
An Extension of RATH to Explore and

Apply Goguen Categories

Diplomarbeit von

Thomas Triebsees

UniBwM – ID 27/2002

Aufgabenstellung:

Prof. Dr. Gunther Schmidt

Betreuung:

Dr. Michael Winter

Universität der Bundeswehr München

Fakultät für Informatik

Institut für Softwaretechnologie

Neubiberg, den 02. Dezember 2002

ii

Contents

1 Introduction 1

2 Introduction of the Mathematical Concepts 5

2.1 Sets and relations . 5

2.2 Fuzzy sets and fuzzy relations . 10

2.3 Lattices . 14

2.3.1 Definition and some first properties 15

2.3.2 Order and lattice morphisms, Galois connections 17

2.3.3 Special elements . 20

2.3.4 Modular lattices . 21

2.3.5 Distributive lattices . 23

2.3.6 Brouwerian lattices . 24

2.3.7 Boolean lattices . 26

2.3.8 Fixpoints . 27

2.4 L-fuzzy sets and L-fuzzy relations . 29

2.5 Category theoretical approach to relations 34

2.5.1 Categories . 35

2.5.2 Allegories . 38

iii

2.5.3 Distributive allegories . 40

2.5.4 Division allegories . 41

2.5.5 Dedekind categories . 43

2.6 Goguen categories . 46

2.6.1 Definition and properties . 47

2.6.2 Derived operations . 50

3 Extending RATH 55

3.1 A module collection for lattices . 55

3.2 Using the lattice module . 80

3.3 A general extension for Goguen categories 86

3.4 A module for L-fuzzy relations . 96

3.5 Lattices of L-fuzzy relations . 108

3.6 Relational categories of L-fuzzy relations . 112

4 Fuzzy Control Based on Goguen Categories 117

4.1 Introduction to fuzzy controllers . 117

4.2 A relational model for fuzzy controllers . 123

4.2.1 Operations on fuzzy controllers . 128

4.3 A module for fuzzy controllers . 143

4.4 Example controller . 164

5 Conclusion 175

Bibliography 178

A Lattice Instances and Export of the Functions 181

B Goguen Instances and Export of the Functions 191

iv

Chapter 1

Introduction

Over the last years, dealing with unsharp information and uncertainty has become an every

day issue in many areas of research and application. The well-known concept of fuzzy sets

and fuzzy relations, introduced by Zadeh in 1965 ([4]), constitutes the base to handle this

kind of information. The idea is, given an element of a fuzzy set/relation, to assign the

degree of membership to this element. In this first approach, the degree of membership is

a value taken out of the unit interval [0, 1]. Thus, a fuzzy set or fuzzy relation where the

degree of membership takes only the value 0 or 1 can be seen as a conventional set/relation.

It then is called to be 0− 1 crisp or simply crisp.

In 1967, Goguen generalized Zadeh’s concept. He realized that it often can be useful not

to express the degree of membership by an element of the unit interval. Thus, for example,

[0, 1] × [0, 1] taking a tuple of two values out of [0, 1] can be interesting for a customer to

rate a product due to two quality criteria. In his paper [6], Goguen introduced the notions

of L-fuzzy sets and L-fuzzy relations which use an arbitrary completely distributive lattice

L to express membership within a fuzzy set/fuzzy relation.

In real world applications, especially the concept of fuzzy relations and L-fuzzy relations is

used to develop fuzzy controllers [5][7][8] for steering technical processes. Thus, for example,

the air-conditioning of a building or certain safety systems within cars are regulated by such

controllers. Especially the second application shows that it would be useful to have an exact

theory to reason over L-fuzzy relations and, thus, over fuzzy controllers. One then could

prove certain properties of given fuzzy controllers and, hence, avoid an unexpected, safety

critical behavior.

