) in Ωtf ,

∂νy1 = 0 on Σtf ,

y1(0, ·) = y1;0 on Ω,

y′2;t +A2(t)y2 = B2(t)u2 + C2(t, Ey1, y2) in I,

y2(0) = y2;0.

We introduce operators E1 : Y1 × U1 →W1 × L2(Ω) and E2 : Y2 × U2 →W2 × Rny2 by

E1 : y × u1 7→
[
k(∇w,∇y1)H + 〈w, y′1;t +A1(t, x)y1 −B1(t, x)u1 − C1(t, x, y)〉W ∗1 ,W1

y1(0, ·)− y1;0

]
, (3.14)

E2 : y × u2 7→
[
y′2;t +A2(t)y2 −B2(t)u2 − C2(t, Ey1, y2)

y2(0)− y2;0

]
, (3.15)

where the PDE holds in weak formulation for all w ∈ W ∗1 and the ODE holds for almost all

t ∈ I.

Here we consider W1 := W (I)∗ where W (I) := W (I;H,V ) = {y1 ∈ [L2(I;H1(Ω))]ny1 | y′1;t ∈
[L2(I;H1(Ω)∗)]ny1} with the Hilbert spaces H := [L2(Ω)]ny1 and V = [H1(Ω)]ny1 , and W2 :=

Rny2 . We set Y = W (I)× [H1(I)]ny2 . A suitable state space is Ỹ = [W (I)∩ [L∞(Ωtf )]ny1 ]×Y2.

This is a Banach space endowed with the norm

‖y‖Ỹ :=



ny1∑

j=1

(
‖y1,j‖2L2(I;H1(Ω)) + ‖y′1,j;t‖2L2(I;H1(Ω)∗)

)
+

ny2∑

j=1

‖y2;j‖2H1(I)




1/2

+ max
j=1,...,ny1

‖y1;j‖L∞(Ωtf ).

Note that H1(I) ↪→ L∞(I) since the time interval I is 1D.

A standard example of this type of problem is the FitzHugh-Nagumo system for modelling

neurons.
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Example 3.8 (FitzHugh-Nagumo System)

Let ny1 = ny2 = 1 = nu1, nu2 = 0, k = 1, A1 = 0, A2 = γ0, and B1 = 1. Let R be

a cubic polynomial with derivative bounded from below. As coupling matrices consider here

C1(t, x, y1, y2) = −R(y1)−γ1y2 and C2(t, x, y1, y2) = γ2y1−γ3 with real numbers γi, i = 1, . . . , 3.

Under these assumptions, Problem 3.7 is the dedimensionalized form of the FitzHugh-Nagumo

system. It serves as a model to describe the activation of neurons. Note that no spatial average

over y1 enters in C2, yielding another ODE for every space point x. Thus, in this example, the

ODE is actually a degenerated PDE.

This example exhibits a variety of solutions, including impulses in 1D, turning spirals in 2D,

and scroll rings in 3D. For further analytic and optimal control results for this example see

[CRT18] and the references therein.

Assumption 3.9 (Assumptions for Existence and Uniqueness of States in Coupled ODE and

Parabolic PDE)

Let Ω ∈ Rd, d = 1, 2, 3, be a bounded domain with Lipschitz boundary4 and let I = (0, tf ) with

tf > 0 fixed. Again, the parabolic cylinder is denoted by Ωtf = (0, tf )× Ω.

For the operators introduced in Pb. 3.7 there holds C1(·, 0, 0) ∈ [Lp̌1(I;Lq̌1(Ω))]ny1 with p̌1, q̌1 ∈
[2,∞], 1/p̌1 + d/(2q̌1) < 1 and C2(·, E0, 0) ∈ [Lp̌2(I)]ny2 with p̌2 ∈ [2,∞]. For both operators Ci,

i = 1, 2, we require that they are of class C1 w.r.t. y and for the averaging-evaluation operator

to be of class C1 w.r.t. y1.

We assume that for fixed yj, j = 1, 2, there exist constants CNi and for all Mi > 0 constants

CMi, i = 1, 2, 3, such that

C ′1;yj (t, x, y) ≤ CN1 for a.a. [t, x] ∈ Ωtf ,

∀M1 > 0 : |C ′1;yj (t, x, y)| ≤ CM1 for a.a. [t, x] ∈ Ωtf , ∀|yj | ≤M1,

C ′2;yj (t, Ey1, y2) ≤ CN2 for a.a. t ∈ I,
∀M2 > 0 : |C ′2;yj (t, Ey1, y2)| ≤ CM2 for a.a. t ∈ I, ∀|yj | ≤M2,

E ′y1
(y1) ≤ CN3 for a.a. t ∈ I,

∀M3 > 0 : |E ′y1
(y1)| ≤ CM3 for a.a. t ∈ I, ∀|y1| ≤M3.

Note that the latter two assumptions on E are fulfilled for any averaging operator (Ey1)(t) =

−
∫
A y1(t, x)dA(x), if A has positive measure, and for any evaluation operator Ey1 = y1|x=a, if the

function value at a is bounded.

The growth conditions of the latter assumption may be weakened, a polynomial growth in y

and certain monotonicity conditions are actually sufficient, see [CRT18, Remark 2.1].

Instead of using the theory developed above for Problem 3.7, we work here with tailored re-

sults for the optimal control of reaction-diffusion systems [Ry16, CRT18].

4For d = 1 see the footnote in Ex. 2.68 a).
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Theorem 3.10 (Existence and Uniqueness for Coupled ODE and Parabolic PDE)

Under Assumption 3.9 and if y0 ∈ [L∞(Ω)]ny1 ×Rny2 , Problem 3.7 has a unique solution y ∈ Ỹ
for every u ∈ U := [Lp̃1(I;Lq̃1(Ω))]nu1×[Lp̃2(I)]nu2 , where p̃1, q̃1 ∈ [2,∞] with 1/p̃1+d/(2q̃1) < 1

and p̃2 ∈ [2,∞].

There holds the estimate

‖y‖Ỹ ≤ c
(
‖y1;0‖[L∞(Ω)]ny1 + ‖y2;0‖+ ‖u‖U + ‖C1(·, 0, 0)‖[Lp̌1 (I;Lq̌1 (Ω))]ny1 + ‖C2(·, E0, 0)‖[Lp̌2 (I)]ny2

)

with an constant c being independent from u.

If, in addition y1;0 ∈ [C0(Ω)]ny1 , then we have y ∈ [C0(Ωtf )]ny1 × [C0(I)]ny2 .

Proof. The proof given in [CRT18, Th. 2.1] relies on the Schauder fixed point theorem. It is

translated to our special case, where Ey1 enters into C2. �

Note that our general results from Sect. 3.2 guarantee only existence and uniqueness local

in time and thus the existence of optimal controls, following Subsect. 3.3.1, hold only for suf-

ficiently short time intervals. However, a proof relying on the Banach fixed point theorem is

constructive, whereas the Schauder fixed point theorem used in [CRT18] is not.

In the last theorem we have considered the elliptic operator A1 := −k∆x + A1. However,

the proof may be extended to general elliptic operators A1 with essentially bounded coefficients.

Moreover, this result allows to define a control-to-state operator, that turns out to be differ-

entiable under certain conditions. For details see [CRT18, Th. 2.2].

Assumption 3.11 (Assumptions on the Objective for Optimal Distributed Control of Coupled

ODE (Treated as PDE) and Parabolic PDE)

We assume a linear-quadratic objective

J (y, u) =
1

2

∫

Ω
|RH,1;fy1(tf , x)− yref,1;f (x)|2 dx+

1

2
|RH,2;fy2(tf )− yref,2;f |2

+
1

2

∫

Ωtf

|RH,1y1(t, x)− yref,1(t, x)|2 dx dt+
1

2

∫

I
|RH,2y2(t)− yref,2(t)|2 dt

+
α1

2

∫

Ωtf

|u1(t, x)|2 dx dt+
α2

2

∫

I
|u2(t)|2 dt.

Let αi ≥ 0, i = 1, 2, and consider RH,1;f ∈ L∞(Ω;Rny1×ñyi ), RH,1 ∈ L∞(Ωtf ;Rny1×ñyi ),
RH,2;f ∈ Rny2×ñy2 , and RH,2 ∈ L∞(I;Rny2×ñy2 ). Furthermore, let yref,1;f ∈ L2(Ω;Rñy1 ),

yref,1 ∈ L2(Ωtf ;Rñy1 ), and yref,2;f ∈ Rñy2 , yref,2 ∈ L2(I;Rñy2 ).

We consider box constraints for the control as in Problem 3.7 with −∞ < ui,min < ui,max <∞,

i = 1, 2, the latter ensuring that Uad is bounded and non-empty, if U 6= ∅.

Under the latter assumption the reduced objective is continuously F-differentiable w.r.t. the

control.
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We have according to Def. 2.12 as Lagrange function

L(y, u, λ) = J (y, u) + 〈λ1, E1(y, u1)〉W ∗1 ,W1 + 〈λ1b, y1(0, ·)− y1;0〉W ∗1b,W1b

+ 〈λ2, E2(y, u2)〉W ∗2 ,W2 + λ>2b(y2(0)− y2;0),

where W = W (I)∗ × [L2(Ω)]ny1 × [H1(I)∗]ny2 × Rny2 . Correspondingly, e.g. W1 = W (I)∗,

W1b = [L2(Ω)]ny1 , W2 = [H1(I)∗]ny2 , and W2b = Rny2 are the factors of the product space

W . It turns out, see also Remark 2.82, that the multipliers λ1b and λ2b are proportional to

λ1 and λ2, resp., and thus may be ignored in the following. For the adjoint corresponding

to the Neumann boundary condition we make an analogous observation. Hence we work with

W = W (I)∗ × [H1(I)∗]ny2 .

Theorem 3.12 (First-Order Necessary Optimality Conditions for Optimal Distributed Control

with Coupled ODE (Treated as PDE) and Parabolic PDE)

Assume [ŷ, û] is a minimizer of the optimal control problem, Problem 3.7, whereby we recall

Y = W (I)× [H1(I)]ny2 and W = Y ∗. Under Assumption 3.9 (in particular Ω ⊂ Rd, d = 1, 2, 3)

and under Assumption 3.11 with5 p̃1 = p̃2 = p̂1 = p̂2, there exist adjoints [λ1, λ2] ∈ W ∗1 ×W ∗2 ,

s.t. the first-order optimality conditions, i.e. the state equations

ŷ′1;t − k∆xŷ1 +A1(t, x)ŷ1 −B1(t, x)û1 − C1(t, x, ŷ) = 0W1 in Ωtf ,

∂ν ŷ1 = 0[L2(Σtf )]ny1 on Σtf ,

ŷ1(0, ·) = y1;0 a.e. on Ω,

ŷ′2;t +A2(t)ŷ2 −B2(t)û2 − C2(t, E ŷ1, ŷ2) = 0W2 in I,

ŷ2(0) = y2;0,

the adjoint equations,

−λ′1;t − k∆xλ1 + (A1(t, x)∗ − C ′1;y1
(t, x, ŷ)∗)λ1

−E ′y1
(ŷ1)∗C ′2;Ey1

(t, E ŷ1, ŷ2)∗λ2 = −φ′1;y1
(t, x, ŷ, û1)

− φ′2;Ey1
(t, E ŷ1, ŷ2, û2)E ′y1

(ŷ1) a.e. in Ωtf ,

∂νλ1 = 0[L2(Σtf )]ny1 on Σtf ,

λ1(tf , ·) = −Φ′y1(tf )(ŷ(0), ŷ(tf )) a.e. on Ω,

−λ′2;t + (A2(t)∗ − C ′2;y2
(t, E ŷ1, ŷ2)∗)λ2

−
∫

Ω
C ′1;y2

(t, x, ŷ)∗λ1 dx = −
∫

Ω
φ′1;y2

(t, x, ŷ, û1) dx

− φ′2;y2
(t, E ŷ1, ŷ2, û2) a.e. in I,

λ2(tf ) = −Φ′y2(tf )(ŷ(0), ŷ(tf )),

5This is just for ease of presentation of the idea of proof.
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and the optimality

〈−B∗1λ1 + φ′1;u1
(·, ŷ, û1), u1 − û1〉U∗1 ,U1 ≥ 0 ∀u1 ∈ Uad,1,

〈−B∗2λ2 + φ′2;u2
(·, E ŷ1, ŷ2, û2), u2 − û2〉U∗2 ,U2 ≥ 0 ∀u2 ∈ Uad,2,

hold.

Let E be given by the averaging operator from Ex. 3.2 with a d-dimensional subset A of Ω ⊂ Rd.
If we exploit the specific objective (Assumption 3.11) and let furthermore αi > 0, i = 1, 2, and

U be a Hilbert, then the equations read for the adjoints

−λ′1;t − k∆xλ1 + (A1(t, x)− C ′1;y1
(t, x, ŷ))∗λ1

− 1

|A|C
′
2;−
∫
Aŷ1,ŷ2

(t,−
∫
Aŷ1, ŷ2)∗λ2 = −R∗H,1(RH,1ŷ1 − yref,1(t, x)) a.e. in Ωtf ,

∂νλ1 = 0[L2(Σtf )]ny1 on Σtf ,

λ1(tf , x) = −R∗H,1;f (RH,1;f ŷ1(tf , x)

− yref,1;f (x)) on Ω,

−λ′2;t + (A2(t)− C ′2;y2
(t,−
∫
Aŷ1, ŷ2))∗λ2

−
∫

Ω
C ′1;y1

(t, x, ŷ)∗λ1 dx = −R∗H,2(RH,2ŷ2 − yref,2(t)) a.e. in I,

λ2(tf ) = −R∗H,2;f (RH,2;f ŷ2(tf )− yref,2;f ),

and for the controls

û1(t, x) = PUad,1

(
1

α1
B∗1(t, x)λ1(t, x)

)
a.e. in Ωtf ,

û2(t) = PUad,2

(
1

α2
B∗2(t)λ2(t)

)
a.e. in I.

Moreover, then the adjoint problem shows that we have here the higher regularity λ ∈ Y .

For a proof, we follow closely [CRT18, Th. 2.2 & Corollary 2.1 & Th. 2.3] or the slightly different

approach in [Ry16, Sect. 1.2]. An averaging-evaluation operator E fulfilling the assumptions does

not complicate6 the proof given there. For semilinear parabolic PDE we encounter similar issues

as for semilinear elliptic PDE as illustrated in Example 2.74.

The idea is to consider ODE as PDE and for the moment the spaces Ŷ = {y ∈ [W (I)]ny | ∂ty−
k∆xy ∈ [Lp̃1(I;Lq̃1(Ωtf )]ny} (that is isomorph to Y where we differ between PDE and ODE)

and U = [L2(Ωtf )]nu . In fact, Ŷ is a Banach space with a suitable norm. We exploit that

Ŷ 'W 1,p̃1(I;W 2,q̃1(Ω)) ↪→ L∞(Ωtf ) under the premise 1/p̃1+d/(2q̃1) < 1, where p̃1, q̃1 ∈ [2,∞].

Now the linearized coupled ODE-PDE problem and the corresponding operator E can be

extended onto Ŷ × U = [W (I)]ny × [L2(Ωtf )]nu . The reason for this is that in the case of

exponent 2 in time and space, the arising dual spaces are suitable.

6Note that, for instance, an evaluation operator appears in a slightly different, more direct proof of NOC for

the truck-container problem [KG16].
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This allows for showing the F-differentiability of E : Ŷ × U → W and that E′y : Ŷ → U is

an isomorphism (consider the linearized coupled problem and exploit exponent 2), thus we may

apply the implicit function theorem. Then we can derive the adjoint equations, particularly

the variational inequality yielding the optimality condition. Finally, the higher regularity of the

adjoint problem that is generically linear can be exploited.

An alternative proof strategy could rely on the result of Ito and Kunisch, Th. 2.73, where certain

assumptions would have to be checked. Note that there it has to be distinguished between Y and

Ỹ that implies to work with W (I)× [H1(I)]ny2 instead of
(
W (I) ∩ [L∞(Ωtf )]ny1

)
× [H1(I)]ny2 ,

which has no useful dual space.

However, for unbounded umin,i or umax,i, in particular the case without control constraints,

no bounded control exists, unless α1 > 0 and more restrictive assumptions on Uad, e.g. U ∈
[L∞(I;L2(Ω))]nu , are fulfilled [CRT18, Th. 2.4]. Then the control-to-state operator might be

not continuous, making the existence of a control not very useful in practice.

For optimal control problems of this type with state constraints, we refer to [CRT18, Ch. 3].

3.3.3 Treat Parabolic PDE as DAE in Function Spaces

For the approach to consider a PDE as an ODE in a function space it is required that the PDE is

an evolution equation. If the PDE is, e.g., elliptic, we can still consider the PDE as an algebraic

equation in a function space. In our situation the relevant function spaces are Banach spaces.

Strongly continuous semigroups provide solutions of linear ODEs in Banach spaces with con-

stant coefficients. ODEs in Banach spaces arise from partial differential equations as well as

from delay differential equations.

We consider a Gelfand triple V
cd
↪→ H

cd
↪→ V ∗ as defined in Def. A.17. In this study we restrict

our focus on the formal computations for a parabolic PDE interpreted as an ODE in a Banach

space.

Problem 3.13 (Abstract Parabolic Evolution Equation)

Let a : V × V → R, [w, v, t] 7→ a(w, v, t) be a measurable mapping w.r.t. t for all w, v ∈ V and

a coercive, continuous bilinear form for almost all t ∈ I := (0, tf ).

Find y ∈W (I) := W (I;H,V ) s.t.

〈y′t(t), v〉V ∗,V + a(y(t), v; t)− 〈f(t), v〉V ∗,V = 0 ∀v ∈ V for a.a. t ∈ I := (0, tf ) (3.16)

y(0) = y0, (3.17)

for given f ∈ L2(I;V ∗), y0 ∈ H.

In this problem boundary conditions are included in the function spaces H and V .

We consider the distributed control of the PDE, i.e. f(t) = Bu(t) with u ∈ U , U a Hilbert

space, and B ∈ L(U,L2(I;V ∗)).
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We revisit Problem 3.7 and reformulate it when we treat PDE as ODE in function spaces.

Problem 3.14 (Optimal Distributed Control of Coupled ODE and Parabolic PDE (Treated as

ODE in Function Spaces))

We reconsider Problem 3.7. In addition we introduce a bilinear form a(w, v; t) = k(∇w,∇v)H

for k > 0 as in Pb. 3.13. Contrary to Pb. 3.7 here we consider A1 ∈ L(Y1;L2(I, V ∗)),

B1 ∈ L(U ;L2(I, V ∗)), C1 ∈ L(Y ;L2(I, V ∗)) as time-dependent operators in Banach spaces.

Accordingly, we drop in our notation the x-dependency of the operators A1, B1, and C1. Fur-

thermore, let y1;0 ∈ H, u ∈ Ũad,1 × Ũad,2 ⊂ U = U1 × U2 with U1 = V , U2 = R,

Ũad,1 := {ũ1 ∈ V |umin,1 ≤ ũ1 ≤ umax,1},
Ũad,2 := [u2,min, u2,max].

We rewrite the differential equation constraints in Pb. 3.7 equivalently as

〈y′1;t, v1〉V ∗,V + k(∇y1,∇v1)H

+〈A1(t)y1 −B1(t)u1 − C1(t, y), v〉V ∗,V = 0 ∀v1 ∈ V a.e. in I,

(y1(0, ·), v0)H = (y1;0, v0)H ∀v0 ∈ H,
y′2;t +A2(t)y2 −B2(t)u2 − C2(t, Ey1, y2) = 0 a.e. in I,

y2(0) = y2;0.

Let the Robinson constraint qualification hold. Alternatively, we may use Th. 2.66 on the

regularity of DAE problems that translates here to an ODE in function space and to a standard

ODE. Thus we assume λ0 = 1 in the remaining subsection and the Hamilton function as defined

in Def. 2.64 for DAE optimal control reads in this context, where W1 = V ,

H(t, y(t), u(t), λ(t)) = Φ(y(0), y(tf )) +

∫

Ω
φ1(t, x, y(t), u1(t)) dx+ φ2(t, Ey1(t, ·), y2(t), u2(t))

+ 〈λ1(t),−k∆xy1(t) +A1(t)y1(t)−B1(t)u1(t)− C1(t, y(t))〉W ∗1 ,W1

+ λ2(t)> (A2(t)y2(t)−B2(t)u2(t)− C2(t, Ey1(t), y2(t))) for a.a. t ∈ I
(3.18)

and we have the necessary first-order optimality conditions.

Theorem 3.15 (First-Order Necessary Optimality Conditions for Optimal Distributed Control

with Coupled ODE and Parabolic PDE (Treated as ODE in a Function Space))

Assume ẑ = [ŷ1, ŷ2, û1, û2] is a local minimizer of Problem 3.14. Let Assumptions 2.7 a) and
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2.60 hold. In addition to the state equations holding at [ŷ, û], there follows the adjoint PDE

〈λ′1;t(t), v1〉V ∗,V = k(∇λ1(t),∇v1)H

+ 〈(A1(t)∗ − C ′1;y1
(t)∗)λ1(t), v1〉V ∗,V

− 〈C ′2;Ey1
(t)∗λ2(t), E ′y1

(ŷ1)v1〉V ∗,V
+ 〈φ′1;y1

(t, ·, ŷ(t), û1(t)), v1〉V ∗,V
+ 〈φ′2;Ey1

(t, E ŷ1(t, ·), ŷ2(t), û2(t)), E ′y1
(ŷ1)v1〉V ∗,V ∀v1 ∈ V a.e. in I,

(λ1(tf ), vf )H = −(Φ′y1(tf )(ŷ(0), ŷ(tf )), vf )H ∀vf ∈ H,

the adjoint ODE

λ′2;t(t) = (A2(t)∗ − C ′2;y2
(t)∗)λ2 −

∫

Ω
C ′1;y2

(t)∗λ1 dx

+

∫

Ω
φ′1;y2

(t, x, ŷ(t), û1(t)) dx

+ φ′2;y2
(t, E ŷ1(t, ·), ŷ2(t), û2(t)) a.e. in I,

λ2(tf ) = −Φ′y2(tf )(ŷ(0), ŷ(tf )),

and the optimality

0 ≤ 〈−B∗1λ1(t) + φ′1;u1
(t, ·, ŷ(t), û1(t)), u1 − û1(t)〉V ∗,V ∀u1 ∈ Ũad,1 a.e. in I,

0 ≤ (−B∗2λ2(t) + φ′2;u2
(t, E ŷ1(t, ·), ŷ2(t), û2(t)))>(u2 − û2(t)) ∀u2 ∈ Ũad,2 a.e. in I.

Finally we conclude λ1 ∈W (I;H;V ) and λ2 ∈W 1,∞(I) exploiting the higher regularity for both

adjoints (see also Lemma 2.63).

Proof. We apply Theorem 2.65 that translates analogously into the situation of the coupled

ODE-PDE problem. �

Let ũi ∈ Ũad,i ⊂ Ũi, i = 1, 2, denote the controls from the last approach. For comparison,

we extend these controls into the time interval I by setting Ui = {v(t) ∈ Ũ |t ∈ I}, i = 1, 2,

u1(t) = {ũ1(x)(t) | t ∈ I} and u2(t) = {ũ2(t)}. The necessary optimality equations derived in

Th. 3.15 are pointwise in time.

Using (i) the Gelfand structure and (ii) that the bilinear form a(·, ·, t) is coercive and bounded,

it follows that t→ a(v1, v2, t) ∈ L1(I) for any v1, v2 ∈ L2(I;V ). Hence, in case p̃1 = p̃2 = q̃1 = 2

and if the coupling operators C1, C2 are suitably bounded, it can be shown that the latter

necessary optimality conditions are equivalent to the NOCs stated in Th. 3.12, cf. [HPUU09,

1.3.2.4].

3.3.4 Reverse Coupling Structure

Here we present in details the results from our paper [Ki18]. Concerning the notation we differ

between the ODE and PDE states y1 and y2 and the components, like y1,i, of these states.
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Moreover, here we introduce the combined state-adjoint variables, by writing

z(·) = [y1,·, y2,·, λ1,·, λ2,·]> ∈ R2ny (3.19)

and

E(·)(z) := [E1,·(y, u), E2,·(y, u)] ∈ R2ny .

Note the difference between z (the optimization variable) and z(·).

Definition 3.16 (Coupling Matrix and Coupling Arrow)

We assume Ci and thus Ei, i = 1, 2, to be linear w.r.t. the states. The coupling matrix K ∈
Rny×ny of state equations is defined by

Kkl := E′(k);z(l)
(1− δkl), k, l = 1, . . . , ny.

Note that by construction we have Kll = 0, l = 1, . . . , ny.

If an entry Kkl, k 6= l, is non-zero this means that state k depends on state l. In general

(including states and adjoints) we denote this coupling shortly by a coupling arrow, i.e. by

z(k)  z(l), k, l = 1, . . . , 2ny.

For example, in our Problem 3.7 we have ny = ny1 + ny2 and in case of a linear C the coupling

structure is encoded in

K :=

[
0ny1×ny1 C ′1;y2

C ′2;Ey1
E ′y1

0ny2×ny2

]
∈ Rny×ny .

Theorem 3.17 (Reverse Coupling Structure in the Adjoint CDE Problem)

We consider Problem 3.7. For the geometry as in Assumption 3.9 and let Assumption 3.11

with αi > 0, i = 1, 2, hold. Furthermore, for simplicity we assume for the control space U that

p̃1 = 2, q̃1 = 2, and p̃2 = 2.

The coupling matrix of the adjoint system is Ǩ∗, i.e. the adjoint matrix of the coupling matrix

K of the linearized state equation system, where a further operator for integrating over the spatial

domain is applied to the adjoint ODE in addition. Thus z(ny+l)  z(ny+k) in the adjoint system

iff z(k)  z(l) in the state system for k 6= l, k, l = 1, . . . , ny.

Proof. We introduce the diagonal projection operators

Πiλi := −BiPUad,i
(

1

αi
B∗i λj

)
, i = 1, 2,

where the projection is taken w.r.t. the L2-norm. Due to the optimality conditions from Th. 3.12

we may eliminate the controls by Lemma 2.27, inserting Biûi = Πiλi, i = 1, 2, into the state

equations. We set

Ñz := z(ny+·) := diag(Π1λ1,·; Π2λ2,·) ∈ Rny×ny .

Furthermore, we abbreviate the diagonal operator D := E′(k);z(k)
, k = 1, . . . , ny, and introduce

C0(t, x) := [C1(t, x, y)− C ′1;y(t, x, y)y, C2(t, Ey1, y2)− C ′2;y(t, Ey1, y2)y]>.
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We introduce

A :=

[
D 0ny×ny

0ny×ny D∗

]
∈ R2ny×2ny , C :=

[
K Ñ

0ny×ny Ǩ∗

]
∈ R2ny×2ny , f :=

[
C0

−J ′y(ŷ, û)

]
∈ R2ny .

In detail, here we have

Ǩ∗λ :=

[
0ny1×ny1 C ′2;Ey1

E ′y1
λ2∫

ΩC
′
1;y2

λ1 dx 0ny2×ny2

]
.

By this means we rewrite the coupled state-adjoint system that follows from the necessary

optimality system from Th. 3.12 as

Aẑ + Cẑ = f in W ×W ∗

where here ẑ(·) = [ŷ1,·, ŷ2,·, λ1,·, λ2,·]> corresponding to (3.19) at the optimum. Note that the

terms of J ′y that are linear in y could be incorporated in the lower left quarter block of the

matrix C as well. Since A is a diagonal operator, the coupling matrix of the adjoint system is

the lower right quarter block of the matrix C. Note that the integrations over Ω appearing in

Ǩ∗ do not change the coupling structure. �

In the example of the truck-container problem, see Sect. 4.2, where the viscosity solution of

the Saint-Venant equations in 1D (i.e. two parabolic PDE of second-order) are fully coupled

with Newton dynamics (i.e. two ODE of first-order) we observe this reverse coupling struc-

ture [KG16, Remark 4.2]. This reversal of the coupling structure should be preserved in the

discretization and can be exploited for effective computations.

3.3.5 Numerical Optimal Control Methods for Coupled Ordinary and Partial

Differential Equations

In numerical methods for optimal control problems with coupled ODE and PDE the availability

of efficient algorithms is even more crucial than for optimal control with PDE alone. In this

context we refer to our paper [GHK17] on a globalization strategy for semismooth Newton

methods that is applied in the example of a truck transporting a fluid container in [KG16]

yielding a certain speed-up compared to our first paper on this model [GK15], but for fixed

terminal times. By structure-exploiting SQP methods, see [WGKG18], a further speed-up is

achieved.

3.4 A Simple Example for a Fully Coupled ODE-PDE Problem

To keep things simple we consider a problem that is 1D in space (d = 1), e.g., Ω = (0, L) for

some given length L > 0. The time interval is again I = (0, tf ) with some fixed terminal time

tf . Again we write Ωtf = I ×Ω for the parabolic cylinder. We consider a single parabolic PDE

with state y1 : Ωtf → R and the ODE system is 2D written as a first-order system. The ODE
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state is y2 : I → R. Here we write y = [y1, y2] for the states. If v = ẏ2 is required explicitly in

this context, then we write y3 for v.

For the PDE we focus here on the heat equation (with Neumann b.c. in space)

y′1;t(t, x)− ky′′1;xx(t, x) = −A12(t, x)y2(t) +B1u1(t, x) + C0,1(t, x), ∀(t, x) ∈ Ωtf , (3.20)

y′1;x(t, 0) = y′1;x(t, L) = 0, ∀t ∈ I, (3.21)

y1(0, x) = y1;0(x), ∀x ∈ Ω, (3.22)

with the diffusion coefficient k > 0, suitable operators A12 : Ωtf → R, B1 : R→ R to be defined,

and a distributed control u1 : Ωtf → R. Furthermore, we assume C0,1 : Ωtf → R and an initial

value y1;0 : Ω→ R to be given.

Let the ODE be given by the Newton dynamics (without damping and restoring forces)

y′′2(t) = −A21(t)−
∫

A
y1(t, x) dA(x) +B2u2(t) + C0,2(t) ∀t ∈ I, (3.23)

y2(0) = y2;0 := q0, (3.24)

y′2(0) = y2;1 := v0, (3.25)

where A21 : I → R, B2 : R→ R are some suitable operators to be precised yet, u2 : I → R is the

control force for the ODE, C0,2 : I → R is a given force term, and q0, v0 ∈ R are given initial

conditions for position and velocity, respectively.

Note that the indices of the operator A12 signify that it couples y2 to y1, whereas A21 maps

y1 into the y2 equation.

Since we do not wish to consider a family of ODEs that have the spatial point x as parameter,

we consider here again the case that some spatial average over the PDE solution y1 enters the

ODE for y2 (cf. Def. 3.1 & Ex. 3.2), where A ⊂ Ω is an arbitrary interval here.

In the following we consider this specific coupled ODE-PDE model problem for optimal control.

We follow the approach to treat ODE as PDE and compare with the other approach, to treat

PDE as ODE in function spaces, at the end of this subsection.

Problem 3.18 (Model Problem for Optimal Control of Coupled ODE and PDE)

Let the prerequisites in Problem 3.7 hold, where Ω = (0, L) for L > 0, ny1 = ny2 = 1 and

nu1 = nu2 = 1.

Thus Y1 = W (I), Y2 = H2(I), U1 = Lp̃1(I, Lq̃1(Ω)), U2 = Lp̃2(I) with p̃1, q̃1, p̃2 ∈ [2,∞]

s.t. 1/p̃1 + 1/(2q̃1) < 1, W1 = Y ∗1 , and W2 = Y ∗2 if p̃2 <∞ or W2 = L∞(I) if p̃2 =∞. We set

Y = Y1 × Y2, U = U1 × U2, and W = W1 ×W2.

We assume A1 ≡ 0W1, A2 ≡ 0W2, B1 an embedding from U1 to W1 = W (I)∗, B2 is an

embedding from U2 to H2(I)∗ (p̃2 < ∞) or L∞(I) (p̃2 = ∞), C1(t, x, y) ≡ −A12(t, x)y2 +

C0,1(t, x),

(Ey1)(t) = −
∫

A
y1(t, x) dA(x), (3.26)

and C2(t, Ey1, y2) ≡ −A21(t)−
∫
A y1 dA(x) + C0,2(t).
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The given tracking states are yref,1 ∈ L2(Ω) and yref,2 ∈ R.

We wish to find [y, u] ∈ Y × U such that

the objective, consisting of tracking type terms and control costs only,

J (y, u) =
1

2

∫ tf

0

∫

Ω
|y1(t, x)− yref,1(x)|2 dx dt+

1

2

∫ tf

0
|y2(t)− yref,2|2 dt

+
α1

2

∫ tf

0

∫

Ω
|u1(t, x)|2 dx dt+

α2

2

∫ tf

0
|u2(t)|2 dt (3.27)

with suitable weights αi ≥ 0, not all being zero, is minimized,

where for the controls we consider box constraints, i.e. umin,i ≤ ui ≤ umax,i (with −∞ < umin,i <

umax,i <∞), i = 1, 2, for almost all [t, x] or t, respectively,

subject to the constraints (3.20) – (3.25).

We annotate that in principle we could also consider tracking term functions yref,1(t, x) and

yref,2(t) depending on time as well, cf. Assumpt. 3.11.

Note that we rewrite the second-order ODE as two first-order ODEs in the following. Then

we have ny1 = 1, ny2 = 2, and nu1 = nu2 = 1 and the spaces are adjusted suitably.

This could be interpreted as a version of the rocket car problem [WRP10, PRWW10, PRWW14],

where the heating up of the car is modelled in some sense. The Neumann b.c. (3.21) represent

a boundary, where heat may be released freely. Then u1 is the active cooling of the heat shield

of the car and u2 is the acceleration of the car. However, state constraints, e.g. an upper

bound for the temperature y1 is reasonable, are not yet considered in our problem. Another

interpretation is in the light of the truck-container problem (see Sect. 4.2), where we have two

parabolic equations after adding an artificial viscosity, one subject to Dirichlet and one subject to

Neumann boundary conditions. For numerical examples we refer to our included paper [KG16]

on the truck-container problem.

Our model problem can be considered as a special case of the more general optimal control

problem for reaction diffusion systems, treated in [Ry16, CRT18], see Subsection 3.3.2. We recall

the assumptions and the notation in Problem 3.7.

Note that Uad,i, i = 1, 2, and Uad are convex, closed, bounded, and non-empty. Furthermore,

E′y(y, u) =

[
∂t − k∂xx A12

A21 ∂tt

]
,

and E′1;y1
= [E′y]1,1 and E′2;y2

= [E′y]2,2 have a bounded inverse.

Neglecting the (full) coupling for the moment (i.e. A12 = 0W1 , A21 = 0W2), we have linear-

quadratic optimal control problems (see Examples 2.49 and 2.53) for the ODE and the PDE,

respectively.

Example 3.19 (Model Problem - Uncoupled Case)

We consider the uncoupled version of Problem 3.18 for p̃1 = q̃1 = p̃2 = 2. Let α1 > 0 and
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α2 > 0. Thus here we consider U1 = L2(I;L2(Ω)) = U∗1 , Y1 = W (I), W1 = Y ∗1 , and

Uad,1 = {u1 ∈ U1 |umin,1 ≤ u1(t, x) ≤ umax,1 for a.a. [t, x] ∈ Ωtf }

that is convex, closed, and bounded. The operators are A11 ∈ L(Y1,W1),

A11y1 := y′1,t(t)− ky′′1,xx,

and B1 ∈ L(U1,W1),

B1u1 = u1|W1

in the PDE. We remark that B1 is a compact embedding operator. The right-hand side is

C0,1 ∈W1.

This PDE has a unique solution for all times, the general solution of the PDE subproblem

reads

y1(t, x) =

∫ L

0
GX22(t, x, t; 0, x̃)y1;0(x̃) dx̃−

∫ t

0

∫ L

0
GX22(t, x; t̃, x̃)

(
B1u1(t̃, x̃) + C0,1(t̃, x̃)

)
dx̃ dt̃,

where the corresponding fundamental solution for the heat equation, also called heat kernel, on

Ω = (0, L) with homogeneous Neumann boundary conditions on Σtf = I × {0;L} is the Green’s

function number X22 [CBH+11]

GX22(t, x; t̃, x̃) =
1

2
√
πk(t− t̃)

∞∑

n=−∞

(
exp

(
−(2nL+ x− x̃)2

4k(t− t̃)

)
+ exp

(
−(2nL+ x+ x̃)2

4k(t− t̃)

))

=
1

L

(
1 + 2

∞∑

m=1

exp

(
−m

2π2k(t− t̃)
L2

)
cos
(
mπ

x

L

)
cos

(
mπ

x̃

L

))
.

Note that the latter two (Fourier) series have different convergence properties, for small t − t̃
the first representation is preferable, for large the second one. By using Green’s functions it

may be avoided to use the concept of weak solutions. This Green’s function is non-negative and

symmetric w.r.t. x and x̃. It has a weak singularity at [x = x̃, t = 0] [Tr10, Subsect. 3.2.2].

We could also consider homogeneous Dirichlet b.c. at x = 0 and x = L for our parabolic PDE,

requiring the Greens function X11 [CBH+11] (with two representations with suitable convergence

for small or large time differences t− t̃, resp.) instead of X22:

GX11(t, x; t̃, x̃) =
1

2
√
πk(t− t̃)

∞∑

n=−∞

(
exp

(
−(2nL+ x− x̃)2

4k(t− t̃)

)
− exp

(
−(2nL+ x+ x̃)2

4k(t− t̃)

))

=
2

L

∞∑

m=1

exp

(
−m

2π2k(t− t̃)
L2

)
sin
(
mπ

x

L

)
sin

(
mπ

x̃

L

)
.

A11 has a bounded inverse. The uncoupled control-to-state operator reads

S1 : U1 → Y1, u1 7→ A−1
11 (B1u1 + C0,1)

:=

∫ L

0
GX22(t, x; 0, x̃)y1,0(x̃) dx̃−

∫ t

0

∫ L

0
GX22(t, x; t̃, x̃)

(
B1u1(t̃, x̃) + C0,1(x̃, t̃)

)
dx̃ dt̃

(3.28)
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and it may demonstrated that, e.g., S : L2(Q) → C0(I;L2(Ω)) for y0 ∈ L2(Ω), though GX22

exhibits a weak singularity [Tr84b]. The corresponding part of the Lagrange function L(y, u, λ) =

L1(y1, u1, λ1) + L2(y2, u2, λ2) (that is additive for uncoupled problems) is

L1(y1, u1, λ1) :=
1

2
‖y1 − yref,1‖2L2(I;L2(A)) +

α1

2
‖u1‖2L2(I;L2(A)) + 〈λ1, A11y1 −B1u1 −C0,1〉W ∗1 ,W1 .

Note that the homogeneous Neumann b.c. are included in the weak formulation of the PDE.

There exists a Lagrange multiplier λ1 ∈ W ∗1 such that at the optimal solution [ŷ1(û1), û1] ∈
Y1 × U1 the adjoint λ1 fulfils the KKT-system

〈w1, A11ŷ1 −B1û1 − C0,1〉W ∗1 ,W1 = 0 ∀w1 ∈W ∗1 ,
〈A11λ1 + ŷ1 − yref,1, v1〉Y ∗1 ,Y1 = 0 ∀v1 ∈ Y1,

û1 = PUad,1

(
1

α1
B∗1λ1

)
.

Note that the Laplace operator is self-adjoint. We write the adjoint explicitly,

−λ′1,t(t, x)− kλ′′1,xx(t, x) = −ŷ1(t, x) + yref,1(x) ∀[t, x] ∈ Ωtf ,

λ′1;x(t, x) = 0 ∀x ∈ Σtf ,

λ1(tf , x) = 0 ∀x ∈ Ω,

yielding the solution formula

λ1(t, x) = −
∫ tf

t

∫ L

0
GX22(t− tf , x; t̃− tf , x̃)(ŷ1(t̃, x̃)− yref,1(x̃)) dx̃ dt̃,

where the arguments of the heat kernel are adjusted for solving backward in time or for a diffusion

coefficient −k < 0, resp. Thus we have the state

ŷ1(t, x) =

∫ L

0
GX22(t, x; 0, x̃)y1;0(x̃) dx̃−

∫ t

0

∫ L

0
GX22(t, x; t̃, x̃)×

(
C0,1(t̃, x̃) +B1×

×PUad,1
(
− 1

α1
B∗1

∫ tf

t̃

∫ L

0
GX22(t̃− tf , x̃; ť− tf , x̌)(ŷ1(ť, x̌)− yref,1(x̌)) dx̌ dť

))
dx̃ dt̃.

Given a suitable control, the well-posedness for a single parabolic PDE and its optimal control

is a standard result (see Subsect. 2.7.2). Since a convolution with a kernel like GX22 has a

smoothing property, the last equation may serve to construct a fixed point iteration for solving

the optimal control problem.

For the ODE, the operators are A22 ∈ L(Y2,W2), A22y2 := y′′2(t), and B2 ∈ L(U2,W2),

B2u2 = u2|W2. We remark that B2 is a compact embedding operator. The right-hand side

is C0,2 ∈W2.

This ODE has a unique solution for sufficiently small times, obtained by integrating twice as

y2(t) = −
∫ t

0

∫ s

0
B2u2(τ) + C0,2(τ) dτ ds− tv0 − q0. (3.29)

106



Thus A22 has a bounded inverse. The uncoupled control-to-state operator reads

S2 : U2 → Y2, u2 7→ A−1
22 (B2u2 + C0,2) := −

∫ t

0

∫ s

0
B2u2(τ) + C0,2(τ) dτ ds− tv0 − q0

and the part of the Lagrange function

L2(y2, u2, λ2) =
1

2
‖y2 − yref,2‖2H1(I) +

α2

2
‖u2‖2L2(I) + 〈λ2, A22y2 −B2u2 − C0,2〉W ∗2 ,W2 .

There exists a Lagrange multiplier λ2 ∈ W ∗2 such that at the optimal solution [ŷ2(û2), û2] ∈
Y2 × U2 the λ2 fulfils the KKT-system

〈w2, A22ŷ2 −B2û2 − C0,2〉W ∗2 ,W2 = 0 ∀w2 ∈W ∗2 ,
〈A∗22λ2 + ŷ2 − yref,2, v2〉Y ∗2 ,Y2 = 0 ∀v2 ∈ Y2,

û2 = PUad,2

(
1

α2
B∗2λ2

)
.

We write the adjoint explicitly, by considering v2 ∈ {ṽ ∈ Y2 | ṽ(0) = ṽ′(0) = 0},

λ′′2(t) = −ŷ2(t) + yref,2(t) ∀t ∈ I,
λ2(tf ) = 0,

λ′2(tf ) = 0,

yielding the solution formula by integrating twice

λ2(t) = −
∫ t

0

∫ s

0
ŷ2 − yref,2 dτ ds.

We note the higher regularity of the adjoint, i.e. λ2 ∈ Y2, too. Thus we have for the state the

equation

ŷ2(t) = −
∫ t

0

∫ s

0
B2PUad,2

(
− 1

α2
B∗2

∫ t̃

0

∫ s̃

0
ŷ2 − yref,2 dτ̃ ds̃

)
+ C0,2(τ) dτ ds− tv0 − q0

to be solved.

For a parabolic PDE there hold the Theorems 2.80, and 2.81, discussed above. Note that we

work here with a spatial domain that is one-dimensional, thus we have the (compact) embedding

H1(Ω) ↪→ L∞(Ω). Thus the approach to consider Ỹ = Y ∩ L∞(Ωtf ) as in [IK08] coincides with

the standard approach in Sect. 2.7.

Treat ODE as PDE Yielding an OCP for a Coupled PDE System

Here we consider the ODE of the coupled model problem as an elliptic PDE of second-order.

We consider the state spaces as before. For the boundedness of the coupling operators A12 and

A21 we make the following assumption, in line with Assumption 3.9.
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Assumption 3.20 (Assumptions for Existence and Uniqueness for Optimal Control of Model

Problem)

For the coupling operators there holds A12 ∈ Lp̌1(I;Lq̌1(Ω)) with p̌1, q̌1 ∈ [2,∞], 1/p̌1 +1/(2q̌1) <

1 and A21 ∈ Lp̌2(I) with p̌2 ∈ [2,∞]. Both latter operators are linear and we require that they

are of class C1 w.r.t. yj and that

A12(t, x) ≥ CN1 for a.a. [t, x] ∈ Ωtf ,

A21(t) ≥ CN2 for a.a. t ∈ I.

Note that the averaging-evaluation operator as defined in (3.26) fulfils Assumption 3.9, if |A| > 0.

We pursue a fixed point strategy that is motivated by Sect. 3.2.

Example 3.21 (Model Problem - Coupled Case)

Let Assumption 3.20 hold. We continue with Example 3.19. W.l.o.g. let v0 = 0, C0,1 ≡ 0W1 and

C0,2 ≡ 0W2. Plugging in the ODE solution y2, of the type (3.29) but with our coupling term,

into the PDE following (3.28) yields

y1(t, x) =

∫ L

0
GX22(t, x; 0, x̃)y1;0(x̃) dx̃−

∫ t

0

∫ L

0
GX22(t, x; t̃, x̃)×

×
(
A12(t̃, x̃)

∫ t̃

0

∫ s

0
A21(τ)−

∫

A
y1(τ,X) dA(X)−B2u2(τ) dτ ds+ q0 +B1u1(t̃, x̃)

)
dx̃ dt̃.

We encounter the structure

y1(t, x) = terms with init. values +

∫ t

0

∫ L

0
GX22(t, x; t̃, x̃)

(
(Ã1y1)(t̃, x̃) + (B̃1u)(t̃, x̃)

)
dx̃ dt̃

(3.30)

with

(Ã1y1)(t̃, x̃) = −A12(t̃, x̃)

∫ t̃

0

∫ s

0
A21(τ)−

∫

A
y1(τ,X) dA(X) dτ ds,

(B̃1u)(t̃, x̃) = −A12(t̃, x̃)

∫ t̃

0

∫ s

0
B2u2(τ) dτ ds−B1u1(t̃, x̃).

For sufficiently small times t, we may prove that (3.30) yields a strict contraction in the Banach

space Y1 provided the given effective control under application as encoded in the operator B̃1 is

bounded.