A first approach was given in [10] by H. Furusawa. He used the theory of relational categories

1

2 CHAPTER 1. INTRODUCTION

[9] and, especially, of Dedekind categories to model L-fuzzy relations. Unfortunately, he got

problems while expressing the notion of crispness within this theory. He gave two proposals

(l-crispness and s-crispness) which coincide with 0−1 crispness only under some restrictions

on the entry lattice L.

Finally, Michael Winter in [11] showed that the theory of Dedekind categories is too weak

to express crispness in general. Hence, he introduced a new kind of relational category, the

so-called Goguen category. By providing new operations, he gave a convenient notion of

crispness and managed to show that the notions of l-crispness and s-crispness are subsumed

by this new definition.

In [12] a proposal was given how to model fuzzy controllers within the theory of Goguen

categories. This model constitutes the base to transfer the concepts of fuzzy control into

Goguen categories. But, it would also be nice to have a computer-aided framework based on

this model to construct fuzzy controllers and, just as important, to handle Goguen categories.

This is the main issue of this thesis. We aim at a collection of Haskell [19][20] modules which

allows a convenient handling of Goguen categories and, thus, of fuzzy controllers and L-fuzzy
relations.

There are already two Haskell libraries covering the treatment of relational categories and

relations. The RELVIEW system developed at the Christian-Albrechts-University of Kiel

allows to create and manipulate binary relations. The RATH system [17], developed at

the University of the Federal Armed Forces Munich, goes a step further by providing a

Haskell library to create, explore and test instances of relational categories. Hence, it is

more suitable for our purposes than the RELVIEW system. We will focus on an extension

of this module collection such that it covers Goguen categories.

In Chapter 2 we provide the mathematical background which is needed to understand this

thesis. First, it includes a brief introduction to sets and relations. After that, fuzzy sets and

fuzzy relations are introduced. Before we then introduce L-fuzzy sets and L-fuzzy relations,

we provide a comprehensive overview over the lattice theoretical concepts. The chapter is

concluded by an overview over relational categories and Goguen categories.

Chapter 3 then is dedicated to the extension of RATH. We first provide a module collection

for lattices which is the necessary base for all other modules. After that we introduce some

modules for Goguen categories matching all development criteria of RATH such that they

can easily be integrated. With these modules, we especially provide some test routines to

test instances of Goguen categories for correctness. Finally, a module for handling L-fuzzy

3

relations is implemented.

The last part of this thesis deals with fuzzy controllers. Chapter 4 is started by a com-

prehensive introduction to fuzzy controllers. After that, we introduce the relational model

of [12], extend it at some points and introduce operations on fuzzy controllers. All these

considerations are done on the abstract level of Goguen categories such that they can be

deducted fully mathematical. The introduced operations then are the mathematical base

for the module for fuzzy controllers. In this module we present suitable combinators to

construct them and test their behavior. At the end of this thesis we develop an example

controller which shows how the provided combinators can be used.

Chapter 2

Introduction of the Mathematical

Concepts

In this chapter we want to introduce the mathematical concepts used throughout this thesis.

We will often assume that the reader is familiar with the basic concepts and, therefore, give

only a sketch of the topic.

2.1 Sets and relations

In the following we introduce the basic set theoretic concepts and notation. Although it can

lead to contradictions, we will treat sets in a naive way. Due to space considerations, we

omit all proofs. They can be found in the various literature.

The set membership of an element x is expressed by the symbol ∈. We say x ∈ M if x is an

element of M and x /∈ M if it is not. The empty set ∅ has no elements. If a set N contains

at least the elements of another set M we write N ⊇ M (“N contains M ”) or M ⊆ N (“M

is a subset of N ”). Notice that every set M can uniquely be described by its characteristic

function χM : N → {0, 1} mapping an element x of an arbitrary set N ⊇ M to one of the

boolean values 0 and 1 as follows :

χM (x) :=

1 , if x ∈ M

0 , if x /∈ M.

For the well known algebraic operations on sets we use the following denotation.

5

6 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

Definition 2.1.1. Let M , N , and P be sets and M ⊆ P . Then we have

(1) M ∪N := {x | x ∈ M or x ∈ N} (union)

(2) M ∩N := {x | x ∈ M and x ∈ N} (intersection)

(3) M := {x | x /∈ M and x ∈ P} (complement).

Some interactions between and properties of these operations are summarized in the follow-

ing lemma.

Lemma 2.1.1. Let M, N, P and Q be sets such that M, N ⊆ Q. Then we have

(1) M ∪N = N ∪M and M ∩N = N ∩M , (commutativity)

(2) (M ∪N) ∪ P = M ∪ (N ∪ P) and (M ∩N) ∩ P = M ∩ (N ∩ P), (associativity)

(3) (M ∪N) ∩ P = (M ∩ P) ∪ (N ∩ P), (distributivity)

(4) M = M ,

(5) M ∩N = M ∪N and M ∪N = M ∩N , (de Morgan)

(6) M ⊆ N ⇔ N ⊆ M .

The rule of de Morgan shown in (5) is essential because it shows how to obtain the union /

intersection operation if one only has the complement and the intersection/union operators.

We denote the infinitary variants of ∩ resp. ∪ by
⋂
i∈I

Mi resp.
⋃
i∈I

Mi for an index set I and

arbitrary sets Mi.

A special set is the set of all subsets of an arbitrary set M . Using set comprehension, it can

be expressed by

P(M) := {X | X ⊆ M} (power set)

Throughout this thesis we will need two basic constructions — direct sums and cartesian

products. The direct sum M + N and the cartesian product M ×N of two sets M and N

are defined as

M + N := {(0, x) | x ∈ M} ∪ {(1, y) | y ∈ N}
M ×N := {(x, y) | x ∈ M and y ∈ N}.

The direct sum M +N obviously concatenates M and N . Notice that M +N is isomorphic

to M ∪ N for the case M ∩ N = ∅. In contrast, the cartesian product gives us all tuples

2.1. SETS AND RELATIONS 7

with the first component out of M and the second component out of N . Notice that n-

ary cartesian products can be built by iterating the construction for two sets. But, in the

following we focus on binary cartesian products.

In most cases not all pairs are of interest. Therefore, a mathematical characterization of

the needed tuples is necessary. This leads us directly to the notion of relations. A binary

relation R : M → N between two sets M and N is a subset of M×N , i.e., R is an element of

P(M ×N). We call R homogeneous if M = N and, otherwise, heterogeneous. Throughout

this thesis we will write xRy for the fact that (x, y) ∈ R holds and ¬xRy if it does not.

Furthermore, the set {x ∈ M | ∃y ∈ N : xRy} is called the domain (dom(R)) and the set

{y ∈ N | ∃x ∈ M : xRy} is called the range (ran(R)) of R. As relations are only special

sets, the operations of Definition 2.1.1 are applicable and the properties shown in Lemma

2.1.1 hold.

We want to stress that a relation R ⊆ M × N in this manner can be represented as a

(|M | × |N |) matrix indexed by elements of M and N . The entry (x,y) then takes the value

1 if xRy and 0 if ¬xRy. Hence, if we are dealing with the matrix representation, we write

R(x, y) for xRy resp. ¬R(x, y) for ¬xRy. Later on, we will have to study relations that are

not representable in the intuitive way shown here.

To emphasize that we are dealing with relations, we introduce a new notation and write u/t
instead of ∩/∪ and v instead of ⊆. The operation symbol stays unchanged. Furthermore,

we use the special relations

>>M,N := M ×N , (full relation)

⊥⊥M,N := ∅, (empty relation)

IM := {(x, x) | x ∈ M}. (identical relation)

Notice that ⊥⊥M,N v R and R v >>M,N hold for every relation R : M → N . The following

definition gives us a formal base to describe certain kinds of relations.