On the other hand, plugging in the PDE solution into the ODE yields

y′′2(t)− (Ã2y2)(t) = (B̃2u)(t) + term with initial value y1;0 ∀t ∈ I,
y2(0) = y2;0 = q0,

y′2(0) = 0,
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or

y2(t) =

∫ t

0

∫ s

0
(Ã2y2)(τ) + (B̃2u)(τ) dτ ds+ term with initial values ∀t ∈ I,

with

(Ã2y2)(t) := −A21(t)−
∫

A

∫ t

0

∫ L

0
GX22(t, x; t̃, x̃)A12(t̃, x̃) dx̃ y2(t̃) dt̃ dx,

(B̃2u)(t) = −A21(t)−
∫

A

∫ t

0

∫ L

0
GX22(t, x; t̃, x̃)B1u1(t̃, x̃) dx̃ dt̃ dx−B2u2(t).

Assuming that we may interchange the order of integration, we may rearrange

(Ã2y2)(t) = −A21(t)

∫ t

0

∫ L

0
G̃X22(t; t̃, x̃)A12(t̃, x̃) dx̃ y2(t̃) dt̃,

(B̃2u)(t) = −A21(t)

∫ t

0

∫ L

0
G̃X22(t; t̃, x̃)B1u1(t̃, x̃) dx̃ dt̃−B2u2(t),

where we set

G̃X22(t; t̃, x̃) := −
∫

A
GX22(t, x; t̃, x̃) dx.

Note that by a formal integration in the case A = Ω this simplifies to G̃X22(t; t̃, x̃) = 1. Again,

a solution can be obtained by a fixed point approach.

We abbreviate

Ǎ21(t)y1 := A21(t)Ey1 = A21(t)−
∫

A
y1(t, x) dA(x).

We rewrite the differential equations in our model problem, Problem 3.18, as a system:

∂t



y1(t, x)

q(t)

v(t)


− k∂xx



y1(t, x)

q(t)

v(t)


+




0 A12(t, x) 0

0 0 −1

Ǎ21(t) 0 0






y1(t, x)

q(t)

v(t)




=



B1u1(t, x)

0

B2u2(t)


+



C0,1(t, x)

0

C0,2(t)


 ∀[t, x] ∈ Ωtf ,



y(0, x)

q(0)

v(0)


 =



y0(x)

q0

v0


 ∀x ∈ Ω, and

[
∂xy(t, 0)

∂xy(t, L)

]
=

[
0

0

]
∀t ∈ I.

We recall that we use the notation y = [y1, y2, y3]> := [y1, y2 = q, v]>, y0 = [y1;0, y2;0 = q0, v0]>,

and C0 = [C0,1(t, x), 0, C0,2(t)]>, yref = [yref,1, yref,2 = qH,ref , 0]> (note that the latter value is

required later). Moreover, we consider the linear operator A with a block diagonal structure,

namely

Ay(t, x) :=



∂t − k∂xx 0 0

0 ∂t − k∂xx −1

0 0 ∂t − k∂xx


 y(t, x) =



∂t − k∂xx 0 0

0 ∂t −1

0 0 ∂t






y1(t, x)

q(t)

v(t)


 ,
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as coupling matrix we find

K(t, x) :=




0 A12(t, x) 0

0 0 0

Ǎ21(t) 0 0


 ,

and

Bu(t, x) = [B1u1(t, x), 0, B2u2(t)]>.

Then we write the system in the form

Ay(t, x) +Ky(t, x) = Bu(t, x) + C0(t, x) for a.a. [t, x] ∈ Ωtf ,

∂xy(t, 0) = ∂xy(t, L) = 0 for a.a. t ∈ I,
y(0, x) = y0(x) for a.a. x ∈ Ω.

We have the following result following from Subsection 3.3.2 that has been proven for the more

general situation of optimal control of reaction-diffusion systems (see Th. 3.10) . For our coupled

model problem we have d = 1, ny1 = 2, ny2 = 1, thus ny = 3, and nu = 2 in Assumption 3.9.

For the operators there holds A ∈ [L∞(Ωtf )]3×3, B ∈ [L∞(Ωtf )]3×2, K ∈ [L∞(Ωtf )]3×3, and

C0 ∈ [Lp̌(I;Lq̌(Ω))]3 with p̌, q̌ ∈ [2,∞], 1/p̌+ 1/(2q̌) < 1.

Theorem 3.22 (Existence and Uniqueness for Model Problem)

Under Assumption 3.20 for general p̃ := p̃1 = p̃2, q̃ := q̃1 and if y0 ∈ L∞(Ω) × R2ny2 , Prob-

lem 3.18 has a unique solution y ∈ Ỹ := [W (I) ∩ L∞(Ωtf )] × [Lp̃(I)]2 for every u ∈ U :=

Lp̃(I;Lq̃(Ω))× [Lp̃(I)]2, where p̃, q̃ ∈ [2,∞] with 1/p̃+ 1/(2q̃) < 1.

There holds the estimate

‖y‖Ỹ ≤ c
(
‖y1;0‖L∞(Ω) + ‖y2;0‖+ ‖u‖U + ‖C0,1‖Lp̌(I;Lq̌(Ω)) + ‖C0,2‖[Lp̌(I)]2

)

with an constant c being independent from u.

If, in addition y1;0 ∈ C0(Ω), then we have y ∈ C0(Ωtf )× [C0(I)]2.

Again, there exists an optimal control u ∈ U and we may define a control-to-state map S : U →
Y, u→ y, that turns out to be suitably differentiable under certain conditions.

For Pb. 3.18 the formal Lagrange function reads with W = W (I)× [H1(I)]2

L(y, u, λ) = J (y, u) + 〈λ(a), Ay +Ky −Bu− C0〉W ∗,W + (λb, y(0, ·)− y0)(L2(Ω))

+ λ>c ∂xy(t, 0)− λ>c ∂xy(t, L).

In line with Remark 2.82, it can be shown that we may choose λc = λ(a). The λb-term in the

Lagrange function may be integrated into the weak formulation of the PDE.

We find according to Theorem 3.12 for the case d = 1, yielding H1 ↪→ L∞ and thus Y = Ỹ ,
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Theorem 3.23 (First-Order Necessary Optimality Conditions for Model Problem)

Assume [ŷ, û] is a minimizer of the optimal control problem, Problem 3.18. Let the assumptions

stated in Pb. 3.18 and Assumption 3.20 hold with p̃1 = p̃2 = p̂1 = p̂2. We write α for the

diagonal matrix with [α1, 0, α2] on the diagonal. Then there exist adjoints λ = [λ1, λ2, λ3]> ∈
W ∗1 ×W ∗2 ×H1(I)∗ s.t. the first-order necessary optimality conditions

〈w, (A+K)ŷ −Bû− C0〉W ∗,W = 0 ∀w ∈W ∗,
〈(A∗ + Ǩ∗)λ+ ŷ − yref , v〉Y ∗,Y = 0 ∀v ∈ Y,

û = PUad
(
α−1B∗λ

)
for a.a. [t, x] ∈ Ωtf ,

hold. For the definition of Ǩ∗ see Th. 3.17. Due to the regularity of solutions of the adjoint

problem, we deduce λ ∈ Y .

Explicitly, we may rewrite the adjoint equations

−λ′1;t − kλ′′1;xx +
1

|A|χAA
∗
21λ3 = −ŷ1 + yref,1 a.e. in Ωtf ,

∂νλ1 = 0L2(I) on Σtf ,

λ1(tf , ·) = 0L2(Ω) on Ω,

−λ′2;t + Ǎ∗12λ1 = −ŷ2 + yref,2 a.e. in I,

λ2(tf ) = 0,

−λ′3;t − λ2 = 0 a.e. in I,

λ3(tf ) = 0,

and the formulas for the control

û1 = PU1,ad

(
1

α1
B∗1λ1

)
a.e. in Ωtf , (3.31)

û2 = PU2,ad

(
1

α2
B∗2λ2

)
a.e. in I, (3.32)

where Ǎ21(t)∗ = E∗A21(t)∗ = (1/|A|)χA(x)A21(t)∗ for the averaging operator (Ey1)(t) from

Eq. 3.26 has been exploited. As usual χA denotes the characteristic function of the set A, being

one in A and zero otherwise. Moreover, we have Ǎ12(t)∗ := −
∫

ΩA12(t, x)∗λ1 dx.

Remark 3.24 (Combination of Bang-Bang Controls with Singular Arcs and Smooth Controls)

For our coupled problems with two controls weighted with α1 ≥ 0 and α2 ≥ 0, the following

situations may occur:

a) α1 > 0, α2 > 0: Two smooth controls (3.31) and (3.32) as in the latter example.

b) α1 = 0 = α2: Two bang-zero-bang controls with singular arcs, i = 1, 2, of the type (analo-

gously as in Lemma 2.46)

ûi(t, x) =





umin,i(t, x) if (B∗i λ)i(t, x) < 0,

∈ [umin,i(t, x), umax,i(t, x)] if (B∗i λ)i(t, x) = 0 on ω ⊂ Ωtf with |ω| > 0,

umax,i(t, x) if (B∗i λ)i(t, x) > 0,
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if B∗i λ is defined pointwise. (Note that for i = 1 the spatial argument x drops out here.)

c) α1 > 0, α2 = 0 or α1 = 0, α2 > 0: One smooth control and one bang-bang control with

singular arc. This might yield interesting phenomena.

We wish to solve the system from Th. 3.23 and we proceed very similar as in Subsection 3.3.4.

We eliminate the controls by inserting them into the state equations and set

z(t, x) = [y(t, x), λ(t, x)]> = [y1(t, x), q(t), v(t), λ1(t, x), λ2(t), λ3(t)]>.

We work with a slightly different notation (compared to Subsect. 3.3.4). In order to discuss the

stability we work with AD = ∂t − k∂xx being a pure diagonal operator and the complementary

matrix KD := A+K −AD. Thus

KD =




0 A12 0

0 0 −1

Ǎ21 0 0


 , Ñλ =




−B1PUad,1

(
1
α1
B∗1λ1

)
0 0

0 0 0

0 −B2PUad,2

(
1
α2
B∗2λ2

)
0


 ,

M̃ :=




1 0 0

0 1 0

0 0 0


 , C =

[
KD Ñ

M̃ Ǩ∗D

]
, I :=

[
Id3 03×3

03×3 −Id3

]
,

and

Ã = ∂tI − k∂xx, f(t, x) := [C0,1(t, x), 0, C0,2(t), yref,1(x), yref,2(x), 0]>,

where the dual Ǩ∗D (with averaging in the adjoint ODE) is defined as in Th. 3.17. Now the

necessary optimality conditions yield the coupled state-adjoint system for optimal ẑ

Aẑ + Cẑ = ∂t (I ẑ)− k∂xxz + Cẑ = f(t, x) for a.a. [t, x] ∈ Ωtf ,

that may be solved as well by using the analytic solutions as in Example 3.21 above.

Note that the order of the position and velocity equation has changed in the adjoint equation

system. Using exactly the same notation as in Subsect. 3.3.4, we observe again a reversal of the

coupling structure as described in Th. 3.17.

If we have A = Ω, |Ω| = 1, A12 = a12 ∈ R and A21 = a21 ∈ R, introducing a kind of combined

coupling factor γ = a12a21 ∈ R, the eigenvalues of K∗D are {−γ1/3, γ1/3(1 + i
√

3)/2, γ1/3(−1 +

i
√

3)/2}. Thus we note that the adjoint system for given y is unstable, iff |γ| > 1.

Treat PDE as ODE Yielding an OCP for a Coupled ODE System in Function Spaces

We apply the results from Section 3.3.3 to our coupled model problem. For our objective (3.27)

we have the correspondence

Φ(y(0), y(tf )) ≡ 0,

φ1(t, x, y, u) =

∫

Ω

1

2
|y1(t, x)− yref,1(x)|2 +

α1

2
|u1(t, x)|2 dx,

φ2(t,−
∫
Ay1, y2, u) =

1

2
|y2(t)− yref,2|2 +

α2

2
|u2(t)|2,
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and we identify the right-hand sides of the differential equations. We assume yref,1 ∈ L2(Ωtf )

and yref,2 ∈ L2(I)× R.

The second-order ODE is treated as a system of two linear ODE. For the parabolic PDE

with initial conditions in H and right-hand side in L2(I;V ∗), we consider again a Gelfand triple

V
cd
↪→ H

cd
↪→ V ∗ where

H = L2(Ω), V = H1(Ω).

The non-homogeneous initial conditions y1(0, x) = y1;0(x) for all x ∈ Ω and q(0) = q0 may

be incorporated by a substitution into the differential equation. Thus w.l.o.g. we assume here

y1;0(x) ≡ 0 and q0 = 0. Here we consider the following spaces for states and differential equations

(the adjoints live in the corresponding duals)

Y1 = {y1 ∈W (I) | y1(0, x) = 0 ∀x ∈ Ω},
Y2 = {q ∈ H2(I) | q(0) = 0}, Y3 = {v ∈ H1(I) | v(0) = 0},
Y = Y1 × Y2 × Y3, W = Y ∗.

The control spaces and admissible sets for controls for “Treat ODE as PDE” and “Treat PDE

as ODE”, resp., are

Ũ1 = L2(Ω), Ũ2 = R,

U1 = L2(I;L2(Ω), U2 = L2(I), U = U1 × U2,

Ũad,1 = {u1 ∈ Ũ1 |u1,min ≤ u1 ≤ u1,max for a.a. x ∈ Ω},
Ũad,2 = {u2 ∈ Ũ2 |u2,min ≤ u2 ≤ u2,max}, Ũad := Ũad,1 × Ũad,2,
Uad,1 = {u1 ∈ U1 |u1,min ≤ u1 ≤ u1,max for a.a. [t, x] ∈ Ωtf },
Uad,2 = {u2 ∈ U2 |u2,min ≤ u2 ≤ u2,max for a.a. t ∈ I}, Uad := Uad,1 × Uad,2.

Note that the Neumann boundary conditions are included in the weak formulation and that

V ∗ = H1(Ω)∗. As usual we identify H∗ = H. We recall that we have operators A ∈
L(Y1, Y

∗
1 )× L(Y2, Y

∗
2 ) and B ∈ L(U1, H)× L(U2,R).

In this context the Hamilton function from (3.18) for coupled differential equations, introducing

(as in the last subsubsection) a further state y3 = v with the corresponding adjoint λ3 in order

to rewrite the second-order ODE in the desired form, reads

H(t, y, u, λ) =
1

2

∫

Ω
|y1(t, x)− yref,1(x)|2 dx+

1

2
|y2(t)− yref,2|2 +

α1

2

∫

Ω
|u1(t, x)|2 dx

+
α2

2
|u2(t)|2 + 〈λ1(t, ·),−ky′′1,xx(t, ·) +A12(t, ·)y2(t)−B1u1(t, ·)− C0,1(t, ·)〉V ∗,V

− λ2(t)∗y3(t) + λ3(t)∗
(
Ǎ21(t)y1(t, x)−B2u2(t)− C0,2(t)

)

for a.a. t ∈ I.

Here we exploited that we have according to Th. 3.22 a bounded inverse and thus we may

suppose that the Robinson constraint qualification holds in this setting, i.e. λ0 = 1 may be

assumed.
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For the minimizer [ŷ, û] we have the necessary optimality conditions as in Th. 3.15, yielding

〈λ′1,t(t), v1〉V ∗,V = k(λ′1,x(t), v′1,x)H +
1

|A|A
∗
21(t)λ3(t) 〈χA, v1〉V ∗,V

+ 〈ŷ1(t)− yref,1, v1〉V ∗,V ∀v1 ∈ V a.e. in I, (3.33)

λ1(tf , ·) = 0H , (3.34)

λ′2,t(t) = 〈A∗12(t)λ1(t, ·), 1〉V ∗,V + ŷ2(t)− yref,2 a.e. in I, (3.35)

λ2(tf ) = 0, (3.36)

λ′3;t(t) = −λ2(t) a.e. in I, (3.37)

λ3(tf ) = 0, (3.38)

and

0 ≤ 〈−B∗1λ1(t) + α1û1(t), u1 − û1〉U∗1 ,U1
∀u1 ∈ Ũad,1 a.e. in I, (3.39)

0 ≤ (−B∗2λ2(t) + α2û2(t))>(u2 − û2(t)) ∀u2 ∈ Ũad,2 a.e. in I, (3.40)

where λ ∈W ∗.
Again, we check that the coupling structure of the state equations is reversed in the adjoint

problem.

Remark 3.25 (Treat ODE as PDE vs. Treat PDE as ODE in Function Spaces)

The question remains, what is the difference between the approaches relying on the Lagrangian or

on the Hamiltonian, respectively. In the latter setting, the ODE in function spaces approach, we

obtain pointwise necessary optimality conditions, but possibly in different weaker spaces. Under

some assumptions, i.e. the Gelfand triple structure (as in Def. A.17 for evolution problems), a

coercive continuous bilinear form, and essentially bounded A12, A21, both formulations are again

equivalent [HPUU09, 1.3.2.4].

However, comparing the two approaches “Treat ODE as PDE” and “Treat PDE as ODE

(in function spaces)”, we suggest to consider preferably ODE as PDE. Our advice is based

on numerical experience, as for the truck-container problem (see Sect. 4.2) and, moreover, it

seems technically to be more intuitive, e.g., when applying our semismooth Newton method (see

Sect. 2.9). Note that the approach “Treat PDE as ODE” is only available for PDE that are

evolution equations, other PDE can be treated as DAE though.

Note that without taking a mean over A in the ODE and considering an ODE for every space

point x ∈ Ω instead, we end up with similar necessary optimality conditions.

Remark 3.26 (First-Order Necessary Optimality Conditions for Model Problem Without Av-

eraging Operator)

If we consider directly y1(t, x) instead of the average −
∫
A y1(t, x) dA(x) and consider an ODE for
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every space point x ∈ Ω, the adjoint equation (3.33) reads

〈λ′1,t(t), v1〉V ∗,V = k(λ′1,x(t), v′1,x)H + 〈A21(t)∗λ3(t), v1〉V ∗,V
+ 〈ŷ1(t)− yref,1, v1〉V ∗,V ∀v1 ∈ V a.e. in I.

If |A| = 1 and A = Ω both approaches yield the same adjoint equations.
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Chapter 4

Applications in Engineering and

Science for Optimal Control of

Coupled ODE-PDE Systems

In this chapter we discuss several applications in engineering and science, where optimal control

problems of coupled systems appear. The presented real-world problems differ in particular

w.r.t. the coupling structure and the underlying type of PDE. These examples shall illustrate

the variety and complexity of optimal control problems of this class and the issues arising

additionally in modelling. On one hand we have to emulate the important features of a real-world

problem and on the other hand we wish the model to fit in a certain mathematical framework

and numerically feasible methods should be available (for validation and optimization), too.

Challenging issues w.r.t. modelling (averaging-evaluation operators), analysis (well-posedness

of coupled systems; fixed-point iterations), and numerics (e.g. dealing with non-differentiability)

appear for these problems. Interesting phenomena, like the reverse coupling structure or the

question, whether the bang-bang principle is violated or not, that is not met in optimal control

of ODE or optimal control of PDE, may be observed. Both latter issues are not treated in

literature to the best knowledge of the author.

In this part of the study we connect the new theory of Sect. 2.9 on our globalized semismooth

Newton method and of the last chapter with modelling and numerics for real-world problems.

4.1 Classification of the Presented Real-World Examples

In this section we give an overview of the examples in this chapter and we classify these exam-

ples w.r.t. the type of optimization problem; the underlying differential equations; the type of

coupling; the type of constraints; the applied optimization approach; and the used discretization

methods.

From the examples treated by myself, we focus on the problems:
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1) Truck-container problem, see Section 4.2,

2) Elastic structure-load problem, see Section 4.3,

3) Elastic tyre-damper system with road contact (quarter car model), see Section 4.4,

4) Nanodroplets/-bubbles evolution, see Section 4.5.

Problem 2 is split into two related problems, Problem 2a, being the elastic crane-trolley-load

problem, and Problem 2b, the elastic bridge-load problem. For the description of the other

examples, we refer to the introductory and the outlook chapter. The selected problems exhibit

different features of coupled optimal control problems and cover different topics in optimization.

We have included the originally published versions of our articles. Please note that the

notation may vary, that is also due to the application context or the journal that suggests a

certain standard notation. Important changes in the notation are indicated in the introductory

text of each subsection.

Moreover, in this chapter we will discuss the validity of the assumptions in theory, as discussed

in Chapter 3, and further prerequisites and requirements.

We file the listed problems by characteristic features in the following. For a first classifica-

tion of these and related problems, please see Tables 1.1 and 1.2.

At first we consider the type of optimization problem. All problems are optimal control

problems or parameter identification problems. Note that the free terminal time is treated as a

parameter to be identified as well.

Problem 1 is considered as a time-optimal control problem in [GK15, WGKG18] and as an

optimal control problem with fixed terminal time in [KG16]. Except for the possibly present free

terminal time term, the objective consists of tracking-type terms, the control effort and possibly

penalty terms for terminal conditions. Concerning penalty terms, it may help to consider the

penalties such that the structure of an augmented Lagrangian is obtained, see [KG16]. The case

of neglecting tracking-type terms and control effort is considered in [GK15] as well.

In [KGH18a, KGH18b] Problem 2 is considered for a free terminal time, while in [Ki16] and in

Problem 3 the terminal time is fixed. For the elastic crane-trolley-load system we have kinetic

energy terms and control costs in the objective, in addition to the free terminal time term.

Terminal constraints are treated as penalties by considering the augmented Lagrange function.

In [KGH18a] we consider the case without control costs and free terminal time as well as a fixed

terminal time with control costs, whereas in [KGH18b] we have a free terminal time, a non-zero

weight for the kinetic energy and for the control effort. For the elastic bridge-load system the

objective is to minimize the maximal absolute displacement.

In Problem 3 the objective is the linear combination of a comfort term (the chassis acceler-

ation), a spring robustness term (the difference of chassis and tyre displacement), and a safety

term (loosely speaking the contact between tyre and road). The first and the third terms are of

tracking-type, while the second might be interpreted as a penalty term.
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Problem 4 is an optimal control problem combined with another parameter identification for

a fixed terminal time. Here the objective is to minimize a linear combination of the control costs

and, at the terminal time tf , the total number and total volume as well as the deviation from

the mean volume. The latter terms are tracking-type terms at tf .

Furthermore, we may classify w.r.t. the present differential equations. The type of PDE or

of system of PDEs might be parabolic, elliptic, hyperbolic or even something else, each with dif-

ferent orders of the PDE and the PDE might be linear, semilinear, quasilinear, or fully nonlinear.

ODE or systems of ODE may be sorted w.r.t. order and linear behaviour as well. In princi-

ple DAEs or PDAEs (with methods dependent on the index) might appear as well. Algebraic

equations may arise, e.g, by constraining forces or free boundary conditions.

In Problem 1 we have a system of two quasilinear hyperbolic PDE of first-order (in 1D) and it

may be treated as a system of two semilinear (second-order) parabolic PDE after a regularization

by an artificial viscosity. The ODEs here are given by Newton dynamics and are considered taken

for itself (i.e. w/o coupling) as a system of 2 linear differential equations of first-order.

For the elastic structure in Problem 2 we consider as PDE either the Lame system, an elliptic

linear system of 3 PDE of second-order, or the plate equation of fourth-order, that is a linear

elliptic PDE. For the elastic crane, the differential equations of trolley and load are given by

Newton dynamics and are linear for the trolley itself, but nonlinear for the load, that is an

differential equation for a pendulum. For the elastic bridge-load problem, a simple linear ODE

is assumed that is eliminated actually in the modelling process.

In Problem 3 we consider the elliptic Lame system in 2D as PDE (of second order) that

is coupled to a linear ODE of second order. Furthermore, this is coupled to a free boundary

condition that constitutes in principle a complementarity condition for the PDE, but within the

so-called Hertz approximation it may eliminated by algebraic equations.

The last problem, Problem 4, is of different type, since we have a hyperbolic first-order PDE

for a measure and a single algebraic equation (of index one) for the only time-dependent so-

called mean field.

The type of coupling might be fully or one-sided, the latter allowing for solving one differ-

ential equation and then inserting the solution into the other that yields an important reduction

of complexity. In all problems considered here the coupling is non-trivial, except for the elastic

structure-load problem, and the coupling may introduce further nonlinear dependencies. Fur-

thermore, we distinguish between the type of control, for a PDE typically the boundary control

(on a Neumann, Dirichlet, Robin, or radiation boundary) and the distributed control are con-

sidered. A moving boundary condition that is controlled may also arise, see, e.g., our Problem

2. An ODE may be controlled by a force term that corresponds to a distributed control. In

addition, differential equations may be controlled by coefficients as well.

In Problem 1, the force term of the ODE may be controlled. On one hand a Dirichlet boundary

value for the PDE state h, i.e. the fluid level at the container boundary (this fluid level is not
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given explicitly by a boundary condition for the PDE), enters into the ODE for the acceleration.

On the other hand the ODE states enter by means of a Neumann boundary into the PDE for h

and in a force term into the PDE for the horizontal fluid velocity v as well. Thus we have full

coupling in the truck-container problem.

In the elastic crane trolley load problem the control enters into the trolley ODE as a force

term and into the Neumann boundary condition of the PDE as well. The ODE for the load

is fully coupled to the trolley ODE. The solution of the trolley ODE determines the moving

Neumann boundary condition that enters the PDE, while averages over derivatives of the PDE

solution enter the ODE system as coefficients and in the force term. For the elastic bridge-load

problem, we have a one-sided coupling from the position of the loads, being for instance trucks,

to the PDE solution, i.e. the displacement. Here the goal is to find an optimal strategy for the

number of trucks, its driving direction, and, in particular, its distance, while not exceeding a

maximal displacement of the bridge.

In Problem 3 the damping coefficient in the ODE may be controlled. By means of the spring-

damper force the ODE solution is coupled to the Neumann b.c. and to the Dirichlet b.c. at the

wheel rim base as well, yielding the mechanical displacement field at this boundary and the shift

y of the rim that enters into the ODE as well. If we exploit the approximation by the Hertzian

stress, then the free contact boundary of the tyre with the road may be stated explicitly and

we can replace the PDE by another ordinary differential for y that corresponds to a spring as

substitute model for the tyre.

In the optimal control of mean field problems, we may control a parameter, the initial mass,

and the temperature that enters into several coefficient functions in the PDE for the measure

and into the algebraic equation for the mean field that is differentiated for further analysis. The

mean field enters into the advection coefficient of the PDE and the measure into the algebraic

equation for the mean field, thus we have a full coupling.

Furthermore we classify by the type of constraints, control constraints, state constraints, or

mixed constraints. For Problem 1 the scenarios considered for [GK15, Fig. 1–3] and in [KG16]

box constraints for the control are prescribed, whereas in the considered scenarios the state

constraints do not get active. In the scenarios for [GK15, Fig. 4] and in [WGKG18] we consider

box constraints for the control and box constraints for the state h, being the fluid level, simul-

taneously. For the elastic crane-trolley-load problem [KGH18a, KGH18b] we consider again box

constraints for the control and the state constraints may be ignored safely since they do not get

active in the considered parameter ranges. Again in Problem 3 and Problem 4 box constraints

for the control and for the parameter, resp., are considered. In Problem 4 we require pure state

constraints in order to guarantee the non-negativity of droplet volumes.

For Problem 1 a first-discretize-then-optimize approach relying on the Lagrange formalism is

considered in [GK15, WGKG18]. In [GK15] an adjoint-based gradient method for the reduced

problem is exploited, while in [WGKG18] a SQP method (with structure exploitation) based
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on the Hessian is applied to an all at-once approach. In [KG16] the optimal control problem

is considered in an all-at-once approach. Here a first-discretize-then-optimize approach relying

again on the Lagrange formalism is pursued in order to derive necessary first-order optimal-

ity conditions that are semi-discretized in time and then solved by the globalized semismooth

Newton method [GHK17].

For the elastic crane-trolley-load problem [KGH18a, KGH18b] the reduced optimal control

problem is tackled by means of a first-discretize-then-optimize approach. The projected gra-

dient is calculated by means of a sensitivity-based approach since the adjoint equations have

a complicated form due to averages over derivatives. Here for Newton-type methods we do

not have the required smoothness due to moving boundary conditions implying measure-valued

F-derivatives for the control-to-state operator [KGH18b].

In Problem 3 we pursue a first-discretize-then-optimize approach and consider a sensitivity-

based, projected gradient method (without and with BFGS update) for an reduced objective.

In the last Problem we consider a customized first-discretize-then-optimize approach, where at

first a multi-scale approach is used for model reduction. The PDE for the measure is replaced by

a large number of ODEs coupled to the mean field. This reduction method may be interpreted

as the special case of initial data of Dirac type and yields a so-called mean field model. This

reduced model is optimized by a projected gradient method using a sensitivity-based approach.

Note that the Pontryagin minimum principle is not exploited in these examples at all. The

elastic bridge-load problem is of different type anyways since the control is examined by a try-

out approach.

Concerning the discretization of the differential equations and the implementation, in Prob-

lem 1 we apply a Lax-Friedrich scheme [La06, Sect. 8.1] to the Saint-Venant system and an

explicit Euler for the ODE. This is implemented in the solver sqpfiltertoolbox from the software

package OCPID-DAE1 [Ge10] in [GK15], in [KG16] the commercial software MATLAB is used,

and in [WGKG18] the commercial solver SNOPT as well as sqpfiltertoolbox are considered.

For Problem 2 we use the finite element method (FEM) for the elasticity equation in the

structure and, in case of the crane, the finite difference method (FDM), the Heun method to be

precise, for the ODE system. Since we need second-order derivatives on some boundary parts

of the crane beam, we work with quadratic Lagrange elements. This has been implemented in

the open software package FEniCS [LMW12] and, in case of the bridge, in MATLAB, too.

For the elastic-tyre-damper road problem, Problem 3, we use the finite element method for the

PDE in the tyre and a time-stepping scheme for the spring-damper ODE. Using the quadratic

Lagrange elements CG2(= P2) and the explicit Heun method this has been implemented in

FEniCS.

Problem 4 has been implemented in OCODE 1.5, a software code by Matthias Gerdts later

included in the package OCPID-DAE1 [Ge10], using central differences as updates for the states

and trying out different solvers for differential algebraic equations (Runge-Kutta with fixed

suitably small step sizes, DASSL). Here the numerical conservation of mass is crucial.
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Note that there are further types of coupled optimization problems, e.g., in optimal design

the control enters as diffusion coefficient of a partial differential equation (see e.g. [HPUU09,

Sect. 1.1.5]). Instead of a single PDE, optimal design problems may be subject to a coupled

system of differential equations as well, the ODE might denote, e.g., a phase field.

In our model problem, Problem 3.18 we have considered a simple structure, i.e. a linear ODE

and PDE with full coupling. We start with the truck-container problem that is similar in its

structure, but exhibits nonlinear terms in the PDE and a coupling structure involving boundary

conditions. By means of this problem we may illustrate again the challenges and phenomena of

optimal control of coupled differential equations, e.g., the reversal of the coupling structure in

the adjoint system. In Problem 2, some numerical results [KGH18a] seem to underline the con-

jecture from Pesch et al. [PRWW10] that the bang-bang principle known from classical optimal

control might be violated for coupled optimal control problems. However, we cannot exclude

that this is due to numerical artifacts.

Only in the following sections, Sections 4.2 and 4.3, we underline vectors and matrices, e.g.,

v or A.

4.2 Article: Optimal Control of a Truck Carrying a Fluid Con-

tainer

In this article the optimal control problem for the truck-container model is considered. At the

beginning the model for the truck-container problem is derived shortly. The fluid (e.g. water)

in the container is modelled by the Saint-Venant equations in 1D (or 2D might be interesting

as well) and the vehicle dynamics in 1D (here 2D or 3D are possible) of the truck by the ODE

due to Newton. The container may move in the cargo bay, since it is loosely fixed to the

truck that is modelled by a spring-damper element. The PDE states are the vertical fluid level

h and the horizontal fluid velocity v and the ODE states are positions dX and velocities ḋX

of the truck (X = tr) and the water container (X = w), respectively. We may control the

acceleration/deceleration of the truck, i.e. the force term in the ODE for ḋtr. We have a full

coupling, since

Dirichlet boundary value h ḋw(force term)

by the momentum of the container exerted on the truck and there holds

d, ḋ v (force term) and d, ḋ Neumann boundary value hx,

due to the spring-damper force acting on the container. A tracking-type objective with a

Tikhonov regularization is minimized subject to this fully coupled differential equation system,

consisting of a system of hyperbolic first-order equations that are quasilinear and two ODE.

By introducing an artificial viscosity the PDEs may be considered as a system of semilinear

parabolic equations of second-order. Furthermore, we consider box constraints for the control
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and box constraints for the states. We follow a first-optimize-then-discretize strategy in an all-

at-once-approach, relying on the Lagrange method. The existence of optimal controls and the

necessary optimality conditions of first-order are deduced rigorously. The St-Venant equations

are discretized by the Lax-Friedrich scheme, where the artificial viscosity appears naturally, see,

e.g., [Kr97, Vr98] for details. This is an explicit method and requires that a CFL condition is

met in order to be stable, for the ODE we use the explicit Euler. Then the KKT-system is semi-

discretized in time and the numerical computation of the control is performed by a semismooth

Newton method with a suitable globalization strategy implemented in MATLAB.

In the following subsection we recapitulate the Saint-Venant equations for convenience.

4.2.1 Saint-Venant Equations

The Saint-Venant equations (shallow water equations) read in general form including friction

[BC16, Sect. 1.4]

∂th+ ∂x(hv) = 0, (4.1)

∂tv + ∂x

(
v2

2
+ gh

)
+

(
c
v2

h
− gB′x − f

)
= 0. (4.2)

The first equation is the mass balance, the second the momentum balance. The unknowns are

h(t, x), the height of the fluid level (fluid depth), and v(t, x), the horizontal fluid velocity (here

1D). More precisely, v is the horizontal fluid velocity averaged over a vertical column of fluid. c

is a constant friction coefficient, B(x) denotes a given bottom profile, and f(t) is the external

acceleration (e.g. due to the spring-damper-element, fixing the container). (4.2) simplifies in

case of a constant slope B′x = Sb.

The 1D Saint-Venant equations constitute a one-dimensional hyperbolic balance law1 of the

form ∂ty(t, x) + ∂xf(y(t, x)) + g(t, x, y(t, x)) = 0, where y has values in Y, Y a connected open

subset of Rd. Transport processes of various kinds (of electrical energy, the flow of fluids in open

channels/gas pipelines, light propagation in optical fibers, road traffic, etc.) may be typically

represented by hyperbolic partial differential equations. If the transport process of interest

exhibits a dominant coordinate dimension, the dynamics may be modelled by one-dimensional

hyperbolic balance laws. [BC16, Preface].

The St-Venant system, written with

y =

[
h

v

]
, F (y) =

[
v h

g v

]
, g =

[
0

cv2/h− gB′x − f

]
,

reads in matrix-vector-notation

∂ty + F (y)∂xy + g(y) = 0.

1A conservation law is a special case of a balance law, where no “force” term g enters the equation.
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The Froude number is defined as

Fr :=
v(t, x)√
gh(t, x)

and describes the relation between the fluid velocity and the phase velocity (of a long wave). The

flow is called subcritical (fluvial), if Fr < 1. Then the flow may be characterized as slow, but

deep, and no hydraulic jumps can appear. Furthermore, then the system is indeed hyperbolic

that can be checked by computing the corresponding eigenvalues of F .

We prescribe initial conditions h(0, x) = h0(x), v(0, x) = v0(x) for given initial fluid level h0

and fluid velocity v0. The hyperbolic PDE needs two boundary conditions, on each end, to be

closed, e.g.:

• if the “pool” is closed, with “pumps” at both ends:

h(t, 0)v(t, 0) = U0(t), (4.3)

h(t, L)v(t, L) = U0(t). (4.4)

The flow rates U0 and UL are given or control variables.

• tunable hydraulic gates (as in irrigation or navigable canals with a flow direction from

x = 0 to x = L) in standard hydraulic models:

for overflow gates:

h(t, 0)v(t, 0) = cg(Z0(t)− U0(t))3/2,

h(t, L)v(t, L) = cg(h(t, L))− U0(t))3/2,

for underflow gates (sluices):

h(t, 0)v(t, 0) = cgU0(t)
√
Z0(t)− h(t, 0),

h(t, L)v(t, L) = cgUL(t)
√
h(t, L)− ZL(t).

Again U0 and UL are possible controls (the elevations or apertures, respectively), Z0 and

ZL (fluid level outside the pool at the other side of the gate) might be considered as

disturbance inputs. Here cg is a constant “discharge” coefficient for all types of gates.

For the truck-container-system the two boundary conditions read

∂xh(t, 0) = −Bx −
1

g
f(t),

∂xh(t, L) = −Bx −
1

g
f(t),

v(0) = 0,

v(L) = 0.

The latter two b.c. correspond to (4.3) & (4.4) in case of a closed pool without pumps. Note

that we are here in the non-characteristic case.
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Our optimal control problem is more general than the problems covered by Borsche and others

[BCG10], since we allow for a distributed control in the hyperbolic conservation laws as well.

In [DPR99, Co07] the optimal control of a container that is fixed to a moving conveyor belt

is treated. This model exhibits a one-sided coupling only, whereas we consider a spring-damper

element that re-couples the container to the truck.

Court et al. [CKP18] consider the distributed optimal control of hyperbolic conservation laws

without any coupling to an ODE, but with a geometric parameter, being a point in the domain,

to be determined in addition to the optimal control. The objective has a terminal cost term and

the goal is to maximize the height of a shallow water wave at this unknown point.

The derivation of the truck-container model, involving the Saint-Venant equations as PDE and

the vehicle dynamics as ODE can be found in details in [GK15]. For shortness here only our

original paper [KG16] is depicted, wherein the existence of optimal control and the necessary

optimality conditions are demonstrated. The globalized semismooth Newton method referred to

in this paper can be found in [GHK17] that is presented at the end of Chapter 3 in full length.

We shortly comment on the paper [WGKG18] and on the work in progress [KW18]. In the first

paper we follow an all-at-once-approach and the numerical optimal control by a first-discretize-

then-optimize approach is performed using the SQP method. The efficiency of the computations

is increased by using exact first- and second-order derivative information, i.e. the structure of

Jacobian and Hessian is exploited, and further techniques, like primal or dual regularization.

In the upcoming study [KW18] the truck-container model is reformulated for a 2D fluid level,

yielding two momentum balances for two horizontal fluid velocities, v and w, and the truck

dynamics are in 3D, modelling a drive on a (given) route through a real landscape. Interesting

would be to simulate and control a steep twisted mountain road. Motivated by the optimal

solution found in [GK15, KG16, WGKG18] a model predictive control will be considered. The

idea is to exploit the turnpike behaviour of the control that is suggested by our numerical

computations. For the study of turnpike solutions in infinite-dimensional control systems see,

e.g., [Za00].

4.2.2 Comparison with Abstract Theory

We compare our publication [KG16] with our results in Chapter 3. In [KG16], where after a

scaling to a fixed time interval (0, 1), the spaces for the states read

Y = L2(0, 1;H1(0, L))× L2(0, 1;H1
0 (0, L))× [H2(0, 1)]2 × [H1(0, 1)]2

and

Ỹ = [H1(0, 1;L2(0, L)) ∩ L2(0, 1;H2(0, L)) ∩ L∞(0, 1;H1(0, L))]

× [H1(0, 1;L2(0, L)) ∩ L2(0, 1;H2(0, L)) ∩ L∞(0, 1;H1
0 (0, L))]× [H2(0, 1)]2 × [H1(0, 1)]2.

In the latter space higher regularity in the truck-container example is exploited, this is not

possible in the general setting of CDE presented in this study. The control space U = L2(0, 1)
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is equipped with standard box constraints, i.e. Uad ⊂ U is a closed convex subset of U . We find

the structure of a Gelfand triple, having H = L2(0, L) and V = Y .

The existence and uniqueness of solutions in Y for the coupled state equations (under basic

regularity assumptions on the data) is proven analogously to Th. 3.4 for sufficiently small ter-

minal times. The approach to consider ODEs as PDEs is pursued. For the existence of optimal

controls we may apply again Th. 2.41, for the necessary optimality conditions of first-order,

please see Th. 3.6.

We compare formally the scaled problem for the states

y = [h, v, d∆ = dtr − dw, dw, v∆ = vtr − vw, vw]>

(with a slightly different coupling structure) in [KG16] with the setting of Problem 3.7, changing

the notation of the paper, if it differs, i.e., T becomes tf . Note that this here is a problem with

a nonlinear PDE, non-zero boundary conditions for h, and homogeneous Dirichlet b.c. for v in

contrast to Problem 3.7. We have ny1 = 2, ny2 = 4, nu1 = 0 (i.e. no direct control of the PDE

system), nu2 = 1, and k = ε, being the (fixed) artificial viscosity. We identify the operators as

(rewriting the Neumann b.c. for h as Dirac distributions)

A1 = tf

[
v∂x h∂x

g∂x v∂x

]
, C1 = −η(c̃d∆ + k̃v∆)

[
1
gE(h)

tfv

]
,

A2 = tf




0 0 −1 0

0 0 0 −1

−c̃ 0 −k̃ 0

0 0 0 0



, B2 =




0

0
1
mtr

IdU

0



, C2 = −tf

g

L
E(h)




0

0

1

1



.

The evaluation operator E(h) = h(t, ·)|L0 in this problems evaluates h at x = 0 and x = L. Here

w.l.o.g. d̄ ≡ 0 for the offset and B ≡ 0 for the bottom profile of the container. B1 does not

appear.

Note that the nonlinearities in the PDE yield that A1 depends on y1 as well. However, in the

analysis this may be handled by some standard embedding theorems.

In the objective we have the penalty terms of an augmented Lagrange function,

Φ =
∑

I∈{∆,w}

(α4

2
|dI(1)− d(T )

I |2 + σ4(dI(1)− d(T )
I ) +

α5

2
|vI(1)− v(T )

I |2 + σ5(vI(1)− v(T )
I )

)
,

and

φ1 =
α1

2
|h(t, x)− hd(x)|2 +

α3

2
v(t, x)2

for tracking a fluid level hd ∈ L2(0, L) and zero horizontal velocity, and for the control effort

φ2 =
α2

2
u(t)2.

Furthermore, for our comparison here we ignore the state constraints on h assuming that they

do not get active (that is realistic for certain data), since the result in Subsection 3.3.2 is not

formulated for state or mixed state-control constraints.
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We have E ′h = δx(·)|L0 , where δx is the Dirac distribution. Thus

C1;y1,1 = −η(c̃d∆ + k̃v∆)

[
δx(·)|L0 /g

0

]
,

C1;y1,2 = −η(c̃d∆ + k̃v∆)

[
0

tf

]
.

Since additionally C1;y2,1 = −ηc̃[E(h)/g, tf ]>, C1;y2,3 = −ηk̃[E(h)/g, tf ]>, and C1;y2,· is zero

otherwise and since C2;yj,k = −tf gLδx(·)|L0 [0, 0, 1, 1]> for j = k = 1 and zero otherwise, we see

that Assumption 3.9 is fulfilled. However, Assumpt. 3.11 does not cover the additional terms

in the augmented Lagrange function. (The weights αi, i = 1, 3, 4, 5, that do not appear in

Assumpt. 3.11 could be included there in principle.)

In a neighbourhood of the solution, the objective is F-differentiable with locally Lipschitz

derivative as well as the PDE operator E is F-differentiable. For a further discussion see also

the end of Subsection 3.3.1.
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SEMI-SMOOTH NEWTON APPROACH FOR AN OPTIMAL

CONTROL PROBLEM OF A COUPLED SYSTEM OF

SAINT-VENANT EQUATIONS AND ORDINARY DIFFERENTIAL

EQUATIONS

SVEN-JOACHIM KIMMERLE∗ AND MATTHIAS GERDTS

Abstract. In this article necessary optimality conditions for Saint-Venant equa-
tions coupled to ordinary differential equations (ODE) are derived rigorously.
The Saint-Venant equations are first-order hyperbolic partial differential equa-
tions (PDE) and model here the fluid in a container that is moved by a truck
that is subject to Newton’s law of motion. The acceleration of the truck may be
controlled.
We describe the mathematical model and the corresponding tracking-type opti-
mal control problem. First we prove existence and uniqueness for the coupled
ODE-PDE problem locally in time. For sufficiently small times, we derive the
first-order necessary optimality conditions in the corresponding function spaces.
Furthermore we prove existence of optimal controls.
The optimality system is formulated in the setting of a semi-smooth operator
equation in Hilbert spaces which we solve numerically by a semi-smooth Newton
method. We close with a numerical example for a typical driving maneuver.

1. Introduction

We consider a container with a fluid that is subject to the Saint-Venant equations,
that model fluid flow in shallow water. The container is mounted on a vehicle that
is subject to Newton’s law of motion. Our optimal control problem (OCP), see
Subsection 2.1, is to minimize tracking type functionals for the fluid height and the
horizontal fluid velocity and to minimize the control costs, subject to the coupled
ODE-PDE system and box constraints for the control. As a prototype example we
consider a truck with a fluid container as load, which are coupled by a spring-damper
element. We derive the corresponding model in Section 2 in detail. Our problem
exhibits partial differential equations, i.e. the Saint-Venant equations, that are fully
coupled to ordinary differential equations, given by Newton’s law of motion. We may
control the acceleration of the truck, that by means of the spring-damper force, acts
as an indirect Neumann boundary control on the fluid height and as a distributed
control on the fluid velocity. Conversely, the momentum of the moving fluid in the
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90C46, 35L04, 49N90, 76B15, 90C56, 65K10.

Key words and phrases. ODE-PDE constrained optimization, Saint-Venant equations, coupled
ODE-PDE system, necessary optimality conditions, semi-smooth Newton method, adjoint optimal
control, hyperbolic conservation law, vehicle dynamics, numerical optimal control.
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2 S.-J. KIMMERLE AND M. GERDTS

container affects the motion of the truck. The scaled problem is summarized in
Subsection 2.2.

Optimal control problems for Saint-Venant equations without coupling to ODE
have been considered in [3, 28], for instance. However, they consider distributed
controls of the fluid level equation and only control costs. A similar control problem
with a tracking-type objective for a given fluid level profile hd, where a container
is accelerated directly (representing, e.g., a container fixed on a moving horizontal
conveyor) is considered by Coron et al. [6]. Global boundary controllability of
the Saint-Venant equations between steady states is demonstrated by Gugat and
Leugering [12]. Moreover, they have considered the controllability of the Saint-
Venant equations in the situation of sloped canals with friction [13]. In their result,
it turns out to be crucial that the considered terminal time is not too small. The
latter is due to the finite propagation velocity. We note that we do not consider
such a Dirichlet boundary control for h in our model.

Coupled systems involving ODEs as well as PDEs and their control have been
considered only for particular examples. Hömberg et al. [8, 17, 18] and Gupta et
al. [14] consider a model for laser hardening of steel, involving the heat equation
and a differential equation describing phase transitions. In another example, in a
gallium-arsenide crystal the phase transition of arsenic-rich droplets is modelled by
an ODE for the free boundary and by the quasi-linear diffusion equation. This is
further coupled to the PDE of linear elasticity, modelling mechanical stresses within
the crystal. For this model and its well-posedness see [21], for the optimal control
of a resulting macroscopic model see [22]. Pesch et al. [5, 30, 34] consider a hyper-
sonic rocket car subject to driving dynamics and to the heat equation with state
constraints on the temperature. This represents a simplified model for the re-entry
of a spacecraft into atmosphere. In [23] the optimal control of a quarter car model
by an electrorheological damper is considered. Here the behavior of the elastic tyre
is modelled by the PDE of linear elasticity and the spring-damper element is subject
to an ODE. In addition, the latter example involves a complementarity condition
modelling the free road contact. In [24] an elastic crane beam subject to linear
elasticity coupled to the dynamics of a pendulum, modelling the crane trolley and
the applied load, is studied. To the knowledge of the authors, no analytic results
have been derived for our particular kind of coupled ODE-PDE problem so far.