Definition 2.1.2. A relation R : M → N is called

(1) injective :⇔ ∀x, y ∈ M, z ∈ N : xRz and yRz ⇒ x = y,

(2) surjective :⇔ ∀y ∈ N∃x ∈ M : xRy,

(3) bijective :⇔ R injective and surjective,

(4) total :⇔ ∀x ∈ M∃y ∈ N : xRy,

(5) univalent :⇔ ∀x ∈ M, y, z ∈ N : xRy and xRz ⇒ y = z,

and, if it is homogeneous, i.e., M = N ,

8 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

(6) reflexive :⇔ ∀x ∈ M : xRx,

(7) irreflexive :⇔ ∀x ∈ M : ¬xRx,

(8) transitive :⇔ ∀x, y, z ∈ M : xRy and yRz ⇒ xRz,

(9) symmetric :⇔ ∀x, y ∈ M : xRy ⇒ yRx,

(10) antisymmetric :⇔ ∀x, y ∈ M : xRy and yRx ⇒ x = y,

(11) asymmetric :⇔ ∀x, y ∈ M : xRy ⇒ ¬yRx.

As usual, we call a univalent relation a function, a total function a mapping and a bijective

mapping a bijection. Thus, a relation can be interpreted as a function R : M ×N → {0, 1}.
Notice that an n-ary cartesian product M1 × ...×Mn for an index set I = {1, .., n} can be

interpreted as the set of all mappings f : I → M1∪M2∪· · ·∪Mn with f(i) ∈ Mi. As shown

here, mappings and functions will be denoted by small letters like f .

Homogeneous relations characterized by (6)-(11) are of special interest in order theory and,

thus, in lattice theory. Notice that every asymmetric relation is antisymmetric. The opposite

is, in general, not true.

Definition 2.1.3. A homogeneous relation R over a set M is called a

(1) preorder :⇔ R reflexive and transitive

(2) order :⇔ R reflexive, transitive and antisymmetric

(3) linear order :⇔ R is an order and ∀x, y ∈ M : xRy or yRx

(4) strict order :⇔ R irreflexive and transitive

Notice that we defined a strict order as an irreflexive and transitive homogeneous relation.

This could equivalently be described by demanding the relation to be asymmetric and tran-

sitive.

Throughout this thesis we will call a tuple (P,≤) a poset (partially ordered set), iff P is

a set with an order relation ≤ on it. Often we will identify the tuple (P,≤) only with P .

Obviously, ⊆ is an order relation and, thus, the power set P(M) of an arbitrary set M

together with ⊆ is a poset.

There are two essential operations that can (together with t, u,) be used for an algebraic

treatment of relations — conversion and composition.

Definition 2.1.4. Let R : M → N , and S : N → O be relations. Then we define

(1) R` := {(y, x) | (x, y) ∈ R} (conversion)

(2) R;S := {(x, z) | ∃y ∈ N : (x, y) ∈ R and (y, z) ∈ S} (composition)

2.1. SETS AND RELATIONS 9

Obviously, our definition of ; implies that we read the composition R; S from left to right,

i.e., R : M → N and S : N → O implies R;S : M → O. Notice that, in general,

dom(R) 6= dom(R; S) and ran(S) 6= ran(R; S).

The following lemma summarizes some basic properties of conversion and composition.

Lemma 2.1.2. Let Q,R : M → N , and S : N → O be relations. Then we have

(1) (R`)` = R,

(2) (Q uR)` = Q` uR` and (Q tR)` = Q` tR`,

(3) (R; S)` = S`;R`.

If f : M → N is a function or mapping we will denote the converse relation f` by f−1. It

is clear that f ; f−1 = IM if f is a bijection.

Now we are ready to express the characterizations of definition 2.1.2 in an algebraic manner.