Our problem has been stated and solved numerically by a first-discretize-then-
optimize (FDTO) approach in [11]. In contrast, in this paper we follow a first-
optimize-then-discretize (FOTD) approach. Here we consider a so-called all-at-once
approach, i.e. we solve for the states and the control simultaneously. We do not
replace the states by the control-to-state operator as for a reduced objective that
depends only on the control. First, in Section 3 we prove existence and uniqueness
for the coupled state equation, that is not standard, and then apply an abstract
result for the existence of optimal controls (Theorem 4.1). In Section 4 we derive
analytically the necessary optimality conditions (NOC), including the adjoint dif-
ferential equations, by a Lagrangian based approach. Furthermore, from the NOC
we deduce the existence of the optimal control. Our problem has in common with
the general situation in [16, Ch. 1], that a Tikhonov regularization is considered
and that we have a tracking-type part of the objective and control box constraints.
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OPTIMAL CONTROL OF SAINT-VENANT EQUATIONS AND ODES 3

In contrast, our problem exhibits a coupled system involving also ODEs and, in
addition, terminal conditions in the objective.

We solve the NOC numerically by a semi-smooth Newton method, see Subsection
4.4. For a safety breaking maneuver of the truck-load system we present numerical
results in Subsection 5.2. We close with a short discussion in Section 6.

2. Mathematical model

A typical example for Saint-Venant equations coupled to ODEs, corresponding
to Newton’s law of motion, is a moving truck with a fluid container as load that is
not fixed permanently (see Fig. 1). We recall the model derived in [11, Sect. 1]. We
consider a finite time interval [0, T ] with a terminal time T , that is not considered as
a free parameter in this study. For ease of presentation the truck may move in one
dimension only. The truck and the container are considered in a fixed coordinate
system (X1, X2) ∈ R2. The horizontal position of the truck is represented by dtr

and the container is located at the x-coordinate dw, the corresponding velocities are
the time derivatives vtr := ḋtr and vw := ḋw. The container has length L, height H
(here defined different as in [11]), and a given (continuously differentiable) bottom
profile B(x), 0 ≤ x ≤ L. The container could move in the horizontal direction
and its mounting to the truck frame is modelled by a linear spring-damper element
with damping coefficient k and spring rate c. We consider a moving coordinate
system (x1, x2) ∈ [0, L] × [0,H] for the container. For keeping notation short, we
write x = x1. The height of the fluid in the container is represented by h(t, x) and
the fluid velocity in x-direction by v(t, x). As domain for the fluid we introduce
Q := (0, T ) × (0, L) with the spatial boundary Γ := (0, T ) × {0, L}. From the
geometry of the container, we see directly the natural state constraints

B(x) ≤ h(t, x) +B(x) ≤ H ∀(t, x) ∈ Q.

In addition, we require for our model

(2.1) 0 < h ≤ h(t, x) ≤ h < H −B(x) ∀(t, x) ∈ Q,

since we do not want to deal with issues modelling contacts (when the bottom
runs dry or the fluid spills over) in this study. The fluid is assumed to be an
incompressible Newtonian fluid (like water). The mass of the truck is denoted by
mtr and the mass of the container by mw. The whole system may be controlled by
the acceleration u(t) of the truck.

We have for the force that acts between the truck and the container

(2.2) F (dtr, dw, ḋtr, ḋw) := c(dtr − dw + d̄) + k(ḋtr − ḋw).

For the offset d̄ := dw(0)−dtr(0) the fluid container is at rest initially. If we assume

d
(T )
w = d

(T )
tr + d̄ = 0, the container rests for the terminal time, too. The fluid is

subject to the one-dimensional Saint-Venant equations

ht + (hv)x = 0, (t, x) ∈ Q,(2.3)

vt +

(
1

2
v2 + gh

)

x

= −gBx − 1

mw
F (dtr, dw, ḋtr, ḋw), (t, x) ∈ Q.(2.4)
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4 S.-J. KIMMERLE AND M. GERDTS

Figure 1. Truck with a fluid container as load, illustration of geo-
metric quantities.

where we have exploited h ̸= 0 in order to derive (2.4) from the conservation of
linear momentum (see [11, Sect. 1]) for details). These PDEs are complemented by
the initial and boundary conditions

h(0, x) = h(0)(x), x ∈ [0, L],(2.5)

v(0, x) = v(0)(x), x ∈ [0, L],(2.6)

hx = −Bx − 1

gmw
F (dtr, dw, ḋtr, ḋw), (t, x) ∈ Γ,(2.7)

v = 0, (t, x) ∈ Γ,(2.8)

where h(0) and v(0) are given functions. The Neumann boundary condition (2.7)
follows from (2.4) and (2.8), see [11, Sect. 1] about the details.

The truck and the container observe Newton’s law of motion yielding

mtrd̈tr = u− F (dtr, dw, ḋtr, ḋw), t ∈ [0, T ],(2.9)

mwd̈w = −mwg

L
[h(t, ·) +B]L0 t ∈ [0, T ].(2.10)

We set as initial conditions

dtr(0) = d
(0)
tr , ḋtr(0) = v

(0)
tr , dw(0) = d(0)

w , ḋw(0) = v(0)
w ,(2.11)

where d
(0)
tr , v

(0)
tr , d

(0)
w , and v

(0)
w are given numbers.

2.1. Optimal control problem. Motivated by the coupling force (2.2), we sim-
plify the equation system by replacing dtr by the horizontal distance between truck
and container position

d∆ := dtr − dw + d̄.

We consider the velocities v∆ = ḋ∆ and vw = ḋw as independent variables, such
that only first order time-derivatives remain in our problem. The PDE states are
(h, v) and the ODE states (d∆, dw, v∆, vw). We refer to all state variables by
y = (h, v, d∆, dw, v∆, vw). Consistently, we abbreviate for the initial conditions

y(0) := (h(0), v(0), d
(0)
∆ , d

(0)
w , v

(0)
∆ , v

(0)
w ). Moreover, we write [ξ]T := ξ(T ) − ξ(T ) for the

difference of a function ξ at terminal time T to a given terminal value ξ(T ).
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For suitable weights α1, α3 ≥ 0, α2, α4, α5 > 0 and σ4, σ5 ∈ R, we would like to
minimize the objective function

J(y, u) :=
α1

2

∫

Q
|h(t, x) − hd(x)|2 dx dt+

α2

2

∫ T

0
u(t)2 dt(2.12)

+
α3

2

∫

Q
v(t, x)2 dx dt+

∑

I∈{∆;w}

(α4

2
[dI ]

2
T + σ4[dI ]T

)

+
∑

I∈{∆;w}

(α5

2
[vI ]

2
T + σ5[vI ]T

)
,

modelling a tracking type term for a given fluid level hd, the control effort, the

kinetic energy of the fluid, and penalties for achieving given terminal positions d
(T )
∆ ,

d
(T )
w and velocities v

(T )
∆ , v

(T )
w of the truck-container distance and the container,

respectively. The control u, being the acceleration of the truck, is subject to the
control constraints

(2.13) umin ≤ u ≤ umax,

representing that an infinite acceleration is technically not realizable. Note that a
negative acceleration corresponds to braking. For the height of the fluid level, we
have to require the state constraints (2.1) in principle. However, it turns out in our
numerics that they never get active, so we may ignore the state constraints here.
For a numerical study incorporating these state constraints into a FDTO approach
and the resulting minor effects, see [11, Sect. 4].

The optimal control problem (OCP) reads

(2.14) min
Y ×U

J(y, u),

subject to the system (2.3) - (2.11) and the control constraints (2.13). We work
with the state spaces

(2.15) Y1 := L2(0, T ;H1(0, L)) × L2(0, T ;H1
0 (0, L))

for the PDE states and

(2.16) Y = Y1 × [H2(0, T )]2 × [H1(0, T )]2.

for all states. Since we can prove further regularity of the states (see Section 3), we

introduce a space Ỹ for all states in (3.1). The control space is U = L2(0, T ).
Our OCP exhibits an indirect Neumann boundary control for the PDE (2.3) and

an indirect distributed control for the PDE (2.4), where the control is acting by
means of the force F . This coupling force F is determined by an ODE system,
that is controlled directly in (2.9). A back coupling takes place via the Dirichlet
boundary values of h entering into the ODE (2.10).

2.2. Artificial viscosity and rescaled problem. We regularize the hyperbolic
equations (2.3) and (2.4) by introducing an artificial viscosity ε, 0 < ε ≪ 1. The
motivation for this is that hyperbolic conservation laws exhibit non-unique solutions.
The physically correct solution (satisfying the entropy principle) is selected [25,
Example 2.2.6/Th. 3.3.28] by considering the regularized system, that is semi-
linear parabolic and has a unique solution, in the limit of vanishing viscosity ε.
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6 S.-J. KIMMERLE AND M. GERDTS

Furthermore, by this regularization we avoid to deal with shocks and rare-faction
waves, that are typically encountered for these hyperbolic conservation laws [7,
Subsection 11.3.2]. It turns out that for a given ε, T has to be chosen sufficiently
small for our analytic existence and uniqueness results (Th. 3.2), locally in time,
to hold. Thus there is a trade-off between a good approximation of the original
Saint-Venant equations, i.e. ε → 0, and the validity of the well-posedness of our
model in time. The regularized solutions for fixed ε are again denoted by h and v.

In order to formulate our coupled system in a simpler form, in particular more
accessible for numerics, we perform some scalings. We introduce a new time t̃ ∈
(0, 1) by t = T t̃. In this study, the dedimensionalization of time simplifies the
existence and uniqueness proof for the states and, moreover, turns out to have
numerical advantages. Coherently, we write Q̃ := (0, 1) × (0, L) and Γ̃ := (0, 1) ×
{0, L}. We introduce the mass ratio η = mtr/mw and, in addition, scale ũ := u/mtr,

c̃ := c/mtr, k̃ := k/mtr. Finally, we write for the scaled counter-force on the spring-
damper system

(2.17) Fs(d∆, v∆) := −1

g
(c̃d∆ + k̃v∆)

and for the force on the container due to gravity of the fluid

(2.18) Ff (h) := − g

L
[h(t, ·) +B(·)]L0 .

For ease of presentation we abbreviate

(2.19) Fc(d∆, v∆) = −Bx + ηFs(d∆, v∆).

This leads to the following initial-boundary value problem, following from (2.3) –
(2.11),

ht + T (hv)x − εThxx = 0, (t, x) ∈ Q̃,(2.20)

hx = Fc(d∆, v∆), (t, x) ∈ Γ̃,(2.21)

h(0, x) = h(0)(x), x ∈ [0, L],(2.22)

vt + T

(
1

2
v2 + gh

)

x

− εTvxx = TgFc(d∆, v∆), (t, x) ∈ Q̃,(2.23)

v = 0, (t, x) ∈ Γ̃,(2.24)

v(0, x) = v(0)(x), x ∈ [0, L],(2.25)

ḋ∆ = Tv∆, t ∈ [0, 1],(2.26)

d∆(0) = d
(0)
∆ := 0,(2.27)

ḋw = Tvw, t ∈ [0, 1],(2.28)

dw(0) = d(0)
w ,(2.29)

v̇∆ = T ũ+ TgFs(d∆, v∆) + TFf (h), t ∈ [0, 1],(2.30)

v∆(0) = v
(0)
∆ := v

(0)
tr − v(0)

w ,(2.31)

v̇w = TFf (h) t ∈ [0, 1],(2.32)
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vw(0) = v(0)
w .(2.33)

Note that on the right-hand-side of (2.30), the (time-scaled) effective acceleration,
i.e. control plus acceleration due to fluid motion in the container, appears (see [11,

Sect. 1] for details). For ease of notation, we drop the tildes on t̃, Q̃, Γ̃, ũ, c̃, and k̃
in the following.

3. Existence and uniqueness of states

(2.20) and (2.23) are semi-linear parabolic equations that are fully coupled to
the ODEs (2.26), (2.28), (2.30), and (2.32). We start by considering existence and
uniqueness for this coupled problem that is non-standard assuming a given control
u ∈ U = L2(0, 1) and a given terminal time T > 0.

An ODE can be identified as a special case of a PDE (elliptic 1st order), see for
instance [19, Subsect. 2.6]. We consider the ODE-PDE system as PDE system. As
state spaces we work here with

Ỹ1 :=[H1(0, 1;L2(0, L))]2 ∩ [L2(0, 1;H2(0, L))]2

∩ [L∞(0, 1;H1(0, L)) × L∞(0, 1;H1
0 (0, L))] ⊂ Y1

for the PDE states and

(3.1) Ỹ = Ỹ1 × [H2(0, 1)]2 × [H1(0, 1)]2 ⊂ Y

for all states. Both the state spaces Y1 and Y (here to be understood with T ≡ 1)

and the control space U are separable Hilbert spaces, while Ỹ1 and Ỹ are not. Note
that we have the structure of a Gelfand triple Y ⊂ U = U∗ ⊂ Y ∗ that will be
exploited for the derivation of optimality conditions below. For Bochner spaces we
use established abbreviations like L2H1 :=L2(0, 1;H1(0, L)) or L2L2 := L2(Q) in
the following.

For ε > 0 the regularized system for h and v is semi-linear parabolic and mathe-
matically well-posed in Ỹ1 for right-hand sides in L2 and initial data in H1

0 , see [7,
Subsect. 7.1.3] for a proof in case of homogeneous Dirichlet boundary conditions.
As a preliminary we need

Lemma 3.1 (Estimate for the trace with explicit constant for 1d time-space inter-
vals). For a function h ∈ L2(0, 1;H1(0, L)) there holds

∥h∥2
L2(Γ) ≤ max{4/L;L/2} ∥h∥2

L2H1 .

The proof is straightforward and relies on Hölder’s inequality, the fundamental
theorem of calculus and the Cauchy-Schwarz inequality. For details see, e.g., the
proof of the similar result [20, Th. II.1 b)].

Now we may prove

Theorem 3.2 (Local existence and uniqueness of the coupled ODE-PDE system

for a given control). For u ∈ L2(0, 1), h(0) ∈ H1(0, L), v(0) ∈ H1
0 (0, L), B ∈

C1(0, L), ε ∈ R+, and sufficiently small times T > 0, there exists a unique solution

(h, v, d∆, dw, v∆, vw) of the coupled system (2.20) – (2.33) s.t. (h, v)⊤ ∈ Ỹ1, d∆, dw ∈
H2(0, 1), and v∆, vw ∈ H1(0, 1).
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The idea of proof relies on the Banach fixed point theorem and an estimate
yielding a factor proportional to

√
T in the contraction constant. This method

has been used e.g. by Niethammer [29] in case of an ODE, that results from a
free boundary, coupled to the Laplace PDE. A similar proof is given in [21] for a
coupled ODE-PDE problem involving a free boundary, a quasi-linear diffusion PDE
and linear elasticity.

Proof. We are going to apply the Banach fixed point theorem in the space

M = {(h, v)⊤ ∈ Y1, d∆, dw ∈ H2(0, 1), v∆, vw ∈ H1(0, 1) | ∥v∥L∞L∞ ≤ κ},
where κ is a fixed arbitrary positive number. At first we determine a priori esti-
mates. In the following we use frequently the Young and Hölder inequalities in order
to compensate certain terms from the right-hand sides. We test equation (2.20) by
h, using the boundary conditions and Lemma 3.1, and find

sup
t∈(0,1)

1

2
∥h(t)∥2

L2(0,L) +
ε

4
T∥hx∥2

L2L2

≤ 1

2
∥h(0)∥2

L2(0,L) + T

(
κ2

2ε
+ 2εCΓ

)
∥h∥2

L2L2 + TL∥Fc∥2
L2(0,1)

where CΓ := max{4/L,L/2} is the constant appearing in Lemma 3.1. We multiply
by 2 and by Gronwall’s inequality this yields

sup
t∈(0,1)

∥h(t)∥2
L2(0,L) +

ε

2
T∥hx∥2

L2L2

≤
(
∥h(0)∥2

L2(0,L) + 2TL∥Fc∥2
L2(0,1)

)
exp

((
κ2

ε
+ 4εCΓ

)
T

)
.

For fixed ε and T ≤ Ch with a sufficiently small constant Ch depending on ε, this
gives an H1 estimate on h:

∥h∥2
L2H1 ≤ 2

ε
∥h(0)∥2

L2(0,L) + 4TL∥Fc∥2
L2(0,1).

We turn to estimates for v,

sup
t∈(0,1)

∥v(t)∥2
L2(0,L) + εT∥vx∥2

L2L2

≤ ∥v(0)∥2
L2(0,L) +

T

ε
g2∥h∥2

L2L2 + ∥v∥2
L2L2 + T 2L2g2∥Fc∥2

L2(0,1).

Again by compensating terms and Gronwall, we have

sup
t∈(0,1)

∥v(t)∥2
L2(0,L) + εT∥vx∥2

L2L2

≤
(

∥v(0)∥2
L2(0,L) +

Tg2

ε
∥h∥2

L2L2 + T 2L2g2∥Fc∥2
L2(0,1)

)
(1 + exp(1)) .

Now we test the equation (2.23) for v with vt and get

∥vt∥2
L2L2 + 2εT sup

t∈(0,1)
∥vx(t)∥2

L2(0,L)

≤ 2εT∥v(0)
x ∥2

L2(0,L) + 4T 2∥vx∥L2L2 + 4T 2g2∥hx∥2
L2L2 + 4T 2L2g2∥Fc∥2

L2(0,1).
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By Gronwall

∥vt∥2
L2L2 + 2εT sup

t∈(0,1)
∥vx(t)∥2

L2(0,L)

≤
(
2εT∥v(0)

x ∥2
L2(0,L) + 4T 2g2∥hx∥2

L2L2 + 4T 2L2g2∥Fc∥2
L2(0,1)

)
exp

(
2

ε
T

)
,

Due to the embedding H1 ↪→ L∞ in 1d we get with a nonnegative constant CL from
the last estimate

∥v∥2
L∞L∞ ≤ CL

(
∥v(0)

x ∥2
L2(0,L) +

2

ε
Tg2

(
L2∥Fc∥2

L2(0,1) + ∥hx∥2
L2L2

))
exp

(
2

ε
T

)
.

We will see below that the Fc term is dominated by a factor T . This shows with

a κ > max{√
2CL∥v(0)

x ∥L2(0,L), δ}, 0 < δ < 1 that we have for sufficiently small

T < εδ2 that there is a map from M into itself. The contraction property of the
fixed point map follows analogously. The estimate for the coupling force term reads

(3.2) ∥Fc∥2
L2(0,1) ≤ CB + 3

η

g

(
c∥d∆∥2

L2(0,1) + k∥v∆∥2
L2(0,1)

)
,

where CB is a (nonnegative) constant depending on Bx. For the ODEs we have the
estimates

∥dI∥2
L2(0,1) ≤ 2T |d(0)

I |2 + 2T 2∥vI∥2
L2(0,L), I ∈ {∆, w},

(3.3) ∥v∆∥2
L2(0,1) ≤ 2T |v(0)

∆ |2 + 6T 2

(
∥u∥2

L2(0,1) +
g

η
∥Fc∥2

L2(0,1) +
gCΓ

L
∥h∥2

L2H1

)

and

(3.4) ∥vw∥2
L2(0,1) ≤ 2T |v(0)

w |2 + 2T 2 gCΓ

L
∥h∥2

L2H1 .

In particular, a factor T 2 enters into (3.3). Thus for sufficiently small T the term
with ∥h∥L2H1 entering ∥Fc∥L2(0,1) via (3.2) yields a map into Y1,1, being the first

component of M. This yields directly h ∈ L∞L2∩L2H1, thus v∆, vw ∈ H1(0, 1) (by
the ODEs), d∆, dw ∈ H2(0, 1) (again by the ODEs) and finally v ∈ L∞H1 ∩H1L2.
Thus we have a map into M. From the v-PDE we see that further vxx ∈ L2L2,
thus v ∈ L2H2, too.

So far h ∈ L∞L2 ∩ L2H1. In order to decide whether h ∈ L∞H1 ∩ H1L2, we
consider another fixed point argument. Assume ∥vx∥L∞L∞ ≤ K. We test (2.20)
with htϕ, where we choose a sufficiently smooth ϕ with compact support in (0, L)
s.t. no boundary terms contribute,

∥ht∥2
L2L2 + εT sup

t∈(0,1)
∥hx(t)∥2

L2(0,L)

≤ εT∥h(0)
x ∥2

L2(0,L) +K2T 2∥h∥L2L2 + κ2T 2∥hx∥L2L2 .

Again by a Gronwall argument

∥ht∥2
L2L2 + εT sup

t∈(0,1)
∥hx(t)∥2

L2(0,L)

≤
(
εT∥h(0)

x ∥2
L2(0,L) +K2T 2∥h∥L2L2

)
exp

(
κ2

ε
T

)
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we get h ∈ H1L2 ∩ L∞H1 in the interior. Thus from the PDE for h, we see that
further hxx ∈ L2L2, thus h ∈ L2H2, too. This justifies K < ∞ by the v-PDE and
the Banach fixed point theorem. For the second h-estimate including the boundary,
assume at first Fc = 0, proceed as above and then add the H1C0-function Fs.

By Banach’s fixed point theorem the solution is unique. □

We observe that the estimates for hx, vx, ht, and vt depend critically on ε, even
for arbitrary small times T , while the estimates on h and v, do not. Since T > 0
has to be sufficiently small we have existence and uniqueness only locally in time.
Due to our objective function we expect that we may assume that the control u
is determined s.t. there is no blow up for finite times and we can extend the local
solution to a solution for any finite time T . Higher regularity results similar as
in [7, Subsect. 7.1.3, Th. 6] are not needed in the following and therefore omitted

here. Note that in one (time) dimension, we have the embeddings H1 ↪→ C0,1/2 and

H2 ↪→ C1,1/2.

4. Necessary optimality conditions and existence of an optimal
control

The control effort serves as well as a Tikhonov regularization, therefore we require
α2 > 0. We emphasize that for our proof of existence of optimal controls, see
Th. 4.1, it is crucial to treat the terminal conditions for the positions d∆, dw and
the velocities v∆, vw as penalties.

We minimize (2.14), subject to the regularized ODE-PDE system (2.20) – (2.33)
with all boundary and initial conditions and the point-wise control constraints,
following from (2.13),

u ∈ Uad := {u ∈ L2(0, 1) | umin ≤ u ≤ umax}.
The adjoints that are introduced in the Subsection 4.1 live in the space W , that
turns out in our example that it can be identified with Y , furthermore let

Ξ = Y ∗ ×H1(0, L) ×H1
0 (0, L) × R4

= L2(H1)∗ × L2H−1 × [(H2)∗]2 × [(H1)∗]2 ×H1(0, L) ×H1
0 (0, L) × R4,

the latter six factor spaces representing initial conditions. Then the weak formula-
tion of the differential equations yields a bounded operator

(4.1) e : (y, u) ∈ Y × U 7→
(

E(y, u)

y(0) − y(0)

)
∈ Ξ

where the operator representing the PDE-ODE system is of the following form

E(y, u) :=




ht +A1(y)
vt +A2(y)

ḋ∆ − v∆
ḋw − vw

v̇∆ +A5y +B5u
v̇w +A6y




∈ W ∗

with nonlinear operators Al, l = 1, 2 and linear operators B5, Al, l = 5, 6.
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Theorem 4.1 (Existence of optimal controls). For sufficiently small T > 0, there
exists an optimal solution (ŷ, û) of our optimal control problem.

Proof. Uad is a convex, bounded, and closed subset of U . Obviously, the embedding
H1(0, L) → Lp(0, L) is compact for any 1 < p < ∞. Thus, weak convergence in Y1

implies strong convergence in [L2L4]2 × [H2(0, 1)]2 × [H1(0, 1)]2, thus h2, v2 have
a spatial L2 regularity and the nonlinear terms hxv, hvx and vvx multiplied with
a test function may be bounded in L2L2. Therefore, with [L2(Q)]∗ = L2(Q) and
[L2(Q)]2 ⊂ Y ∗

1 , the map E : Y × U → W ∗ is continuous under weak convergence.
Moreover, the state equation E(y, u) = 0 has a bounded control-to-state operator
S : u ∈ Uad 7→ y = S(u) ∈ Y , see our local existence and uniqueness result
Th. 3.2 for the states. The considered objective J is sequentially weakly lower
semi-continuous. Now we may apply [16, Th. 1.45]. □

However, in order to compute optimal controls it is favorable to solve numerically
necessary optimality conditions, see Subsection 4.3.

4.1. Lagrangian based approach. We start with formal Lagrange techniques
as in [32, Kap. 3.1]. It would also be possible to follow a Hamiltonian approach
in order to derive NOCs by Pontryagin’s minimum principle, see e.g. [31] for the
optimal control of a nonlinear parabolic equations.

The Lagrange function L : Y ×U ×W → R is defined as the objective J coupled
to the weak formulation of the PDE-ODE constraints by Lagrange multipliers λ,

(4.2) L(y, u, λ) := J(y, u) + ⟨λ,E(y, u)⟩W,W ∗ .

Here the multipliers are functions λ = (λ1, λ2, λ3, λ4, λ5, λ6)
⊤ and are the so-called

adjoints. We insert the modified version (reflecting the scaling in Subsection 2.2)
of the objective (2.12) and the weak formulation of the differential equations into
(4.2)

L(y, u, λ) =
α1T

2

∫

Q
|h− hd|2 dx dt+

α2T

2

∫ 1

0
u2 dt+

α3T

2

∫

Q
v2 dt(4.3)

+
∑

I∈{∆,w}

(α4

2
[dI ]

2
1 + σ4[dI ]1 +

α5

2
[vI ]

2
1 + σ5[vI ]1

)
+ εT

∫ 1

0
Fc[λ1]

L
0 dt

−
∫

Q
htλ1 − T (hv − εhx)λ1,x dx dt− T

∫ 1

0
[(gh− εvx)λ2]

L
0 dt

−
∫

Q
(vt − TgFc)λ2 − T

(
v2

2
+ gh− εvx

)
λ2,x dx dt

−
∫ 1

0
(ḋ∆ − Tv∆)λ3 + (ḋw − Tvw)λ4 + (v̇∆ − T (u+ gFs + Ff ))λ5 dt

−
∫ 1

0
(v̇w − TFf )λ6 dt.

Let ŷ, û, and λ be a solution of the optimal control problem. We expect the
necessary optimality conditions

⟨Ly(ŷ, û, λ), y⟩Y ∗,Y = 0 ∀y with y(0) = 0,(4.4)
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⟨Lu(ŷ, û, λ), u− û⟩U∗,U ≥ 0 ∀u ∈ Uad.(4.5)

They are derived rigorously below, see in Th. 4.3. The derivative of the Lagrange
function w.r.t. the states yields after integrations by parts for all time and space
derivatives of states (using in particular (2.17) – (2.19))

⟨Ly(ŷ, û, λ), y⟩Y ∗,Y =

∫

Q
h

(
α1T (ĥ− hd) + λ1,t + T v̂λ1,x + εTλ1,xx

)
dx dt

−
∫ L

0
(hλ1)(1, ·) dx− T

∫ 1

0
ε[hλ1,x + ghλ2]

L
0 dt+ Tg

∫

Q
hλ2,x dx dt

− T
g

L

∫ 1

0
[h]L0 (λ5 + λ6) dt+

∫

Q
v (α3T v̂ + λ2,t + T v̂λ2,x + εTλ2,xx) dx dt

−
∫ L

0
(vλ2)(1, ·) dx+ εT

∫ 1

0
[vxλ2]

L
0 dt+ T

∫

Q
ĥvλ1,x dx dt+

∫ 1

0
d∆λ̇3 dt

+ (α4[d̂∆]1 + σ4 − λ3(1))d∆(1) − Tc

∫ 1

0
d∆

(
η

(
ε

g
[λ1]

L
0 +

∫ L

0
λ2 dx

)
+ λ5

)
dt

+ (α4[d̂w]1 + σ4 − λ4(1))dw(1) +

∫ 1

0
dwλ̇4 dt+ (α5[v̂∆]1 + σ5 − λ5(1)) v∆(1)

+

∫ 1

0
v∆λ̇5 dt− T

∫ 1

0
v∆

(
k

(
η

(
ε

g
[λ1]

L
0 +

∫ L

0
λ2

)
+ λ5

)
− λ3

)
dt

+ (α5[v̂w]1 + σ5 − λ6(1)) vw(1) +

∫ 1

0
vwλ̇6 dt+ T

∫ 1

0
vwλ4 dt.

From (4.5) we obtain

⟨Lu(ŷ, û, λ), u− û⟩U∗,U = T

∫ 1

0
(α2û+ λ5)(u− û) dt ≥ 0 ∀u ∈ Uad.

Here we have the structure Lu(y, u, λ) = µ̃u + G(y, u, λ) with µ̃ = α2 > 0 and
G(y, u, λ) = λ5 continuously Fréchet-differentiable from Y ×L2(0, 1)×W → L2(0, 1)
and locally Lipschitz-continuous from Y ×L2(0, 1)×W → Lp(0, 1), p > 2, as required
in [10, Assumpt. 4.2 (b)]. U = L2(0, 1) is a Hilbert space and Uad ⊂ U is nonempty,
closed, and convex. By means of a superposition operator Π : Y × U ×W → U ,

(4.6) Π(y, u, λ)(t, x) := u(t) − PUad
(u(t) − α−1

2 Lu(y(t, x), u(t), λ(t, x)),

where PUad
is the Euclidean projection onto Uad, we may rewrite [16, Corollary 1.2])

the variational inequality (4.5) as

(4.7) û = PUad

(
− 1

α2
λ5

)
.

As a check, by

(4.8) ⟨Lλ(ŷ, û, λ), λ⟩W ∗,W = 0

we recover the differential equations and its Neumann boundary conditions. Here
we apply the fundamental lemma of calculus of variations (also known as Du Bois-
Reymond lemma) in order to deduce that the integrands themselves are zero.
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4.2. Adjoint differential equations. The so far only formally derived NOC (4.4)
yield the adjoint system for λ. We would have the adjoint PDE

λ1,t + T v̂λ1,x + εTλ1,xx + Tgλ2,x = −α1T (ĥ− hd), (t, x) ∈ Q,(4.9)

λ1,x = − g

εL
(λ5 + λ6), (t, x) ∈ Γ,(4.10)

λ1(1, x) = 0, x ∈ [0, L],(4.11)

λ2,t + T v̂λ2,x + εTλ2,xx + T ĥλ1,x = −Tα3v̂, (t, x) ∈ Q,(4.12)

λ2 = 0, (t, x) ∈ Γ,(4.13)

λ2(1, x) = 0, x ∈ [0, L],(4.14)

and the adjoint ODE

λ̇3 = Tc

(
η

(
ε

g
[λ1]

L
0 +

∫ L

0
λ2 dx

)
+ λ5

)
, t ∈ (0, 1),(4.15)

λ3(1) = α4

(
d̂∆(1) − d

(T )
∆

)
+ σ4,(4.16)

λ4 = α4

(
d̂w(1) − d(T )

w

)
+ σ4, t ∈ (0, 1],(4.17)

λ̇5 = −Tλ3 + Tk

(
η

(
ε

g
[λ1]

L
0 +

∫ L

0
λ2 dx

)
+ λ5

)
, t ∈ (0, 1),(4.18)

λ5(1) = α5

(
v̂∆(1) − v

(T )
∆

)
+ σ5,(4.19)

λ6 = Tλ4(1 − t) + α5

(
v̂w(1) − v(T )

w

)
+ σ5, t ∈ (0, 1],(4.20)

where we have exploited that λ̇4 = 0 and that we may integrate λ̇6 in time. We
abbreviate the adjoint terminal conditions by

λ(1) := −(0, 0, α4[d̂∆]1 + σ4, α4[d̂w]1 + σ4, α5[v̂∆]1 + σ5, α5[v̂w]1 + σ5)
⊤.

Remark 4.2 (Coupling structure). In the ODE-PDE system we have a control
that acts on the ODE system (state v∆). All ODE states enter the PDE or the
boundary conditions for the states h and v, that are fully coupled. Finally, h enters
into the ODE states v∆ and vw.

In the adjoint system the adjoints λ5 and λ6 (corresponding to v∆ and vw) enter
via the Neumann boundary condition for λ1 (corresponding to h), fully coupled
with λ2 (corresponding to v) and all PDE adjoints (λ1 and λ2) enter into the ODE
for the adjoints λ3 and λ5. The adjoint λ5 (corresponding to v∆) determines the
control. We notice a reversed coupling in the adjoint system.

4.3. Derivation of necessary optimality conditions. In order to prove the nec-
essary optimality conditions we combine the concept and notation of [32, Kap. 5.5]
and [16, Sect. 1.7], who have demonstrated this for the Neumann boundary control
as well as for the distributed control in case of a single parabolic PDE.

Theorem 4.3 (First-order necessary optimality conditions). Let T > 0 be a suffi-
ciently small time. Then for our optimal control problem (2.14) subject to (2.20) –
(2.33) and (2.13), the necessary optimality conditions (4.4), (4.7) and (4.8) hold,
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i.e. an optimal solution (ŷ, û) fulfills: i) the adjoint system (4.9) – (4.20), the ii)
optimality condition (4.7), and iii) the PDE-ODE system in the weak form (4.8).

Proof. We consider box constraints and Uad is a closed, convex, nonempty subset
of an open Banach space U . Furthermore, according to Th. 3.2 there exists a
control-to-state operator S : U → Y, u 7→ S(u) such that the reduced objective
J (u) = J(S(u), u) is well-defined on an open neighborhood V of Uad and Gâteaux
differentiable around û. Thus we may apply [16, Th. 1.46] yielding (4.7).

We consider the operator for the state equation E(y, u) = 0, E : Y × U → W ∗

in (4.1). Since we consider control constraints, [16, Th. 1.48, Corollary 1.3] shows
that it suffices to require only

1) Continuous F -differentiability of J : Y × U → R and E : Y × U → W ∗,
2) Unique solvability of the state equation in V ⊂ U , and
3) Ey(y(u), u) ∈ L(Y,W ∗) has a bounded inverse for all u ∈ V ⊃ Uad.

We check:

1) The statement follows from the imbedding Y ↪→ [C0([0, 1];L2(0, L))]2×
[C1([0, 1])]2 × [C0([0, 1])]2. The terminal conditions on d∆, dw, v∆, and vw

are well-defined, too.
2) Let S : V → Y denote the control-to-state operator (solution operator) of the

differential equation system. This control-to-state operator S is well-defined,
since for every u we have a solution, see Th. 3.2.

3) The linearized problem in strong form is obtained by linearizing (2.20) – (2.33)

h̃t + T (ĥṽ + h̃v̂)x − εT h̃xx = 0, (t, x) ∈ Q,

εT h̃x = εTηFs(d̃∆, ṽ∆), (t, x) ∈ Γ,

h̃(0, x) = 0, x ∈ [0, L],

ṽt + (T v̂ṽ + gh̃)x − εT ṽxx = TgηFs(d̃∆, ṽ∆), (t, x) ∈ Q,

ṽ = 0 (t, x) ∈ Γ,

ṽ(0, x) = 0, x ∈ [0, L]

and

˙̃
d∆ = T ṽ∆, t ∈ (0, 1), d̃∆(0) = 0,

˙̃
dw = T ṽw, t ∈ (0, 1), d̃w(0) = 0,

˙̃v∆ − TgFs(d̃∆, ṽ∆) = Tu− T
g

L
[h̃(t, ·)]L0 , t ∈ (0, 1), ṽ∆(0) = 0,

˙̃vw = −T g
L

[h̃(t, ·)]L0 , t ∈ (0, 1), ṽw(0) = 0.

Here we have scaled the Neumann boundary condition for h by a factor of εT
corresponding to the conormal derivative. Note that for well-balanced equations
in our numerics, we scale the Neumann boundary condition for λ1 analogously
by εT . ⟨Ey, ỹ⟩Y ∗,Y is the linearized problem in weak form, that follows from
integrating by parts.

For the linearized problem we have the same structure of estimates as for the
full problem. The linearized problem has a unique solution for every u and every
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initial data h(0) ∈ H1(0, L), v(0) ∈ H1
0 (0, L), and (d

(0)
∆ , d

(0)
w , v

(0)
∆ , v

(0)
w )⊤∈ R4.

Thus the linearized control-to-state operator S̃(û) is a well-defined unique linear
continuous (bounded) affine operator and, in particular, is surjective (not a
proper dense subset of the image). It has a bounded inverse, according to
the theorem of the inverse mapping [1, Satz 5.8] (for a suitable neighborhood
V ⊃ Uad).

□
The adjoint system has the same structure as the linearized original ODE-PDE

problem and possesses hence a unique solution. Note that the adjoint equations
are solved backwards in time. Consistently, we have terminal conditions in the
parabolic PDEs for λ1 and λ2 and the Laplacian operator has the opposite sign in
the adjoint PDE (compared to the state PDE).

Using the same ingredients (Hölder/Young inequalities, trace theorem, Gronwall
inequality, compensation for sufficiently small T ) as for state equations, we get the
following regularity from estimates for the adjoint PDEs:

(4.21) (λ1, λ2)
⊤ ∈ Ỹ1 ⊂ Y1, λ ∈ Ỹ ⊂ Y ≃ W,

indeed, showing the higher regularity for λ.

Remark 4.4 (Convexity and direct approach). For a convex problem the necessary
conditions would be also sufficient. Note that due to the Saint-Venant equations
the problem is in general not convex.

For a semi-linear parabolic equation with an objective convex w.r.t. u, the neces-
sary optimality conditions are proven in [32, Satz 5.8/Satz 5.15] under reasonable
assumptions. The proofs use, among other things, the convexity and closedness of
Uad, the lower semi-continuity of the objective, a Hilbert space structure, and the
solvability of the adjoint equation. The necessary optimality conditions are derived
directly.

We could also follow a direct approach with a reduced objective as in [16].

4.4. Semi-smooth Newton method in a Hilbert space. We introduce Z̄ =
Y × U ×W and aggregate all unknowns in

z = (y, u, λ)⊤ = (h, v, d∆, dw, v∆, vw, u, λ1, λ2, λ3, λ4, λ5, λ6)
⊤ ∈ Z̄.

The necessary optimality conditions (4.4), (4.7), and (4.8) yield the following non-
smooth system:

(4.22) f(z) =




Lλ(z)
Π(z)
Ly(z)


 !

= 0,

where Lλ(z) represents the PDE-ODE system for the states and Ly(z) yields the
adjoint PDE-ODE system.

In order to continue analogously as in [10], where elliptic problems are considered,
we semi-discretize in time. First semi-discretizing in time and then discretizing in
space is a standard technique and is e.g. applied by Hinze et al. in [15, Section 2] to
optimal flow. We divide the time interval [0, 1] by N + 1 time steps with constant
increment ∆t = 1/N . For ease of presentation we keep a similar notation as in the
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continuous case. Let Z = H1(0, L) ×H1
0 (0, L) × R4 ×U ×H1(0, L) ×H1

0 (0, L) × R4

and

z := (y0, u0, λ0, . . . , yN , uN , λN )⊤ ∈ ZN+1.

Then the time-discretized PDE-ODE system is of the following form

(4.23) yi = yi−1 + ∆tΦ(yi, ui), i = 1, . . . , N,

with initial conditions y0 = ϕ := (h(0), v(0), d
(0)
∆ , d

(0)
w , v

(0)
∆ , v

(0)
w ). Analogously, the

adjoint system semi-discretized in time reads

(4.24) λi = λi+1 + ∆tΨ(yi, ui, λi+1), i = 0, . . . , N − 1,

with terminal conditions λN = ψ := λ(1). Note that the state equations are solved
forward in time by an implicit Euler method, while the adjoint equations are solved
backward in time, see e.g. [4, Sect. 3.3]. Note that the coupled forward/adjoint
system can be interpreted as a Hamiltonian system [2, Sect. 2.2] and that it is
computed here by a symplectic method [9, Th. 5.3.3]. In particular, the discrete
adjoint backward update is explicit w.r.t. λ and implicit w.r.t. y.

As a possibility to speed up our numerics, we could try a more elaborated scheme
of Crank-Nicolson type. For evolution equations where the spatial differential op-
erator is self-adjoint it has been demonstrated that FDTO and FOTD approaches
commute for certain variants of Crank-Nicolson schemes [2], but it is not clear
how to apply this framework to our problem. Alternatively, we could start with a
semi-discretization in space, too.

From (4.22) this yields the equation for the vector f ∈ [Z∗]N+1

(4.25) f = (f0, . . . , fi, . . . , fN )⊤ = 0

where

f0 =




−y0 + ϕ
u0 − P[umin,umax](−λ0

5/α2)
−(λ0 − λ1) + ∆tΨ(y0, u0, λ1)


 ,

fi =




−(yi − yi−1) + ∆tΦ(yi, ui)
ui − P[umin,umax](−λi

5/α2)
−(λi − λi+1) + ∆tΨ(yi, ui, λi+1)


 , i = 1, . . . , N − 1,

and

fN =




−(yN − yN−1) + ∆tΦ(yN , uN )
uN − P[umin,umax](−λN

5 /α2)
λN − ψ(yN )


 .

Let Li denote the semi-discretized Lagrange function. The assumptions on the
structure of Li

u [10, Assumpt. 4.2], yielding the semi-smoothness of fi, and on
the uniform invertibility of the Newton matrices Mi [10, Assumpt. 2.3], due to
the Lax-Milgram theorem are fulfilled. Furthermore, we assume that the Tikhonov
parameter α2 is sufficiently large [10, Assumpt. 3.1 (a)], such that a descent direction
w.r.t. the merit function Θ = ∥f∥2

[Z∗]N+1 is always obtained. Thus we may apply

the globalized semi-smooth Newton method derived in [10] to compute a zero of f .
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Let IY denote the identity operator in the Banach space Y . The Newton matrix
M is a block-tridiagonal matrix of the form

(4.26) M :=




M1 R1

L2 M2 R2

. . .
. . .

. . .

LN−1 MN−1 RN−1

LN MN




with

Mi ∈ ∂Cfi, i = 1, . . . , N,

Li := diag(IY , 0, 0), i = 2, . . . , N,

Ri := diag(0, 0, IW ), i = 1, . . . , N − 1.

The set ∂Cfi consists of all matrices Mi ∈ L(Z,Z∗), i = 0, . . . , N . Mi has the
structure

(4.27) Mi(y, u, λ) =




∆tΦy(y, u) − IY ∆t Ei
u(y, u) 0

0 1 (0, 0, 0, 0, D, 0)
Li

y,y(y, u, λ) Li
y,u(y, u, λ) Li

y,λ(y, u, λ) − IW


 ,

where the generalized differential D ∈ L∞(0, 1) is chosen such that

(4.28) D(t) ∈ ∂CP[umin,umax](−λ5(t)/α2), t ∈ (0, 1).

The subdifferential ∂CP[umin,umax] takes its values in {{0}, [0, 1], {1}}, whereupon at
a non-differentiability point we may choose a fixed value in the interval [0, 1].

Here we have matrix blocks of the following structure, for the PDE-ODE system
(incorporating the boundary conditions for the h-PDE into the first/last components
of the corresponding block suitably)

Φy(y, u) =




Tcη ε
g

Tkη ε
g

−T (v̂∂x + v̂x) + εT∂xx −T (ĥ∂x + ĥx)
−Tcη ε

g
−Tkη ε

g

−Tg∂x −T v̂∂x + εT∂xx −Tcη −Tkη

T

T
Tg
L

−Tg
L

−Tc −Tk
Tg
L

−Tg
L




,

and for the transposed adjoint system

Li
y,λ(y, u, λ) = ∆t Ψλ(y, u)⊤ =

∆t




Tcη ε
g

Tkη ε
g

T v̂∂x + εT∂xx T ĥ∂x

−Tcη ε
g

−Tkη ε
g

Tg∂x T v̂∂x + εT∂xx −Tcη −Tkη

T
T

Tg
L

−Tg
L

−Tc −Tk
Tg
L

−Tg
L




.
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Furthermore, Ei
u = (0, 0, 0, 0, T, 0)⊤, and for the blocks corresponding to the ob-

jective we have

Li
y,y(y, u, λ) = ∆t




Tα1 Tλ1,x

Tλ1,x Tα3 + Tλ2,x

α4δ1
α4δ1

α5δ1
α5δ1




(δ1 here denoting the Dirac distribution that is 1 for the terminal time t = 1 and
0 otherwise) and Ly,u(y, u, λ) vanishes. This yields set valued mappings ∂Cfi :
Z ⇒ L(Z,Z∗) where the map has values in the set of all M fulfilling (4.27). Note
that the the subscript “C” is due to the close relation in finite dimensions to Qi’s
C-subdifferential.

The semi-smooth Newton method with a suitable globalization strategy [10, Al-
gorithm 3.3], there applied to semi-linear elliptic equations, is here adapted to the
semi-discretization in time of semi-linear parabolic equations.

Algorithm 4.5 (Global semi-smooth Newton method).

(i) Set k = 0, define z0 := z(0) ∈ ZN+1, and choose β ∈ (0, 1), σ ∈ (0, 1/2).
(ii) If ∥f∥[Z∗]N+1 < tol, then stop.

(iii) For fixed M(zk), Mi(zk) ∈ ∂Cfi(zk) for all i = 0, . . . , N compute the search
direction sk by solving

M(zk)sk = −f(zk)

(iv) Determine the smallest ik ∈ N0 such that

Θ(zk + βiksk) ≤ (1 − 2σβik)Θ(zk)

and set β̃k := βik .
(v) Update zk+1 := zk + β̃ksk and k := k + 1. Goto (ii).

In Step (iv) the step-size β̃k is determined by an Armijo line-search, relying in
particular on the merit function Θ(zk) and that the gradient of f(zk) applied to sk

is −2Θ(zk).
According to [10, Th. 3.4, Th. 3.5] we have

Theorem 4.6 (Accumulation points are global solutions). For α2 sufficiently large
we have that any accumulation point z̄ of a sequence {zk}k∈N0 (with f(zk) ̸= 0 for all
k ∈ N0) generated by Algorithm 4.5 is a zero. The sequence converges super-linearly
to z̄ in a suitable neighborhood of z̄.

5. Numerical methods

The discretized optimal control problem can be solved by a gradient-based opti-
mization procedure like SQP (as in [11]), or, the discretized NOC by a semi-smooth
Newton method as we do in this study.
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5.1. Fully discretized problem. We discretize the space interval [0, L] equidis-
tant with ∆x = L/M , yielding xj := j∆x, j = 0, . . . ,M . We introduce

z∆x,i := (hi
1, . . . , h

i
M−1, v

i
1, . . . , v

i
M−1, d

i
∆, d

i
w, v

i
∆, v

i
w)⊤, i = 0, . . . , N.

The boundary values hi
0, h

i
M , v

i
0, v

i
M , i = 0, . . . , N , are determined directly and,

thus, are not included in the solution vectors z∆x,i. The vectors in case of the full
discretization are indicated by an upper index ∆x. For ease of presentation we state
the discretized problem for the case B ≡ 0.

Note that we discretize the flux terms in the Saint-Venant equations as in the
Lax-Friedrichs scheme, e.g.,

(h∂xv + ∂xhv)(xj) = (hv)x(xj) ≈ hj+1vj+1 − hj−1vj−1

2∆x
.

Furthermore, in consistence with the Lax-Friedrichs scheme we have set

ε =
1

2

(∆x)2

T ∆t

for the artificial viscosity. With these two considerations, for instance (2.20) is
approximated by

hi+1
j − hi

j

∆t
≈ − T

2∆x

(
hi

j+1v
i
j+1 − hi

j−1v
i
j−1

)
+

1

2∆t

(
hi

j+1 − 2hi
j + hi

j−1

)
.

The Lax-Friedrichs scheme is an explicit method that is first order in time and
second order in space. For the convergence, and hence the stability, of an explicit
scheme the Courant-Friedrichs-Levy (CFL) condition

(5.1) V
T∆t

∆x
< 1

is necessary and sufficient [27, Sect. 8.3]. Here V = maxt,x{v±√
gh} denotes the so-

called group velocity at which information is exchanged within the numerical grid.
But V cannot be determined a priori and is part of the numerical solution. Thus
the CFL number V T∆t/∆x has to be checked in the numerical results a posteriori.

Analogously as in [11] time integrals are approximated by first order Riemann
sums and space integrals by the second order trapezoidal rule. This is consistent
with the Lax-Friedrichs scheme that is first order in time and second order in space.
Here the PDE-ODE (4.23) are fully discretized by

yi = yi−1 + ∆tΦ∆x,i, i = 1, . . . , N,

where Φ∆x,i is here the space discretization of Φ(yi, ui) (i = 1, . . . , N), together with
the boundary conditions that follow by the method of undetermined coefficients
accurately in second order,

hi
0 =

4

3
hi

1 − 1

3
hi

2 − 2

3
∆xF i

c,0, vi
0 = 0,

hi
M =

4

3
hi

M−1 − 1

3
hi

M−2 +
2

3
∆xF i

c,M , vi
M = 0,
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where F i
c,j is the discretization of (2.19) at time step ti at the grid point xj . The

initial conditions y0 ∈ R2(M+1) enter by

y0 = ϕ(y(0)) :=
(
h0

1 . . . h0
M−1 v0

1 . . . v0
M−1 d0

tr d0
w v0

tr v0
w

)⊤
.

From (4.7) we obtain for the discretized control directly

ui = P[umin,umax](−λi
5/α2), i = 0, . . . , N.

By discretizing the NOC in time and space, the obtained FOTD-adjoints λ are
different to the FDTO adjoints. We write

λi = (λi
1,1, . . . , λ

i
1,M−1, λ

i
2,1, . . . , v

i
2,M−1, λ

i
3, λ

i
4, λ

i
5, λ

i
6)

⊤.

From (4.24) we find for the fully discretized adjoint equation

λi = λi+1 + ∆tΨ∆x,i, i = 0, . . . , N − 1,

where Ψ∆x,i is here the space discretization of Ψ(yi, ui, λi+1) with boundary condi-
tions

λi
1,0 =

4

3
λi

1,1 − 1

3
λi

1,2 +
4

3

T∆t

∆x

g

L

(
λi

5 + λi
6

)
, λi

2,0 = 0,

λi
1,M =

4

3
λi

1,M−1 − 1

3
λi

1,M−2 − 4

3

T∆t

∆x

g

L

(
λi

5 + λi
6

)
, λi

2,M = 0,

and terminal conditions λN = ψ(yN ). Note that in the initial guess z0 we set

zNm+2M−1 = d
(T )
∆ and zNm+2M = d

(T )
w . We abbreviate the number of vector com-

ponents at each time step by m = 2(M + 1) + 1 + 2(M + 1) = 4M + 5. Let

z∆x := (y0, u0, λ0, . . . , yN , uN , λN )⊤ ∈ R(N+1)×m

and f∆x
i (z∆x) ∈ Rm, i = 0, . . . , N , are vectors for each time step with

f∆x
i =




−(yi − yi−1) + ∆tΦ∆x,i

π(ui, λi
5)

−(λi − λi+1) + ∆tΨ∆x,i


 , i = 1, . . . , N − 1,

but with the two exceptions

(f∆x
0 )1st line = −y0 + ϕ,

(f∆x
N )3rd line = λN − ψ(yN ).

Then it remains to solve

f∆x = (f∆x
0 , . . . , f∆x

i , . . . , f∆x
N )⊤ = 0

by a semi-smooth Newton method. The Newton matrixM∆x
i is the space-discretized

version of (4.26), where the entries are the following matrices

M∆x
i ∈ ∂Cf

∆x
i i = 1, . . . , N,

L∆x
i := diag(Id2(M+1), 0, 02(M+1)×2(M+1)), i = 2, . . . , N,

R∆x
i := diag(02(M+1)×2(M+1), 0, Id2(M+1)), i = 1, . . . , N − 1,
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and the subdifferential ∂Cf
∆x
i consists of all matrices in Rm×m of the form (following

from (4.27))



∆tΦ∆x,i
yi − Id2(M+1) (02M , T, 0)⊤ 0

0 1 (02M , D, 0)⊤

(Lyi,yi)∆x,i 0 ∆tΨ∆x,i−1
λi − Id2(M+1)


 .

with D ∈ [L∞(0, 1)], D(t) ∈ ∂CP[umin,umax](−λi
5/α2), whereupon we have modi-

fied Newton matrices in the cases i = 0 and i = N .
Our Algorithm 4.5 for the time-discretized situation is additionally equipped with

a standard expansion strategy in the Armijo line-search. This expanded Armijo
line-search is efficient [26, §5, Satz 1] and allows for a significant speed-up in the
numerical computation of the optimal control.

5.2. Numerical results. The Algorithm 4.5 has been implemented in MATLAB
R2015b. The [Z∗]N+1 norm entering in the stopping criterion in step (ii) of the
algorithm is discretized using again the trapezoidal rule for the spatial integrals. As
parameters in this algorithm we work with β = 0.9, σ = 0.001, and tol = 10−6.

We consider two examples, the first scenario corresponding to an optimal braking
maneuver as considered in [11] and a second scenario with different parameters and
weights. The following data is underlying both examples. We work with the values
dw(0) = −5, d∆(1) = 0 (corresponding to dtr(1) = 100), dw(1) = 95, vtr(0) = 10,
vw(0) = 10, and the parameters in Table 1. By definition of the offset d̄, we have
d∆(0) = 0. d∆, dw are measured in m, v∆, vw in m/s.

Table 1. Parameters (unscaled)

Parameter Value Unit Description

L 4 [m] length of fluid container
b 1 [m] width of fluid container

h(0) 1 [m] initial height of fluid level
ρ 1000 [kg/m3] density of fluid (water)
mtr 2000 [kg] mass of truck

mw ρ b h(0)L [kg] mass of fluid container
c 40000 [N/m] spring force constant
k 10000 [Ns/m] damper force constant
g 9.81 [N/kg] earth acceleration

Feasible values for the terminal time T (in s) are taken from [11]. The control
u is considered between the bounds umin = −20000/mtr and umax = 2000/mtr.

We start with u(0) = umax/2 = const. Furthermore we set hi
j ≡ 1, i = 0, . . . , N ,

j = 1, . . . ,M−1. The other values of z∆x,i, i = 0, . . . N , unless they are determined
by initial values are set to zero at the start of the Newton method.

5.2.1. Example 1, as in [11]. We consider here the situation B ≡ 0. For the control
problem we work with the weights α1 = 1, α2 = 0.01/m2

tr, α3 = 0, α4 = 103,
σ4 = −10−4, α5 = 100, and σ5 = −10−5.
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Figure 2. Unscaled computed optimal control mtru vs. time t (top
left), unscaled computed spring-damper force mtrF vs. time t (top
right), computed fluid height h vs. time and space (t, x) (bottom
left), and computed horizontal fluid velocity v vs. time and space
(t, x) for a safety braking maneuver. We observe an excitation of
h and v shortly before the end of the braking maneuver. This is
reflected in the control, that has a general behavior turning from al-
most maximal acceleration to maximal deceleration, by some coun-
teractions at the begin and at the end. The coupling force has a
qualitatively similar behavior as the approximate control.

For the space discretization we consider M = 20 and a factor of 30 for the time
discretization, yielding N = 600. Here the CFL number (and thus the factor 30)
is suggested by the numerical results in [11, Subsection 3.3] and the CFL condition
(5.1), that depends itself on the numerical solution, is verified a posteriori. As
in [11] we find for the artificial viscosity ε ≈ 0.85714286 for this example.

For a safety breaking maneuver, i.e. with T = 14, the numerical optimal control
u, the spring-damper force, the vertical fluid level, and the horizontal fluid velocity
are depicted in Figure 2. Our algorithm requires about 30 Newton iterations and
yields a feasibility of the terminal constraints smaller than 10−7.

5.2.2. Example 2. Now we consider the situation B = −0.05 sin(πx/L). For the
control problem we work with the weights α1 = 5, α2 = 0.01/m2

tr, α3 = 0, α4 = 103,
σ4 = 10−4, α5 = 10, σ5 = 10−6. For the discretization we consider again M = 20
and N = 600. Again, the CFL condition is checked numerically. Consequently, the
numerical viscosity ε has the same value as in Example 1.

For a safety breaking maneuver, i.e. with T = 14, the numerical optimal control
u, the spring-damper force, the vertical fluid level, and the horizontal fluid velocity
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Figure 3. Unscaled computed optimal control mtru vs. time t (top
left), unscaled computed spring-damper force mtrF vs. time t (top
right), computed fluid height h vs. time and space (t, x) (bottom
left), and computed horizontal fluid velocity v vs. time and space
(t, x) for a safety braking maneuver. We observe an excitation of h
and v in the second half of the braking maneuver. This is reflected
in the control, that has a general behavior reaching from maximal
acceleration to maximal deceleration. In contrast to Example 1 we
find oscillations that might be due to the slope of the container
bottom B.

are depicted in Figure 3. Our algorithm requires about 80 Newton iterations and
yields a feasibility of the terminal constraints smaller than 10−6.

6. Conclusion and outlook

We compare with the results obtained in Gerdts et al. [11] by a FDTO approach,
but for a free terminal time T with a further contribution α0T in the objective
(with α0 > 0). The obtained numerical results in Example 1 are almost identical.
Note that in [11] and in Example 1 different weights are considered as in Example
2. The mild oscillatory behavior of the spring-damper force in Example 2 might
be explained by a swinging regime of the spring-damper element and the wave
character of h and v, describing shallow water waves.

The initial guess (y0, u0, λ0)⊤ turns out to be crucial for the performance of our
algorithm. In the first Newton iterations we observe with our method the theoret-
ically predicted super-linear convergence. However, for the last iterations this fast
convergence is not always observed due to issues with the numerical precision. In
particular, our algorithm terminates with less than 100 iterations, while the FDTO
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approach in [11] requires up to about 3900 iterations of the SQP method. Further-
more in [11] no reformulation introducing d∆ is exploited. A FDTO optimization
approach [33], taking into account the particular structure of the problem, features
super-linear convergence, but for a certain range of parameters only.

The reason for considering a FOTD approach like Algorithm 4.5 is, in addition
to theoretical insight, that a faster convergence, i.e. less iterations and computing
times, are obtained by discretizing in the second step, not before the optimization.
However, the numerical precision does not outperform our first approach. In the
FDTO ansatz the Courant-Friedrichs-Levy (CFL) condition, that is required for
numerical stability of the Lax-Friedrichs scheme, leads to a time discretization finer
than the space discretization by a factor of 30. For the computing times of numerical
optimal control this is unfavorable, but we meet again this issue in our FOTD
approach.

As next step we study further the convergence properties of the global Newton
method and how they could be improved by exploiting the structure of the problem.
It could be interesting to consider free terminal times. This case would require to
adapt our techniques to the non-linearities in T . Furthermore, more simulations for
a variation of different parameter sets are of interest. In the near future, we will
extend our model to the situation, where the truck moves on the surface of a three-
dimensional landscape together with simulating the fluid by the 2d Saint-Venant
equations. We might also think of a truck with a semitrailer, involving the drive
dynamics both of the drawing vehicle and of the semitrailer with the fluid container.
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4.3 Articles: Optimal Control of Elastic Structure-Load Sys-

tems

In the following two papers [KGH18a] and [Ki16] an optimal control problem subject to a linear

elliptic PDE of second-order, the Navier-Lamé system, coupled to nonlinear second-order ODEs

is considered. In the first article the elastic beam-like structure represents an elastic crane and

the structure is fixed at one end. If we fix the beam-like structure on both ends this models an

elastic bridge. A special case of an elastic bridge-load system is considered in the second paper,

where the coupling is one-sided, and the ODE solution, representing the motion of vehicles over

the bridge, may be prescribed in principle. The motion of the vehicles is subject to a control. In

the problem for the elastic crane the ODE models a trolley at position q1 = xT that transports

a load with angle q2 = α and we have fully coupled differential equations. We may control the

acceleration of the trolley.

Note that the classical problem of a trolley-load system (without elasticity), see Example 1.1

in the introduction, has been considered as optimal control problem in [CG11, CG12].

In [KGH18a, Subsect. 2.2–2.4] the differential equations are derived by the Lagrange mecha-

nism as known in mechanics (see Appendix C). The mechanical displacement field u (considered

here in undeformed coordinates) enters the ODE for the multibody system for trolley and load.

On one hand it is more realistic to model the contact between the trolley and the beam by an

area ΓC instead of a point and point loads are an technical issue in PDEs, on the other hand we

wish to consider a single ODE for the trolley’s centre of mass. This motivates the introduction

of averages of derivatives of u over the contact area ΓC , denoted by ū. Note that ΓC depends

also on q1(t). We observe that

q  Neumann boundary condition for u,

ū q (mass matrix & force term).

Furthermore, we have another coupling between ū and u in the static elasticity PDE, yielding

a semilinear problem unless ū is considered as an independent variable subject to an algebraic

equation (its definition as a mean).

The control U enters into the Neumann boundary term of the PDE as well as into the force

term of the ODE. The objective is a linear combination of the possibly free terminal time, the

kinetic energy, possibly the control effort, and penalty terms for the control, that are handled

by an augmented Lagrangian approach. We consider standard box constraints for the control,

whereas state constraints, that are required in principle by the model, may be safely neglected

since they never get active for the considered data.

The coupling structure is more complicated than in the truck-container example due to these

averages over derivatives and the formal adjoint structure involves integro-differential equations

that seem to be more difficult to handle for optimal control. For this reason a FDTO approach

based on sensitivities is pursued. We consider the reduced objective, i.e. a direct shooting
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method. The discretized optimal control problem is solved by a projected gradient method with

BFGS update. Due to non-smoothness of the F-derivative of the moving boundary condition g̃

at the contact area ΓC w.r.t. the trolley position q1 to be controlled (see [KGH18b] for details)

a Newton-type method relying on the exact Hessian is not available. The PDE is solved by

the finite element method, using quadratic Lagrange elements, and the ODE by means of the

explicit Heun method of second-order. The numerical optimal control has been computed by

means of the open software package FEniCS [LMW12].

The elastic bridge-load problem has been included here mainly for illustration purposes. In

comparison to the elastic crane-trolley-load problem the coupling is not two-sided, the objective

is to reduce the maximum of the absolute displacement ‖u‖ of the bridge, and the control is the

shape of the moving Neumann boundary condition (representing vehicles with various loads and

driving at different distances between each other). Due to the multilateral type of control, the

behaviour of the system is studied for different given controls only. For validation the model is

considered once more when the 3D beam has been replaced by a flat 2D plate, i.e. the Navier-

Lame system is replaced by the plate equation that is an elliptic forth-order PDE, but again fully

coupled to ū terms. The latter reduction allows for a comparison with standard formulas from

engineering literature for the maximum of ‖u‖. For the numerical solution of the plate equation

a so-called hybrid finite element method has been employed. This has been implemented in

MATLAB.

A further reduction might be to model the elastic structure by a cantilever beam that is 1D

and prescribed by a curve u(x1). Here u corresponds to the vertical displacement u3 in the 2D

or 3D problem. A cantilever beam is subject to the Euler-Bernoulli equation

d2

dx2
1

M(u) = f, M = EI u′′1,1(x1) in (0, `2),

where M is called the bending moment and F is a distributed load. EI is the given flexural

rigidity that is actually the product of the elastic Young modulus E with I, being the geometrical

moment of inertia (second moment of area) of the beam’s cross section, calculated w.r.t. the

corresponding axis passing through the center of mass and perpendicular to the load. This leads

to another optimal control problem with less complexity since the PDE is 1D. But it is not clear

if significant coupling effects at the contact area ΓC of the trolley might be neglected as in this

simplification.

In the extended version [KGH17] further technical details for the modelling and the optimal

control algorithm for Problem 2a are added. In the paper [KGH18b], not included here, the

generalization of the model in [KGH18a], living in a 2D plane, to 3D including rotations of the

crane is considered. In addition, the model is extended to include damping and moments of iner-

tia in the multibody system. Furthermore, it contains a general result on the F-differentiability

of the control-to-state operator w.r.t. the control of the trolley of the 2D and 3D problem. Note

that the elastic bridge-load problem is naturally restricted to a 2D plane.

Finally, we discuss the relevant assumptions from Chapter 3 for the elastic crane-trolley-load

problem. For the well-posedness of the coupled state equations for given control u ∈ Uad :=
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{ũ ∈ U := W 1,∞(0, tf ) |umin ≤ ũ ≤ umax} with umin < umax, we have the states y = [u, q1, q2]>

and the corresponding space

Y = L∞(0, tf ;H2(Ω))× [H2(0, tf )]2

within the notation2 of this study. By smoothing the characteristic function for the contact area

ΓC , where a non-zero boundary condition holds, the spatial regularity of the displacement field

may be increased further. Note that in order to avoid technical difficulties with corner singular-

ities these are smoothed out. The solvability of the coupled state equations for sufficiently short

times tf and sufficiently small |ΓC | is proved in [KGH18a, Th. 3.2] using an approach similar to

Theorem 3.4.

The control space U is isomorphic to C0,1([0, tf ]) and embeds into L2(0, tf ) and Uad is a closed

convex subset of U . The idea to prove the existence of optimal controls, see [KGH18b, Sect. 3],

is to consider the control-to-state operator S : U → Y,U 7→ y and to show its F-differentiability

w.r.t. U . In particular, the F-differentiability of the moving boundary condition w.r.t. q1 is non-

standard. For this task we could consider either the two ODEs as an elliptic PDE system of four

first-order equations or to consider the elliptic PDE as an DAE in suitable function spaces. Note

that the model problem, Problem 3.7, is restricted to parabolic ODE (here of second-order). In

the following article the averaging-evaluation operator reads

E(u) := ū(t)

:=
1

|ΓC |

∫

ΓC(q1(t))
[∂1u1(t, x), ∂1u3(t, x), D1u1(t, x), D1u3(t, x), ∂3u1(t, x), ∂3u3(t, x)]> dx,

where the average is taken over each component and we abbreviate D1 :=
∑3

i=1 ∂i,1. In

[KGH18b] the average is taken over further derivatives as well, which is due to the 3D situ-

ation.

In [KGH18a] the bang-bang principle for optimal control of PDE without control efforts seems

to be violated. A similar phenomenon has been observed in [PRWW10] as well. But, it is not

clear yet, whether this is to due to terminal constraints and the coupling to u or this is only a

numerical artifact.

2Furthermore please note that in these papers [KGH18a, KGH17, KGH18b, Ki16] U denotes the control, u

the mechanical displacement field, and U the control space.
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ABSTRACT
We present a mathematical model of a crane-trolley-load model,
where the crane beam is subject to the partial differential equation
(PDE) of static linear elasticity and the motion of the load is described
by the dynamics of a pendulum that is fixed to a trolley moving along
the crane beam. The resulting problem serves as a case study for
optimal control of fully coupled partial and ordinary differential equa-
tions (ODEs). This particular type of coupled systems arises from many
applications involving mechanical multi-body systems. We motivate
the coupled ODE-PDE model, show its analytical well-posedness
locally in time and examine the corresponding optimal control pro-
blem numerically by means of a projected gradient method with
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
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1. Introduction

In this article we consider a crane model, where the crane arm is modelled by an elastic
beam Ω fixed at one end to the crane tower. The load is represented as a mathematical
pendulum that is fixed to a trolley which moves along the crane beam. The mechanical
displacement u of the crane beam is determined by the elliptic partial differential equation
of static linear elasticity. The trolley and load states q = (q1, q2), that is, the position of the
trolley and the angle of the load are subject to an ordinary differential equation. It turns
out that all differential equations are fully coupled with one another. The goal is to
transport the load by means of the trolley along the crane beam from a given initial
position q0 and initial velocity v0 to a designated terminal position q f with terminal
velocity v f, while minimizing vibrations as well as the total time T. Here, the control is
given by the acceleration force U of the trolley. For the relevance of this optimal control
problem (OCP) in engineering, see [1,2]. The optimal control of a gantry crane has been
examined by Biswas [3] who considers additionally the displacement of a non-rigid cable
fixing the load, while the rails are considered as unflexible. This different model yields a
coupled ordinary differential equation (ODE)-partial differential equation (PDE) system as
well, but with a one-dimensional PDE.

For the geometry of our model, we refer to Figure 1. Our OCP is to find

min
U;T;q

Jðq; _q;U;TÞ (1)

with the objective

CONTACT S.-J. Kimmerle sven-joachim.kimmerle@unibw.de
© 2017 Informa UK Limited, trading as Taylor & Francis Group

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2017
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Jðq; _q;U;TÞ ¼ ν1T þ ν2
2
k _q2k2L2ð0;TÞ þ

ν3
2
kUk2L2ð0;TÞ

þ
X1
i¼0

ν4þi

2
jqiðTÞ � qfi j

2 þ
X1
i¼0

ν6þi

2
j _qiðTÞj

2
(2)

subject to the elliptic PDE

� div σ ðuÞ ¼ H in Ω � ½0;T� (3)

and the ODE system

Mðq; �uÞ€q ¼ Fðq; _q; �u;UÞ in ½0;T�; (4)

and the PDE and ODE are completed by boundary and initial conditions, respectively. Here, ν 2 R
7

denotes a non-zero vector of non-negative weights. The state q(t) denotes the vector of generalized
coordinates of the rigid bodies at time t (see Section 2.3). The right hand sideH encodes the gravitational
forces due to the weight of the beam itself, M the mass matrix and F comprises generalized Coriolis
forces and external forces. We mention as a particular feature of our model that only mean values �u of
the beam’s displacement u, averaged over the surface ΓCðq1Þ ¼ q1 þ ΓCðq01Þ connecting the trolley to
the beam (for the precise definition see Figure 1 and Section 2.1), enter into theODE (Equation (4)). The
differential equations are completed by boundary and initial conditions. Time-optimal control is realized
by scaling to a fixed time interval, yielding the total time T only as a control parameter. The scaled full
problem is stated precisely in Section 2.

Our problem class cannot be solved directly by standard software owing to the strong coupling
of the constraints. In this study, we prove the local-in-time well-posedness of the coupled
dynamical problem and present an algorithm for solving the OCP, based on a first-discretize-
then-optimize (FDTO) approach. The non-standard Algorithms 4.1–4.4 are designed specifically
for our problem and are based on a projected gradient method without and with Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update, respectively. We emphasize that it is not clear whether
Newton-based methods as in Chen and Gerdts [4,5] could be applied in our situation. On the one

b3

b

2

2

xT

Th

bT

T

b1

l l

l
α

x3

x2

x1

l1

m g
L   e

Figure 1. Configuration of the elastic crane (within Lagrangian coordinates).
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hand, it is not obvious whether our problem exhibits the smoothness needed for Newton
methods, and on the other hand, this approach requires the solution of the necessary optimality
conditions that turns out to be challenging. Finally we present numerical results for the optimal
control of the crane-trolley-load system. The open-source finite element software FEniCS [6] is
employed to solve the PDEs of linear elasticity. Special attention has to be given to the elements at
surfaces where forces are applied, that is, at the free boundary between moving trolley and crane
beam. For ease of presentation, we focus in this article on a crane that does not rotate.

In the modelling of multi-body systems we often encounter the following situation. We find
ODEs representing the interactions between the centres of mass, algebraic equations from
constraining forces and elliptic PDEs modelling mechanical deformations within the bodies.
Here, we focus on the crane-trolley-load system serving as a case study. Other applications
include, for example, (a) a quarter-car model, where an elastic wheel-tyre-damper system with
free road contact is controlled [7], (b) the heat-optimal ascent and re-entry into atmosphere of a
hypersonic spacecraft [8] and (c) a truck or plane with a tank filled with fluid [9,10]. In the latter
example, the PDEs are the St-Venant equations yielding the height and velocity of the fluid.
However, it should be emphasized that the class of OCPs subject to ODE and PDE constraints is
heterogeneous, since different types of PDE require already different theories and methods.
Furthermore, the methods for this problem class depend on the particular coupling structure
between ODE and PDE.

On optimal control of PDE and optimal control of differential-algebraic equations (DAE) alone
there exists a wide variety of results and numerical approaches; see, for example, the overview
article [11] or the textbooks [12–15] for control of PDEs and [16,17] for optimal control of ODE
and DAE, respectively.

However, only few results about combined ODE-PDE constrained optimal control exist so far.
Biswas et al. [18,19] examine control and optimal control of a large flexible space structure, e.g. a
satellite, subject to PDE modelling vibrations and to ODE describing the dynamics. Chudej et al. [8]
consider optimal control for coupling of the heat equation and equations of motions. Similar as in
our situation, the coupling from ODE to PDE is effected by means of a boundary condition, but the
controls arise in the ODE system only and the PDE is considered in one space dimension. In our
problem, the controls arise in the ODE as well as in the boundary condition. Our control acts on the
PDE by means of a Neumann boundary control. In our problem, we encounter control constraints
too. For a particular class of ODE-PDE-problem, a so-called hypersonic rocket car problem,
including the problem of [8], some new phenomena have been discovered by Pesch et al. [20].
In [21], this OCP is reformulated as a state-constrained OCP for PDE and necessary optimality
conditions for it are derived.

Our study is organized as follows. In Section 2, we derive the mathematical model. The local-in-
time well-posedness of our model is shown in Section 3. Due to the complexity of the resulting
coupled ODE-PDE problem, we apply here the direct FDTO method, and follow a sensitivity-based
approach. The discretization for the numerical simulation, the projected gradient method and the
quasi-Newton method BFGS for the optimal control are described in Section 4. In Section 5,
numerical results are presented. Finally, we close with a discussion of our results and give, in
particular, an outlook on open questions and future work.

2. Mathematical model of the elastic crane

2.1. Geometry

For the geometry of a crane in the undeformed configuration, see Figure 1. In this study, we
consider no rotation of the crane beam, yielding that the pendulum is restricted to the plane
defined by x2 ; 0. The full 3d model with a rotating crane is presented in the upcoming
study [22].
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The deformations of the crane beam are here considered in a full 3d model avoiding the issue,
how to replace the crane beam by a lower dimensional model sensitively. The domain

Ω ¼ fx ¼ ðx1; x2; x3Þ 2 R
3 jb1=2 � x1 � l2 � b1=2; jx2j � b2=2; l1 � b3 � x3 � l1g;

where b1 < l2, b3 < l1, describes the undeformed extension arm of the crane, which is considered
elastic and attached to the rigid vertical bar. On ΓD ¼ @Ω \ fx 2 R

3 jx1 ¼ b1=2g the extension
arm is fixed.

A force is applied on the trolley at its center of mass, located at

rMðtÞ ¼ xTðtÞ; 0; l1 � b3 �
hT
2

� �`

(5)

in the undeformed state. This load is a pendulum of length l with a point mass mL. The trolley,
with mass mT, may move on rails, modelled by translating the x1-position xTðtÞ 2
ððb1 þ lTÞ=2; l2 � ðb1 þ lTÞ=2Þ of its center of mass. The application of a force U, e.g. by
means of a neglectable cable along the beam, at the trolley’s center of gravity allows to control
the trolley. Alternatively, if the trolley was controlled by a motor within the trolley, moving a
wheel that is in contact with rails at the crane beam, this would yield the same model, but with
a slightly different area of support ΓC, now being the wheel’s area of support. On the boundary
ΓCðxTÞ ¼ fx 2 @Ω j xTðtÞ � lT=2 � x1 � xTðtÞ þ lT=2; jx2j � bT=2; x3 ¼ l1 � b3g ¼ ΓCðxTð0ÞÞ þ
xT e1 varying with time, the trolley exerts a force on the extension arm. As usual e1 denotes the
unit vector in x1-direction. In particular, the definition of ΓC implies that the surface area of
ΓC, denoted by ΓCj j, remains constant. The application of a moment UM at the bearing of the
crane beam allows to rotate the crane by an angle β. We assume α 2 ð�π=2; π=2Þ.

2.2. Strains and stresses in the beam

Within the domain Ω of the crane we aim to solve for the mechanical displacement field. For a
realistic crane we may assume small displacement gradients and, hence, model the elastic
deformations within the structure of the crane by linear elasticity. As usual in linear elasticity,
we do not distingiush between the reference (undeformed) configuration Ω (in Lagrangian
coordinates x) and the deformed configuration Ω0 � R

3 (in Eulerian coordinates x̂). As refer-
ence configuration we consider the crane’s extension arm in the absence of strains or stresses.
For the interaction between the deformed beam and the trolley, the deformation of the beam is
not neglected in our study. In this context, we consider u in the reference configuration. For the
deformed configuration the formula (19) would look different, though leading to the same
results within the approximation of small displacement gradients. The deformation depends on
time through the control. The system is considered on the compact time interval ½0;T� � R and
thus the mechanical displacement field reads u : Ω� ½0;T� ! Ω0, ðx; tÞ 7! uðx; tÞ ¼ x̂ðx; tÞ � x.
The symmetrized strain associated with the displacement field u is �ðuÞ ¼ ð�uþ �u`Þ=2 and as
a constitutive assumption we work with the Cauchy stress tensor

σ ðuÞ ¼ λ trace ð�ðuÞÞ1þ 2 μ �ðuÞ; (6)

where 1 denotes the unit matrix and μ > 0, λ >� 2μ=3 are the Lamé constants scaled by 1=ðlmLÞ.
For our purposes it suffices to consider λ > 0. We assume that we may neglect the deformation of
the trolley, since typically hT � b3 holds.

Terms of higher order in k�uk are neglected, since k�uk � 1. (This is emphasized in the
following by the � symbol.) For more details see [23, Ch. 3].
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2.3. Governing equations for the trolley and the load

We introduce the generalized coordinates q ¼ ðxT; αÞ`, see Figure 1. The trolley’s center of
gravity at time t is given by

rTðq1; u; tÞ ¼ rMðq1Þ þ uðrMðq1Þ; tÞ; (7)

where rM is defined by (5). The position of the load, considered as point mass, at time t is

rLðq; u; tÞ ¼ rTðq1; u; tÞ þ
l sin q2

0
�l cos q2

0
@

1
A;

where q2 ¼ α is positive for a counterclockwise rotation around the x2-axis, see Figure 1. The
kinetic energy of the mechanical system written for the generalized coordinates q ¼ ðxT; αÞ` and
scaled by 1=ðlmLÞ is given by

T ðq; _q; u; tÞ ¼ 1
2 lmL

mTk_rTðq1; u; tÞk2 þmLk_rLðq; u; tÞk2
� �

; (8)

where we neglect the moment of inertia of the trolley and the load. Furthermore, we have
neglected velocities

_u � 0 (9)

in (8), which is motivated by a short dimensional analysis (see Subsection 2.4) and is consistent as
we will see in our numerics (see, e.g. Figure 3, bottom left). For brevity, we set
m :¼ ðmT þmLÞ=ðlmLÞ. The scaled, generalized potential V, uniquely determined up to a con-
stant, is Vðq;UÞ ¼ �Uq1 � ge cos q2, where U is the control (divided by lmL) and ge is the gravity
acceleration. From E ¼ ��qV we obtain the vector of applied generalized forces

EðqÞ ¼ U
�ge sin q2

� �
; (10)

that is, the control acting along the deformed rail of the trolley and gravitation acting on the
deformed system. The Lagrange function is L ðq; _q; u;UÞ ¼ T ðq; _q; uÞ � Vðq;UÞ.

By means of the Euler-Lagrange equation d
dt� _qL ¼ �qL for a given control we derive the

equations of motion within our approximation of small displacement gradients. Neglecting _u, we
obtain from (7) the time derivative

_rT ¼ FDð�uÞT _q1e1;

where FDð�uÞ ¼ 1þ �u is the deformation gradient. In our approximation of small displacement
gradients we have

F2D;11ð�uÞ þ F2D;21ð�uÞ þ F2D;31ð�uÞ ¼ 1þ 2@1u1 þ
X3
i¼1

j@iu1j2 � 1þ 2@1u1:

Furthermore, _rL ¼ _rT � lðcos q2; 0; sin q2Þ` _q2 and the scaled kinetic energy reads

T ðq; _q; u; tÞ ¼ m
2

1þ 2@1u1ðrMðq1Þ; tÞð Þ _q21 þ
l
2
_q22

þ ð1þ @1u1ðrMðq1Þ; tÞÞ cos q2þ@1u3ðrMðq1Þ; tÞ sin q2ð Þ _q1 _q2:

For brevity, we introduce the notation @i :¼ @xi and the operator D1 defined by
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D1ui :¼ @2
1;1ui þ @2

2;1ui þ @2
3;1ui; i ¼ 1; 2; 3; (11)

and abbreviate

Φ1ðq2;D2uÞ ¼ D1u1 cos q2 þ D1u3 sin q2;

Φ2ðq2;DuÞ ¼ �ð1þ@1u1Þ sin q2þ@1u3 cos q2:

We compute

@qT ðq; _q; uÞ ¼ mD1u1 _q21 þ Φ1ðq2;D2uÞ _q1 _q2
Φ2ðq2;DuÞ _q1 _q2

� �

and

@ _q;qT _q ¼ 2mD1u1 _q21 þ Φ1ðq2;D2uÞ _q1 _q2 þ Φ2ðq2;DuÞ _q22
Φ1ðq2;D2uÞ _q21 þ Φ2ðq2;DuÞ _q1 _q2

� �
:

Thus the generalized Coriolis forces are

Gðq; _q; uÞ ¼ @qT ðq; _q; uÞ � @2
_q;qT ðq; _q; uÞ _q ¼ �mD1u1 _q21 �Φ2ðq2;DuÞ _q22

�Φ1ðq2;D2uÞ _q21

� �
:

This yields as equation of motion for q,

~Mðq; uÞ€q ¼ Gðq; _q; uÞ þ Eðq;UÞ (12)

where the symmetric and positive definite mass matrix reads

~Mðq; uÞ ¼ mð1þ 2@1u1Þ ð1þ @1u1Þ cos q2þ@1u3 sin q2
	 l

� �
; (13)

and where the generalized Coriolis forces are

Gðq; _q; uÞ ¼ �mD1u1 _q21 þ ðð1þ @1u1Þ sin q2 � @1u3 cos q2Þ _q22Þ
�ðD1u1 cos q2 þ D1u3 sin q2Þ _q21:

� �
: (14)

The ODE system for itself has a unique solution locally in time, since ~M is invertible
for k�uk � 1.

2.4. Governing equations for the crane beam

For the domain of the crane’s extension arm we consider the standard model of linear elasticity
[23]. We do not observe significant vibrations in the beam in our simulations. Elastic waves
within the crane beam may be safely neglected due to different typical time scales, see [22] for the
full elastodynamical problem for the displacement field and its dimensional analysis. Indeed, the
speed of shear waves is

ffiffiffiffiffiffiffiffiffi
lμ=ρ

p
� 4:73 km=s and the speed of longitudinal waves, i.e. the speed of

sound, is of the same order. This elastostatic problem, where time enters as a parameter, reads

� div σ ðuÞ ¼ H in Ω� ½0;T�; (15)

u ¼ 0 on ΓD � ½0;T�; (16)

� σðuÞ:n� ~gðq; u;UÞ ¼ 0 on ΓN � ½0;T�: (17)

6 S.-J. KIMMERLE ET AL.
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where ~g : ΓN � ½0;T� ! R
3 is a boundary force (scaled by 1=ðlmLÞ), ΓD is the part of @Ω where

the Dirichlet boundary condition (b.c.) holds and ΓN :¼ @ΩnΓD the boundary with the Neumann
b.c. The term

H ¼ �ρg e3 (18)

in (15) models the gravity of the crane cantilever. Here ρ is the mass density divided by mL and
g :¼ ge=l is the reduced gravity acceleration.

Note that we work within the approximation of small displacement gradients and, thus, for
consistency the linear deformation of the crane beam has to be modelled for the trolley-load
system as well, only higher order terms in ∇u may be safely neglected. According to (10), the
scaled forces E applied to the crane beam read in Cartesian coordinates

Ecðq;UÞ ¼
U þ g sin q2

0
�g cos q2

0
@

1
A

acting in the deformed configuration. We assume that this force is realized by a constant pressure
acting on the contact surface ΓC between the trolley and the beam. In order to transform a surface
integral from the deformed to the reference configuration we use [23, Th. 1.7–1], also called
Nanson’s formula. The deformation gradient FDð�uÞ ¼ 1þ �u is invertible for k�u k� 1. Note
that @2ui � 0, i ¼ 1; 2; 3, on ΓC. In our situation the scaled gravity and control forces by the load
and the trolley onto the crane beam yield g0 : R � R

3 � R ! R
3 by

detðFDð�uÞ�1ÞF`D ð�uÞ Ecðq;UÞ � ηg e3ð Þ

� ðð1� traceð�uÞÞ1þ �u`ÞðU þ g sin q2; 0;�gðcos q2 þ ηÞÞ` ¼: g0ðq; u;UÞ;

where η ¼ mT=mL abbreviates the trolley/load mass ratio. This pressure is distributed on the
surface @Ω\ x3 ¼ l1 � b3f g as follows

~gðx; qðtÞ; uðx; tÞ;UðtÞÞ :¼
1

jΓCj g0ðqðtÞ; uðx; tÞ;UðtÞÞ; x 2 ΓCðq1ðtÞÞ;
0 ; otherwise:

�
(19)

The elliptic PDE problem (15 – 17) for u depends on the trolley/load states q by means of the
contact pressure ~g, while the ODE system (12) for q is coupled as it depends on derivatives of u.
Since the important coupling effect that we would like to consider takes place on a small part ΓC
of the surface, we introduce the mean values

�uðtÞ :¼

�u1ðtÞ
�u2ðtÞ
�u3ðtÞ
�u4ðtÞ
�u5ðtÞ
�u6ðtÞ

0
BBBBBB@

1
CCCCCCA

¼

1
jΓCj

ð
ΓCðq1ðtÞÞ

@1u1ðx; tÞdx

1
jΓCj

ð
ΓCðq1ðtÞÞ

@1u3ðx; tÞdx

1
jΓCj

ð
ΓCðq1ðtÞÞ

D1u1ðx; tÞdx

1
jΓCj

ð
ΓCðq1ðtÞÞ

D1u3ðx; tÞdx

1
jΓCj

ð
ΓCðq1ðtÞÞ

@3u1ðx; tÞdx

1
jΓCj

ð
ΓCðq1ðtÞÞ

@3u3ðx; tÞdx

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

; (20)
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in the coupling terms of the ODE and, consistently, in ~g. For the definition of the operator D1 see
(11). This also implies that we do not have to solve for every point in space x another ODE
system. We will consider ū as an independent state variable in the following.

2.5. Objective function

Our aim is to transport a load at rest (v0 ¼ 0) from an initial state q0 to a terminal position q f
1

with angle q f
2 ¼ 0, where the load should be at rest, that is, v f ¼ 0. We would like to achieve this

in minimal time, while also minimizing the swing of the load. Now the objective function (2),
consisting of a time-minimal term, a (kinetic) energy-minimal term, possibly a regularization
term, and terms penalizing the violation of terminal conditions, reads:

Jðq; _q;U;TÞ ¼ ν1T þ ν2
2
k _q2k

2
L2ð0;TÞ þ

ν3
2
kUk2L2ð0;TÞ þ

ν4
2
jq1ðTÞ � q f

1 j
2

þ ν5
2
jq2ðTÞj2 þ

ν6
2
j _q1ðTÞj

2 þ ν7
2
j _q2ðTÞj

2:
(21)

Different choices for the weights ν1 > 0, νj 
 0, j ¼ 2; . . . ; 7 are discussed in Section 5. Except for
the first term, the objective function J exhibits only quadratic terms and J is positive. Note that the
displacements u or �u do not enter explicitly into the objective function. However, since �u enters
into the ODE for q by means of the mass matrix M and the right-hand side F, finding an optimal
control U implies that vibrations of �u are damped out as well.

2.6 OCP for 2d crane

We solve the second-order ODE (12) for q as a system of coupled ODEs for q and v :¼ _q, where v
is considered as an independent state.

Our OCP reads: Find states q 2 ½C2ð½0;T�Þ�2, v 2 ½C1ð½0;T�Þ�2, u 2 C0ð½0;T�;H1ðΩ;R3ÞÞ, a
control U 2 L1ð0;TÞ and a parameter T 
 Tmin > 0 (without loss of generality Tmin arbitrarily
small) such that the reduced cost function

FðU;TÞ ¼ JðqðU;TÞ; vðU;TÞ;U;TÞ (22)

is minimized under the following constraints:
• the ODE system

Mðq; �uÞ _v ¼ Fðq; v; �u;UÞ (23)

_q ¼ v in ð0;TÞ; (24)

resulting from (12) having employed the mean values �u in (13), yielding

Mðq; �uÞ :¼ mð1þ 2�u1Þ ð1þ �u1Þ cos q2 þ �u2 sin q2
ð1þ �u1Þ cos q2 þ �u2 sin q2 l

� �
; (25)

and analgously in (14) and in (10), yielding

Fðq; v; �u;UÞ :¼ �m �u3 v21 þ ð1þ �u1Þ sin q2 � �u2 cos q2ð Þv22 þ U

� �u3 cos q2 þ �u4 sin q2ð Þv21 � ge sin q2

� �
; (26)

together with initial conditions

qð0Þ ¼ q0; vð0Þ ¼ 0; (27)

8 S.-J. KIMMERLE ET AL.
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• the PDE (15 – 17)

� div σ ðuÞ ¼ H inΩ� ½0;T�; (28)

u ¼ 0 on ΓD � ½0;T�; (29)

� σðuÞ:n ¼ Rðq; �u;UÞ on ΓN � ½0;T�; (30)

with the gravity term H from (18) and with averaging over ΓC in (19) yielding

Rðq; �u;UÞ :¼
1

jΓCjR0ðq; �u;UÞ; x 2 ΓCðq1Þ;
0 ; otherwise ;

�
(31)

where

R0ðq; �u;UÞ :¼
ð1� �u6ÞðU þ g sin q2Þ � �u2gðcos q2 þ ηÞ

0
�u5ðU þ g sin q2Þ � ð1� �u1Þgðcos q2 þ ηÞ

0
@

1
A; (32)

• the state equation (20) for �u, and
• the control constraints

Umin � UðtÞ � Umax point-wise for all t 2 ½0;T�: (33)

In this paper we consider a smoothed version χεΓC , see (47), of the characteristic function χΓC
(being 1 on the set ΓC and 0 otherwise) entering in (31). The solvability of this coupled problem
for a given control is discussed in Section 3. We check that in case of neglected elastic deforma-
tions we recover in (23 – 27) and (33) the standard ODE-problem for an inelastic overhead gantry
crane [4,5]. As in the model in [4,5] we consider no damping term and, furthermore, neglect the
moment of inertia.

The terminal conditions qðTÞ ¼ q f and vðTÞ ¼ 0 are realized approximately by the penalty
terms corresponding to the weights νi, i ¼ 4; . . . 7, within the objective function (21). We could
also require state constraints, as ðb1 þ lTÞ=2 < q1< l2 � ðb1 þ lTÞ=2, modelling that neither the
trolley touches the crane tower nor that it jumps off the rails at the end of the crane beam, and
q2j j < qmax

2 , reflecting that the pendant cord may not be tight for angles larger than a certain qmax
2 .

State constraints are neglected as in [4,5], since we see in our numerical experiments that for
typical initial data a control is found such that the state constraints are safely guaranteed.

3. Local-in-time existence and uniqueness of the coupled states

3.1. Smoothed computational domain

Let us consider a sufficiently small T > 0. We emphasize that, without loss of generality, Ω has a
C3 boundary, that could be obtained by smoothing out the corners, since corners are not
relevant for the trolley-load system. We introduce Ω~ε ¼ fx 2 Ω jx1 > b1=2þ ~εg where ~ε 2
ð0;minfðl2 � b1Þ=2; b2=2; b3=2gÞ may be chosen arbitrarily small. In order to avoid technical
regularity issues, we focus in this section on

Ω	 :¼ Ω~ε [ B~εðfx 2 Ω jx1 ¼ b1=2þ ~ε; jx2j � b2=2� ~ε; l1 � b3 þ ~ε � x3 � l1 � ~εgÞ

where B~εðSÞ ¼ [x2SB~εðxÞ is a usual ~ε-neighborhood of a closed set S. Ω	 is constructed smoothly
such that the contact lines ΓD \ ΓN between Dirichlet and Neumann boundary, where singularities
might occur (compare [24, Sect. 3]), are taken out of Ω. Let u	 denote for the moment the
solution on Ω	. On B	 :¼ @Ω	n@Ω we prescribe a	uþ ð1� a	Þσðu	Þ:n ¼ 0 as boundary condi-
tion, where a	 is a smooth spatial function on B	 such that a	ðxÞ ¼ 1 for x1 ¼ b1=2 and a	ðxÞ ¼ 0
for x3 ¼ l1 � b3. According to [24, Sect. 3] and the references therein, u can be decomposed into a
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regular and singular parts. For the intersection fx 2 Ω jx1 ¼ b1=2; jx2j ¼ b2=2 or jx3 � l1 �
b3=2j ¼ b3=2g between homogeneous Dirchlet and Neumann b.c., the usual regularity results
hold for the regular part of u, while the singular parts (smooth except for the singularity) are
bounded by ~r�~m, ~r being the distance to the respective singularity, where 0 < ~m < 3 depends on
the interior angle and the Lamé parameters [25, Sect. 2]. Thus the norm of the whole singular part
is arbitrarily small on Ω	 for suitable ~ε. Furthermore, our numerical simulations do not exhibit a
singular behaviour in the corners or at the edges or in a neighborhood of these, thereby
reconfirming that the corner and edge smoothing is only an auxiliary construction in order to
avoid technical details in the proof concerning the interplay between crane and trolley.