Lemma 2.1.3. Let R : M → N be a relation. Then we have

(1) R injective ⇔ R; R` v IM ⇔ R` univalent,

(2) R surjective ⇔ IN v R`; R ⇔ R` total ⇔ >>M,N v >>M,M ; R,

(3) R total ⇔ IM v R; R` ⇔ R` surjective ⇔ >>M,N v R; >>N,N ,

(4) univalent ⇔ R`; R v IN ⇔ R`

and if R is homogeneous,

(5) R reflexive ⇔ IM v R ⇔ IM v R`,

(6) irreflexive ⇔ R v IM ⇔ IM uR v ⊥⊥M ⇔ IM v R,

(7) transitive ⇔ R2 := R;R v R ⇔ R`; R v R,

(8) symmetric ⇔ R v R` ⇔ R = R` ⇔ R symmetric,

(9) antisymmetric ⇔ R uR` v IM ⇔ IM v R tR`,

(10) asymmetric ⇔ R uR` v ⊥⊥M,M⇔ >>M,M v R tR`.

We will see some of these results again. They obviously constitute a component-free descrip-

tion of the underlying properties and, hence, are the basic characterizations within relational

categories. This more common approach will be introduced later on.

Lemma 2.1.3 already gives a short impression of component less computation and charac-

terization using relations. For a comprehensive introduction to relation algebras we refer to

[15].

10 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

2.2 Fuzzy sets and fuzzy relations

In this section we want to give a short introduction to fuzzy sets. Fuzzy set theory is a wide

ranged area of research. Therefore, we will only introduce the intent and the basic notions.

Again we omit all proofs and exemplary refer to [5][4] and [7] for a comprehensive overview

and mathematical background.

In standard set theory one can only express whether an element x is a member of a set M

or it is not. But what if you have to express vague phrases like “warm”, “cold”, “big”, “small”

and so on ? Consider, for instance, the set of warm temperatures. With the approach shown

in the last section, one would have to set an upper and a lower bound (e.g., 19◦C and 27◦C)

such that every temperature within these bounds is a member of the mentioned set. But,

when 27◦C is warm, why is 26, 9◦C not ? This motivates the following definition.

Definition 2.2.1. We call a structure F := (U, γF) with an arbitrary set U (universe) and

a mapping γ : U → [0, 1] a fuzzy set over U . The application of γF to an element x ∈ U

is called fuzzification.

At this, [0, 1] is the unit interval of all real numbers between 0 and 1. The mapping γF

can, therefore, be interpreted as the degree of membership of a certain element x ∈ U in

F and, hence, we call it the membership function of F . We want to stress that there is

an own theory for finding adequate membership functions. As this is not important for

the general comprehension, we will not go into detail with it. Notice that γF = χF , iff

ran(γF) = {0, 1}. Of course, there are other possible ranges for the degree of membership

than the unit interval. This is only a standard definition. Goguen, for example, in [6]

introduced L-fuzzy sets with γ taking values from a certain lattice L. We will come back to

this later.

Often we will identify the tuple (U,γF) only with F or with γF . Furthermore, we often use

the induced set {(x, γF (x)) | x ∈ U} whereas tuples (x, 0) are not listed explicitly.

In order to describe properties of fuzzy sets and certain interactions to usual sets, we intro-

duce some basic notions.

Definition 2.2.2. Let F be a fuzzy set over U . Then we define

(1) the support supp(F) := {(x, 1)| x ∈ U, γF (x) 6= 0}
(2) the α-cut cutα(F) := {(x, 1)| x ∈ U, γF (x) ≥ α}
(3) the kernel ker(F) := {(x, 1)| x ∈ U, γF (x) = 1}

2.2. FUZZY SETS AND FUZZY RELATIONS 11

(4) the cokernel coker(F) := {(x, 1)| x ∈ U, γF (x) = 0}
(5) F is crisp :⇔ F = cut1(F).

Obviously, F is a conventional set, iff it is crisp and, hence, γF is equal to χF . The α-cut

will play an important role within Goguen categories, later on. But, already here it should

be noticed that the α-cut for a given fuzzy set F induces an antitone function α 7→ cutα(F),

i.e., α ≤ α′ implies cutα′(F) ⊆ cutα(F) for all α, α′ ∈ [0, 1] and all fuzzy sets F .