Furthermore, we assume that the prescribed control U 2 L1ð0;TÞ. For suitable data U, ρ,
η, and g and sufficiently small T we may assume k�ukL2ðΩÞ; �uj

�� ��� 1, j ¼ 1; 2; 5; 6, for all
t 2 ½0;T�, meaning that the assumption of small displacement gradients is justified
(see also our numerics in Sect. 5). The latter implies inter alia 1� 2�u1 > 0. As usual we
denote, e.g. Hk ¼ Wk;2 or LpHk ¼ Lpð0;T;HkðΩ	;R3ÞÞ for the Bochner space with the

norm kf kpLpHk ¼
ðT
0
kf ðtÞkp

HkðΩ	;R3Þdt.

3.2. Standard results for uncoupled differential equations

We summarize standard results for the ODE system and the PDE considered as stand alone
equations. For given �uj 2 C0ð½0;T�Þ, j ¼ 1; 2; 3; 4, U 2 C0ð½0;T�Þ there exists a unique solution
q 2 ½C2ð½0;T�Þ�2 of the ODE system for sufficiently small T by the theorem of Picard-Lindelöf,
since M�1F is Lipschitz in q and v ¼ _q. For given �uj 2 L1ð0;TÞ, j ¼ 1; 2; 3; 4, U 2 L1ð0;TÞ there
exists a unique solution q 2 ½W2;1ð0;TÞ�2 (that is, C2 for almost all t) of the ODE system for
sufficiently small T. We have the standard estimate for ODE

kqjkH2ð0;TÞ � CkðM�1FÞðq; _q; �u;UÞkL2ð0;TÞ:

Let λ; μ > 0 in (6). For given q 2 ½Wθ;κð0;TÞ�2, U 2 Lκð0;TÞ and �uj 2 Lκð0;TÞ, j ¼ 1; 2; 5; 6, there
exists a unique solution u 2 Lκð0;T;W1;pðΩÞÞ of the PDE problem for 0 � θ < 1, 6=5 � p < 1,
and 1 � κ � 1 [23, Sect.6.3], where the time regularity carries over from the data. For almost all
t, there holds the estimate

kuð�; tÞkH1ðΩÞ � cðkRεðq; �u;UÞkL2ðΓNÞ þ 1Þ; (34)

where

Rεðq; �u;UÞ :¼ 1
jΓCj

R0ðq; �u;UÞ χεΓCðxÞ (35)

is a smoothed version of R defined in (31), ε > 0 being another sufficiently small smoothing
parameter. Note that the estimate (34) holds on Ω (as well as for u* on Ω	 with the corresponding
boundary conditions) and, therefore, u 2 H1=2ðB	Þ. Now testing on Ω	 (instead of Ω) yields an
additional integral term ka	ukL2ðB	Þ in the estimates for u	.

We need the regularity result from [23, Sect. 6.3] combined with [24, Sect. 3] that for @Ω	 2 C3

we have u	 2 W3;pðΩ	Þ for any p 
 6=5, since Rε is W1�1=r;rðΓNÞ, 6=5 � r � 1. Thus together
with the Sobolev embedding for W3;pðΩ	Þ for p > 3=ð1� δÞ, 0 < δ < 1 [26, Th. 10.13, 2)], we get

u	 2 Lκð0;T;W3;pðΩ	ÞÞ 7! Lκð0;T;C2;δðΩ	ÞÞ: (36)

We consider only Ω	 in the following and, for ease of notation, we write again u instead of u	.
(36) shows that the derivatives entering in the definition (20) of �u are well-defined. We remark
that using mean values is crucial to obtain the stated regularity for u and �u.
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3.3. Local-in-time existence for coupled differential equations

We cannot expect an existence and uniqueness result for an arbitrary right hand side M�1F in the
ODE (23). We will need the following local Lipschitz estimate.

Lemma 3.1 (Estimate for the right-hand-side of the ODE) Within our approximation
k�uk � 1, there holds for two different state pairs ðqðiÞ; �uðiÞÞ, i ¼ 1; 2,

kðM�1FÞðqð1Þ; _qð1Þ; �uð1Þ;UÞ � ðM�1FÞðqð2Þ; _qð2Þ; �uð2Þ;UÞkL2ð0;TÞ
� Constðk;KÞ kqð1Þ � qð2ÞkH1ð0;TÞ þ k�uð1Þ � �uð2ÞkL2ð0;TÞ

	 

; (37)

when supj k _qðiÞj kL1ð0;TÞ � k and suplk�u
ðiÞ
l kL1ð0;TÞ � K for all i ¼ 1; 2.

Proof. The proof relies on computing M�1 explicitly by Cramer’s rule. For further details, see
[27, App. A]. Then we exploit that for the quadratic terms

kð _qð1Þj Þ2 � ð _qð2Þj Þ2kL2ð0;TÞ � kð _qð1Þj þ _qð2Þj Þð _qð1Þj � _qð2Þj ÞkL2ð0;TÞ

� 2kk _qð1Þj � _qð2Þj kL2ð0;TÞ

that for the mixed terms

k�uð1Þl _qð1Þj � �uð2Þl _qð2Þj kL2ð0;TÞ � k�uð1Þl _qð1Þj � �uð1Þl _qð2Þj þ �uð1Þl _qð2Þj � �uð2Þl _qð2Þj kL2ð0;TÞ

� Kk _qð1Þj � _qð2Þj kL2ð0;TÞ þ k k �uð1Þl � �uð2Þl kL2ð0;TÞ;

and that sin q1 ;j j cos q2j j � 1 and sin , cos are Lipschitz, where j ¼ 1; 2, l ¼ 1; 2; 3; 4.
霥

Theorem 3.2 (Local-in-time well-posedness of the dynamics) Let Ω	 be a C3 domain and
let λ; μ > 0 be the Lamé parameters. Suppose that U 2 L1ð0;1Þ and that for M�1F the estimate
(37) holds. Then for each pair ðk;KÞ of positive numbers, there exists T > 0 and an area of the
contact surface ΓCj j > 0, such that the coupled ODE-PDE problem (23 – 32), with (20) and the
smoothing (35), has a unique solution q 2 ½H2ð0;TÞ�2 and u 2 L1ð0;T;W3;pðΩ	ÞÞ for any p > 3.

Our strategy is inspired by Algorithm 4.1: We solve alternately for u and the mean values
�u, then the result is used for the right-hand side of the ODE. The ODE solution q is inserted
into the PDE and a fixed point iteration is invoked. The idea of proof, relying on the Banach
fixed point theorem and the estimate (38) yielding a factor proportional to

ffiffiffiffi
T

p
in the

contraction constant, has been described for example by Niethammer [28] for a coupled
ODE-Laplace PDE problem. A similar proof as needed for our problem is given in [29] for
a coupled problem consisting of a single ODE for a free boundary, a quasilinear diffusion
PDE, and the PDE of linear elasticity. Both cited proofs consider free boundary problems with
a time-dependent domain and require beforehand a transformation to a fixed domain that is
not needed here.

Proof. We would like to apply the Banach fixed point theorem in the space

M ¼ Mk
T �MK

T ;

where

Mk
T :¼ q 2 ½H2ð0;TÞ�2 j sup

j
k _qjkL1ð0;TÞ � k

( )
;
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MK
T :¼ u 2 L1H2 j sup

l
k�ulkL1ð0;TÞ � K

� �
;

to the map

G : M ! ½H2ð0;TÞ�2 � L1H2;

ðq; uÞ7!ðqþ; uþÞ :¼ ðL1ðM�1FÞðq; _q; �uþ;UÞ; L2R
εðq; �u;UÞÞ;

where the operators L1 : L2ð0;TÞ ! H2ð0;TÞ and L2 : W2;1ðΓNÞ ! H2ðΩÞ map onto the solu-
tion of the ODE with right-hand side M�1F and onto the solution of the elasticity problem with
right-hand side Rε on ΓN, respectively.

I. Strict contraction:
We consider two pairs of time trajectories ðqð1Þ; uð1ÞÞ and ðqð2Þ; uð2ÞÞ. Define qΔ ¼ qð1Þ � qð2Þ and
uΔ ¼ uð1Þ � uð2Þ. The main ingredient is the following Poincaré inequality:

kqj � q0j kL1ð0;TÞ ¼
ðT
0
_qjdt

����
����
L1ð0;TÞ

�
ffiffiffiffi
T

p
k _qjkL2ð0;TÞ (38)

that follows by applying Hölder’s inequality. Thus

kqj � q0j kL2ð0;TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0
ðqj � q0j Þ

2 dt

s
�

ffiffiffiffi
T

p
kqj � q0j kL1ð0;TÞ;

kqj � q0j kH1ð0;TÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 1

p
k _qjkL2ð0;TÞ:

This procedure is repeated:

k _qjkL2ð0;TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0
_q2j dt

s
�

ffiffiffiffi
T

p
k _qjkL1ð0;TÞ � Tk€qjkL2ð0;TÞ:

Thus

kqj � q0j kH1ð0;TÞ � T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 1

p
k€qjkL2ð0;TÞ; (39)

kqj � q0j kH2ð0;TÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4 þ T2 þ 1

p
k€qjkL2ð0;TÞ:

We write qþΔ ¼ qð1Þ;þ � qð2Þ;þ and uþΔ ¼ uð1Þ;þ � uð2Þ;þ. Applying this to the map G yields

kqþΔ;jkH2ð0;TÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4 þ T2 þ 1

p
�

� kðM�1FÞðqð1Þ; _qð1Þ; �uð1Þ;þ;UÞ � ðM�1FÞðqð2Þ; _qð2Þ; �uð2Þ;þ;UÞkL2ð0;TÞ;

and together with Lemma 3.1 we have

kqþΔ;jkH2ð0;TÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4 þ T2 þ 1

p
Constðk;KÞ k qΔkH1ð0;TÞ þ k�uþΔkL2ð0;TÞ

� �
: (40)

For the PDE we estimate for fixed ε and ~ε

kRεðqð1Þ; �uð1Þ;UÞ � Rεðqð2Þ; �uð2Þ;UÞkL2ðΓNÞ

� const ðk;KÞjΓCj
1
2

X
j¼1;2;5;6

j�uð1Þj � �μð2Þj j þ jqð1Þ � qð2Þj
 !

12 S.-J. KIMMERLE ET AL.
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where, for instance, �μð2Þ1 ¼ jΓCj�1
ð
ΓCðqð1Þ1 Þ

@1u1ð2Þdx. The other �μj are defined analogously. By using

�u1 ¼ jΓCj�1
ð
ΓC

@1u1 dx, the Hölder inequality and the trace theorem [30, Th. 5.22] in 3d

jΓCðqð1Þ1 Þj
1
2j�uð1Þ1 � �μð2Þ1 j � jΓCj�

1
2

ð
ΓCðqð1Þ1 Þ

j@1uð1Þ1 � @1u
ð2Þ
1 jdx

� jΓCj�
1
2þ5

6 k �uð1Þ � �uð2Þk
L6ðΓCðqð1Þ1 ÞÞ

� jΓCj
1
3CðΩ	Þkuð1Þ � uð2ÞkH2ðΩ	;R3Þ; (41)

where the constant does not depend on ΓCj j. Analogously the proof follows for j ¼ 2; 5; 6.
Using the estimate corresponding to (34) for the difference uþΔ and for @iuþΔ , i ¼ 1; 2; 3, we end
up with

kuþΔkL1H2 � ~Cðk;K;Ω	Þ jΓCj
1
3kuΔkL1H2 þ kqΔkL1ð0;TÞ

	 

: (42)

We use the regularity result (36) for u in order to get that �u3; �u4 are well-defined, then we
combine the estimates (38) and (42), yielding

kuþΔkL1H2 � Ĉðk;K;Ω	Þ jΓCj
1
3kuΔkL1H2 þ

ffiffiffiffi
T

p
kqΔkH2ð0;TÞ

	 

:

This estimate is inserted into (40) and we use (39) and (41), yielding

kqþΔkH2ð0;TÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4 þ T2 þ 1

p
C
^

ðk;K;Ω	Þ �

� T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 1

p
þ jΓCj�

1
6
ffiffiffiffi
T

p	 

kqΔkH2ð0;TÞ þ jΓCj

1
6 kuΔkL1H2

	 

:

Now choosing ΓCj j and T (depending on ΓCj j) sufficiently small guarantees that G is a strict
contraction. From the strict contraction we also get directly that the local-in-time solution is
unique.
II. Self-mapping:

In order to check that G maps M into itself, we use that the estimates from Part I carry over.
So the self-mapping property follows analogously for sufficiently small T and ΓCj j.

This shows that there exists a unique solution (q, u) with the stated regularity. From the
estimates in Part I of the proof, we see that the solution depends continuously on the data. ◽

Since we do not know from the last lemma whether the time T guaranteed by the fixed-point
method is larger then the total time obtained by the optimal control, global existence of a solution
for our problem is not guaranteed and cannot be expected for arbitrary data and control.
However, when minimizing our objective function we may hope that the control U is determined
in such a way that no blow up for q1 or q2 may happen in finite time.

4. Discretized problem and optimal control method

Due to the complicated model we follow here a FDTO approach for solving our OCP.
Furthermore we work with a sensitivity-based approach since the adjoint optimality system
cannot be derived by standard methods. The reason for this is the averaging over u that appears
in the integral equation (20).

Since in our numerical example we consider ν1 > 0 in (21), we perform a time transformation
onto a fixed time interval, mapping t 2 ½0;T� to τ 2 ½0; 1�. This provides an easy way to determine

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 13
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the control parameter T in the sequel. According to the time transformation, time derivatives have
to be scaled with the factor T. We consider from now on time-transformed functions but denote
them again with the same symbol in order to keep the notation simple.

4.1. Time integration

The PDE problem for u and �u is solved by a finite element method (FEM). In order to avoid
locking effects [31, Ch. VI, §3] we use Lagrange P2-elements and a vertically refined layered mesh.
The spatially discretized problem may be considered as a semi-explicit DAE of index 1 with u
being the algebraic variable. We solve in time by means of the explicit Heun method with respect
to q ¼ ðxT; αÞ` and v ¼ _q. This second-order method allows to solve the 2-dimensional ODE
system accurately enough.

By dividing the time interval ½0; 1� into N 2 N intervals of length h :¼ 1=N, we define the time
steps τk :¼ kh, k ¼ 0; . . . ;N. We abbreviate qðkÞ :¼ qðτkÞ, vðkÞ :¼ vðτkÞ, �uðkÞ :¼ �uðτkÞ,
uðkÞð�Þ :¼ uð�; τkÞ, UðkÞ ¼ UðτkÞ, and for the predictor step of the Heun method we introduce
the values ~qðkÞ and ~vðkÞ, k ¼ 1; . . . ;N. Furthermore we write, for instance,

MðkÞ ¼ MðqðkÞ; �uðkÞÞ; FðkÞ ¼ FðqðkÞ; vðkÞ; �uðkÞ;UðkÞÞ;

~Mðkþ1Þ ¼ Mð~qðkþ1Þ; �uðkÞÞ; ~Fðkþ1Þ ¼ Fð~qðkþ1Þ; ~vðkþ1Þ; �uðkÞ;UðkÞÞ;

RðkÞ ¼ RεðqðkÞ; �uðkÞ;UðkÞÞ:

The discretized version of the set of admissible controls is

Uad :¼ fV 2 R
Nþ1 jVðjÞ 2 Uad :¼ ½Umin;Umax�" j ¼ 0; . . . ;Ng:

Thanks to Theorem 3.2 we may expect that the following algorithm, including a fixed-point
iteration for u and �u, works out well.

Algorithm 4.1 (Simulation procedure with Heun method in time)
(0) Init: Let T ¼ Tð0Þ be given, k :¼ 0, �u�1 ; 0. Let control input Uð�Þ 2 Uad and initial values

q0 ¼ q0 and v0 ¼ v0 be given.
(1) (0) �uðkÞ ¼ �uðk�1Þ:

(i) At time τk solve

� div σ ðuðkÞÞ ¼ H in Ω� fτkg;

uðkÞ ¼ 0 on ΓD � fτkg;

� ðuðkÞÞ:n ¼ RðkÞ on ΓN � fτkg:

(ii) �uoldðkÞ :¼ �uðkÞ. Compute �uðkÞ.
(iii) If k�uðkÞ � �uoldðkÞ k > err0 for a suitable norm and given error tolerance err0 go to (i).

(2) Set

MðkÞ~vðkþ1Þ ¼ MðkÞvðkÞ þ hTFðkÞ; (43)

~qðkþ1Þ ¼ qðkÞ þ hTvðkÞ; (44)

~Mðkþ1Þvðkþ1Þ ¼ ~Mðkþ1Þ
1
2
ðvðkÞ þ ~vðkþ1ÞÞ þ

hT
2

~Fðkþ1Þ; (45)

qðkþ1Þ ¼
1
2

qðkÞ þ ~qðkþ1Þ

	 

þ hT

2
~vðkþ1Þ: (46)
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(3) Set τkþ1 ¼ τk þ h, k :¼ kþ 1.
If τk < 1 go to (1), otherwise Stop.

In order to avoid technical issues with the size of finite elements, we replace the characteristic
function χΓC , appearing in the definition (31) of R, by an approximation with a version ~χεΓC
smoothed in x1-direction, where ε > 0 is a small, but fixed parameter:

~χεΓCðxÞ :¼ 1� tanh2 ðx1 � q1Þ=δ1ð ÞL
� �

(47)

with L 2 N , δ1 > 0 such that

jχΓCðxÞ � ~χεΓCðxÞj �
1=2; for jx1 � q1 � lT=2j< ε;
ε ; otherwise:

�

Abbreviating A1 :¼ lnðatanhð
ffiffiffiffiffiffiffiffiffiffi
1� ε

p
ÞÞ, A2 :¼ lnðatanhð

ffiffi
ε

p
ÞÞ and B1=2 ¼ lnðlT=2
 εÞ, we have

L ¼ dðA1 � A2Þ=ð2ðB1 � B2ÞÞ þ 1e (d�e denoting the ceiling function) and δ1 ¼ expððA1B2�
A2B1Þ=ðA1 � A2ÞÞ. For our numerics we work with ε ¼ 0:1, yielding L ¼ 4 and δ1 � 0:314,
whereas we do not consider any corner and edge smoothing for the simulations.

For small η ¼ mT=mL, which is realistic in applications, the matrix M is ill-conditioned. But
this issue may be overcome by a left preconditioning of the equations (43) and (45), respec-
tively, with the matrix Mðq ¼ qpc; �u ¼ �upcÞ�1, where, for example, qpc ¼ ðx0T;�1=ð2πÞÞ`
and �upc ¼ ð0;�0:1; 0; 0; 0; 0Þ`.

We remark that in Algorithm 4.1, Step (1)(o), we could set alternatively �uðkÞ ; 0, but the choice
above turns out to yield fewer iterations in Step (1).

4.2. Projected gradient method with BFGS update

We consider a projected gradient method [11], Algorithm 2.2] using a sensitivity-based approach
(cf [14., p. 58] within the context of Banach spaces). We prefer to project onto the set of
admissible controls within the line search, instead of projecting first and then performing a line
search. We discretize the integrals appearing in the reduced objective function by the trapezoidal
rule, according to our second-order time integration. Then we calculate a discretized reduced
gradient (cf [17., Ch. 4] for a full discretization approach).

Note that due to our modelling ansatz u and �u do not enter the reduced objective function.
Thus our OCP comes down to finding a time-optimal parameter T and control U of a
discretized OCP for a DAE with index 1 that may be solved with respect to u. It is an open
question whether for this class of problems we may expect the existence of optimal controls
ðU;TÞ. The objective exhibits a quadratic term in U and additional nonlinear terms with
respect to T and U.

We use the notation qðnÞðkÞ ¼ qðUðnÞ;TðnÞÞðtkÞ, FðnÞ ¼ FðUðnÞ;TðnÞÞ and JðnÞ ¼ JðqðnÞ; vðnÞ;
UðnÞ;TðnÞÞ to indicate the dependence on the control ðUðnÞ;TðnÞÞ in the optimization iteration
n 2 N . For brevity we write SðiÞ ¼ 1 for i ¼ 1; . . . ;N � 1 and SðiÞ ¼ 1=2 for i ¼ 0 or N. The
discretized time-scaled version of the objective function (21) reads according to the trapezoidal rule

FðnÞ ¼ ν1T
ðnÞ þ ν2

2
hTðnÞ

XN
k¼0

SðiÞ v
ðnÞ
ðkÞ;2j

2 þ ν3
2
hTðnÞ

XN
i¼0

SðiÞ

�����
�����UðnÞ

ðiÞ j
2

þ ν4
2

qðnÞðNÞ;1 � qf1j
2 þ ν5

2

��� ���qðnÞðNÞ;2j
2 þ ν6

2
vðnÞðNÞ;1j

2 þ ν7
2

��� ���vðnÞðNÞ;2j
2

(48)
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As usual we write δ
UðnÞ
ðiÞ
qðnÞðiÞ for the sensitivity of the discretized states q with respect to the

discretized control U (at time step i and optimization iteration n). Other sensitivities are defined
analogously.
Algorithm 4.2 (Projected gradient method with BFGS update, sensitivity-based approach)

(i) Initialize Uð0Þ
ðkÞ 2 Uad, k ¼ 0; . . .N, Tð0Þ 
 Tmin, Hð0Þ ¼ 1, n ¼ 0.

(ii) For k ¼ 0; . . . ;N � 1 solve the state equations for qðnÞðkþ1Þ; u
ðnÞ
ðkÞ ; �u

ðnÞ
ðkÞ by Algorithm 4.1, given a

control UðnÞ
ðkÞ and a parameter TðnÞ .

(iii) For k ¼ 0; . . . ;N � 1 compute the sensitivities for uðnÞðkÞ , �u
ðnÞ
ðkÞ by iterations, then solve the

sensitivity equations for qðnÞðkþ1Þ, v
ðnÞ
ðkþ1Þ, the latter are,

MðnÞ
ðkÞδUðnÞ

ðiÞ
vðnÞðkþ1Þ ¼ MðnÞ

ðkÞδUðnÞ
ðiÞ
vðnÞðkÞ þ hTðnÞδ

UðnÞ
ðiÞ
FðnÞ
ðkÞ

�δ
UðnÞ
i
MðnÞ

ðkÞ vðnÞðkþ1Þ � vðnÞðkÞ

	 

; i ¼ 0; . . . ;N;

(49)

MðnÞ
ðkÞδTðnÞvðnÞðkþ1Þ ¼ MðnÞ

ðkÞδTðnÞvðnÞðkÞ þ h TðnÞδTðnÞFðnÞ
ðkÞ þ FðnÞ

ðkÞ

	 

� δTðnÞMðnÞ

ðkÞ vðnÞðkþ1Þ � vðnÞðkÞ

	 

;

(50)

and set

δ
UðnÞ
ðiÞ
qðnÞðkþ1Þ ¼ δ

UðnÞ
ðiÞ
qðnÞðkÞ þ hTðnÞδ

UðnÞ
ðiÞ
vðnÞðkÞ ; i ¼ 0; . . . ;N; (51)

δTðnÞqðnÞðkþ1Þ ¼ δTðnÞqðnÞðkÞ þ h TðnÞδTðnÞvðnÞðkÞ þ vðnÞðkÞ

	 

: (52)

(iv) Determine DðnÞ as quasi-Newton direction, solving

HðnÞDðnÞ ¼ �δðUðnÞ;TðnÞÞF ðnÞ;

where the approximated Hessian HðnÞ is determined by the modified BFGS update [32] and
the anti-gradient of F with respect to the scalar product in L2ð0;TÞ � R is calculated using
the sensitivities:

δ
UðnÞ
ðiÞ
F ðnÞ ¼ δqðnÞ J

ðnÞ � δ
UðnÞ
ðiÞ
qðnÞ þ δvðnÞ J

ðnÞ � δ
UðnÞ
ðiÞ
vðnÞ þ δ

UðnÞ
ðiÞ
JðnÞ;

i ¼ 0; . . . ;N;

δTðnÞF ðnÞ ¼ δqðnÞ J
ðnÞ � δTðnÞqðnÞ þ δvðnÞ J

ðnÞ � δTðnÞvðnÞ þ δTðnÞ JðnÞ:

(v) If a stopping condition is fulfilled, then Stop.
(vi) Determine the step size sðnÞ by an Armijo line search (see Algorithm 4.3)

FðPAððUðnÞ;TðnÞÞT þ sðnÞDðnÞÞÞ ¼ min
s2ð0;1�

F ðPAððUðnÞ;TðnÞÞT þ sDðnÞÞÞ;

where PA is the Euclidean projection onto the set A :¼ Uad � T 
 Tminf g.
(vii) Update control and parameter ðUðnþ1Þ;Tðnþ1ÞÞ` ¼ PAððUðnÞ;TðnÞÞ` þ sðnÞDðnÞÞ.
(viii) Set n :¼ nþ 1 and go to Step (i).

For the ease of presentation we have stated the last algorithm with Euler steps in (49 – 52),
instead of Heun steps. Actually, we implemented a Heun method being consist with Algorithm 4.1.
For further information and the formulas for derivatives of FðnÞ

ðkÞ and MðnÞ
ðkÞ with respect to controls
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and for the derivatives δðqðnÞ;vðnÞ;UðnÞ;TðnÞÞJ
ðnÞ, see [27, Appendix B]. Since �u and u do not appear in the

objective function, the sensitivities for �u only enter in δ
UðnÞ
ðiÞ
FðnÞ
ðkÞ , δTðnÞFðnÞ

ðkÞ , δUðnÞ
ðiÞ
MðnÞ

ðkÞ , and δTðnÞMðnÞ
ðkÞ .

The Armijo line search in Step (vi) of the Algorithm 4.2 is performed as follows
Algorithm 4.3 (Projected Armijo line search)

(i) Let βA 2 ð0; 1Þ, σA 2 ð0; 1=2Þ, l 2 N
	 and let ϕðsÞ ¼ FðPAððUðnÞ;TðnÞÞ þ sDðnÞÞÞ be given.

(ii) Find maximal s ¼ βlA such that

ϕðsÞ � ϕð0Þ þ σA sϕ
0ð0Þ (53)

with ϕ0ð0Þ ¼ δðUðnÞ;TðnÞÞF ðnÞ � ~DðnÞ, where for i ¼ 0; . . . ;N

~DðnÞ
ðiÞ ¼

0 ; UðnÞ
ðiÞ ‚Uad ¼ Umin;Umax½ � or

UðnÞ
ðiÞ ¼ Umax ^ DðnÞ

ðiÞ 
 0
	 


or UðnÞ
ðiÞ ¼ Umin ^ DðnÞ

ðiÞ � 0
	 


;

DðnÞ
ðiÞ ; else;

8>><
>>:

and

~DðnÞ
ðNþ1Þ ¼

0 ; TðnÞ < Tmin or ðTðnÞ ¼ Tmin ^ DðnÞ
ðNþ1Þ � 0Þ;

DðnÞ
ðNþ1Þ; else:

(

(iii) Set sðnÞ :¼ s.
For the choice βA ¼ 0:9 and σA ¼ 10�4 we observe a good performance of the line search within
our numerical experiments. For the Armijo line search it turns out to be crucial to solve for the
new states, when computing ϕðsÞ in the Armijo condition (53), to sufficient precision, requiring a
finite element (FE) solution of the PDE for every βlA. Otherwise the algorithm might terminate
since an admissible step size cannot be found.

Our reduced gradient reads,

δ
UðnÞ
ðiÞ
F ðnÞ ¼ ν2hT

ðnÞ
XN
k¼iþ1

SðkÞv
ðnÞ
ðkÞ;2 δUðiÞv

ðnÞ
ðkÞ;2 þ ν3hT

ðnÞSðiÞU
ðnÞ
ðiÞ

þ ν4 ðqðnÞðNÞ;1 � qf1ÞδUðiÞq
ðnÞ
ðNÞ;1 þ ν5 q

ðnÞ
ðNÞ;2 δUðiÞq

ðnÞ
ðNÞ;2

þ ν6 v
ðnÞ
ðNÞ;1 δUðiÞv

ðnÞ
ðNÞ;1 þ ν7 v

ðnÞ
ðNÞ;2 δUðiÞv

ðnÞ
ðNÞ;2

for the components i ¼ 0; . . . ;N, and

δTðnÞF ðnÞ ¼ ν1 þ
ν2
2
h
XN
k¼0

SðkÞjvðnÞðkÞ;2j
2 þ ν2hT

ðnÞ
XN
k¼1

SðkÞv
ðnÞ
ðkÞ;2 δTðnÞvðnÞðkÞ;2

þ ν3
2
h
XN
k¼0

SðkÞjUðnÞ
ðkÞ j

2 þ ν4 ðqðnÞðNÞ;1 � qf1ÞδTðnÞqðnÞðNÞ;1 þ ν5 q
ðnÞ
ðNÞ;2δTðnÞqðnÞðNÞ;2

þ ν6 v
ðnÞ
ðNÞ;1δTðnÞvðnÞðNÞ;1 þ ν7 v

ðnÞ
ðNÞ;2 δTðnÞvðnÞðNÞ;2

Clearly, for i 
 k we find δ
UðnÞ
ðiÞ
qðnÞðkÞ ¼ 0 and δ

UðnÞ
ðiÞ
vðnÞðkÞ ¼ 0. Thus we can simplify δ

UðnÞ
ðNÞ
F ðnÞ

¼ ν3ðhTðnÞ=2ÞUðnÞ
ðNÞ. We conclude that if the control cost parameter ν3 ¼ 0, then UðnÞ

ðNÞ is arbitrary.

For uniqueness, we set UðnÞ
ðNÞ ¼ 0.
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For small trolley/load mass ratios η ¼ mT=mL, our ODE system turns out to be stiff and a
semi-explicit method [33] is applied by using on the right-hand side of (44) ~vðkþ1Þ instead of vðkÞ
and on the right-hand side of (46) vðkþ1Þ instead of ~vðkþ1Þ.

A suitable algorithm for determining the weights νi, i ¼ 4; . . . ; 7, is crucial in order to avoid a
breakdown of the Armijo line search and to obtain feasible computing times. Within this frame-
work our objective function can be interpreted as an exact penalty function [34, Sect. 5.4]. The
optimal penalty weights νi, i ¼ 4; . . . ; 7 are unknown, but we may expect that we approximate the
optimal weights numerically sufficiently well.
Algorithm 4.4 (Penalty method)

(i) Set initial weights νi ¼ ν0i , i ¼ 4; . . . ; 7.
(ii) Run Algorithm 4.2.

(iii) If qðnÞðNÞ;j � q f
j ;j jvðnÞðNÞ;j

��� ���<err1 for j ¼ 1; 2 and a given error tolerance err1, then Stop.

(iv) Increase the weights νj :¼ ~ρνj (where ~ρ > 1) for indices j corresponding to violated
terminal conditions. Go to (ii).
Typically we consider the factor ~ρ ¼ 10. We remark that the initial value of ν4 has to be chosen
such that the trolley remains within the feasible area of the crane beam for the first run of
Algorithm 4.2. We start with ν04 ¼ 1=ðq f

1 � q01Þ
2, ν05 ¼ 10ν04, ν

0
6 ¼ 5000ν07, and ν07 ¼ 1=ðTð0ÞÞ2.

5. Numerical results

We solve our OCP by means of Algorithm 4.2. This algorithm has been implemented in the open-
source software package FEniCS v1.4 (API Python 2.7.3 with PETSc v3.2 as linear algebra
package). It has been executed on a workstation, equipped with Intel(R) Xeon(R) CPU E5640
@2:67GHz � 16 processors and a memory of 23.6 GiB, under Ubuntu Linux. For data
considered in our simulations, see Table 1.

In the following we present the results for a mesh that has been refined adaptively on
fΓCðq1Þjq01 � q1 � q f

1g beforehand by solving an auxiliary Poisson problem and refining recursively
cells with a residual error larger than 10�4. This procedure yielded about 10 500 vertices and 43 200
3d-cells. We consider N ¼ 100 time steps on the normalized time interval ½0; 1�, the error tolerance
err0 ¼ 2:0 � 10�5 for the u-iteration, the error tolerance err1 ¼ 5:0 � 10�2 for the terminal conditions,
and the relative error tolerance err ¼ 10�8 for the optimization. As stopping condition we work with

Table 1. Typical data for a large crane (see, e.g. [35],) and further used parameters.

Description Symbol Value Unit

Width crane beam b2 0:80 m
Height crane beam b3 ¼ b2 0:80 m
Length crane beam l2 45:80 m
Width trolley bT 0:80 m
Height trolley hT 0:10 m
Length trolley lT 0:60 m
Mass trolley mT 150 kg
Mass load mL 3340 kg
Length pendulum l 17:5 m
Scaled maximal accelerating force Umax 0:006 s�2

Scaled minimal accelerating force Umin � 0:006 s�2

Scaled mass density crane beam ρ 0:0104 m�3

Scaled Lamé parameter 1 λ 1:76 � 106 N kg�1 m�3

Scaled Lamé parameter 2 μ 1:33 � 106 N kg�1 m�3

Standard gravity earth ge 9:81 N kg�2

Initial angle trolley q02 0 rad
Terminal angle trolley qf2 0 rad
Initial velocities v0 0 ¼ ð0; 0Þ` (m s�1, rad s�1)`

Terminal velocities vf 0 ¼ ð0; 0Þ` (m s�1, rad s�1)`
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FðnÞ � Fðnþ1Þ

1þ Fðnþ1Þ < err: (54)

As initial guess we start with

U0ðtÞ ¼
Umax ; 0 � t < 0:4;
�Umax; 0:4 � t< 0:8;
0 ; 0:8 � t � 1;

8<
:

for the control, motivated by the intuitive strategy to (i) accelerate, then (ii) brake, and (iii) wait
until the system swings out. As initial guess for the total time we take Tð0Þ ¼ 18:5 [s].

For the weights ν we consider ν1 ¼ 10=Tð0Þ, ν2 ¼ 500 and we focus here on the situation
ν3 ¼ 0, though the algorithm clearly can handle ν3 > 0 as well. According to Algorithm 4.4, a
suitable choice for the weights νi, i ¼ 4; . . . ; 7 is obtained by successively increasing the weights
according to violated terminal conditions and restarting with the control and final time deter-
mined so far, until the terminal conditions are fulfilled to sufficient accuracy. It turns out to be
crucial that the weights are scaled such that the reduced objective function is approximately of
order 1.

Table 2. Numerical results for the number of optimization iterations, violation of terminal conditions and final time TðnÞ for
each stage of the penalty method.

Stage # It. qðnÞðNÞ;1 � qf1

��� ��� qðnÞðNÞ;2

��� ��� vðnÞðNÞ;1

��� ��� vðnÞðNÞ;2

��� ��� TðnÞ

1 18 0.4710181849 0.0342489553 0.0112566293 0.1530321823 18.49935459
2 2 0.4710181849 0.0342489553 0.0112566293 0.1530321823 18.49935459
3 184 0.0564336136 0.0166066948 0.0018213617 0.1608312973 18.49840484
4 2 0.0564336136 0.0166066948 0.0018213616 0.1608312973 18.49840484
5 998 0.0475493891 0.0451017689 0.0046039452 0.0354990300 18.49836286

Figure 2. Initial control (red dotted line) versus time steps, the computed control after 1 stage (green continuous line) and the
computed optimal control (blue dashed line) after 5 stages. The objective F is dimensionless and the control U is given in s�2.
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5.1. Numerical time-optimal control

In a first study we consider a projected gradient method as obtained from Algorithm 4.2 by fixing
HðnÞ ¼ Hð0Þ. Table 2 shows the stages of the penalty method and the violation of terminal
conditions. The optimization of the final time T is illustrated in Table 2. Here we consider as
initial position of the trolley q01 ¼ 11:7 [m] and as terminal position qf1 ¼ 17:0 [m]. The resulting
control and states are depicted in Figure 2 and in Figure 3, where the final penalty weights are
ν4 ¼ 104ν04, ν5 ¼ ν05, ν6 ¼ 102ν06, and ν7 ¼ 104ν07.

From this simulation, we find as optimal total time T ¼ 18:49836 [s]. In Figure 2 we see that
the initial guess of bang-bang type is quite good already, but the obtained optimal control for
the final values of the weights is not of bang-bang type, though we omit a regularization term
for the control by setting ν3 ¼ 0. If we start with an arbitrary initial guess, then the computing
times are increased and not for any initial guess convergence is obtained. By Figure 3 we
convince ourselves that the terminal conditions q01 ¼ 17:0; qf2 ¼ vf1 ¼ vf2 ¼ 0:00 are respected
within good approximation. In Figure 3, bottom left, we see �u2 þ �u5 ¼ jΓCj�1�ΓC@1u3 þ @3u1 � 0,
this reflects the observation that the (orthogonal) shear stress τ13 ¼ τ31 ¼ μð@1u3þ@3u1Þ

Figure 3. States q ¼ ðxT; αÞ` (top/center left), v ¼ _q (top/center right), �u (bottom left/right) versus time step number on the
interval ½0; T� with T ¼ 18:49836 [s]; bottom left: �u1 brown continuous line, �u3 magenta upper dashed line, �u4 blue lower
dashed line, �u6 orange central finely dashed line; bottom right: �u2 red continuous line; �u5 green dashed line. The quantities q1,
v1 are given in m, q2; v2 in degree, �uj , j ¼ 1; 2; 5; 6, are dimensionless and �u3, �u4 are given in m�1.
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vanishes on the trolley-beam contact surface, representing a mainly isotropic compression or
tension on the surface. Figure 3, bottom right, shows �u3 þ �u4 � 0, corresponding to
@1traceð�uÞ � 0, that is, the average pressure on ΓC is constant in x1-direction. Keep in mind
that displacements in x2-direction are very small due to the non-rotating crane.

By increasing the fineness of the mesh, we checked that our choice of Lagrange P2-elements
and the applied spatial discretization avoid the well-known locking effects for Timoshenko beams
[31, Ch. VI, §3]. For a mesh with about twice the number of cells, we obtain almost identical
results. By the penalty method, Algorithm 4.4, we are able to obtain a lower value of the objective
FðnÞ than by solving directly for a fixed choice of weights. Furthermore, using the Euler method
for time discretization requires several thousands of iterations while by the Heun method our
algorithm terminates within several hundreds of iterations.

5.2. Numerical time-optimal control using a modified BFGS update

It turns out that time-optimal control of our problem works faster, when applying a projected quasi-
Newton method relying on the BFGS update. However, decreasing optimality and feasibility toler-
ances further for time-optimal control, yields Armijo steps close to the computing precision and long
computing times. Therefore we focus on the case of a fixed terminal time in the following.

5.3. Numerical optimal control for fixed terminal time

Our numerical optimal control presented in Subsection 5.1 turns out to require large computing
times for a decreased feasibility tolerance err1. We examine this phenomenon by considering the
optimal control of the problem but now with ν1 ¼ 0, ν3 ¼ 0:1, a fixed terminal time T ¼ 19:0 [s],
and N ¼ 500 time steps. Our results are depicted in Figure 4 for same data as in Subsection 5.1,
except for err1 ¼ 10�8, and absolute error tolerance err0 ¼ 10�7 for the optimality, where as
stopping criterion we use

Tðnþ1Þ � TðnÞ�� ��þ kUðnþ1Þ � UðnÞk1<err0

instead of (54). Contrary to the last subsection, we consider q01 ¼ 12:0 [m] and qf1 ¼ 18:0 [m],
in order to demonstrate that our algorithm does not work only for particular initial and terminal
conditions of the trolley. Since the computed control and states show a qualitative behavior
similar to Figure 2 and Figure 3, we omit them here.

Figure 4. Reduced objective function FðU; TÞ (left), and convergence of q1ðTÞ vs. qf1 (right) for fixed terminal time T . On the
left-hand side we show the decrease of F over all 8 stages (separated by vertical lines) of the penalty method yielding 37
optimization iterations in total. F is normalized to the initial value or to the last value of the preceeding stage of the penalty
method, respectively. On the right-hand side we see the approach to the terminal trolley position qf1 vs. the optimization
iteration. The objective F is dimensionless and the terminal trolley position q1ðTÞ is given in m.
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We see that our combined Algorithms 4.2 and 4.4 perform more accurately in case of a fixed
terminal time. This suggests that the convergence issues in Subsection 5.1 are due to the nonlinear
time-optimal control. Other explanations for this observation could be the non-existence of a
time-optimal control or that a further time grid refinement, turning out to be a computational
challenge, is required in case of a free terminal time. Typically the precise resolution of switching
points of controls is numerically expensive.

5.4. Observations from simulations

For the solution of the linear 3d FE systems of moderate size (43 200 cells, 21 100 degrees of
freedom) for this initial study, it turned out to be sufficient to employ a direct method which re-
uses the factorization of the stiffness matrix.

From further simulations we noticed the following coupling effects and dependencies:

● For heavier crane beams, that is, larger values of the mass density ρ, the trolley position q1
moves faster to the free end and it may happen that the mass matrix M becomes singular.

● The longer the pendulum, that is, the larger the value of l, the smaller maxΩkuk. Then the
faster q1, the more q2 deviates from 0 and detðMÞ tends to zero.

● For a crane beam of half the length, maxΩkuk becomes smaller and detðMÞ is very close to 1.
● The typical ratio of trolley and load masses is η ¼ mT=mL � 0:05. For η ! 1 while the

scaled total mass m remains constant, the values of _q1 decrease and maxΩkuk becomes
smaller. In the opposite case, for lower values of η such as 0:01, q1 is faster and larger angles
q2 appear.

● The inclusion of mechanical displacements has a significant impact on the speed of the
trolley, for example, considering �u terms yields a slowdown of the trolley of about 10%
compared to an inelastic (�u ; 0) trolley system.

● Adding a damping term to the ODEs for the trolley and for the load, respectively, yields that
the amplitudes of the oscillations decay faster, but the qualitative effect is neglectable on the
optimal control of the whole coupled system (see [22]).

In particular, the latter observation underlines the importance of taking elastic deformations into
account, represented by the terms involving �u in the ODE.

5.5. Discussion

With the beam fixed on both sides, that is, homogeneous Dirichlet b.c. for u on ΓD as well as on
ΓD;r ¼ @Ω\ x1 ¼ l2 � b1=2f g, our situation can be thought of as an overhead gantry crane as used
frequently in environments as different as high rise racks or seaports. For mL ! 0 one might
think of a train or truck (‘trolley’) on a very long beam bridge (‘elastic structure’) that might easily
tend to vibrate, see [36] for the model and simulations. The considerations of this article could be
easily applied to these elastic crane bridge-trolley-load or elastic bridge-vehicle situations.

Our results of Section 5.4 underline the necessity to incorporate elastic deformations into the
standard trolley-load system. We compare with the optimal controls obtained by Chen and Gerdts
[4,5] for such a trolley-load system without elasticity. They have applied smoothed Newton
methods for the optimal control. Most data is of same order as in our case, but they simulate
for a significantly larger mass ratio η ¼ 0:6 and for the case ν1 ¼ ν2 ¼ 0 and ν3 > 0. The
numerical results resemble our figures, but we observe more oscillations after a change in the
control. This might be due to mechanical effects and to the lower value for η. In particular, when
no control costs enter the objective function, we do not necessarily end up with a bang-bang
control (see Figure 2). It is not clear so far whether the ‘bang-bang-principle’, known for optimal
control of ODE and of semilinear elliptic PDE apart, does not hold for this kind of ODE-PDE-
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constrained OCP or whether our observation is only a numerical artefact. A possible explanation
for this new phenomenon might be that the crane beam constitutes an infinite-dimensional
system of states. From the work of Pesch et al. [8,20,21], we see that they encounter also controls
that are not of bang-bang type. Please note that our situation differs from the Neumann boundary
control of semilinear elliptic PDE, where a bang-bang result holds [37], since we consider a
control in time acting by a shift on the Neumann boundary condition.

We give some reflections over coupled ODE-PDE control problems. Although this class of
problems has many real-life applications, only few results exist as discussed in the introduction.
This study shows a typical case study for this class of OCP, yielding a richer variety of controls
than OCP with ODE, DAE or PDE constraints alone. We remark that the coupled ODE-PDE
system could be regarded as a partial differential algebraic equation system (PDAE) with differ-
ential time index 1 and differential space index infinity [38]. However, the literature on PDAE,
even on basic definitions, seems to be small.

6. Conclusion and outlook

We have formulated an OCP for a coupled elastic crane-trolley-load system, proved analytically
the local-in-time well-posedness of the coupled ODE-PDE problem, presented a solution algo-
rithm and computed a first numerical optimal control for typical data. The following challenges
had to be overcome:

● the complexity of the model and the involved scales,
● a special algorithm had to be developed for this non-standard problem, involving ODE and

PDE constraints and possibly a lack of differentiability of u with respect to q1,
● the trolley-load ODE system resembles a double pendulum system, i) exponential reaction

on perturbations and ii) possibly chaotic behaviour,
● the solution times for the PDE (yielding a large number of degrees of freedom) are an issue.

However, the computation of the numerical optimal control could still be improved with respect
to computing times and resolution (the latter could be improved, e.g. by use of suitable variational
integrators), in particular in the case of time-optimal control. Provided an improved algorithm,
the OCP of a crane rotating as well could be tackled numerically.

Finally, we would like to close with an outlook. It might be useful to employ automatic
differentiation for the calculation of sensitivities. Work-in-progress includes (i) modelling and
numerics of the pendulum in 3d, (ii) possibly faster and more accurate first-optimize-then-
discretize methods, and (iii) to examine whether we might guarantee terminal conditions by
Newton-type methods instead of penalty techniques. However, it is not obvious whether a
Newton method can be applied to our problem as in Chen and Gerdts [4,5]. This depends on
the smoothness of the necessary optimality conditions that is not clear, since we need the Fréchet
differentiabilty of u with respect to moving boundary conditions. The corresponding Fréchet
derivative turns out to involve line measures, see [22]. Furthermore, it cannot be guaranteed that a
Newton-based method is at all faster than a projected gradient method combined with exact
penalty techniques, because the coupling of the problem might yield a dense Hessian matrix. In
particular, open questions comprise theoretical results for ODE-PDE constrained optimal control.
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Modelling, simulation and optimization of an elastic structure under
moving loads

Sven-Joachim Kimmerle1,∗
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We consider an elastic structure that is subject to moving loads representing e.g. heavy trucks on a bridge or a trolley on a crane
beam. A model for the quasi-static mechanical behaviour of the structure is derived, yielding a coupled problem involving
partial differential equations (PDE) and ordinary differential equations (ODE). The problem is simulated numerically and
validated by comparison with a standard formula used in engineering. We derive an optimal policy for passing over potentially
fragile bridges. In general, our problem class leads to optimal control problems subject to coupled ODE and PDE.

c© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

The elastic structure is modelled by a single solid thin cuboid i.e. a beam in three dimensions. By choosing suitable
boundary conditions (b.c.) this serves as a simple model either for a bridge, fixed on both ends of the solid beam, or for a
crane, fixed only at one side. The bridge could be passed over by vehicles that are modelled as several area loads. In case of a
crane, the goal is to transport a load from an initial to a terminal position, where the load is fixed to a moving trolley that runs
along the crane beam and that is modelled as well as an area load. An objective could be to pass the bridge or to move the
trolley in minimal time, while the structure should not be damaged, e.g. the elastic deflection is to be minimized. A motivation
for the bridge problem is the damage caused mainly by heavy trucks to road bridges and overcrossings. Heavy traffic is one
of the reasons for increasing road maintenance costs. An application for the crane model is that it serves as a first step to the
challenging control and optimal control for pontoon cranes that would require enhanced models. Both situations share some
mathematical aspects that are discussed in this short paper together. The investigation of the simple model for the bridge has
been started in [1, 4]. The optimal control problem for an elastic crane with a moving load is considered in [2] in details.

As geometry we consider the undeformed reference configuration Ω = {x ∈ R3 | 0 ≤ x1 ≤ `, |x2| ≤ b, |x3| ≤ h} in
space and the time interval is [0, T ]. In this short study the terminal time T > 0 is fixed. The mechanical displacement field
u : Ω → R3 is considered in (undeformed) Lagrangian coordinates. The other states q correspond to the centres of mass of
moving loads. The time-dependent control U : [0, T ] → R enters the state equations for the loads. U is subject to control
constraints, i.e. U(t) ∈ [Umin, Umax] for all times t ∈ [0, T ] for given Umin < 0 < Umax, modelling maximal deceleration
and acceleration, respectively. For a bridge the structure is clamped at both ends, ΓD = {x ∈ ∂Ω |x1 = 0 ∨ x1 = `}, while
for a crane the beam is clamped at one end only, i.e. ΓD = {x ∈ ∂Ω |x1 = 0}. The remaining boundary ΓN := ∂Ω \ ΓD

is subject to Neumann boundary conditions. In linear elasticity, i.e. under the assumption of small displacement gradients
‖u‖ � 1, the mechanical strain reads ε(∇u) = (∇u+∇u>)/2. The stress is modelled by the Cauchy stress tensor σ(∇u) =
Eν̃/((1 + ν̃)(1− 2ν̃)) trace(∇u) Id3 +E/(1 + ν̃) ε(∇u), depending on the Young modulus E > 0 and the Poisson number
ν̃ ∈ (−1, 1/2). This yields the following quasi-static PDE completed with Dirichlet and Neumann boundary conditions:

−div σ(∇u) = H in Ω× [0, T ], (1)

u = 0 on ΓD × [0, T ], −σ(∇u).ν −G(q, ū, U) = 0 on ΓN × [0, T ]. (2)

Here H = −ρge3 is a volume force (due to the dead load of the bridge/crane beam with density ρ, g being the grav-
ity acceleration) and ν denotes the outer normal. G : [0, T ] × ΓN → R3 is a boundary force modelling the total area
forces of N loads with mass mi at position qi (i = 1, . . . , N ) and has the following structure G(q(t), ū(t), U(t), x) =∑n

i=1χΓi
C(qi(t))

(x)G0(qi(t), ū(t), U(t),mi), where χΓi
C(qi(t))

: ΓN → {0; 1} is the characteristic function of the contact area

Γi
C , i = 1, . . . , n (n ≤ N ), where the area forceG0 is applied. The contact area is shifting with time: Γi

C(qi(t)) := Γi,0
C +qi(t).

Note that in G and G0 a vector of mean values ū, averaging spatially the functions u, ∇u, and D2u over the contact area Γi
C

enters. The ODE states q : [0, T ] → RN are subject to the Newton law of motion M(q) q̈ = F (q, q̇, ū, U) for all times
t ∈ [0, T ], where M is a given mass matrix and F is a generalized force, combining Coriolis and external forces, the latter
depending on the control U . Since it is reasonable to consider a model, where the ODEs do not depend additionally on x, this
motivates that the dependence of F on u is modelled by averaging over u on Γi

C and considering a dependence of F on ū
instead. Terminal conditions for the ODE states could be added as quadratic penalty terms to the objective J(U, u, q, q̇) that
is to be minimized w.r.t. U .

The PDE problem (1) & (2) is solved by the finite element method, while the ODEs are discretized by an Euler method.
In order to avoid locking effects (typical for thin beam-like structures) and to represent the second order derivatives D2u, we
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698 Section 16: Optimization

consider quadratic Lagrange elements. The mesh is refined on the part of ΓN , where the loads may possibly move. In order
to avoid technical problems, whether a finite cell belongs to Γi

C or not, the characteristic functions χΓi
C

are approximated
smoothly. The dependence of the b.c. (2).2 on mean values ū over u is solved by an inner fixed point loop. An outer loop,
being another fixed point iteration, is applied for solving the possibly fully coupled ODE-PDE system. For details for the
algorithm see in case of the crane [2, Sect. 3 & 4].

The algorithms for the bridge as well as for the crane problem have been implemented in the free, open source finite
element library FEniCS. Here we present the simple case of trucks, passing with constant velocity over the whole bridge.

Fig. 1: Deformed beam (scaled), colored according to absolut deformation
‖u‖, in the case of two trucks following each other with a distance of 12 m,
at t = T/2 = 20 s, when the maximal deflection is attained at the centre of
the bridge. Here ` = 100 m, b = 6 m, h = 3 m, E = 2.1 · 106 N/m2,
ν̃ = 0.3, ρ = 7850 kg/m2, and G0 = −107 e3 N/m2 acts for both trucks
on an area Γ0

C = 3m×18m. The two centres of mass are indicated by arrows,
cf. [4, Abb. 23].

This situation has been simulated for a full bridge (3-
dimensional beam) and optimized by comparing var-
ious scenarios (number of trucks, distance, opposing
traffic) in [4]. Here the simulations are validated by
increasing the polynomial degree of trial functions
and comparing maximal displacements of the bridge.
In this case the maximum is attained at the centre of
the bridge. Varying parameters, we observe that the
width b of bridge has almost no impact on the max-
imal displacement, while length ` and height h do.
This behaviour is due to the planar moment of in-
ertia I3 = bh3/12 [5, §17]. For the simulation of
two trucks following each other at two different dis-
tances, see Fig. 1. The opposing traffic of trucks ex-
hibits even more critical effects.

However, the simulation of a full 3-dimensional
model of the bridge involves many unknowns due to the 3-dimensional mesh. This motivates to reduce the model by replac-
ing the full bridge structure by a suitable plate model. For modelling the bridge as a Kirchhoff plate and the corresponding
simulations see [1]. Then the structure is reduced to a 2-dimensional geometry Ω̃ = {x ∈ Ω |x3 = 0}. The resulting PDE in
Ω̃× [0, T ] for the 2-dimensional displacement w is the Kirchhoff plate equation k∆2w = G̃, where k is the rigidity constant
of the plate and G̃ represents the original effects of volume and area forces, H and G. It is an elliptic forth-order PDE and
it is equipped with two suitable b.c., depending on whether the plate is fully clamped or simply supported at the left- and
right-hand-sides, respectively. The implementation uses a discontinuous Galerkin method using a penalty term in order to
guarantee continuity over element boundaries [6]. The simulation [1] is validated by comparing the maximal deflection in
vertical direction with a standard formula [5, §20]. For the optimal control of the elastic crane-trolley-load system by means
of a sensitivity-based first-discretize-then-optimize approach, see [2].

Our simulations suggest as an optimal policy for driving over the bridge, to respect a certain minimal distance between
two heavy vehicles and, in particular, to avoid opposite traffic. This shows that our simple model for an elastic bridge verifies
statements well-known in civil engineering. However, so far our models use the quasi-static PDE of linear elasticity and
cannot prescribe a swinging behavior due to elastic waves that might be relevant e.g. for large suspension bridges. The latter
would require second-order time derivatives of u in (1), leading to a hyperbolic PDE instead of an elliptic PDE. The overall
aim is an optimal control for passing over potentially fragile bridges. This leads to an optimal control problem subject to
coupled ODE and PDE as considered for the elastic crane-trolley-load system in [2]. For an efficient computation of this full
optimal control problem for the bridge, it could be helpful to study, whether the bridge model could be reduced further to
a 1-dimensional Euler-Bernoulli beam. So far only a few studies exist for optimal control of fully coupled ODE-PDE, see
e.g. the optimal braking of a truck with a fluid container [3] and the references therein.
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4.4 Article: Optimal Control of an Elastic Tyre-Damper System

with Road Contact

Here we present a proceedings article [KM14] that considers the optimal control of a quarter

car model yielding an elastic tyre-damper system with road contact. The main feature of this

problem is the presence of a free contact boundary. Let 0 < r < R <∞ denote the interior and

exterior radius of the undeformed tyre that are given and Ω = {r < (x2
1 + x2

2)1/2 < R} × (0, tf ).

The terminal time tf > 0 is fixed. The 2D model consists of the linear elasticity equation (elliptic

second-order) for the mechanical displacement u (w.r.t. the undeformed coordinate system) in

an elastic tyre and a second-order ODE for the displacement z of the chassis mounted on the

tyre by a spring-damper element. The ODE follows by the Newton laws. Furthermore, the

displacement y at the wheel rim base Γi = {(x2
1 + x2

2)1/2 = r} × (0, tf ) has to be determined as

well. The elastic tyre has a free contact with the road that is modelled by a complementarity

condition at the boundary Γe = {(x2
1 + x2

2)1/2 = R} × (0, tf ) of the PDE problem. The PDE

problem for itself is a Signorini problem. We may control proactively the damping coefficient

D of the electrorheologic damper within certain bounds Dmin ≤ D ≤ Dmax. Thus the control

enters as a coefficient in front of the velocity terms in the ODE for z.

We assume that the road profile is known. In practice this may be realized, e.g., by a wind-

shield camera or suitable sensors at the front of the car. Note that we neglect friction, horizontal

motion of the tyre, and the more complex nonlinear elastic behaviour of the tyre, since this is

the first approach to this kind of problem including the full tyre to the best knowledge of the

author. Other studies consider a more simplified problem, where the elastic tyre is replaced

completely by one, e.g. [Ca93, RS05, MG14], or multiple springs [BG16]. The advantage of our

approach is mainly that it provides an explicit formula for the spring coefficient that is required

in those models, where the tyre is just replaced by a spring. Finally, we would like to mention

that we do not allow for actuator forces (requiring another auxiliary motor) as used in some

real-world applications.

In the full model we have the following coupling

y, z (spring-damper force) Neumann b.c. σ(∇u).ν (on Γi), (4.5)

Dirichlet boundary value u (on Γi) y  z, (4.6)

where ν denotes the normal vector here. Alternatively, we could model the coupling such that

y, z (spring-damper force) Dirichlet b.c. for u on Γi, (4.7)

Neumann boundary value σ(∇u).ν (on Γi) y  z. (4.8)

This model is reduced by the so-called Hertzian stress approximation, that provides an explicit

algebraic equation for the width of the contact boundary and the tyre displacement at the active

contact boundary. By a further assumption this yields an explicit expression for the displacement
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y at the tire rim base. Having checked numerically the applicability of the Hertzian stress contact

formula in our case, this allows the reduction of the model such that a one-sided coupling from

the free boundary to the ODE remains:

Free boundary contact width a Dirichlet b.c. for u, y,

y  z.

Note that it is required only once to solve for the PDE after the optimization algorithm, since

the Hertzian stress approximation decouples the problem.

In the included paper this model is optimally controlled in a way such that the comfort (the

acceleration z̈ of the chassis), the spring robustness (difference z − y between chassis and tyre

displacement) and the safety (related to the contact width a of the tyre with the road) are

minimized. It is consistent to fix the terminal time, since the velocity of the quarter car is

prescribed. Again the second-order ODE system is considered as two linear ODE of first-order

for the simulation and the optimal control. A sensitivity-based FDTO reduced approach is

applied. The projected gradient method equipped with an Armijo line search (see Algorithm

2.28 with the negative gradient as descent direction) is used. We may reuse the algorithm and

code as developed for the elastic crane-trolley load problem.

Here again we apply again the finite element method for the elasticity PDE using quadratic

Lagrange elements CG2, the Heun method (of second-order) for the ODE is exploited, and

this algorithm is implemented in FEniCS [LMW12]. Note that the obtained numerical optimal

control is similar to a bang-bang type (no control effort is minimized) and depends significantly

on the weights chosen in the objective.

We put the full optimal control problem into the setting of the theory developed in Chapter

3. The state space for [u, y, z]> is the Banach space

L∞(0, tf ;H2(0, tf ))× [H2(0, tf )]2,

the control space for D is

U = L∞(0, tf ),

and the subset of admissible controls is

Uad = {D ∈ U |Dmin ≤ D ≤ Dmax}.

Thus we consider box constraints for the control and Uad is a closed convex subset of U . We

could think about imposing state constraints in order to ensure that the tyre rim never hits the

road (what does not happen for realistic data) and that the contact width a remains strictly

positive, since the loss of contact is tried to be avoided in reality. However, in our approach the

latter is achieved by means of a sufficiently large weight in the objective for the safety term.

Working with (4.5) & (4.6), in this problem the averaging-evaluation operator (see Def. 3.1)

appears naturally as

Eu(t, x) := u(t, x)|Γi = y(t), (4.9)

185



since the elastic tyre rim Γi is non-deformable in good approximation. Whereas using the

coupling structure (4.7) & (4.8) would yield the equation

y(t) = E(Γi)u(t, x) := −
∫

Γi

u(t, x) dΓi(x) (4.10)

in the problem.

The next steps include the well-posedness of the one-sided and the fully coupled problem and

the examination, whether an adjoint-based approach is feasible. In contrast to the elastic crane-

trolley-load problem, here E does not yield a complicated structure and we do not have to deal

with a moving boundary condition.

The full coupling has been also simulated and compared with the Hertzian stress approxima-

tion [Mo13], using quadratic finite elements. The fully coupled CDE could be considered (as a

constraint) in an optimal control problem in principle as well, though the computational effort is

much higher, whereas the precision is restricted by the approximation of the contact boundary

by finite elements anyways.
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We study an elastic tyre with a wheel rim that is suspended at the chassis of a car by means of a spring-damper element. This
quarter car model may be controlled by varying the damping constant of the electrorheological damper. Our mathematical
model yields a coupled ODE-PDE problem with a free boundary at the tyre-road contact. In this study we approximate the
tyre by the Hertz contact stress formula. The resulting optimal control problem with control constraints is solved numerically.
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1 Modelling of a quarter car and differential equations

In modern cars a dynamic control of the vehicle suspension is employed for better safety
and comfort. The road profile is monitored, e.g. by a stereo camera, and the suspension
is actively controlled. We focus on a proactive control of an electrorheological damper
where the damping constant D ∈ J = [Dmin, Dmax] may be varied. In our model
we do not use additional actuator forces for the control. We consider an elastic tyre-
damper system where the wheel rim is connected to the car chassis by a spring-damper
element. The tyre has a contact boundary with the road where it is deformed, the free
boundary and the deformation depending on the weight of the car and the elastic forces.
For simplicity, we consider a 2d cross-section of the quarter car model. The geometry
of the model is depicted in Fig. 1, the time-interval is (0, T ).
The system is modelled by an ordinary differential equation (ODE) for the spring-
damper-system, the stationary elasticity equation for the tyre deformation, and a com-
plementarity condition for the free boundary with the road. Newton’s law of motion
yields for the (relative) displacement z of the spring from its rest position (e.g. [1, (4.1)])

mz̈ = −D(ż − ẏ)− k(z − y) in (0, T ), z(t = 0) = ż(t = 0) = 0 (1)

where y is the (relative) displacement of the rim, m the quarter mass of a car chassis,
and k the spring constant. As an approximation the elastic tyre is modelled in linear
elasticity yielding the partial differential equation (PDE) for the displacement u(x, t) in
Lagrangian coordinates (undeformed configuration) with boundary conditions (b. c.):

Fig. 1: Geometry of the quarter car
model with free road contact. The elas-
tic tyre is described in the undeformed
configuration (solid grey).

− divσ(u) = −ρge2 in {r < (x21 + x22)1/2 < R} × [0, T ], (2)

u = y(t) e2 or − σ(u).n = −F (t)/(πrb)e2 on {(x21 + x22)1/2 = r} × [0, T ], (3)

0 ≤ −n · σ(u).n ⊥ ((s(x1, t)−R+ x2) e2 − u) · n ≥ 0 on {(x21 + x22)1/2 = R} × [0, T ], (4)

τ · σ(u).n = 0 on {(x21 + x22)1/2 = R} × [0, T ]. (5)

This is a Signorini problem. Here σ denotes the Cauchy stress tensor, linear in ∇u, depending on the Young modulus E and
the Poisson ratio ν. ρ prescribes the mass density within the tyre and g the gravitational acceleration. Eq. (3)1 models that
the displacement u is continuous at the wheel rim where the (stiff) wheel rim is shifted by the unknown y, while the second
b.c. models the balance with the force F , exerted by the rim, per area (b the width of the tyre). In general both b.c. in (3)
have to be satisfied, one b.c. enters the PDE problem for u, the other determines y. Eq. (4) & (5) encodes that there is either a
negligible outer pressure and a positive gap between the deformed tyre and a given road profile s, or there is a positive contact
pressure and contact between deformed tyre and road. n denotes the outer normal of the tyre, τ the tangential.

The symmetric free boundary is determined approximately by the Hertz formula (plain strain) [4] yielding a =
√
Rd with

the maximal penetration depth d = − 4
π

1−ν2

Eb F under the static force F = −(m + mT )g + k(z − y) where mT the mass of
tyre and rim. On the contact boundary Γc := ∂BR(0) ∩ {|x1| < a(t), x2 < −r}, according to Hertz for the normal pressure
−e2 ·σ(u).e2 = ( E

1−ν2
F
bR ((x1/a)2−1))1/2 ≥ 0, since typically F � 0. The Hertz approximation is justified numerically by

∗ Corresponding author: e-mail sven-joachim.kimmerle@unibw.de, phone +49 89 6004 3082, fax +49 89 6004 2136
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876 Section 19: Optimization of differential equations

solving the complementarity conditions iteratively [3]. The approximation motivates to replace (4) & (5) by the explicit b.c.

−σ(u).n = 0 on (∂BR(0) \ Γc)×(0, T ), u =
(
s(x1, t)−R+ (R2 − x21)1/2

)
e2 on Γc×(0, T ). (6)

If we model the tyre as a second spring [1, (4.2)], then we havemT ÿ = −(m+mT )g+k(z−y)+D(ż− ẏ)−kT (y−s(0, ·)),
where we introduce kT as a “spring” constant for the tyre. As a first approach, the vertical acceleration and the damping term
are neglected, motivated by mT � m and D � k. In (3)1, we approximate u2|∂Br(0) − s(0, ·) ≈ −d which is reasonable for
small strains. We identify kT = π

4
Eb

1−ν2 and we end up with the explicit formula y = 1
kT+k (−(m+mT )g + kz + kT s(0, ·)).

2 Optimal control problem and numerical results

The goal is to minimize the objective I(D) = 1
2

∫ T
0
α1|z̈(D)|2+α2|z(D)−y(D)|2+α3|y(D)−s(0, ·)|2 where the parameters

αk, k = 1, 2, 3, are positive. Here we consider the states u, z, and y as functions of the control D. Minimizing the first term in
the reduced objective function corresponds to an increase in the comfort, the second term accounts for the spring robustness
(a spring cannot be contracted/extended without limits), and the last “safety” term models the change of distance between rim
and road (neither the grip i.e. the contact area should go to zero nor the chassis should touch the road) [1, 4.3.1.].
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Fig. 2: Computed optimal control D (brown dashed line) for a com-
promise between comfort and safety, T = 3π. Relative displacement
z of the chassis (shifted by 2R, green upper dotted line) and y of the
rim (shifted byR, orange lower dotted line) together with cosinusoidal
road profile s(0, t) modelling a speed bump (black continuous line).

As a first approach we solve the optimal control prob-
lem to minimize I(D) subject to (1), (2), (3)1, (6), and
D ∈ J by a projected gradient method with Armijo line
search. The gradient is computed by a sensitivity based
approach. Within our approximation u does not enter into
the reduced cost functional and there is no need to solve
a sensitivity PDE for u,D. Besides y,D = γz,D where
γ = k/(kT + k). For the sensitivity z,D we have the ODE
mz̈,D = −(1 − γ)ż − D(1 − γ)ż,D − k(1 − γ)z,D. The
ODE for z and z,D are discretized by Heun’s method and
the PDE for u may be solved by FEM. This is implemented
in the open software FEniCS. As a stopping condition we
work with (I(D)(i) − I(D)(i+1))/(1 + |I(D)(i+1)|) < err
where the index (i) indicates the optimization iteration. For
numerical results, in case of an initial control D(0) = 1500,
weights α1 = 1/4, α2 = 102, α3 = 104, err = 10−13,
and 2 · 104 time steps, see Fig. 2. The given road profile is
s(x1, t) = 0.25(1 + cos(2(x1 + t)))χ[π/2,3π/2](x1 + t), χ
a characteristic function. Realistic data for a midsized car has been used. We observe an antagonistic behaviour between
optimal comfort and safety as in [5]. Comfort yields high oscillations of D, while safety requires high accelerations z̈.

The approach to optimize the vehicle dynamics by means of optimal control and not only by feedback control seems to
be new within this field [5]. In many other models the elastic tyre is replaced at once by a spring [1, 2, 5] or several springs
(e.g. software CDTire by ITWM Kaiserslautern). These models might, as well as our model, allow for a real-time control
which is out of sight for a fully ODE-PDE model. However, in these analogous models the “tyre spring” parameters have to
be fitted, that are given directly in our model. Compared to [3], where another approximation F ≈ −(m + mT )g is used,
we obtain slight corrections. Well-posedness of this problem will be discussed in an upcoming study. A future goal is to
work without the Hertz approximation and to consider the full coupling between u and y. This situation raises also interesting
analytical questions. Finally, it might be interesting to incorporate friction and non-linear elasticity into our model.
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4.5 Article: Optimal Control of Phase Transitions

The last article [Ki12] that is included in this work is on a model with CDE, where a state

is a measure or switching conditions appear, respectively. We consider a generalization of the

classical Lifshitz-Slyozov-Wagner (LSW) model for an unknown measure3 ν : (t, V ) → R+
0

describing, e.g., a droplet (bubble, particle) volume distribution that evolves with time and that

is subject to an algebraic equation that enforces the mass (or volume) conservation. The PDE

for the measure is a transport equation and hyperbolic of first-order, the measure has to be non-

negative in the sense that ν(t, V ) ∈ {0} ∪ (Vmin,∞), where Vmin represents a physical minimal

volume for a droplet to behave still as a liquid and not as a gas or molecule. Commonly, the

algebraic equation is differentiated w.r.t. time, yielding a first-order ODE for the so-called mean

field V̄ that is a mean volume dominating the solution far away from droplets.

We observe the coupling structure

ν  V (as coefficient),

V  ν (as coefficient).

We wish to optimally control certain moments of the distribution with measure ν. Here the

zeroth and first moment at tf are interesting modelling the total number and the total volume

of droplets at the terminal time. Apart from the control effort, we add a variance term, i.e. the

quadratic deviation from the mean value of ν(tf , ·), to the objective. In this paper, the terminal

time tf is fixed. We may control the initial mass u0 that may be interpreted as a parameter

to be identified, i.e. chosen optimally in this context, and the temperature u1(t) of the system

that enter both as coefficients at various places in the equations. u0 and u1 are subject to box

constraints.

We semi-discretize the single PDE for the measure by considering initial data that consists

of a fixed number N0 of initial droplets with volume V 0
i , i.e. a sum of Dirac data that is

normalized. The latter is a so-called Mullins-Sekerka (MS) model. Under certain periodicity

assumptions it may be justified rigorously that LSW is the homogenization limit of the MS

model [Ni99, NO01]. In our discretization the PDE for the measure is replaced by N0 ordinary

differential equations of first-order for Vi, i = 1, . . . ,N0, that are nonlinear and fully coupled to

each other, but the coupling takes place only via the mean field equation. Over time droplets may

vanish (corresponding to the fact that the LSW partial differential equation has only leaving

characteristics) and nucleation is not allowed in this model. Thus the droplet number N is

another time-dependent state.

The coupling structure of the semi-discretized problem reads

Vi  V (as coefficient) ∀i = 1, . . . ,N ,
Vi  N (vanishing droplets) ∀i = 1, . . . ,N ,

3Note that the measure is denoted νt in the paper [Ki12].
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N  V (“evaluation operator”),

V  Vi ∀i = 1, . . . ,N (as coefficient).

The vanishing droplets are a numerical challenge, since the times when droplets vanish have to

be computed with sufficient precision. Since for long time intervals no droplet vanishes, adaptive

time-schemes are crucial for an efficient solution of the state equation.

For the numerical optimal control we consider a full discretization approach relying on sensi-

tivities. For the time-discretization of the states central differences are used. For the numerical

solution it is preferable to differentiate the algebraic equation, i.e. working with the mean field

ODE. The numerical solution of the mean field ODE has been computed by a Runge-Kutta in-

tegrator with fixed, but sufficiently small time stepping as well as by the DASSL solver [BCP96].

Note that the numerical conservation of mass with time is crucial for a reasonable solution.

Our algorithm has been implemented in OCODE 1.5 (part of the package OCPID-DAE1 [Ge10])

that exploits the direct shooting method and internally uses the SQP method for the solution

of the discretized system. We observe that for u0 the smallest admissible value is optimal and

a bang-bang type for the control u1 is obtained. This corresponds to the situation of classical

DAE optimal control.

Finally, in the included paper the stability of the semi-discretized mean field problem is discussed

as well. Note that in this paper a problem involving nanodroplets is considered. However, this

can be as well adapted to our problem for bulk and surface nanobubbles as simulated in [Ki15].

Furthermore, many other types of precipitates may be considered as well.

In the original problem the state space for [ν, V ]> reads

Y = C0
weak([t0, tf ], C0

0 (0,∞)∗)× C0([t0, tf ];R)

where C0
weak indicates a weakly continuous map t→ ν. We have the pure state constraints

νt(V ) ≥ 0 ∀V ∈ R+
0 ∀t ∈ (t0, tf ),

V ≥ 0 ∀t ∈ (t0, tf ).

In the semi-discretized problem for the characteristics Vi, i = 0, . . . ,N0, the droplet number N ,

and the mean field, we have

Y = [H1(t0, tf )]N0 ×BV (t0, tf ;N0)×H1(t0, tf ).

Here BV denotes functions of bounded variation. This is subject to the state constraints

Vi ≥ Vmin ∀i = 1, . . . ,N ∀t ∈ (t0, tf ),

V ≥ 0 ∀t ∈ (t0, tf ).

We consider box constraints for the initial mass and the temperature control. Thus Uad is a

closed convex subset of U = R+ × L∞(t0, tf ;R+).4 For well-posedness of the classical LSW

4Mathematically, we may consider R× L∞(0, tf ;R) as well, but in physics this makes no sense.
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equations for given control, see [NP00, NP01]. In this problem the evaluation operator is just

the integration over the measure. In the semi-discretized problem this becomes just the sum

over the still existing droplets and no special treatment of the evaluation operator is required.

Since this problem is very complex, it has been presented here only for illustration of what

challenges may occur in applications for coupled differential equations. An analytic theory for

this problem alone is out of scope for this study. Note that the switching conditions, i.e. chang-

ing technically from an ODE to the trivial algebraic equations Vi = 0 for further times, once

droplet i has vanished, is a non-trivial issue for optimal control. Furthermore, problems of this

type might be extended to the case where switching costs (see, e.g., [Ge12, Subsect. 7.3.1]) are

present in the objective. The optimal control of semilinear parabolic PDE involving switching

times is covered in [CKP17].

Open tasks are to include a free terminal time, to establish efficient algorithms for long-time

behaviour (see [CG01] for this challenge in the context of the classical LSW equations), and to

solve the optimal control problem with an adjoint approach. Due to the switching points the

latter is non-standard.
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1. MODELS FOR PHASE TRANSITIONS

Phase transitions are an important phenomenon in ma-
terial science. On the one hand phase transitions may
be exploited in order to design a requested material, on
the other hand they may destroy desirable properties of
designed materials. For example, the industrial produc-
tion process of semi-insulating gallium arsenide (GaAs)
requires at the end some additional heat treatment at
high temperatures in order to ameliorate the quality of
the semi-insulator.

One of the challenges is the necessity to guarantee a
mean mole fraction of arsenic (As) in the GaAs wafer of
X0 = 0.500082 within high accuracy, in order to have
the desired semi-insulating behaviour. During this final
heating process unwanted liquid droplets precipitate in the
solid crystal due to misfits and due to supersaturation.
These precipitates influence negatively mechanical and
semi-insulating properties of the crystal. Their elimina-
tion, if possible, is a crucial point for the production of
semi-insulators.

For the modelling of phase transitions various types of
models have been suggested. Sharp-interface models and
phase-field models, where the interface is smeared out
in the latter, capture the spatial structure of a phase
transition, while macroscopic models, like the LSW model
(Lifshitz and Slyozov (1961); Wagner (1961)) or the mean
field model, and BD models (Becker and Döring (1935))
do not. Sharp-interface models, phase-field models and
macroscopic models are continuous diffusion models while
the BD model is an atomic nucleation model. Macroscopic
models may be justified rigorously as homogenization
limits of sharp-interface models or of BD models for small
droplet volume fraction.

We consider a mathematical model that describes the
evolution of the precipitates including surface tension and
bulk stresses on a macroscopic scale. It is obtained by
homogenization of a sharp-interface model, derived from
thermodynamical principles in Kimmerle (2009). We ex-
amine the corresponding control problem. While results
exist for the optimal control of phase-field models, e.g. for
the Allen-Cahn equation (Farshbaf-Shaker (2011a,b)) or
Cahn-Hilliard equation (Hintermüller and Wegner (2011)),
the control of a macroscopic model has not been con-
sidered so far as known by the author. Instead of the
well-established LSW model our model comprises the mi-
crostructure of the crystal within the diffusion process,
mechanical deformations within linear elasticity, and the
fact that droplets with only a few atoms do not behave
like a liquid. The latter is modelled by the introduction
of a minimal droplet volume Vmin > 0. Our model is a
realistic model for phase transitions between liquid and
solid including linear elasticity and is not only restricted
in its applicability to semi-insulating GaAs.

We focus on the homogeneous version of this generalized
LSW model, corresponding to the dilute scaling of droplet
volume fraction. In the homogeneous LSW model the bulk
is in quasi-static diffusion equilibrium. Different regimes
for the motion of free boundaries, as volume-diffusion-
controlled or interface-reaction-controlled interface motion
can be considered. We assume homogeneous precipitates,
i.e. the mass density and concentrations within the precip-
itates are constant.

2. CONTROL PROBLEM

We look for regimes, where for large times either only
a few droplets, as small as possible, survive or where a
homogeneous distribution νt(V ) of the droplet volume V
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may be achieved at a given final time tf . This motivates
the cost function

J(u1, νtf ) =
α0

2
‖u1‖2L2(t0,tf )

+

∞∫

Vmin

(α1 + α2V ) dνtf (V )

+
α3

2

∞∫

Vmin

∣∣∣∣∣∣
V

∞∫

Vmin

dνtf (S)−
∞∫

Vmin

Sdνtf (S)

∣∣∣∣∣∣

2

dνtf (V ) (1)

where the non-negative weights αk, 0 ≤ k ≤ 3, with∑
k αk > 0, may be chosen basically as needed within the

application. Note, that the integral terms are evaluated
at the end point tf and only the control cost depends
on the whole time interval (t0, tf ). A natural parameter
control is provided by physical quantities like temperature
or pressure. An initial control is provided by the total
mass M and the total arsenic N1 = MX0/m1, m1 the
molar mass of As, that are conserved, and, in principle, by
the initial volume distribution of droplets ν0(V ). Since the
pressure yields only a slight correction (Kimmerle (2009)),
and it is not clear whether it is technically possible to
influence precisely the initial distribution of droplets, we
focus on the total mass u0 = M and the temperature
difference u1 as control.

2.1 Volume-diffusion-controlled regime

While droplets are parametrized by V , the bulk is
parametrized by a fictive volume V corresponding to the
mean field of the chemical potential. It is convenient to
consider the density νt(V ) of droplet volume that is the
ratio of droplets with volume between V1 and V2 at a
fixed time t w.r.t. the total droplet volume at the initial
time. The evolution of this time-dependent non-negative
measure νt(V ) is prescribed by the LSW equation

∂tνt + a(V , V, u1) ∂V νt = 0 in (Vmin,∞), a.e. in [t0, tf ],(2)

while droplets smaller than Vmin do not exist, yielding

νt(V ) = 0 in [0, Vmin], in [t0, tf ]. (3)

The term a expresses the speed how fast the volume of a
droplet changes and is determined by the so-called Stefan
condition, modelling the balance of mass/substance at
the interface. It reads for the volume-diffusion-controlled
regime

a(V , V, u1) = V 1/3µI(V , u1)− µI(V, u1)

X(V, u1)
(4)

with a strictly positive function X, monotone decreas-
ing in V . Here µI(V, u1) is the chemical potential of a
precipitate, strictly monotone decreasing in the volume,
with parameter u1. From a it turns out that the chemical
potential µ = µI(V , u1) is associated to the fictive volume
V and droplets with chemical potential µI(Vi, u1) smaller
as µ grow, while droplets with a larger chemical potential
shrink. The function

X(V, u) =
u1
BD

[
ρS(V , u1)

ηS(V , u1)
ηL(V, u1)− ρL(V, u1)

+

(
ρS(V , u1)

ηS(V , u1)
∂V ηL(V, u1)− ∂V ρL(V, u1)

)
V

] (5)

results from the continuity of the flux of mass and sub-
stance over the interface. Note that the mass densi-
ties/concentrations ρL/ηL are evaluated on the liquid side
of the interface, while ρS and ηS are evaluated on the solid
side. BD is a positive constant related to the mobility in
the volume-diffusion-controlled regime.

Eq. (3) together with (4) implies that we switch from an
ODE to the equation νt(V ) = 0 once a shrinking droplet
reaches Vmin.

The corresponding initial condition is

ν(t0, V ) = ν0(V ). (6)

This is coupled to the global conservation of mass/substance
yielding an algebraic equation for V ,

V = ζ

(
M −

∫∞
Vmin

ρL(V, u1)V dνt(V )

MX0 −m1

∫∞
Vmin

ηL(V, u1)V dνt(V )
, u1

)

in [t0, tf ],

(7)

with a nonlinear, strictly monotone function ζ, defined by

ζ−1(·, u1) =
ηS(·, u1)

ρS(·, u1)
. (8)

The index of the algebraic equation (7) is 1.

Let C := C0
0 (0,∞) and C′ denote its dual space. Our

control problem is to find states

{νt, V } ∈ C0
weak([t0, tf ], C′)× C0([t0, tf ],R), (9)

an initial control parameter

u0 ∈ R+, (10)

and a control

u1 ∈ L∞([t0, tf ],R+), (11)

s.t. the cost functional J , given in (1), is minimized under
respect of the initial value problem for our DAE system
(2) – (8), the pure state constraints,

a) νt(V ) ≥ 0 ∀V ∈ R+
0 ∀t ∈ [t0, tf ],

b) V ≥ 0 ∀t ∈ [t0, tf ],
(12)

and box constraints for the controls

umin,0 ≤ u0 ≤ umax,0,
umin,1 ≤ u1(t) ≤ umax,1 ∀t ∈ [t0, tf ],

(13)

where umin,j , umax,j , j = 0, 1, are given strictly positive
bounds.

2.2 Interface-reaction-controlled regime

In case of the interface-reaction-controlled regime we have
again (2), (3), (6) – (13). We replace (4) by

a(V , V, u1) = V 4/3µI(V , u1)− µI(V, u1)

Z(V, V , u1)
(14)

where the local conservation of mass and substance at the
interface between solid and a liquid droplet is encoded in
the strictly positive function
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Z(V, V , u1) =
u1
BI

ρL(V , V, u1)1/2

[
(µ̃− 1)

−
(

(µ̃− 1)
∂V ρL(V , V, u1)

ρL(V , V, u1)
+ µ̃

∂V ηL(V , V, u1)

ηL(V , V, u1)

−∂V
(
ρL(V , V, u1)−m1ηL(V , V, u1)

)

ρL(V , V, u1)−m1ηL(V , V, u1)

)
V

]
,

(15)

that is monotone decreasing in V . BI > 0 is a constant
linked to the mobility in this regime and µ̃ is the quotient
of the molar mass of gallium and arsenide. In this regime
the dynamics of the droplet volume distribution are driven
by the jump between the chemical potentials between
solid and liquid phase, while in the volume-diffusion-
controlled regime it can be demonstrated that the volume
evolution is related to the jump of the averaged normal
derivative of the chemical potential. For further details
of the mathematical modelling for the DAE system see
Kimmerle (2009).

Summarized, the optimal control problem is to find the
states (9) and the controls (10) and (11), minimizing (1)
and satisfying the equations (2), (3), (6), and (7), under
the constraints (12) and (13).

3. NUMERICAL SOLUTION

3.1 Mean field model

Numerically, we solve our problem by the method of
characteristics. We consider a special case of our DAE
system, where we assume a specific initial condition

ν0(V ) =
1

N0

N0∑

i=1

δV 0
i

(V ), (16)

i.e. we have initially a discrete finite number N0 of distinct
volumes

Vi(t0) = V 0
i ∀i ∈ {1; ...;N0}. (17)

This mean field model amounts to solving our original
LSW equation for a finite number N0 of characteristics.

We introduce another unknown N (t) encoding the number
of droplets at time t with V > Vmin. Precipitates below
Vmin vanish. We introduce tj as the first time when
Vj ≤ Vmin. If a precipitate never disappears, i.e. Vj > Vmin

for all times, then we set tj =∞. For ease of notation we
assume w.l.o.g. V1 ≥ V2 ≥ .. ≥ VN0−1 > VN0 , thus it turns
out that VN0 vanishes first and V1 remains as last droplet.

In this situation our control problem simplifies for both
regimes to the following evolution of precipitates

∂tVi = a(V , Vi, u) in [t0, tf ] \ ∪1≤j≤N0
{tj},

Vi(t+) = Vi(t−) in (∪1≤j≤N0
{tj}) ∩ [t0, tf ],

(18)

for Vi > Vmin, while

Vi = 0 in [t0, tf ], (19)

for Vi ≤ Vmin. Here we keep record of droplets below Vmin,
contrary to our original model, in order not to change the
number of states with time which turns out to be more
suitable for numerics. The ODE system is completed by

the initial condition (17) and the global conservation of
mass/substance

V = ζ

(
M − 1

N0

∑N (t)
i=1 ρL(Vi, u1)Vi

MX0 −m1
1
N0

∑N (t)
i=1 ηL(Vi, u1)Vi

, u1

)

in [t0, tf ].

(20)

The state constraints read

{Vi}1≤i≤N , V ≥ 0 (21)

and we have the constraints (13) for the controls. With
(16) the cost function (1) reads

J(u1, νtf ) =
α0

2
‖u1‖2L2(t0,tf )

+
α1N (tf )

N0
+
α2

N0

N0∑

i=1

Vi(tf )

+
α3

2

1

N0

N0∑

i=1

∣∣∣∣∣∣
Vi(tf )

Ntf

N0
− 1

N0

N0∑

j=1

Vj(tf )

∣∣∣∣∣∣

2

. (22)

The DAE system (17) - (20) is called mean field model and
(22), (17) - (21), (13) is referred to as mean field optimal
control problem.

3.2 Numerical methods

We follow a direct method, meaning optimization of the
time-discretized version of the mean field optimal control
problem. We decompose the time interval s.t. t0 = t[0] <
t[1] < ... < t[k] < ... < t[nd] = tf , 1 ≤ k ≤ nd. The
time discretization has to be chosen sensitively w.r.t. times
tj when droplets vanish. The discretized optimal control
problem, resulting for the mean field model, is to find
states Vi(t

[k]) ∈ R+, 1 ≤ i ≤ N0, and controls u0 ∈ R+

and u1(t[k]) ∈ R+, minimizing (22) and satisfying the
discretized equations and constraints (17) – (21) and (13).

Under reasonable assumptions on the data X or Z, and
µI , ζ, ρL, ηL, umin,·, and umax,· we may solve the result-
ing discretized control problem with jumps in the states
and its derivatives, both occurring whenever a droplet
disappears. The numerical results rely on data for GaAs,
summarized in Dreyer and Kimmerle (2009). Note that the
main influence of the control enters within (5) or (15). We
study in the following the numerical solution in case of the
volume-diffusion-controlled regime.

For the update of the states we use central differences.
Our optimization algorithm follows a sensitivity-based
approach. This has been implemented in OCPID-DAE1
V1.1, a software code developed by Gerdts (2011), that
uses the SQP method as optimizer. In doing so we have two
possibilities for the implementation of the DAE. Eq. (20)
has index 1 and if we suppose a suitable initial condition

V (t = t0) = V 0, (23)

s.t. V 0 fulfils (20), then we may replace the algebraic
equation by an ODE. This explicit ODE for V is obtained
by differentiation of (20) w.r.t. time, and reads

∂tV =
− 1
N0

∑N
i=1 V

1/3
i (µI(V , u1)− µI(Vi, u1))

X (V , u1)(MX0 −m1
1
N0

∑N (t)
i=1 ηL(Vi, u1)Vi)

in [t0, tf ] \ ∪1≤j≤N0
{tj},

(24)

194



Fig. 1. Evolution of 5 droplet radii with initial radii 50
(yellow), 220 (cyan), 320 (magenta), 520 (blue), 590
(green), together with the bulk mean field radius
(red) [10−9 m] vs. time [1 s]. Upper figure: short-
time behaviour (up to 150 s), lower figure: long-time
behaviour (up to 1500 s).

where

X (V , u1) =
1

ηS(V , u1)

×
(
ρS(V , u1)

ηS(V , u1)
∂V ηS(V , u1)− ∂V ρS(V , u1)

)
.

(25)

After the times tj when droplets vanish we use (20) in

order to determine V (tj+).

We solve our problem by means of

(i) a Runge-Kutta integrator with fixed but suitably
small time step size, where the algebraic equation (20)
has been replaced by an ODE for V ,

(ii) using the DASSL solver, see Brenan et al. (1996),
a) keeping the algebraic equation (19),
b) replacing the algebraic equation (19) by the ODE

∂tVi = 0 for Vi ≤ Vmin with the initial condition
Vj(tj+) = 0.

The algorithms (i), (ii)a) and (ii)b) solve the original
problem. However, the algorithms (i) and (ii)b) turn out
to run more reliably for a large set of initial conditions,
while (ii)a) exhibits occasionally problems determining the
control at switching points. A critical point with (i) is, that
the time step has to be chosen very small for certain data,

Fig. 2. Control by temperature [102 K] vs. time [1 s]

since the times, when droplets vanish, have to be located
as precisely as possible in order to avoid propagated errors.
The algorithms based on DASSL turn out to be even
more sensitive to the choice of too large time steps. Hence
we present our results obtained by algorithm (i) in the
following.

3.3 Numerical results

We examine the different contributions to the cost function
and the two controls and discuss their impact on the
solution. For better illustration, we present our results for

radii ri = 3/(4π)V
1/3
i , corresponding to the special case of

spherical precipitates. In case of α2 = 1, α0 = α1 = α3 = 0
in the cost function, Fig. 1 shows the time evolution
for 5 droplet radii, together with the fictive bulk radius

r = 3/(4π)V
1/3

, and Fig. 2 presents the corresponding
control. The initial control parameter turns out to be
u0 = umin,0. In Fig. 3 we give the evolution of the volume
fraction, that enters into the α2-term of the cost function,
but at the final time.

Further numerics suggest a control of bang-bang type for
u1 for relatively small α0 and that the α3-term, represent-
ing the deviation from the mean droplet volume within
the cost functional, has no impact for large times tf since

the mean field V represents an unstable stationary point
for the Vi. We conjecture that the α2-term is the most
controllable contribution within the cost functional. Fur-
thermore, for sufficiently small time steps our numerical
results seem to be mesh independent.

4. THEORETICAL ASPECTS AND OPEN
QUESTIONS

Besides further numerical tasks, like more efficient algo-
rithms for long-time behaviour e.g. by a suitable finite-
volume discretization for LSW as in Carillo and Goudon
(2001), also from a theoretical point of view the above
stated optimal control problem exhibits very interesting
aspects. The analysis of the classical LSW model with-
out control has been treated in Niethammer and Pego
(2000, 2001). Testing the LSW equation (2) yields a non-
local hyperbolic conservation law in the dual space C.
Within optimal control theory there are several results
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Fig. 3. Volume fraction of precipitates 1
N0

∑N0

i=1 Vi(t)

[10−18 m3] vs. time t [1 s]

(e.g. Colombo et al. (2011); Coron et al. (2010); Shang and
Wang (2011); Gugat et al. (2006); Jacquet et al. (2006)),
for a hyperbolic first-order equation, but as far as known
by the author neither non-local conservation laws involving
measures as states nor systems with switching between an
ODE and an algebraic equation have been considered so
far.

We summarize the main distinct features of our problem.
We have a measure-valued solution (LSW) or switching
conditions (Mean field model), the droplet volume is not
bounded from above, but we do not observe shocks as
they might occur typically due to nonlinearities of the flux
function.

An issue for our optimal control problem is that it de-
pends on the control, how many droplets vanish within a
prescribed final time tf . An adjoint based approach for this
hybrid optimal control is an open question where the dif-
ficulty is due to the switching conditions. Finally, it would
be interesting to consider the control of the inhomogeneous
LSW equation where the equation depends weakly on the
spatial structure, too.

The theoretical issues of the optimal control of LSW-
type models are an important question and are work in
progress. Problems of this type have applications also
within a wider frame, e.g. highly re-entrant manufacturing
systems (Coron et al. (2010)), traffic flow (Benzoni-Gavage
et al. (2006)), two phase flow, gas dynamics, or aerospace
dynamics.
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Chapter 5

Classification, Conclusion, and

Outlook

We classify the four application examples in the next section w.r.t. the type of differential

equations and compare with other examples in literature. In Section 5.2 we summarize our

results in modelling, analysis, simulation, and optimal control. The last section provides an

overview on near future projects and open tasks.

5.1 Comparison with Other Results on Coupled Ordinary and

Partial Differential Equations

In the latter chapter we have considered four typical examples for optimal control with coupled

(ordinary and partial) differential equations. We have discussed with different detailedness

problems out of the following classes:

1a) ODEs and elliptic equations of second order (Problems 2 & 3),

1b) ODEs and elliptic equations of forth order (Problem 2b, case of plate equation),

2a) ODEs and hyperbolic first-order equations (Problems 1 & 4)1,

2b) ODEs and hyperbolic second-order equations (mentioned in Problem 2a & Problem 2b),

3) ODEs and parabolic equations of second-order (Problem 1).