It is clear that ∪,∩, and ⊆ cannot be transferred from conventional sets to fuzzy sets

without any adaptation. In fact, finding adequate definitions of ∪, ∩ and has costed re-

markable efforts up to now. Therefore, we first define fuzzy set inclusion and then separately

have a look at the union, intersection and negation operators for fuzzy sets.

Definition 2.2.3. Let F and G be two fuzzy sets over U . Then

F ⊆ G :⇔ ∀x ∈ U : γF (x) ≤ γG(x).

Notice that we use the same inclusion symbol ⊆ for conventional and for fuzzy sets, respec-

tively. It will be clear from the context which one is meant. Obviously, ⊆ again is an order

relation, i.e.,

F ⊆ G and G ⊆ H ⇒ F ⊆ H, (transitive)

F ⊆ G and G ⊆ F ⇒ F = G, (antisymmetric)

F ⊆ F . (reflexive)

Now, we want to focus on fuzzy set union and fuzzy set intersection. If we recall the definition

of M ∪N and M ∩N for conventional sets, we see that they can equivalently be described

using the characteristic functions χM resp. χN of M resp. N , and the boolean functions

and, or : {0, 1} × {0, 1} → {0, 1} as follows :

χM∪N (x) := χM (x) or χN (x)

χM∩N (x) := χM (x) and χN (x).

Definition 2.2.2 marks crisp fuzzy sets as a special case of fuzzy sets. As they are equivalent

to conventional sets, the operations ∪ and ∩ for crisp fuzzy sets have to be equivalent to

union and intersection of conventional sets. In fuzzy set theory, we have the notion of

t-norms resp. t-conorms (s-norms) as a synonym for fuzzy set intersection resp. fuzzy set

union. The following definition gives us an axiomatic base.

12 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

Definition 2.2.4. Let τ, σ : [0, 1] × [0, 1] → [0, 1] be two mappings. Then we call τ a

t-norm, iff the following properties hold for all x, y, z, x′, y′ ∈ [0, 1]:

(1) τ(0, x) = 0 and τ(1, x) = x

(2) x ≤ x′ and y ≤ y′ ⇒ τ(x, y) ≤ τ(x′, y′) (monotonic)

(3) τ(x, y) = τ(y, x) (commutative)

(4) τ(x, τ(y, z)) = τ(τ(x, y), z) (associative)

Furthermore we call σ a t-conorm (s-norm), iff it satisfies the following for all x, y, z, x′, y′

∈ [0, 1] :

(1) σ(0, x) = x and σ(1, x) = 1

(2) x ≤ x′ and y ≤ y′ ⇒ σ(x, y) ≤ σ(x′, y′) (monotonic)

(3) σ(x, y) = σ(y, x) (commutative)

(4) σ(x, σ(y, z)) = σ(σ(x, y), z) (associative)

Obviously, t-norms resp. t-conorms induce the algebraic structure of commutative semi-

groups with neutral element 1 resp. 0. Furthermore, we have

τ(1, 0) = τ(0, 1) = τ(0, 0) = 0; τ(1, 1) = 1

σ(1, 0) = σ(0, 1) = σ(1, 1) = 1; σ(0, 0) = 0.

Thus, τ/σ reduced to {0, 1} is equivalent to the boolean function and/or.

Now, we want to switch to possible negation operators in fuzzy theory. Again, we can

express M for a conventional set M , using the boolean function not : {0, 1} → {0, 1} and

the characteristic function χM , by

χM (x) := not χM .

Thus, we give the following definition.

Definition 2.2.5. Let ν : [0, 1] → [0, 1] be a mapping. Then we call ν a fuzzy negation,

iff the following properties are satisfied for all x, y ∈ [0, 1] :

(1) ν(0) = 1 and ν(1) = 0

(2) x ≤ y ⇒ ν(y) ≤ ν(x) (antitonic)

2.2. FUZZY SETS AND FUZZY RELATIONS 13

Restriction (1) explicitly demands that ν reduced to {0, 1} is equivalent to the boolean

function not. The antitonic behavior demanded in (2) is the typical characterization of a

negation operator and, therefore, obviously necessary.