For further features of the discussed four coupled problems and other of my works, please see

also Table 1.1 that illustrates which example fits to which situation. For the optimal control

problems see Table 1.2.

We classify w.r.t. the type of differential equations all the examples for optimal control with

CDE, as far as they are known to the author. The optimal control of a flexible satellite

1In Pb. 1 the PDE is treated finally as a parabolic equation of second order by the concept of viscosity solutions.
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by Biswas and Ahmed [BA86, BA89] is subject to ODE and the beam equation, belonging

to Class 1b). In the same class Biswas considered the optimal control of a gantry overhead

crane [Bi04], where the crane beam is modelled as a 1D beam. In Class 3 we have the heat-

optimal entry of a spacecraft into atmosphere [CPW+09] and the related toy problem of a

hypersonic rocket car [WRP10, PRWW10, PRWW14, We14]. We annotate that further details

on the modelling in [CPW+09] are given in [WC12]. The problem of laser surface hardening

of steel [HS97, FHS01, HV03a, HV03b, GNP10], where an ODE for the phase transition and

the heat equation are present, belongs also to Class 3. More complicated is the situation in

[KR15, BK14, BK17] where the monodomain equation of cardiac electrophysiology is studied in

the context of optimized defibrillation. Here the coupled system is the FitzHugh-Nagumo model

(Example 3.8) that is related to Class 3.

Further CDE that I have considered are arsenide-rich droplets within gallium arsenide crystals

(Classes 1a & 3) [Ki09, DK10, Ki11], the evolution of hydrogen nanobubbles in electrolysis (Class

3) [SKB17, KSB17], and the electrokinetic flow in deformable PEM nanochannels [LBKN11,

BNK11, KBN13, KLNB14] that fits best to Class 1. The latter has been considered as a shape

optimization problem in [BKN14]. Note that free boundary problems are related to shape

optimization.

Of course, there are many other coupled problems that could be studied as optimal control

problems as well, e.g., the problem of optimal trajectories for ferries crossing rivers or narrows,

where an ODE is coupled to flow equations. The latter problem would correspond to another

class.

5.2 Conclusion

5.2.1 Modelling Issues and Analytic Results

Since we wish neither to consider different ODEs for each space points nor this is realistic for

our applications, we have introduced a so-called averaging-evaluation operator E in Def. 3.1.

This point of view is a new concept to the best knowledge of the author. Certain smoothness

properties of E , e.g. in case of an integral-type operator, are essential for the further analysis of

coupled systems.

The well-posedness (existence, uniqueness, and continuous dependence on data) of coupled

ODE-PDE systems alone is in general not clear. For evolution problems, for sufficiently small

times we may guarantee a strict contraction and apply the Banach fixed point theorem. This

is the result of Th. 3.4 that may be applied directly or adopted to the truck-container problem

(Problem 1), the elastic crane-trolley-load problem (Problem 2a) and the GaAs droplet problem.

We expect that for suitable controls, we may extend the well-posedness local in time to a global

well-posedness result. However, if the optimal control is, e.g., subject to control constraints that

are too restrictive, this might not always be possible.

Concerning the first-optimize-then-discretize approach, there are the possibilities to treat the
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ODEs like PDEs working in Hilbert spaces or to treat PDEs as DAEs in function spaces using

spaces with functions and derivatives that are both essentially bounded. Though in theory these

approaches may commute in certain cases, it turns out in our examples that it is favourable to

treat ODEs like PDEs in spaces like L2 or H1.

Furthermore, we have demonstrated in Th. 3.17 that the coupling structure is reversed in the

adjoint equations. This is a new observation that is relevant for CDE with a non-trivial coupling

structure. This reversal is demonstrated explicitly for the truck-container problem, Problem 1,

in the original and in the semi-discretized problem for a suitable discretization. [KG16]. For

accuracy, it makes sense to exploit the latter observation when choosing a numerical scheme.

Finally, we mention that for FOTD approaches, the (formal) Lagrangian approach, common

in optimization with PDE, (see, e.g., [Tr10, HPUU09]) competes against the Pontryagin mini-

mum principle, e.g. [RZ99, Ge12], the latter more common for optimal control of DAE. Here we

can say that the formal Lagrangian approach requires less strict assumptions, whereas the Pon-

tryagin approaches allows for pointwise minimum principles. However, we encounter situations

where both approaches coincide, see, e.g., the discussion of Pb. 3.18 at the end of Chapter 3.

5.2.2 Numerical Challenges in Simulation and Optimal Control

From our applications we see that suitable algorithms are required for coupled differential equa-

tions.

We observe that the adjoint equations involve mean values (Problems 1 & 2a), integro-

differential equations (Problem 2a), and difficult coupling (Problems 1, 2 & 4). For the elastic

crane-trolley-load problem, the elastic tyre-damper system (quarter car model), and the mean

field droplet problem, it is not straightforward at all to formulate adjoint equations that guar-

antee to be solvable.

In addition terminal conditions may cause numerical issues. For the truck-container and

the elastic crane-trolley-load problem we consider penalty methods, exploiting the concept of

the augmented Lagrange function, though this may provoke an increase in computing times.

However, it is not clear how terminal constraints could be addressed with a significant precision

alternatively.

Another issue is the parameter sensitivity of the complex models. In particular in Problems

2 and 4 this is a challenge.

We illustrate the numerical complexity of the problems by the size of the discretized prob-

lems. Problem 1 is only 1D in space. A spatial discretization of M = 20 [KG16] or M = 60

[GK15] yields N = 600 or N = 1500 time steps due to the Courant-Friedrichs-Lewy condi-

tion. We observe in the numerics that it is required to consider at least N = CCFLM , where

CCFL ≈ 25 – 30, for a stable scheme. Thus the discretized grid is of size CCFLM
2 = 12 000

[KG16] or = 90 000 [GK15] for a single simulation only. In [WGKG18] for the case M = 20

the number of unknown variables is nz = 28 247 and the number of constraints is nc = 27 650,
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whereas for M = 50 it is stated that nz = 160 607 and nc = 159 110. The complexity will

increase significantly when going to a 2D Saint-Venant problem and 3d truck dynamics.

For the elastic crane-trolley-load problem, in [KGH18a] the FE system has about 3 200 cells

(tetrahedrons) corresponding to about 21 100 degrees of freedom and we consider 100 – 500 time

steps. For the numerical optimal control in [KGH18b] we consider about 5 400 cells but only 50

time steps. Concerning elastic bridge-load systems, for the 3D beam model we consider 5 400

cells and for the 2D plate equation model only 200 elements are required (on 20 m), whereas 40

time steps are sufficient.

For the quarter car model we have to work with even up to 61 503 nodes and 121 428 elements

for justifying the Hertz stress approximation. However, using this approximation the numerical

solution of the PDE is required only once. For the numerical ODE solution typically up to

20 000 time steps are considered.

Finally, for the mean field model between 5 characteristics [DK10, Ki12] and 100 charac-

teristics [Ki15] (there for bulk and surface nanobubbles together) are considered for the PDE

approximation. The time steps are determined adaptively and its number depends thus on the

solution and varies a lot (up to several thousands).

In the simulation papers on nanobubbles [SKB17, KSB17] for the steady-state model a locally

refined mesh of 3 021 or 720 784 FE, resp., is considered. This is due to the solution type that

is delicately changing near the interface in this application.

Note that in the illustrative examples in [GHK17] only 322 = 1 024 elements or 642 = 4 096

elements, resp., are considered.

In order to reduce the computing times, model reduction techniques are important. For the

quarter car model the Hertzian stress approximation is exploited, whereas for the GaAs droplets

(as well as for the nanochannels [KBN13, KLNB14]) asymptotic analysis and homogenization

techniques are used to derive macroscopic equations that are easier to handle, but still exhibit

the main features of the problem. In particular, fast accurate algorithms are important, e.g.,

for Problem 1 we have applied our newly developed globalized semismooth Newton method and

we have considered structure-exploiting SQP methods, using in particular exact information on

derivatives. We observe that in many of the examples discussed in Chapter 4 we require higher-

order methods, e.g. quadratic Lagrange elements and the Heun method, in order to obtain at

least reasonable simulation results. Note that for PDE we have employed FDM (Lax-Friedrich

in Problem 1, Runge-Kutta in Problem 4) as well as FEM (Problems 2 & 3).

5.3 Open Tasks

For illustration of what may happen in optimal control of CDE, we refer to the FitzHugh-

Nagumo system treated by Casas, Ryll, and Tröltzsch [Ry16, CRT18] and by Breiten, Kunisch,

and Rund [BK14, KR15, BK17]. In [Ry16, CRT18] interesting optimal solutions (like turning

spirals and scroll rings depending on the dimension) are observed. Breiten et al. encounter new
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phenomenon, like the loss of null-controllability. A similar observation is made by Zuyev for

the example of a rigid body with a thin elastic plate, for which it is shown that neither partial

stability nor controllability is possible [Zu15, Ch. 6].

For our coupled model problem, Pb. 3.18, we have not discussed state constraints here. The

case of state constraints might exhibit some other interesting phenomena. For Problem 2a we

make the conjecture, that the bang-bang principle (cf. Def. 2.45) might be violated. The latter

phenomenon has been already observed in [PRWW10]. However, this observation is so far only

a conjecture and it might be only a numerical artifact that, however, should be taken care of.

This has to be studied further.

Schemes, where FDTO and FOTD commute, allow to benefit of both the advantages of FDTO,

like fewer assumptions on regularity, and FOTD, like mesh independence. A near future goal

is to consider the commuting schemes of Crank-Nicolson type derived in [AF12] to the truck-

container problem.

For the truck-container problem, Problem 1, the idea is to extend our model to the case, where

the truck moves on a curve or on a bounded surface strip embedded in 3D (modelling a road in

a landscape) together with a fluid plane that is described by the 2D Saint-Venant equations. It

is also of interest to model a truck with a semitrailer, involving the drive dynamics of both the

drawing vehicle and the semitrailer with the fluid container. Furthermore, we could examine as

second control the damping coefficient of the spring-damper element (like the electrorheologic

damper in Problem 3). The numerical techniques examined in [WGKG18] could be refined

further. In particular, an adaptive time grid (refined at the left and at the right end of the

container) makes sense for this problem.

For the elastic crane-trolley load problem discussed in Section 4.3 a self-evident project would

be to replace the beam modelled in 3D by a plate equation in 2D or a cantilever beam in 1D and

then to reconsider the optimal control problem. The latter should be compared with the results

in [BA86, BA89]. For a 1D beam, on one hand, however, coupling effects at the contact area

between trolley and beam are not included, on the other hand the 1D case might be interesting,

also for Problem 2b, since the F-differentiability of the moving boundary conditions w.r.t. the

trolley position (see [KGH18b]) could be treated by Fourier series then. Furthermore, this

problem then might open the door for a FOTD approach of this problem. Since an adjoint-

based approach might be out of reach here, a task is to use automatic differentiation for the

calculation of sensitivities. From a modelling point of view it would be interesting to include

the control of the rope length, too.

For the quarter car model, Problem 3, the well-posedness is one of the next logical steps.

Interesting analytical questions, related to optimal control of variational inequalities, appear

in the full model without the Hertzian approximation of the contact stress. Concerning the

optimal control problem, it should be examined whether an adjoint-based approach is possible

and efficient, since the averaging-evaluation operator E doesn’t implicate a complicated structure
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contrary to Problem 2. The fully coupled optimal control problem is to be simulated allowing

for a comparison with the Hertzian approximation.

A problem of the type of Problem 4 might be extended to an optimal control problem with

switching costs. There might be some connection from switching costs to the disappearance of

shrinking droplets. The mean field model exhibits also some similarities with optimal control of

transport equations as they appear in applications like traffic, see e.g. [BKKM14]. However, in

our example we do not encounter shocks that appear naturally in traffic as congestions or due

to traffic lights. An extension of our optimal control problem to general hyperbolic conservation

laws might be thus of interest. Another open problem is to examine the adjoint-based approach

for Problem 4 that is non-standard due to the vanishing droplets.

There are further examples for coupled differential equations, see the introduction in Chapter

1, that may be considered as optimal control problems as well. For instance, the optimal control

of the full re-entry problem of a spacecraft into atmosphere is the topic of a Munich Aerospace

project with Prof. M. Gerdts, Prof. C. Mundt, and MSc. B. Pablos at Bundeswehr University

Munich.

Finally, the big task remains to close or at least diminish the gap between theory and the

applications, though this gap is related to the complexity of the coupled real-world problems.

The next step is here the study of sufficient conditions for optimal control with coupled differ-

ential equations. The general controllability of coupled systems could be examined as well.

As discussed in Section 3.3 we may consider ODE/DAE as PDE/PDAE and vice versa and

apply the established techniques for optimal control with ODE/DAE or PDE, resp. The question

remains if the theory of PDAE that is still in progress may help to consider CDE in a coherent

way. In particular, it has to be decided how to define the index of the algebraic equation

in PDAE [MB99]. For linear time-invariant PDAE results have been obtained by Reis et al.

[Re06, RT05].

One open question for optimal control of coupled ODE and PDE problems is, of course, the

issue with state constraints, that is still open for optimal control of PDE, see Subsection 2.5.3.

An interesting task would be to apply our globalized semismooth Newton algorithm [GHK17]

to a Moreau-Yosida regularization of an elliptic optimal control problem with state constraints,

where standard algorithms have troubles.

As an outlook we ask what are the differences and what are the commons of our coupled and of

distributed systems, the latter being a whole subbranch of theoretical computer sciences. This

might open the door for faster algorithms for coupled problems. Finally, the most important

task will be the adaption, combination, and new invention of efficient algorithms for coupled

differential equations allowing for reasonable computing times for applications. However, the

real-time optimization might be for certain coupled systems (as this is already the case for many

optimal control problems with PDE) out of reach, even when exploiting snapshots precomputed

by proper orthogonal decomposition methods or reduced basis methods.
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[EEO+15] S. Eisenhofer, M.A. Efendiev, M. Ôtani, S. Schulz, and H. Zischka: On an ODE-

PDE coupling model of the mitochondrial swelling process. Discrete Contin. Dyn.

Syst. Ser. B 20 (2015), 1031–1057.

[EG04] A. Ern and J.-L. Guermond: Theory and Practice of Finite Elements. Springer,

Berlin, 2004.

[Ev10] L.C. Evans: Partial Differential Equations. Grad. Stud. Math. 19, Amer. Math.

Soc., Providence, RI, 2010, 2nd ed.

206



[FM68] A.V. Fiacco and G.P. McCormick: Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. John Wiley & Sons, New York/London/Sydney,

1968.
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[HV03b] D. Hömberg and S. Volkwein: Control of Laser Surface Hardening by a Reduced-

order Approach using Proper Orthogonal Decomposition. Math. Comp. Modelling 38

(2003), 1003–1028.

[ILWW18] A. Ilchmann, L. Leben, J. Witschel, and K. Worthmann: Optimal control of

differential-algebraic equations from an ordinary differential equation perspective.

Optim. Contr. Appl. Meth. 40 2019, 351–366 .

[IJ15] K. Ito and B. Jin: Inverse Problems. Tikhonov Theory and Algorithms. Ser. Appl.

Math. 22, World Sci. Publ., Singapore, 2015.

[IK08] K. Ito and K. Kunisch: Lagrange Multiplier Approach to Variational Problems and

Applications. Adv. Des. Control 15, SIAM, Philadelphia, PA, 2008.
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Appendix A

Mathematical Toolbox

A.1 Some Basics from Analysis

A.1.1 Functional Analysis

For convenience of the reader, we collect here some basic results from functional analysis, see,

e.g. [Al16, HPUU09].

Definition A.1 (Banach Space)

A complete normed vector space X, equipped with a norm ‖ · ‖X , is called a Banach space

(X, ‖ · ‖X). If the usual norm ‖ · ‖X is considered for X, we drop it in our notation and write

only X.

We denote 0X for the zero element of a Banach space unless this is clear from the context.

Any norm induces ‖ · ‖ a metric d by means of d(x(1), x(2)) := ‖x(1) − x(2)‖, where x(i) ∈ X for

i = 1, 2.

Definition A.2 (Separable Banach Space)

A Banach space X is separable, if it contains a countable dense subset: there exists a countable

subset S = {x(i) ∈ X | i ∈ N} ⊂ X such that

∀x ∈ X ∀ε > 0 ∃s ∈ S : ‖x− s‖X < ε i.e. S is dense in X.

Theorem A.3 (Banach Fixed Point Theorem)

Let (X, d) be a complete metric space with metric d.

If the self-mapping f : X → X is a strict contraction, i.e.

∃C ∈ (0, 1) : d(f(x), f(x̃)) ≤ Cd(x, x̃) ∀x, x̃ ∈ X,

then the sequence {x(i)}, i ∈ N0, generated by the fixed point iteration

x(i+1) := f(x(i)), x(0) := x0 ∈ X (arbitrary)

converges to the unique fixed point x̂ of f , i.e. x̂ = f(x̂) ∈ X.
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Note that this theorem exhibits a constructive procedure how to compute x̂.

Proof. By complete induction we obtain by the definition of the sequence

d(x(m), x(n)) ≤
m∑

j=n

d(x(j+1), x(j)) ∀m > n, m, n ∈ N0.

Exploiting the strict contraction and the geometric series we have

d(x(m), x(n)) ≤
m∑

j=n

cjd(x(1), x(0)) ≤ cn

1− cd(x(1), x(0)).

Thus {x(i)} is a Cauchy sequence that implies the convergence of the sequence, since X is

complete. This implies convergence of f by means of

d(f(x(i), f(x̃)) ≤ c d(x(i), x̃)
i→∞−→ 0.

This provides an error estimate for the fixed point iteration, too.

For the uniqueness, consider a different fixed point x̌ and we obtain

d(x̂, x̌) = d(f(x̂), f(x̌)) ≤ Cd(x̂, x̌) ⇔ d(x̂, x̌) = 0 ⇔ x̂ = x̌.

�

Definition A.4 (Linear Operator)

Let X, Y be normed real vector spaces with corresponding norms ‖ · ‖X and ‖ · ‖Y .

a) A map A : X → Y is a linear operator, if there holds

A(α1x1 + α2x2) = α1Ax1 + α2Ax2 ∀x1, x2 ∈ X, α1, α2 ∈ R.

b) The space of all bounded linear operators A : X → Y , equipped with the operator norm

‖A‖X,Y := sup
‖x‖X=1

‖Ax‖Y ,

is denoted by L(X,Y ).

L(X,Y ) is a normed space. If Y is a Banach space, then L(X,Y ) is a Banach space.

Theorem A.5 (Densely Defined Linear Operator)

Let X be a normed space, Y be a Banach space (i.e. a complete normed vector space) and

let V ⊂ X be a dense subspace equipped with the same norm as X. Then for any A ∈
L(V, Y ), there exists a unique extension Ã ∈ L(V, Y ) s.t. Ã|V = A. Then Ã is called a

densely defined linear operator.1

1Densely defined operators arise if one would like to apply an operation to a larger class of objects than those

for which this makes sense a priori.
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Definition A.6 (Linear Functional; Dual Space)

Let X be a Banach space. A linear operator X → Y mapping into Y = R is called linear

functional on X.

The space X∗ := L(X,R) of linear functionals on X is called the (topological) dual space of

X.

Let x ∈ X, ξ ∈ X∗, then we write

〈JXξ, x〉X∗,X := ξ x := ξ(x).

The notation 〈·, ·〉X∗,X is called the dual pairing between X∗ and X. Here JX is the canonical

isomorphism from L(X,R) into the space of continuous linear functionals on X with respect to

the dual pairing (cf. [IK08, p.7]).

In finite dimensions the isomorphism JX corresponds to a transposition. The use of the notation

JX will be omitted in this study for ease of presentation.

Definition A.7 (Reflexive Banach Space; Bidual Space)

A Banach space X is called reflexive, if the mapping X → X∗∗ := (X∗)∗, x 7→ 〈·, x〉X∗,X is

surjective, i.e.:

∀x∗∗ ∈ X∗∗ ∃x ∈ X s.t. 〈x∗∗, x∗〉X∗∗,X∗ = 〈x∗, x〉X∗,X ∀x∗ ∈ X∗.

X∗∗ is called bidual space of X.

Theorem A.8 (Riesz Representation Theorem)

Let H be a Hilbert space. For every v ∈ H the linear functional defined by

〈u∗, u〉H∗,H := (v, u)H ∀u ∈ H

is in H∗ and for any u∗ ∈ H there exists a unique v ∈ H such that

〈u∗, u〉H∗,H = (v, u)H ∀u ∈ H

Moreover, ‖u∗‖H∗ = ‖v‖H .

This implies that every Hilbert space is reflexive.

Definition A.9 (Dual Operator)

Let X, Y be Banach spaces, then the dual operator A∗ to an operator A ∈ L(X,Y ) is defined by

〈A∗ξ, x〉X∗,X = 〈ξ, Ax〉Y ∗,Y ∀ξ ∈ Y ∗, x ∈ X.

Consequently, A∗ ∈ L(Y ∗, X∗) and for the operator norm ‖A∗‖Y ∗,X∗ = ‖A‖X,Y .

If X = Rm, Y = Rn, m,n ∈ N, then A ∈ Rn×m is a matrix and A∗ = A> ∈ Rm×n is the

transpose.
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A.1.2 Ordinary Differential Equations

In this subsection we provide a few useful tools for the analysis of ordinary differential equations.

Hölder Spaces

Definition A.10 (Hölder Spaces)

Let Ω open and bounded, r ∈ N and 0 < α ≤ 1. The α-Hölder seminorm is

[u]C0,α(Ω) := sup
x 6=y;x,y∈Ω

{ |u(x)− u(y)|
|x− y|α

}
. (A.1)

The Hölder spaces

Cr,α(Ω) :=



u ∈ C

r(Ω)

∣∣∣∣∣∣
∑

|γ|≤r
sup
x∈Ω

|∂γu(x)|+
∑

|γ|=r
[∂γu]C0,α(Ω) <∞



 (A.2)

contain functions that are r-times continuously differentiable with r-th partial derivatives that

are Hölder continuous with exponent α.

Special cases:

• Cr,0(Ω) := Cr(Ω) is the space of r-times continuously differentiable functions.

• (C(Ω) :=)C0(Ω) = C0,0(Ω) is the space of continuous functions.

• C0,1(Ω) is the space of Lipschitz continuous functions. These are exactly the functions that

are continuously differentiable almost everywhere (according to the Rademacher theorem).

Note that C0,1 6= C1,0 = C1.

Hölder spaces are Banach spaces.

Well-Posedness Results

We state the Gronwall inequality in the following formulation [J00, Kap. 5, 2.12]:

Lemma A.11 (Gronwall)

Let g ∈ C0([0, tf );R+
0 ), h : [0, tf )→ R+ be integrable, and C ∈ R+

0 . If

g(t) ≤ C +

∫ t

0
h(τ)g(τ) dτ ∀t ∈ [0, tf ),

then the growth of the function g may be limited exponentially, i.e.

g(t) ≤ C exp

(∫ t

0
h(τ) dτ

)
∀t ∈ [0, tf ).
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Proof.

W.l.o.g. g 6≡ 0, otherwise the statement is trivial. For all t ∈ [0, tf ) we set

f(t) := ln

(
C +

∫ t

0
h(τ)g(τ) dτ

)
.

By the premise there follows for the derivative

f ′(t) =
h(t)g(t)

C +
∫ t

0 h(τ)g(τ) dτ
≤ h(t).

We derive from the premise

g(t) ≤ C +

∫ t

0
h(τ)g(τ) dτ = exp(f(t)) = exp

(
f(0) +

∫ t

0
f ′(τ) dτ

)
≤ C exp

(∫ t

0
h(τ) dτ

)

by applying the fundamental theorem of calculus in the third step and the estimate on f ′ in the

last step. �

By means of the Gronwall lemma we may state the following local existence (meaning exis-

tence local in time) and uniqueness result for the initial value problem for differential equations.

Theorem A.12 (Uniqueness for Initial Value Problems)

We consider the initial value problem

y′(t) = f(t, y(t)) ∀t ∈ (0, tf ), (A.3)

y(0) = y0, (A.4)

with given y0 ∈ Rd and right-hand side f : [0, tf )× Rd → Rd, t× y 7→ y.

Let f ∈ C0([0, tf ]× Rd;Rd) and Lipschitz continuous w.r.t. y, such that

‖f(t, y1)− f(t, y2)‖ ≤ h(t)‖y1 − y2‖ ∀t ∈ [0, tf ]∀y1, y2 ∈ Rd

with h : [0, tf ] → R+. Then there exists at most one solution y ∈ C0([0, tf );Rd) of the initial

value problem (A.3) & (A.4).

Proof.

Let yi, i = 1, 2, be solutions of this initial value problem and set y∆ := y1 − y2. This difference

solves the following initial value problem

y′∆(t) = f(t, y1(t))− f(t, y2(t)) ∀t ∈ (0, tf ),

y∆(0) = 0 ∈ Rd,

We integrate the ODE, use an inequality for the modulus, and exploit the Lipschitz continuity

of f w.r.t. y:

‖y∆(t)‖ =

∥∥∥∥y∆(0) +

∫ t

0
f(τ, y1(τ))− f(τ, y2(τ)) dτ

∥∥∥∥

≤
∫ t

0
‖f(τ, y1(τ))− f(τ, y2(τ))‖ dτ

≤
∫ t

0
h(τ)‖y∆(τ)‖ dτ.
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By means of the Gronwall inequality, this implies y∆ ≡ 0 for all t ∈ [0, tf ). �

However, it is not clear, whether a solution local in time of the initial value problem exists

at all. If we require the continuity of f , then by the Peano theorem we obtain existence of at

least one solution.

For the definition of the index of differential algebraic equations and for tools for considering

DAE, we refer to [Ge12] and the references therein.

A.1.3 Partial Differential Equations

In the following we recall some basic results for partial differential equations. Please find proofs

and further details, e.g., in the textbooks of Alt [Al16] and Evans [Ev10].

If all derivatives of highest order appear only linearly (but this has not to be the case for

the function or for derivatives of lower order), then the PDE is called semilinear .

If the coefficient functions for the highest derivatives may depend additionally on the unknown

function and on lower derivatives, then the PDE is called quasilinear .

Sobolev Spaces

In this subsection let Ω ⊂ Rd. If Ω is open, non-empty, and connected, Ω is called a domain.

For PDEs the concept of weak solutions turns out to be more suitable than classical solutions:

Remark A.13 (Weak Solution)

It turns out that it makes sense in general to look for the solution of the Poisson problem with

homogeneous Dirichlet boundary conditions in a larger function space as H1
0 (Ω).

If we have found a so-called weak solution (or variational solution) in V = H1
0 (Ω), then we

may prove under certain assumptions on the data (as f ∈ L2(Ω) and either (i) C1-boundary

∂Ω or (ii) Ω convex & polygonal) that actually u ∈ H2(Ω) holds. By means of the following

embedding theorems this implies that u ∈ C2(Ω) (the reversal is not true in general), thus u is

also a classical solution.

Weak solutions open the door for an approach using variational methods, i.e. we can multiply

the Poisson equation with an arbitrary test function φ ∈W ,

∫

Ω
−∆xu(x)φ(x) dx =

∫

Ω
f(x)φ(x) dx ∀φ ∈W (A.5)

and we may vary this arbitrary function φ. For ease of presentation we choose W = V here.

We recall that classical solutions live in Hölder spaces, see Def. A.10. For our purposes the

suitable spaces for weak solutions are Sobolev spaces. For the definition of Sobolev spaces, we

consider at first
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Definition A.14 (Weak Derivatives)

Let Ω be open. The weak derivative Dγf (for a multi index γ) of a function f : Ω→ R is defined

by means of partial integration as
∫

Ω
Dγf · ζ := (−1)|γ|

∫

Ω
f · ∂γζ ∀ζ ∈ C∞0 (Ω). (A.6)

The weak derivative is uniquely determined.

Definition A.15 (Sobolev Spaces)

Let Ω open, k ∈ N0, 1 ≤ p ≤ ∞. The Sobolev norm is

‖u‖Wk,p(Ω) :=





(∑
|γ|≤k

∫
Ω |Dγu|p

)1/p
, 1 ≤ p <∞,

∑
|γ|≤k ess supx∈Ω|Dγu|, p =∞.

(A.7)

The Sobolev spaces are

W k,p(Ω) :=
{
u : Ω→ R measurable |Dγu fulfils (A.6) ∀|γ| ≤ k ∧ ‖u‖Wk,p(Ω) <∞

}
. (A.8)

Special cases:

• Hk(Ω) := W k,2(Ω) are Hilbert spaces.

• Lp(Ω) := W 0,p(Ω) are Banach spaces containing the functions, whose absolute value to the

power of p is Lebesgue integrable.

In this study we consider only the cases 1 ≤ p ≤ ∞.

Example A.16 (Important Sobolev Spaces)

a) L2(Ω), the space of square-integrable functions.

b) H1(Ω), the space of square-integrable functions with square-integrable weak derivatives of

first-order.

c) L∞(Ω), the space of essentially bounded functions, equipped with the supremum norm.

Sobolev spaces are Banach spaces.

Definition A.17 (Gelfand Triple; Function Space for Evolution Problems)

If for separable Hilbert spaces H and V

V
cd
↪→ H ' H∗ cd

↪→ V ∗

holds where both embeddings are continuous and dense, then we call V , H, V ∗ a Gelfand triple.

Here the dual H∗ is identified with H.

For a Gelfand triple V , H, V ∗ we may introduce the function space

W (0, tf ) := W (0, tf ;H,V ) :=
{
y ∈ L2(0, tf ;V )

∣∣∣ y′t ∈ L2(0, tf ;V ∗)
}

that appears naturally for parabolic problems with initial condition in H and right-hand side in

L2(0, tf ;V ∗) (see Pb. 3.13).
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Theorem A.18 (Embedding Theorem for Sobolev and Hölder Spaces)

Let Ω open and bounded with Lipschitz boundary2 ∂Ω.

a) Embeddings between Sobolev spaces

If

k1 −
d

p1
≥ k2 −

d

p2
, k1 ≥ k2, k1, k2 ∈ N0, 1 ≤ p1, p2 ≤ ∞, (A.9)

then

W k1,p1(Ω) ⊂W k2,p2(Ω). (A.10)

b) Embeddings between Hölder spaces

If

r1 + α1 > r2 + α2, r1, r2 ∈ N0, α1, α2 ∈ [0, 1], (A.11)

then

Cr1,α1(Ω) ⊂ Cr2,α2(Ω). (A.12)

(In the case r1 = 0 the assumption on ∂Ω may be dropped.)

c) Embeddings from Sobolev spaces into Hölder spaces

If

k − d

p
> r + α, 1 ≤ p <∞, k, r ∈ N0, α ∈ (0, 1] (α 6= 0!), (A.13)

then

W k,p(Ω) ⊂ Cr,α(Ω). (A.14)

If

p =∞, 1 ≤ k ∈ N, (A.15)

then

W k,∞(Ω) ∼= Ck−1,1(Ω), (A.16)

where a function in W k,p may be identified by its Lipschitz continuous representative (in

Ck−1,1) that is almost everywhere identical to the function itself.

Here we have combined several results that are proved in [Al16].

Remark A.19 (Embeddings and Estimates)

For the embedding, we write X ⊂ Y , denoted also as X ↪→ Y . This is equivalent that there

exists a constant C > 0 such that the inequality ‖u‖Y ≤ C‖u‖X for all u ∈ X holds.

In particular, we find for any dimension

C0,1(Ω) ⊂ L∞(Ω) (A.17)

and that for d = 1

H1(Ω) ⊂ L∞(Ω), H1(Ω) ⊂ C0(Ω). (A.18)
2See the footnote in Ex. 2.68 a).
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Remark A.20 (Piecewise Regularity in H1)

Let Ω be open and bounded. If a function is bounded, continuous, and piecewise continuously

differentiable, then it belongs to H1(Ω).

Since a function u from a Sobolev space is not continuous in general and only differentiable

almost everywhere, we have to ensure that boundary values of u are well-defined.

Theorem A.21 (Trace Theorem) [Ci98, Th. 6.1-7]; [Tr10, Th. 7.2]

Let Ω ⊂ Rd open and bounded with boundary3 ∂Ω of class Cp−1,1 and let 1 ≤ p < ∞, k ∈ N,

then

u ∈W k,p(Ω) =⇒ u|∂Ω ∈W k−1/p,p(∂Ω). (A.19)

Equivalently, we may rewrite the latter as an embedding operator, the so-called trace operator,

Tr : W k,p(Ω)→W k−1/p,p(∂Ω). (A.20)

Loosely speaking, if the function is considered on the boundary ∂Ω, i.e. the trace Tr u = u|∂Ω

of the function, then we loose a 1/p-order of derivative.

This may be combined with the embedding theorems, Th. A.18). Then we may characterize

the trace mapping as follows :

a) If p k < d, then

u ∈W k,p(Ω) =⇒ u|∂Ω ∈ Lr(∂Ω) for all 1 ≤ r ≤ (d− 1)p

d− p k .

b) If p k = d, then

u ∈W k,p(Ω) =⇒ u|∂Ω ∈ Lr(∂Ω) for all 1 ≤ r <∞.

c) If p k > d, then

W k,p(Ω) ⊂ C0(Ω), also u|∂Ω ∈ C0(∂Ω).

In particular we have u ∈ H1(Ω) ⊂ H1/2(∂Ω) ⊂ L2(∂Ω). Thus we are able to define

Definition A.22 (Sobolev Spaces With Homogeneous Dirichlet Boundary Values)

W k,p
0 (Ω) :=

{
u ∈W k,p(Ω) |u|∂Ω = 0

}
:=
{
u ∈W k,p(Ω)|Tr u = 0

}
. (A.21)

In particular we have H1
0 (Ω) = W 1,2

0 (Ω).

We define H−1(Ω) := (H1
0 (Ω))∗ as the dual space of H1

0 (Ω). (Note this is no Sobolev space.)

Furthermore, a trace operator u|Γ0 may be defined by restriction on measurable subsets Γ0 ⊂ ∂Ω.

3For d = 1 see the footnote in Ex. 2.68 a).
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Remark A.23 (Approximation Properties of Sobolev Spaces)

For a smooth boundary ∂Ω we may prove that

W k,p
0 (Ω) = C∞0 (Ω)

Wk,p

, (A.22)

i.e. the closure (w.r.t. the W k,p norm) of the space of infinitely continuously differentiable func-

tions with compact support is just the Sobolev space W k,p
0 (Ω). Analogously there holds

W k,p(Ω) = C∞(Ω)
Wk,p

. (A.23)

These observations motivate that we may work in variational problems with test functions of

a Sobolev space instead of test functions C∞0 (Ω).

There holds the following important estimate.

Lemma A.24 (Poincaré-Friedrichs Inequality)

For u ∈ H1
0 (Ω) we have

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) (A.24)

with a constant C > 0. (The constant depends only on Ω and the dimension d.)

This inequality may be weakened in the sense that it suffices that u is fixed only on a part of the

boundary with non-zero measure or that the mean value (1/|Ω|)
∫

Ω u = c = const prescribed,

whereas u may have any boundary values. However, this inequality does not hold for any

function in H1(Ω).

In particular, this implies that the standard H1-norm is in H1
0 (Ω) equivalent to the norm

[[u]]H1(Ω) := ‖∇u‖L2(Ω). However, in general [[u]]Hk(Ω) = (
∑
|γ|=k ‖Dγu‖2L2(Ω))

1/2, k ∈ N, is a

seminorm, i.e. [[u]]Hk(Ω) = 0 does not necessarily imply u = 0 almost everywhere.

If it is evident from the context, we do not indicate the domain with norms. For instance, we

write ‖u‖W 2,3 := ‖u‖W 2,3(Ω).

Well-Posedness Results

Finally, we recall the standard results for existence and uniqueness of solutions.

Definition A.25 (Ellipticity (Coercivity))

Let Ω ⊂ Rd be open and let aij(x) ∈ L∞(Ω) be coefficient functions. If there exists a constant

C > 0 s.t.

d∑

i,j=1

aij(x)ξiξj ≥ C‖ξ‖2 for almost all x ∈ Ω and for a.a. ξ ∈ Rd,

and c0 ≥ 0, then the operator −∑d
i,j=1(aijy

′
xi)
′
yxj

+ c0y is called uniformly elliptic (coercive).

The associated bilinear form

a : V × V → R, [y, η] 7→ a(y, η) :=

∫

Ω




d∑

i,j=1

aijy
′
xiη
′
xj + c0yη


 dx
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is called V-elliptic (V-coercive), too.

Theorem A.26 (Lax-Milgram)

Let V be a Hilbert space and

a : V × V → R

a (not necessarily symmetric) bilinear form, that fulfils

a(v, v) ≥ α0‖v‖2V V -ellipticity, (A.25)

|a(v, w)| ≤ α1‖v‖V ‖w‖V V -boundedness, (A.26)

for any v, w ∈ V , with 0 < α0 ≤ α1 <∞.

Then for any f ∈ V ∗ the equation

a(v, w) = 〈f, w〉V ∗,V (A.27)

has a unique solution v ∈ V .

Furthermore, there holds the estimate ‖v‖V ≤ 1/α0 ‖f‖V ∗.

Proof. By means of the Riesz representation theorem, see Th. A.8. �

Theorem A.27 (Existence and Uniqueness for Semilinear Elliptic Equations)

We consider Example 2.68 where part b) is adapted to the case of pure Neumann b.c., that is

Γ = ΓN . Let Ω ⊂ Rd a bounded Lipschitz domain, let A an elliptic differential operator of

the form (2.75) with bounded and measurable coefficient functions aij that are symmetric and

uniformly elliptic (i.e. (A.25) holds for almost all x where V = H1(Ω)), and let d0 ∈ L∞(Ω;R+
0 )

and dΓ ∈ L∞(ΓN ;R+
0 ) such that ‖d0‖L∞(Ω) + ‖dΓ‖L∞(∂Ω) > 0. Furthermore, let c0 : Ω×R→ R

and cΓ : ∂Ω×R→ R continuous and monotone increasing in y for almost all x ∈ Ω and x ∈ ∂Ω,

respectively, and c0(·, y) ∈ L∞(Ω) and cΓ(·, y) ∈ L∞(∂Ω) for all y ∈ R. If f ∈ Lr(Ω) for r > d/2

and g ∈ Ls(∂Ω) for s > d − 1, d ≥ 2, then there exists a unique solution y ∈ H1(Ω) ∩ C0(Ω).

Note that in the case d = 1, we require just g ∈ R on the two isolated points of ∂Ω.

Furthermore, we have the estimate

‖y‖H1(Ω) + ‖y‖C0(Ω) ≤ C
(
‖f − c0(·, 0)‖Lr(Ω) + ‖g − cΓ(·, 0)‖Ls(∂Ω)

)

with a constant C not depending on f , g, d0, dΓ, c0, and cΓ.

For a proof the theory of maximal monotone operators is combined with a technique by Stam-

pacchia, see, e.g., [Tr10]. Similar results hold for pure Dirichlet b.c. as well.

Theorem A.28 (Existence and Uniqueness for Semilinear Parabolic Equations)

We consider Example 2.69 for the case aij(t, x) = aij(x) and b ≡ 0. Let Ω ⊂ Rd be a bounded

domain with C1,1-boundary, we adapt Ex. 2.69 b) for the case Σtf = ΣN (i.e. pure Neumann

b.c.), and let A :=
∑d

i,j=1(aij(x)y′xi)
′
xj be a symmetric, uniformly elliptic operator, i.e. (A.25)

holds for almost all x (where V = H1(Ω)), with essentially bounded coefficients, i.e. aij ∈ L∞(Ω).
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Moreover, let c0 and cΣ fulfil the Assumptions 2.77 and be essentially bounded for fixed y ∈ Rd

and let c0(t, x, ·) and cΣ(t, x, ·) be continuous and locally Lipschitz continuous uniformly for

a.a. [t, x] ∈ Ωtf and [t, x] ∈ Σtf , resp. If f ∈ Lr(Ωtf ) for r > d/2 + 1, g ∈ Ls(ΣN ) for s > d+ 1,

and y0 ∈ C0(Ω), then there exists a unique weak solution y ∈W (I;L2, H1) ∩ C0(Ω).

Furthermore, we have the estimate

‖y‖W (I) + ‖y‖C0(Ωtf ) ≤ C
(
‖f − c0(·, ·, 0)‖Lr(Ωtf ) + ‖g − cΣ(·, ·, 0)‖Ls(ΣN ) + ‖y0‖C0(Ω)

)

with a constant C not depending on f , g, c0, cΣ, and y0.

For a proof see [Ca97, RZ99].

Hyperbolic equations of first-order, like in the truck-St-Venant example, are not solved di-

rectly in this manuscript, since we regularize by an artificial viscosity in order to avoid technical

difficulties with shocks and rarefaction waves. Thus we do not recall existence and uniqueness

results for this kind of PDE as well as for hyperbolic equations of second-order.

A.1.4 Differentiability in Banach Spaces

We would like to extent the concept of derivatives to operators between Banach spaces.

Definition A.29 (Differentiability in Banach Spaces)

Let E : V → Y be an arbitrary operator, where V is a non-empty open subset of X and X, Y

are Banach spaces.

a) E is said to be directionally differentiable at x ∈ V in direction d ∈ V , if the limit

E′(x; d) := lim
t↓0

E(x+ td)− E(x)

t

exists. E′(x; d) is called directional derivative of E at x in direction d.

a2) E is called Hadamard (directional) differentiable (H-differentiable) at x ∈ V in direction

d ∈ X,

– if there exists a map E′ ∈ L(X,Y ) such that

E′(x; d) := lim
di→d,ti↓0

E(x+ tidi)− E(x)

ti

exists and

– E′ is linear in d [BS00, Def. 2.45].

Note that the existence of this limit implies the continuity of E′, but in general not its

linearity.

b) E is called Gâteaux differentiable (G-differentiable) at x ∈ V ,
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– if E is directionally differentiable at x and

– if for E′(x) : X 3 d 7→ E′(x; d) ∈ Y holds that E′(x) ∈ L(X,Y ).

c) E is called Fréchet differentiable (F-differentiable) or totally differentiable at x ∈ V ,

– if E is Gâteaux differentiable at x and

– if

lim
‖d‖X→0

‖E(x+ d)− E(x)− E′(x)d‖Y
‖d‖X

= 0.

Note that F-differentiability of E at x implies continuity of E at x.

d) E is called Newton (or slant) differentiable (N-differentiable) at x ∈ V ,

– if for each ε > 0 there exists a neighbourhood Ṽ (x) of x, such that for each x + d ∈
Ṽ (x) there exists a mapping E′(x+ d) : Ṽ (x)→ L(X,Y ), such that

‖E(x+ d)− E(x)− E′(x+ d)d‖Y ≤ ε‖d‖X .

The family {E′(ξ) | ξ ∈ Ṽ (ξ)} is called the Newton (or slant) derivative (N-derivative) of

E at x [IK08].

e) E is called ∂∗E-semismooth at x ∈ V ,

– if E is continuous near x and

– supM∈∂∗E(x+d) ‖E(x+ d)− E(x)−Md‖Y = o(‖d‖X) as ‖d‖X → 0,

where ∂∗E : V ⇒ L(X,Y ) is a given set-valued mapping. For further details see [GHK17,

Def. 2.1] and the comments there.

f) E is called Bouligand differentiable (B-differentiable) at x ∈ V ,

– if E is directionally differentiable at x and

– there holds

lim
‖d‖X→0

E(x+ d)− E(x)− E′(x; d)

‖d‖X
= 0Y .

If E exhibits one of the above differentiabilities at all x in V ⊂ X, then we say that E is

correspondingly differentiable in the set V . For example, if E is F-differentiable at all x in V ,

then E is said to be F-differentiable in V .

For an alternative definition of Newton (slant) differentiability, please see [Kr13, Def. 2.1 &

Remark 2.2].

We have the following implications, see, e.g., [BS00, IK08, Za15], between the different deriva-

tives in Banach spaces:

229



• If E′ is continuous, then F-differentiability implies H-differentiability. If X is finite-

dimensional, then the converse is also true.

• H-differentiability of E implies the Gâteaux differentiability (and both derivatives coin-

cide). The converse is true, if E is Lipschitz continuous.

• G-differentiability of E together with continuity of E′ implies F-differentiability of E. For

continuously differentiable functions G- and F-differentiability are equivalent.

• In finite dimensions, F-, G- and H-differentiability are equivalent. Note that in infinite

dimensions there exist convex continuous functions that are G- and H-differentiable, but

not F-differentiable [BS00, Ex. 2.50].

• N-differentiability does not imply F-differentiability in general. For instance in infinite

dimensions max- and min-functions are not F-differentiable, but N-differentiable, see, e.g.,

[HV04].

• If E is N-differentiable at x and limt↓0E′(x + td)d exists uniformly in ‖d‖X = 1, then E

is semismooth at x.

• N-differentiability at x implies directional differentiability at x if and only if limt↓0E′(x+

td)d exists for all d ∈ X. Then E′(x; d) = limt↓0E′(x+ td)d [IK08, Lemma 8.11 (1)].

• N-differentiability at x implies B-differentiability at x if and only if limt↓0E′(x+td)d exists

uniformly for all ‖d‖X = 1. Then E is semismooth [IK08, Lemma 8.11 (2)].

In particular we have that linear-quadratic functionals in Hilbert spaces are F-differentiable. A

common situation in optimization is that we deal with a state equation E(y, u) = 0 with an

operator E : Y ×U →W that is continuously F-differentiable and, moreover E′y has a bounded

inverse. Then the following standard result yields the local existence of a map u 7→ y(u).

Theorem A.30 (Implicit Function Theorem)

Let Y , U , W be Banach spaces, let V ⊂ Y × U be an open set, and let F : V → W be a

continuously F-differentiable map. If F (ŷ, û) = 0 for [ŷ, û] ∈ V such that F ′y(ŷ, û) ∈ L(Y,W )

has a bounded inverse, then there exists a neighbourhood Vy(ŷ)×Vu(û) ⊂ V of [ŷ, û] and a unique

continuous function H : Vu(û)→ Y such that

(i) H(û) = ŷ,

(ii) for all u ∈ Vu(û) there exists exactly one y := H(u) ∈ Vy(ŷ) such that F (y, u) = 0.

Furthermore, the mapping H : Vu(û)→ Y is F-differentiable with

H ′(u) = F ′y(H(u), u)−1F ′u(H(u), u).

The proof, see, e.g., [Ze86, Th. 4B], relies among other things on the Banach fixed point theorem

(Th. A.3).
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A.2 Cones and Constraint Qualifications

A.2.1 Cones

In optimization theory inequality constraints are dealt with suitably by cones. We refer, e.g., to

[Ge12] for the following definitions.