One can imagine that Definitions 2.2.4 and 2.2.5 enclose a big class of possible operations.

In the following we want to give some widely used examples for fuzzy set union, intersection

and negation. Notice that this is not a complete collection at all and, therefore, we refer to

the already cited literature for a more comprehensive overview.

Lemma 2.2.1.

The following operators are t-norms

(1) τm(x, y) := min(x, y) (minimum conjunction)

(2) τb(x, y) := max(0, x + y − 1) (bold conjunction)

(3) τp(x, y) := x · y (product conjunction)

(4) τd(x, y) :=

1 , if x = y = 1

0 , otherwise
(drastic conjunction).

The following operators are t-conorms

(1) σm(x, y) := max(x, y) (maximum disjunction)

(2) σb(x, y) := min(1, x + y) (bold disjunction)

(3) σp(x, y) := x + y − x · y (product disjunction)

(4) σd(x, y) :=

0 , if x = y = 0

1 , otherwise
(drastic conjunction).

The following operators are negations

(1) νl(x) := 1− x (Łukasiewicz negation)

(4) νd(x) :=

1 , if x = 0

0 , otherwise
(drastic negation).

The operations τm, σm and νl are the standard pendant to and, or, and not. We want to

mention that τm is the greatest t-norm, i.e., τm(x, y) ≥ τ ′(x, y) for all other t-norms τ ′ and

all x, y ∈ U . Furthermore, σm is the least t-conorm, i.e., σm(x, y) ≤ σ′(x, y) for all other

t-conorms σ′ and all x, y ∈ U . We want to admit that the question which of the possible

t-norms/conorms resp. negations to choose strongly depends on the application.

According to Definition 2.2.4, the union and intersection of two fuzzy sets F and G over U

14 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

resp. the negation of F can be computed as follows using a given t-norm τ , t-conorm σ and

negation ν :

F ∩G := (U, γF∩G) , γF∩G(x) := τ(γF (x), γG(x))

F ∪G := (U, γF∪G) , γF∪G(x) := σ(γF (x), γG(x))

F := (U, γF) , γF (x) := ν(γF (x)).

Last but not least, we want to present an important result. To do so, we introduce an abbre-

viated notation. If we have a crisp fuzzy set M over U , we may obtain a new fuzzy set α·M by

(α ·M)(x) := (x, α · χM (x)) .

Since the α-cut of a given fuzzy set F is crisp, we may represent F as shown in the following

theorem.

Theorem 2.2.1 (α-cut Theorem for Fuzzy Sets). Let F be a fuzzy set over U . Fur-

thermore, let ∪ be the fuzzy union operator induced by σm (max disjunction).Then we have

F =
⋃

α∈[0,1]

α · cutα(F).

We will see this result again in different variants since it is essential for the representation

of Goguen categories introduced in Section 2.6.

The extension of fuzzy sets to fuzzy relations is done quite intuitively. A fuzzy relation R

from U to V is a fuzzy set over U × V . This implies that γR is a mapping γR : U × V →
[0, 1]. In the following we will identify γR with R. Again, this definition induces a matrix

representation whereas an entry R(x, y) can be interpreted as the degree to which the tuple

(x, y) is in R. We do not yet want to go into detail with fuzzy relations. Later on, we

introduce L-fuzzy relations and examine certain properties.

2.3 Lattices

In this section we want to give a short introduction to the lattice theoretical concepts used

throughout this thesis. Since we will have to provide a Haskell module for lattices, this

introduction is held pretty comprehensive. Nevertheless, we omit all proofs due to space

considerations. For further reading we refer to [1][3][2] and [12], for example. We start by

defining lattices and outlining some basic results.