Definition A.31 (Convex Cone)

A subset K of a vector space W , such that

k ∈ K =⇒ αk ∈ K ∀α ∈ R+
0

is called cone with vertex at 0W , i.e. the origin of W . If K is convex, then it is a convex cone.

A partial ordering in W is induced by any convex cone K ⊂W .

Definition A.32 (Partial Ordering in Cones)

We use the notation w ≥K 0 if and only if w ∈ K.

We write w >K 0 if and only if w ∈ K̊.

We have w ≤K 0 if and only if −w ∈ K.

Analogously, we introduce <K.

In order to derive useful second-order optimality conditions, we have to select reasonable search

directions. These directions are called critical directions and they have the structure of a cone.

This motivates the following two definitions.

Definition A.33 (Conical Hull)

Suppose ζ ∈ Σ, Σ a non-empty convex set. The set

CΣ(ζ) := {γ(z − ζ) | γ ≥ 0, z ∈ Σ}

is called conical hull to Σ at ζ.

The critical cone is so to speak the set of ambiguous directions. For simplicity we provide the

definition only for an equality constrained optimal control problem without Tikhonov term in

the objective. The latter yields a solution of bang-bang type.

For a more general definition of the critical cone in infinite dimensions we refer to the works

of Maurer [MZ79, Ma81].

Definition A.34 (Critical Cone)

Let the setting of Lemma 2.46 hold. We recall we consider only equality constraints E(y, u) = 0

in Ω and we assume U = L2(Ω), Ω ⊂ Rd be a bounded Lipschitz domain. We assume that a

minimizer [ŷ, û] exists and that E′u(ŷ, û)∗ is well-defined pointwise.

We define the set of active inequalities

A0(û) =
{
x ∈ Ω | |E′u(ŷ(x), û(x))∗λ(x)| > 0

}
,
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where u is defined either by umin or umax uniquely. Then the critical cone C0(û) is the set of

all d ∈ L∞(Ω) such that

d(x)





= 0 if x ∈ A0(û),

≥ 0 if x /∈ A0(û) and û(x) = umin(x),

≤ 0 if x /∈ A0(û) and û(x) = umax(x).

d may be chosen arbitrarily on the inactive set {x ∈ Ω |umin(x) < û(x) < umax(x)}.

Definition A.35 (Critical Cone in Finite Dimensions)

We consider the general optimization problem, Problem 2.3, but in the finite-dimensional case

Z = Rnz . We define the set of active inequality constraints

A(z) = {i = 1, . . . , nG |Gi(z) = 0}.

The corresponding critical cone of directions is the set

C0(ẑ) :=




d ∈ Z

∣∣∣∣∣∣∣

G′i,z(ẑ)d ≤ 0 if i ∈ A(ẑ), µi = 0,

G′i,z(ẑ)d = 0 if i ∈ A(ẑ), µi > 0,

H ′j,z(z)d = 0 if j = 1, . . . , nH .




.

For further interpretation of the critical cone in finite dimensions see [Ge12, Sect. 6.1].

Definition A.36 (Polar Cones)

Let K be a cone with vertex 0W . The positive polar cone of K is given by

K+ := {w ∈W ∗ | 〈w, k〉W ∗,W ≥ 0 ∀k ∈ K}

and the negative polar cone of K by

K− := {w ∈W ∗ | 〈w, k〉W ∗,W ≤ 0 ∀k ∈ K}.

Polar cones are non-empty, closed convex cones.

A polar cone is also called dual cone or conjugated cone.

The set of feasible directions in optimization has the structure of a cone:

Definition A.37 (Tangent Cone)

Let Σ ⊂ Z be non-empty, Z a Banach space. The tangent cone of Σ at z ∈ Σ is defined by

T (Σ; z) := {d ∈ Z | ∃{αk}k∈N > 0 with αk
k→∞→ ∞, ∃{zk}k∈N ∈ Σ with lim

k→∞
zk = z

s.t. lim
k→∞

αk(zk − z) = d}.

Typically Σ(⊂ Zad ⊂ Z) is the feasible set as defined in (2.2). We define in this case

Definition A.38 (Linearized (Tangent) Cone) [HPUU09, 1.7.3.2]

Let the feasible set Σ ⊂ Zad ⊂ Z be non-empty, let G encode inequality and equality constraints,

let K be a convex cone and let Zad be the set of admissible states. The linearized (tangent) cone

Tlin(Σ,G,K, Zad; z) at z ∈ Σ is the set

Tlin(Σ,G,K, Zad; z) := {αd |α > 0, d ∈ Z, G(z) + G′(z)d ∈ K, z + d ∈ Zad}.
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A.2.2 Constraint Qualifications

In order to guarantee the existence of Lagrange multipliers some regularity conditions, called

constraint qualifications (CQs), have to be presumed. Most constraint qualifications may be

interpreted geometrically as a statement on the non-separability of two convex sets within the

space of constraints. In general, the local optimum ẑ ∈ Z is involved in the CQ and, thus, the

CQ cannot be checked a priori.

We start with one of the weakest constraint qualifications and we use the notation of Section

2.2. G summarizes inequality and equality constraints as in (2.7). Furthermore, we need the set

of feasible directions that is the tangent cone (see Def. A.37) of the feasible set. The linearized

cone, Def. A.38, allows for a less complicated representation of the tangent cone, if we have the

Assumption A.39 (Abadie Constraint Qualification)

The (Abadie) constraint qualification (ACQ), cf. [Ge12, Remark 2.3.40], reads

Tlin(Σ,G,K, Zad; ẑ) ⊂ T (Σ; ẑ),

where we use the notation from Appendix A.2.1.

Since the linearized cone is always a superset of the tangent cone, this implies that the tangent

cone and the linearized cone coincide at ẑ. In general, it may be difficult to verify ACQ without

going back to other constraint qualifications. But if all restrictions are affine, then ACQ is

always fulfilled.

Assumption A.40 (Robinson Constraint Qualification [Ge12, Def. 2.3.32])

The Robinson constraint qualification (RCQ) or Robinson regularity condition is fulfilled at ẑ,

if [
0WG

0WH

]
∈ int

{[
G(ẑ) +G′(ẑ)(z − ẑ)− k

H ′(ẑ)(z − ẑ)

] ∣∣∣∣∣ z ∈ Zad, k ∈ K
}
.

The following rather general constraint qualification provides the existence of Lagrange multi-

pliers in our setting from Subsection 2.2.2.

Assumption A.41 (Zowe-Kurcyusz Constraint Qualification [ZK79])

Let Zad be convex. The Zowe-Kurcyusz constraint qualification (ZKCQ) is fulfilled at ẑ, if

G′(ẑ)CZad(ẑ) + CK(G(ẑ)) = W,

where CZad(ẑ) and CK(Gẑ) are conical hulls (see Def. A.33) w.r.t. Zad at ẑ and K := {w ∈
W |w ≥ 0 a.e.} at −G(ẑ), resp.

It is equivalent to the Zowe-Kurcyusz CQ to require that

αG′(ẑ)(z − ẑ) + β(v − G(ẑ)) = ω

is solvable for any ω ∈W with a z ∈ Zad, v ∈ K, and α, β ≥ 0.
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In case of pure equality constraints where Zad = Z the latter CQ becomes the surjectivity

of G′(ẑ) = H ′(ẑ) : Z → W . In case of pure inequality constraints and if G(ẑ) >K 0, this

constraint qualification is not active at all.

Assumption A.42 (Slater Condition [HPUU09, (1.132)])

For convex optimization problems the Slater condition or constraint qualification (SCQ) reads:

there exists a feasible point, that is strictly feasible w.r.t. the inequality constraints:

∃z ∈ Z s.t. G(z) ∈ K̊ ∧ z ∈ Zad.

For Zad ⊂ Z, closed and convex , K ⊂ W a closed convex cone, and G : Z → W convex, this

implies RCQ for all z̃ ⊂ Zad with G(z̃) ∈ K.

The Slater condition fails for pure equality constraints, but in this case the existence of

Lagrange multipliers may be guaranteed by other arguments.

Assumption A.43 (Linearized Slater Condition [Tr10, (6.18)])

The linearized Slater condition or constraint qualification (LSCQ) is fulfilled at ẑ if

∃z ∈ Zad : G(ẑ) + G′(ẑ)(z − ẑ) >K 0.

Here >K is to be understood as defined in Def. A.32.

Note that in the finite-dimensional case a similar CQ, the local Slater condition, exists (see, e.g.,

[GL11, 6.3.6]), that is related to the tangent cone.

LSCQ is sufficient for the Zowe-Kurcyusz condition, see, e.g., [Tr10, Subsect. 6.1.2].

For optimal control problems, we have the following: let ẑ = [ŷ, û] ∈ Σfs. If H ′y(ẑ) ∈ L(Y,W ∗H)

is surjective, G(ẑ) = G(ŷ) and if there exists u ∈ Uad and y ∈ Y with

G(ŷ) +G′(ŷ)(y − ŷ) ∈ K̊,
[H ′y(ẑ), H

′
u(ẑ)]>[y − ŷ, u− û] = 0WH

,

the linearized Slater condition implies the Robinson CQ as well [HPUU09, Lemma 1.14].

Assumption A.44 (Mangasarian-Fromowitz constraint qualification [Ge12, Coroll. 2.3.35])

The Mangasarian-Fromowitz constraint qualification (MFCQ) reads:

a) Let H ′(ẑ) be surjective and

b) let there exist a d̂ ∈ int(Zad − ẑ) with

G′(ẑ)(d̂) ∈ int(K − {G(ẑ)}),
H ′(ẑ)(d̂) = 0WH

,

then RCQ holds.

For standard optimization problems as in Problem 2.1, MFCQ and RCQ coincide.
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Assumption A.45 (Linear Independence Constraint Qualification [Ge12, Coroll. 2.3.34])

The linear independence constraint qualification (LICQ) or also called surjectivity constraint

qualification is fulfilled at ẑ, if ẑ ∈ Z̊ad and if

T : Z →W = WG ×WH , T (ẑ) := [G′(ẑ), H ′(ẑ)]>

is surjective.

The latter CQ states equivalently that the gradients of the active inequality constraints and the

gradients of the equality constraints are linearly independent at ẑ.

The following implications hold in infinite dimensions:

LICQ
[GL11, 6.3.16]

=⇒ MFCQ
[Ge12, Coroll. 2.3.35]

=⇒ RCQ
[Ro76, Th. 1, Coroll. 2]

=⇒ ACQ,

MFCQ
Pb. 2.1⇐⇒ RCQ

SCQ
convex pb. [HPUU09, 1.7.3.2]

=⇒ RCQ,

LSCQ
[Tr10, Subsect. 6.1.2]

=⇒ ZKCQ
[ZK79]
=⇒ RCQ.

Generally, it makes sense to imply weaker constraint qualifications, in order to obtain stronger

optimality conditions.

There exist further constraint qualifications. For completeness we list these for finite-dimensional

problems in an informal way:

Constant positive-linear dependence constraint qualification (CPLD): for every subset of gra-

dients of the active inequality constraints and gradients of the equality constraints at ẑ there

holds: If a positive-linear dependence holds at ẑ, then there exists a positive-linear dependence

within a neighbourhood of ẑ.

We have the implication MFCQ =⇒ CPLD in finite dimensions.

Constant rank constraint qualification (CRCQ): for every subset of gradients of the active

inequality constraints and gradients of the equality constraints the rank is constant within a

neighbourhood of ẑ.

Note that there holds LICQ =⇒ CRCQ =⇒ CPLD in finite dimensions. However, MFCQ

is not equivalent to CRCQ, nor weaker, nor stronger.

Nondegenerate constraint qualification (NDCQ): at ẑ the rank of the Jacobian of the equality

constraints and the inequality constraints that are actually zero (said to be binding) is as large

as it can be.

We note that redundant equations should be eliminated before the NDCQ is checked. The

NDCQ is quite popular in numerical codes.
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Appendix B

Numerical Methods for Partial

Differential Equations

B.1 Numerical Discretization

Any numerical approach requires finally a discretization, since the computers of today can han-

dle only a finite number of variables. We introduce some basic notation on discretizations.

For iterates, in abstract algorithms in function space as well as in the fully discretized case,

we use an upper index in brackets for the iteration step. For instance, z(k), k = 0, 1, . . ., denotes

the variable z at iteration k. The initial condition reads z(0) := z0, where z0 is given. We wish

to achieve a good approximation

z(k) ≈ ẑ(t(k)),

where here ẑ denotes the exact (typically unknown) solution.

A time interval I = (t0, tf ) is typically discretized by N + 1 time points

t(k) := t(k−1) + h(k), k = 1, . . .N , t(0) := t0,

such that t(N ) = tf . For an equidistant time grid, we have h(k) = h = (tf − t0)/N for all

k = 1, . . . ,N . Since our approximate solution z(k) depends on the fineness h := maxk h
(k) of the

discretization or the number N , resp., this may be indicated by writing

z
(k)
h = z

(k)
N = z(k),

if necessary. The corresponding function value f(t(k), z(k)) is denoted by

f
(k)
N = f (k) := f(t(k), z(k)) ≈ f(t(k), ẑ(t(k))).

Unless mentioned otherwise, we work with equidistant time grids.

Similarly, we discretize in space. However, in dimensions larger than 1 the indexing of the space

points is more complicated. For finite differences, it is obvious how to count the space points,

237



but, for finite element methods (see Appendix B.3) or finite volume methods (e.g., [KA00]) this

can be quite tricky. For instance, by the Cuthill-McKee algorithm a suitable re-numbering may

be generated in order to reduce the bandwidth of the obtained FEM matrices.

In problems that live in time and space, we use upper indices for the time grid and lower

indices for the space grid. For example, for the Saint-Venant equations in 1D we write for the

discretized fluid level

h
(i)
(j) ≈ h(t(i), x(j)), i = 1, . . . ,M, j = 1, . . . ,N .

Note that it is often helpful to choose a different discretization for states and controls [Ge12,

Subsect. 5.1.3].

For numerical methods for ODE and DAE, we refer to [HNW93, HW96, HLG06] for instance. In

the next sections we give a short overview of the finite element method, summarizing the main

results from the lecture note [Ki17]. For the finite volume method (FVM) and the finite differ-

ence method (FDM) that is an important special case of FVM, we refer, e.g., to the textbook

[KA00].

B.2 Galerkin Methods

For the underlying theory on PDE see Appendix A.1.3 for a short presentation or, e.g., [LM72,

Ev10].

We consider a general variational problem

Find u ∈ V : a(u, v) = L(v) ∀v ∈W, (B.1)

where V , W are vector spaces, a : V ×W → R is a bilinear form, and L : V → R a linear form.

If V = W and a is positive (i.e. a(v, v) ≥ 0 ∀v ∈ V ), symmetric, then (B.1) is equivalent to the

minimization problem

Minimize J(v) =
1

2
a(v, v)− L(v) in V. (B.2)

A Petrov-Galerkin method relies on the following ansatz for a discretization. V is replaced by a

finite-dimensional space Vh, the solution or trial space. Analogously, W is replaced by Wh, the

test space. Instead of (B.1) we solve

Find uh ∈ Vh : a(uh, vh) = L(vh) ∀vh ∈Wh. (B.3)

If V = W and a is symmetric, this method is called the (Bubnov-) Galerkin method .

The Ritz or Ritz-Galerkin method is the ansatz, where instead of (B.2) the finite-dimensional

minimization problem

Minimize J(vh) =
1

2
a(vh, vh)− L(vh) in Vh, (B.4)
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is solved. For a positive (i.e. a(v, v) ≥ 0), symmetric bilinear form the Ritz method is equiva-

lent to the Galerkin method. Please note that the denomination of the different Galerkin-type

methods is not uniform in literature.

In contrast to finite difference methods, for all Galerkin-type methods only the spaces V and

W are discretized, but not the differential operator. In the following we consider only the case

W = V , unless mentioned otherwise.

We are interested in the quality of the approximation that is provided by the numerical so-

lution relying on a Galerkin method.

An a priori estimate is an estimate that may be derived without knowing any solution before.

In contrary, an a posteriori estimate relies on the availability of a computed numerical (or known

analytical) solution.

Lemma B.1 (Stability of Galerkin Method)

Let V be a Hilbert spaces and a : V × V → R be a bounded and V -elliptic bilinear form (with

ellipticity constant α0). Regardless of the choice of a subspace Vh ⊂ V there holds for a solution

uh of (B.3) that

‖uh‖V ≤
1

α0
‖f‖V ∗ . (B.5)

Proof. Since Vh is a closed subset of V and itself a Hilbert, the boundedness and coercivity of

a holds in Vh as well as in V for the same constants.

Testing with the solution, i.e. inserting vh = uh in (B.3) yields

a(uh, uh) = 〈f, uh〉, (B.6)

and by means of the V -ellipticity and a standard estimate for linear forms we obtain

α0‖uh‖2V ≤ ‖f‖V ∗‖uh‖V . (B.7)

If ‖uh‖V = 0, then we are done, otherwise the statement of the lemma follows by cancellation

of ‖uh‖. �

Thus the stability of the solution of problem (B.1) is guaranteed directly by the Galerkin method

(B.3).

Lemma B.2 (Céa)

Let V be a Hilbert space and a : V × V → R a V -bounded and V -elliptic bilinear form (bounded

with constant α1 and with ellipticity constant α0). If further u or uh are solutions of the varia-

tional problem V or Vh ⊂ V , respectively, (i.e. of (B.1) or (B.3), then there holds

‖u− uh‖V ≤
α1

α0
inf

vh∈Vh
‖u− vh‖V . (B.8)
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Proof. The solutions u or uh, resp., are defined as

a(u, v) = L(v) ∀v ∈ V, (B.9)

a(uh, v) = L(v) ∀v ∈ Vh. (B.10)

Since Vh ⊂ V , Equation (B.9) holds for all v ∈ Vh. By subtracting (B.10) from (B.9) where

v ∈ Vh:

a(u− uh, v) = 0 ∀v ∈ Vh. (B.11)

Now let vh ∈ Vh be arbitrary, we insert v = vh − uh ∈ Vh into (B.11) and obtain

a(u− uh, vh − uh) = 0 ∀vh ∈ Vh. (B.12)

This allows for the estimate

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh) (B.13)

≤ α1‖u− uh‖V ‖u− vh‖V + 0, (B.14)

exploiting the bilinearity, the boundedness and (B.11).

On the other hand the V -ellipticity implies

α0‖u− uh‖2V ≤ a(u− uh, u− uh). (B.15)

If ‖u − uh‖V = 0, then (B.8) holds. Otherwise we combine the latter two estimates and by

cancellation

α0‖u− uh‖V ≤ α1‖u− vh‖V ∀vh ∈ Vh. (B.16)

�

Eq. (B.11) is the so-called Galerkin orthogonality . For a symmetric it says, that the approxima-

tion error u− uh is orthogonal to Vh.

The importance of the Céa lemma is that the a-priori error of the numerical solution can be

determined within the space of approximation functions.

Thus we should choose function spaces that allow for a good approximation of the solution u.

For instance, considering polynomial spaces, it depends on the smoothness of the solution, how

well we may approximate.

For boundary value problems typically the regularity decreases near the boundary. Thus we

cannot expect to obtain a better approximation by increasing again and again the polynomial

degrees. Here it makes more sense to consider piecewise polynomials and to increase the accu-

racy by refining the mesh. This is the concept of hp-methods that we do not wish to discuss

here with further details.

The finite element method is a specific Galerkin method. The bounded domain Ω is decomposed
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into simple compact subsets (cells or elements) Ti, 1, . . . ,M with T̊ := int(T ) 6= ∅. For instance,

triangles (d = 2) or tetrahedrons (d = 3) are used, but also quadrangles (d = 2) or cuboids

(d = 3) are common. The decomposition (mesh or grid) Th, in the case of triangles we call this

a triangulation, has to be admissible in a certain way.

B.3 Finite Element Method

For simplicity we formulate these postulations for d = 2 and d = 3:

Definition B.3 (Admissible Mesh in 2 Dimensions)

Let Ω be a polygonal domain that may be decomposed into triangles and quadrangles.

Then a mesh Th = {T1, T2, . . . , TM} with triangles and quadrangles Ti is called admissible (or

geometrically conform), if:

(i) Ω = ∪Mi=1Ti, i.e. the mesh covers exactly the closure of the domain.

(ii) If Ti ∩ Tj, i 6= j, consists of a single point, then this point is a corner point of Ti and of

Tj, i.e. no hanging nodes appear.

(iii) If Ti ∩ Tj, i 6= j, consists of more than one point, then Ti ∩ Tj is an edge of Ti and of Tj.

(ii) and (iii) mean that two different elements intersect at most in one corner or on one edge.

Definition B.4 (Admissible Mesh in 3 Dimensions)

Let Ω be a polyedric domain that may be decomposed into tetrahedrons and cuboids.

Then a mesh Th = {T1, T2, . . . , TM} with tetrahedrons and cuboids Ti is called admissible (or

geometrically conform), if:

(i) Ω = ∪Mi=1Ti, i.e. the mesh covers exactly the closure of the domain.

(ii) If Ti ∩ Tj, i 6= j, consists of a single point, then this point is a corner point of Ti and of

Tj, i.e. no hanging nodes.

(iii) If Ti ∩ Tj, i 6= j, consists of more than one point, then Ti ∩ Tj is

an edge of Ti and of Tj

or a face of Ti and of Tj,

i.e. no hanging nodes.

The index h at Th designates that every element has a diameter smaller than 2h (2D) or 3h

(3D), resp.

The parts of the boundary ∂Ti that lie within in a hyperplane are called facets. In 2D these

are edges or in 3D these are faces.

Remark B.5 (Curvilinear Boundaries)

Due to the assumption that elements Ti are polygons or polyhedrons, we may cover exactly only
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domains Ω that are bounded polygonally (2D) or by polygons (3D). An Ω of this type is called a

domain with P-boundary. The exhaustion of an Ω with curvilinear boundaries may be improved

by the introduction of curvilinear elements.

We look for basis functions φi, 1, . . . ,N , such that as many as possible entries in the resulting

stiffness matrix Aij := a(φj , φi) vanish, yielding a linear equation system that is “easily” solvable.

This may be realized by basis functions with support as small as possible. Then the supports

of different basis functions intersect only in the direct neighbourhood and A is sparse, meaning

only a few entries are non-zero.

Example B.6 (FEM Yields Linear Equation System)

Let the nodal functions φi, i = 1, . . . ,N , be a global basis of Vh such that φi = δxi(x) for all

nodes xi, i = 1, . . . ,N . For the ansatz

uh(x) =
N∑

i=1

uiφ(x),

the problem (B.3) (in case W = V ) becomes the linear system

Au = b, (B.17)

where

Aij = a(φj , φi), i, j = 1, . . . ,N ,
bi = L(φi), i = 1, . . . ,N .

In order to obtain a sparse A, the nodal functions may be chosen piecewise smooth such that

the support of any φi is the union of the cells that intersect with xi only. These nodal functions

with hat-like shape have finite support. The supports overlap only for nodes that are neighbours,

the latter depending on the precise geometry of the mesh.

Please note that it is often practice to designate the functions with finite support as finite

elements (FE), too, whereas the subsets Ti are called just elements. If we speak of Ck-elements

or linear elements, for instance, then the corresponding functions are to be meant.

Except for being admissible, the choice of the mesh Th is arbitrary and can be adapted to

the underlying problem, e.g. in case of framework constructions.

Definition B.7 (Abstract Definition of a Finite Element According to Ciarlet [Ci78])

A finite element is a triplet (T,Π,Σ) with the following properties:

(i) T is a compact polyhedron in Rd with T̊ 6= ∅.

(ii) Π is a subspace of C0(T ;Rm) for some m ∈ N with finite dimension s ≥ 1.

(iii) Σ is a set of s linear independent functionals on Π.

Any p ∈ Π is determined by the values of the s functionals in Σ.
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T is called element (or cell).

The functions in the space Π are called (local) trial functions. Typically, Π consists of poly-

nomials, however, piecewise polynomials are used as well, e.g. for the HCT-element.

The elements σi ∈ Σ are called (local) degrees of freedom (or nodal variables). Since these

functionals correspond typically to function values and derivatives at certain points in T , we

call (iii) generalized interpolation conditions. Note that the functionals in Σ are of the type of

evaluation operators in Ex. 3.3.

A FE is called Lagrange element , if all degrees of freedom are function evaluations in points

(cf. the Lagrange interpolation problem). We speak of a Hermite element , if derivatives of a

function are evaluated as well.

Lagrange elements for triangles (2D)/tetrahedron (3D) with polynomials of maximal total

degree q are denoted by Pq. In case of quadrangles (2D)/cuboids (3D) with maximal degree

q in each variable we use the symbol Qq. For intervals (1D) both types of Lagrange elements

coincide, i.e. Pq = Qq.

In principle Π and Σ depend on the element T . This can be emphasized by the notation

(T,ΠT ,ΣT ) for a T ∈ Th. The set of finite elements (T,ΠT ,ΣT )T∈Th is called a FE complex. Fur-

thermore, we introduce the global interpolation domain VT :=
∏
T∈T VT and ΠT :=

∏
T∈T ΠT ,

being the approximation space for the FE complex.

Definition B.8 (FE-Space; Global Degrees of Freedom)

Let {T,ΠT ,ΣT }T∈T be a FE complex on a mesh T , let ΠT be the corresponding approximation

space, and let ΣT := ∪T∈T ΣT .

(i) Let σ ∈ ΣT for some T ∈ T , then {Σ1, ...,ΣS} designates a partition of ΣT , i.e. a decom-

position of ΣT into non-empty disjoint subsets (equivalence classes).

(ii) The subspace

Vh :=
{
v ∈ ΠT

∣∣σ, σ̃ ∈ Σi for some i ∈ {1, ..., S} ⇔ σ̃(v) = σ(v)
}

of ΠT is called a finite element-space (FE-space) or global trial space.

(iii) The representatives {σ1, ..., σS} of the equivalence classes {Σ1, ...,ΣS} are called global

degrees of freedom.

The elements φ1, ..., φS ∈ Vh with σi(φj) = δij are called global trial functions and provide a

(global) nodal basis of Vh.

Definition B.9 (Conformal Approximation)

For a general variational problem (B.3) in a Hilbert space V , the vector space Vh is called
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V -conformal, if Vh ⊂ V .

Then the discrete problem (B.3) is called a conformal approximation.

In general the space Π is not in H1(Ω), and we have not always a H1-conformal approximation.

Suitable interpolation error estimates help us to decide how small h has to be chosen at least,

in order to guarantee a given precision of the numerical solution. This will depend on the type

of finite element and on the intrinsic regularity of the PDE problem.

We recall the Céa lemma, Lemma (B.2), and estimate the right-hand side further

‖u− uh‖V ≤ C‖u− πhu‖V . (B.18)

The idea is choose a manageable global interpolation in Vh for the projection πh : V → Vh.

Let IT : VT → ΠT be an interpolation operator corresponding to a single element T . We

consider a modified global interpolation operator IVh that guarantees

[IVhv]
∣∣
T

= IT (v|T ). (B.19)

For this purpose, let

ṼT =
{
v ∈ VT

∣∣σ, σ̃ ∈ Σi, i ∈ {1, . . . , S} ⇒ σ̃(v) = σ(v)
}

(B.20)

be the subspace of VT , in which global basis functions for coincident degrees of freedom are

identified. Then the FE-space interpolation reads

ṼT 3 v 7→ IVhv =
N∑

i=1

σi(v)φi ∈ Vh. (B.21)

This guarantees (B.19).

We introduce the FE-space interpolation into (B.18) as projection, i.e. setting πh = IVh , where

we presuppose in addition that u is sufficiently smooth, such that u ∈ ṼT .

We observe the typical structure of the error estimate

‖u− uh‖ ≤ chp|u|, (B.22)

where | · | is a (semi-)norm that considers higher derivatives as ‖ · ‖ does. The maximal order of

convergence depends on the used polynomial degree Pm and on the regularity of the solution,

i.e. on Hm+1(Ω).

We consider the order of convergence for Pq- or Qq-elements, resp. We make the following

assumption.

Assumption B.10 (Assumption on FE-Spaces)

In this subsection we assume in general that (T,Π,Σ) is a finite element with local interpolation

space VT , whereas
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(i) the space of polynomials of degree m on the element Pm(T ) is a subset of Π,

(ii) VT = Hm+1(T̊ ),

with m ∈ N.

Let d = 2, 3, u ∈ Hm+1(Ω), m+1 ≥ 2, then the order of convergence m = q is optimal w.r.t. the

H1-norm (k = 1). Hermite elements, e.g., payoff only for high regularity of the solution, since

m+ 1 = 2, 3, 4 in 1D and m+ 1 = 3, 4 in 2D/3D is allowed.

For global error estimates we need a certain uniformity of the mesh. We consider the 2D case.

Let hT or h denote the maximal diameter of a cell or all cells in a mesh, resp. Furthermore, we

need the maximal diameter ρT of circles that may be inscribed in a cell T .

Definition B.11 (Uniform Mesh)

Let Υ := {Th}h↘0 be a family of meshes with the property that for all hn ↘ 0 a mesh Thn exists

in this family.

(i) Such a family Υ := {Th}h↘0 is called shape regular, if there exists a constant γ > 0, such

that
hT
ρT

= γT ≤ γ ∀T ∈ Th ∀Th ∈ Υ. (B.23)

(ii) The family Υ is called (quasi-)uniform, if there exists a constant γ > 0, such that

h

ρT
≤ γ ∀T ∈ Th ∀Th ∈ Υ (B.24)

or equivalently, Υ is shape-regular and there exists a c > 0 such that

h

hT
≤ c ∀T ∈ Th∀Th ∈ Υ (B.25)

The latter means that the ratio between the largest and the smallest diameter remains bounded

over all meshes in the family.

Note that we follow [EG04] for the definition of quasi-uniformity. However, note that in some

literature ii) it is called quasi-uniform.

We state three standard results on estimates, see, e.g., [Ki17] and the references therein. The

proofs rely on the Bramble-Hilbert lemma.

Lemma B.12 (Global Interpolation Error Estimates for Lagrange Elements in 2D)

Let Th be a family of shape-regular meshes and we assume a conformal FE-approximation. There

holds for a:

Lagrange triangular element P1 and u ∈ H2(Ω)

‖u− uh‖0,Ω ≤ ch2|u|2,Ω, |u− uh|1,Ω ≤ ch|u|2,Ω, (B.26)
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Lagrange triangular element P2 and u ∈ H3(Ω)

‖u− uh‖0,Ω ≤ ch3|u|3,Ω, |u− uh|1,Ω ≤ ch2|u|3,Ω, |u− uh|2,Ω ≤ ch|u|3,Ω, (B.27)

Lagrange triangular element P2 and u ∈ H2(Ω)

‖u− uh‖0,Ω ≤ ch2|u|2,Ω, |u− uh|1,Ω ≤ ch|u|2,Ω, (B.28)

Lagrange quadrilateral element Q1 and u ∈ H2(Ω)

‖u− uh‖0,Ω ≤ ch2|u|2,Ω, |u− uh|1,Ω ≤ ch|u|2,Ω (B.29)

(i.e. estimates as with P1).

Remark B.13 (L2-Error Estimate)

By means of the Céa lemma we obtain for an elliptic boundary value problem of second-order

an error estimate w.r.t. the H1(Ω) norm. However, the simple estimate

‖u− uh‖L2(Ω) ≤ ‖u− uh‖H1(Ω) ≤ chµ−1|u|µ,Ω (B.30)

doesn’t yield the best order of the error (k = 1, µ := m+ 1). The “correct” L2 error estimate

‖u− uh‖L2(Ω) ≤ ch‖u− uh‖H1(Ω) ≤ chµ|u|µ,Ω (B.31)

is proven by the Aubin-Nitsche lemma relying on a duality argument (the so-called “Nitsche

trick”). Here we refer to [Br07].

For the L∞ norm we may prove

Lemma B.14 (Global L∞-Error Estimate)

For Pk elements there holds for k = 1

‖u− uh‖L∞(Ω) ≤ ch2| ln(h)| |u|W 2,∞(Ω), (B.32)

and for k ≥ 2

‖u− uh‖L∞(Ω) ≤ chk+1 |u|Wk+1,∞(Ω). (B.33)

Remark B.15 (Numerical Linear Algebra)

An important issue in FEM is the efficient numerical solution of the arising linear equation

systems of type (B.17). Since direct methods have limitations in the system size, for large-scale

systems iterative methods are considered. The numerical accuracy and convergence depends on

the condition of the matrix A that may be influenced suitably by preconditioning. Among various

methods the following are very feasible:

• conjugated gradient methods with good preconditioning,

• multigrid methods [H85],

• fast Fourier transformation, see, e.g., [GR94, pp. 250-255],

• H matrices [B08].

For an overview of further numerical methods in optimization not discussed in this work, see,

e.g., [GK99, GK02] in finite dimensions and [NW06, LY08, Be10, BS12] in the general case.
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Appendix C

Lagrange and Hamilton Approach in

Classical Mechanics

In this appendix we comment on the close relation of the notions of Lagrange and Hamilton

functions that appear in physics on one hand and in optimization and control theory on the

other hand, see also, e.g., [GKW14]. For a discussion on the history of optimal control and its

notion, see, e.g., [PB94, SW97].

Definition C.1 (Generalized Coordinates and Holonomic Constraints)

Let I ⊂ R represent a time interval. For each mass point, we transform the given coordinates

[x1, . . . , xnx ], e.g. points for positions and angles for the orientation, to generalized coordinates

[q1, . . . , qnq ] that are more suitable for the problem. Let the vector q denote the generalized

coordinates.

In most general form, a constraint H(t, q, q̇) = 0, where H : I × R2nq → RnH , is said to

be holonomic, if its dependence on the velocity coordinates q̇ := q′(t) may be eliminated by

integration. Therefrom, w.l.o.g., we may restrict us to the case H(t, q) = 0 in the following.

For holonomic constraints it is always possible to find canonical generalized coordinates q, s.t. all

forces may be expressed as gradients of generalized potentials.

However, in principle, non-holonomic constraints could partly be considered by the following

techniques as well.

Problem C.2 (System of Mass Points)

We consider on a time interval I a certain multibody system with mass points. The system is

subject to holonomic, independent constraints H(t, q) = 0, where the positions and orientations

of the mass points are given by the vector q of canonical generalized coordinates. We wish to

determine the equations of motion for q and q̇ and, then, we would like to solve for q as a

function of t.

The kinetic energy of this system is denoted by Ekin, its generalized potential (potential energy)

by Epot, and its total energy by E = Ekin + Epot.
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Definition C.3 (Lagrange Function in Classical Mechanics)

The function L̃ : I × R2nq → R

L̃(t, q, q̇) := Ekin(t, q, q̇)− Epot(t, q)

is called Lagrange function (Lagrangian) w.r.t. Problem C.2 (with holonomic constraints).

The equations of motion for this system are obtained by the Lagrange equations (of the second

kind), customarily written as

d

dt

∂L̃(t, q, q̇)

∂q̇i
− ∂L̃(t, q, q̇)

∂qi
= 0 ∀i = 1, . . . , nq

or in our notation reading
d

dt
L̃′q̇(t, q, q̇)− L̃′q(t, q, q̇) = 0Rnq . (C.1)

Note that often the Lagrange equations of the second kind are stated for the special case L̃ ≡ Ekin.

For completeness, in case of non-holonomic constraints H̃ : I ×R2d → RnH̃ and for Cartesian

coordinates x, the Lagrange equations of the first kind read

mẍ = Fa + λ>H̃ ′x + µ>H̃ ′ẋ, (C.2)

where Fa : I → Rnx denotes active forces and the multipliers are λ, µ ∈ RnH̃ . The last two

terms are the total constraining force Fc : I × R2d → RnH , that can be expressed as a linear

combination of gradients of H̃.

The relation to the Lagrange function L as used in optimization subject to constraints, see

Def. 2.12, becomes obvious when we set here

L(t, q, q̇) := L̃(t, q, q̇) + λ>H(t, q),

yielding that (C.1) is formally equivalent to

d

dt
L′q̇(t, q, q̇)− L′q(t, q, q̇) = 0,

being the Lagrange equation of the second kind, but w.r.t. L. The constraining force naturally

appears as a product of Lagrange multipliers (adjoints) and constraint equations.

Conjugated to q, we introduce the generalized momenta, given by the vector p := L′q̇.

Definition C.4 (Hamilton Function in Classical Mechanics)

The Legendre transformation, where q̇ is replaced as independent variable by p, applied to the

Lagrange function to Problem C.2, i.e.,

H̃(t, q, p) := q̇(t, q, p)>p− L̃(t, q, q̇(t, q, p))

is called the Hamilton function (Hamiltonian) corresponding to Problem C.2.
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If scleronomic constraints (i.e. no explicit time dependence of the constraints) are implied, H̃
corresponds to the total energy of the system, Ekin+Epot, considered as a function of generalized

position q and momentum p.

According to the Hamilton principle, the action

∫ tf

t0

L(t, q, q̇) dt (C.3)

has a stationary point, corresponding to the fact that a physical process tends to a stationary

point - usually we think of a minimum or maximum, resp., but not of a saddle point (that is

also instable, but possible as well). The Euler-Lagrange equations (of the second kind) may be

derived from the Hamilton principle as well. In this setting the equations of motion are obtained

as

q̇ = H̃′p,
ṗ = −H̃′q.

Here we observe some similarity to optimal control theory of DAE, where the states q and

adjoints λ solve (for Problem C.2, i.e. without constraints on u)

q̇ = H′λ,
λ̇ = −H′q,
0 = H′u.

The additional latter equation represents the stationarity w.r.t. u of the Hamilton function

H(t, q, λ, u), depending here on u as well. In this setting momenta may be interpreted as adjoint

and vice versa.

Please note that for Problem C.2 the Hamilton function H, as defined in Def. 2.64 within

the context of optimal control subject to an ODE q̇ = f(t, q, u),

H(t, q, u, λ) = λ0φ(t, q, u) + λ>f f(t, q, u)

is of slightly different character than H̃. If we assume λ0 = −1 for a formal equivalence, then

λf mimics the role of p as conjugated variable. We introduce the new state q̃ := [q, v] := [q, q̇]

by adding the velocities as independent states. The holonomic constraint reads H(t, q̃, u) =

f(t, q, u) − v = 0. The Legendre transformation is performed from v = q̇, being equal to

the r.h.s. f of the corresponding differential equation, to λf corresponding to p. Here J is

the action (C.3) and has the dimension energy times time, and φ is the Lagrange function L.

The function values L, L̃, H, and H̃ have usually the dimension of energy. If some constraint

qualification is satisfied, we may assume w.l.o.g. λ0 = −1 corresponding to maximization of

the Hamilton function, if the Lagrange function is to be minimized; for a minimization of the

Hamilton function, λ0 = 1 would be appropriate, if the Lagrange function is to be minimized.

In the latter case p = −λf and H = v − f can be set for consistency [Tr10, Subsect. 4.8.2].
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In optimal control theory the objective J is minimized. In some situations the kinetic energy

∝ Ekin or the potential energy Epot times a weighting factor enter as a summand into J . How-

ever, J can be chosen more general.

Further formulations of classical mechanics rely on Newton’s laws of motion or the Hamilton-

Jacobi equation, both equivalent to Lagrangian and Hamiltonian mechanics discussed above. In

control theory the Hamilton-Jacobi-Bellman equation is the counterpart to the Hamilton-Jacobi

equation in classical mechanics.

We close with an example for a multibody system from mechanics. For the notation see also

Section 2.6.1 though it is restricted to index-1 DAE. A typical multibody system has a structure

of DAE form.

Example C.5 (Multibody System)

M(q)q̈(t) = f1(t, q, q̇, u) + λ(t)>f ′2;q(t, q) (C.4)

0Rnq2 = f2(t, q), (C.5)

where q is the ODE state and u the control. f1 is the vector of applied forces, torques and

Coriolis forces, whereas (C.5) represents (holonomic) constraints, here stated as a constraint on

the position level. The algebraic variable, here λ, plays the role of a constraining force in physics

and appears here as a multiplier. The symmetric and positive definite matrix M is the so-called

mass matrix. From the kinetic energy of the multibody system, (C.4) may be derived by means

of the Euler-Lagrange equations.

By multiplication with M−1 from the left, this system exhibits the form of a so-called Hessen-

berg DAE of order 3. For example, rewriting Example 1.1 as a DAE yields this structure.
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Appendix D

Acronyms

Here we give a compilation about the most important symbols, abbreviations, nomenclature,

physical constants and material data that we use. Please note that we would prefer to stay in

line with some standard notations, so some ambiguities are inavoidable, e.g., p might denote a

parameter to be identified, the momentum, the pressure or the exponent of functions in Lebesgue

spaces. In literature p denotes often the adjoint, a nomenclature not used here. However, it

should be clear from the context which definition is applicable in each case.

Symbol Declaration

Abbreviations

w.r.t. with respect to

s.t. such that

i.e. ita est (latin), that is

w.l.o.g. without loss of generality

b.c. boundary condition

ODE ordinary differential equation

PDE partial differential equation

DAE differential algebraic equation

PDAE partial differential algebraic equation

CDE coupled differential equations, i.e. coupled ordinary and partial differential

equations

FDM finite difference method

FVM finite volume method

FEM finite element method
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Symbol Declaration

Abbreviations (continued)

LP linear program

NLP nonlinear program

SQP sequential quadratic programming

SSNM semismooth Newton method

MPC model predictive control

CQ constraint qualification

BFGS Broyden-Fletcher-Goldfarb-Shanno (formula/update/method)

DFP Davidon-Fletcher-Powell (formula/update/method)

KKT Karush-Kuhn-Tucker (condition/point)

PNP Poisson-Nernst-Planck (equation)

PEM polymer electrolyte membrane

GaAs gallium arsenide

Symbol Declaration

Geometry

S ⊂ R a subset S of R, also denoted S ⊆ R
S ( R a proper subset S of R, i.e. with S 6= R, also denoted S ⊆ R in literature

S̊ = int(S) interior of a set S
∅ empty set

Ω an open bounded set or a domain (i.e. an open, non-empty, connected set)

in a topological space

t ∈ R+
0 , time

tf = T terminal time (final time), i.e. maximal t, until which a model is considered

d ∈ N \ {0}, the spatial dimension

x Eulerian coordinates of Ω(t) ⊂ Rd

X Lagrangian coordinates of Ω(0) ⊂ Rd

ei unit vectors, i = 1, . . . , d

ν outer normal vector

τl tangential vectors,l = 1, . . . , d− 1

kM := −div ν, mean curvature of a surface

Vectors are only underlined, e.g., e1, in some examples of Chapter 4.
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Symbol Declaration

Spaces

‖ · ‖ norm; the Euclidean norm unless stated otherwise

X a normed vector space, equipped with a norm ‖ · ‖X ; typically a Banach space

X∗ (topological) dual space of X

0X Zero element of (Banach) space X (could be, e.g., the zero function)

d(·, ·) := ‖ · − · ‖, metric induced by norm

L(X,Y ) space of linear operators, defined on X mapping into Y

Z space of optimization variables, i.e. Z = Y × U
Zad admissible set of optimization variables, see Remark 2.4

Σ(fs) feasible set of optimization variables, see Remark 2.4

Y space of states

Yad subset of admissible states

W space where the state equation E(z) = 0 is solved

W ∗ space of adjoints, being the dual of W

U space of controls

Uad subset of admissible controls

Cr,α Hölder spaces, r ∈ N0, 0 ≤ α ≤ 1

Lp Lebesgue spaces, consisting of functions that are integrable to the power

1 ≤ p ≤ ∞
W k,p Sobolev spaces, consisting of functions that are 0 ≤ k <∞ times weakly

differentiable, 1 ≤ p ≤ ∞
Hk := W k,2, Sobolev spaces that are Hilbert spaces, 0 ≤ k <∞

α Tikhonov regularization parameter for control costs or penalty parameter

γ̃ parameter entering in projection formulation of variational inequalities,

typically γ̃ = 1/α

X ↪→ Y embedding from space X into space Y , in literature also denoted as X ⊂ Y
X

c
↪→ Y compact embedding from space X into space Y , in literature also denoted as

X ⊂⊂ Y
X

d
↪→ Y dense embedding from space X into space Y

y1  y2 Variable y2 is coupled to y1, i.e. y1 influences y2
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Symbol Declaration

General operators

f [t] = f(t, q(t), u(t)) Example for Nemitsky type-operator applied to a function f with

several variables depending on t

f ′t = ∂tf partial derivative of function f w.r.t. t

f ′x = [f ′x1
, . . . , f ′xd ] partial derivative of function f w.r.t. vector x, usually written as

a row vector

f ′i;t partial derivative of component i of vector-valued function f

w.r.t. t

f0 initial value for scalar function

fi;0 initial value for component i of vector-valued function f

E′u partial derivative of operator E w.r.t. function u

E′ total derivative of operator E w.r.t. all arguments

ḟ(= d
dtf) total derivative of function f w.r.t. t

∇ := [∂x1 , ∂x2 , . . . , ∂xd ], the Nabla operator in dimension d

∆x(= ∆) :=
∑d

i=1 ∂
2
xi , the Laplace operator

A> transposition of a matrix A

A∗ dual operator of A

E averaging-evaluation operator, see Def. 3.1

tr :=
∑d

i=1A
ii, trace of a d× d matrix Aij , 1 ≤ i, j ≤ d

S operator representing a real system

S operator representing the model system for S

Symbol Declaration

Natural constants

RG = 8.3145 J mol−1 K−1 universal gas constant

NA = 6.0221 · 1023 mol−1 Avogadro’s constant
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Symbol Declaration

Variables and some dependent quantities

q ODE states

y (PDE) states

u controls

z := [y, u], optimization variable

λ(= p) adjoints / multipliers

z0 := z(t0) value of optimization variable at given initial time t0 ∈ R
zf := z(tf ) value of optimization variable at possibly free terminal time tf ∈ R
ẑ local optimal (minimizing) optimization variable

ŷ local optimal (minimizing) states

û local optimal (minimizing) controls

J objective as a functional of y and u

J̃ := J (y(u), u), reduced objective as a functional of u

G Inequality constraints

H Equality constraints

G Combined inequality and equality constraints

φ integrand in objective

Ekin kinetic energy

Epot potential energy

L Lagrange function (Lagrangian)

H Hamilton function (Hamiltonian)

E operator representing the system of differential equations (of any type),

with values in W

S control-to-state (or solution) operator, resp., S : U → Y, u 7→ y(u)

(defined implicitly by E(y, u) = 0)

PΣ projection operator on set Σ (P̃Σ pointwise Euclidean projection)

K convex cone

K+ positive polar (or dual) cone

K− negative polar (or dual) cone

M mass matrix, unless stated otherwise

σS Cauchy stress tensor

p momentum or pressure
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Hiermit erkläre ich bzw. versichere ich an Eides statt, dass ich die schriftliche Habilitations-

leistung selbst verfasst habe, mich keiner fremden Hilfe bedient habe und die Herkunft der
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