2.3. LATTICES 15

2.3.1 Definition and some first properties

Lattices are structures that allow us to compute in a more abstract way than, for example,

within the real numbers (R) or the natural numbers (N). The main difference is that we are

not necessarily dealing with linear orders. We first introduce the following operations.

Definition 2.3.1. Let P be a poset and x, y ∈ P . Then we define

(1) x ∧ y := inf(x, y) := z with z ≤ x and z ≤ y and for all z′ with

z′ ≤ x and z′ ≤ y we have z′ ≤ z (meet)

(2) x ∨ y := sup(x, y) := z with z ≥ x and z ≥ y and for all z′ with

z′ ≥ x and z′ ≥ y we have z′ ≥ z (join)

The extension of (1)/(2) to sets of elements we denote by
∧

/
∨
. Notice that ∧, ∨, ∧

and
∨

are, in general, partial operations, i.e., inf(X) and sup(X) do not necessarily exist in P .

With these preparations, we are now ready to define lattices.

Definition 2.3.2. A structure L is called

(1) a lower semilattice :⇔ L is a poset and closed under meet

(2) an upper semilattice :⇔ L is a poset and closed under join

(3) a complete lower/upper semilattice :⇔ ∧
M/

∨
M exist in L for all

subsets M 6= ∅ of L
(4) a lattice :⇔ L is an upper and a lower

semilattice.

For a lattice L we will denote the corresponding upper/lower semilattice by Lu/Ll. If we

speak of either upper or lower semilattices, we will call them semilattices. If the underlying

order is linear, we call the (semi)lattice linear. Notice that every finite (semi)lattice is

complete because every subset M of L is finite and therefore
∧

M , respectively
∨

M , can be

computed by iterating the definition of meet and join. Furthermore, complete upper/lower

semilattices (and therefore all finite upper/lower semilattices) have the nice property shown

in the next lemma.

Lemma 2.3.1. Let L be a complete lower/upper semilattice. Then L has a least/greatest

element 0/1. Furthermore, we have

(1) L is an upper semilattice ⇒ 1 =
∨L,

16 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

(2) L is a lower semilattice ⇒ 0 =
∧L.

In the following we want to show that it suffices to demand that either the lower or the

upper semilattice of a lattice L is complete to derive the completeness of L. We start with

the following lemma.

Lemma 2.3.2. Let L be a lower/upper semilattice. Then the set of upper/lower bounds

M̂ to a set M ⊆ L is again a complete lower/upper semilattice with least/greatest element
∨

M/
∧

M .

Now, we can connect completeness of upper and lower semilattices.

Theorem 2.3.1. Let L be a lattice. Then we have

Ll is complete ⇔ Lu is complete.

Obviously, Theorem 2.3.1 is a direct conclusion from Lemma 2.3.2. Hence, we have motivated

the definition of complete lattices.

Definition 2.3.3.

A lattice L is called complete iff Ll or Lu is complete.

Notice that the least resp. greatest element in a complete lattice L can be computed by

0 =
∧L =

∨ ∅ and 1 =
∧ ∅ =

∨L.
Lemma 2.3.2 indicates that in an upper/lower semilattice L the set of lower/upper bounds to

a set M ⊆ L is somehow embedded into L. This leads us to the notion of a sub(semi)lattice.

Definition 2.3.4. Let L be a lattice. We call a subset L′ ⊆ L

(1) an upper subsemilattice of L :⇔ L′ is closed under join,

(2) a lower subsemilattice of L :⇔ L′ is closed under meet,

(3) a sublattice of L :⇔ L′ is closed under join and meet.

Again, if we refer to either upper or lower subsemilattices, we will call them just subsemi-

lattices.

With Definitions 2.3.2, 2.3.3 and 2.3.4 we have the basic notions of lattice theory. Two

standard lattices are the unit interval [0, 1] ⊆ R together with ≤ and the powerset P(M)

of an arbitrary set M together with ⊆. We want to stress that there is another (algebraic)

approach to lattices. Consider the following theorem.

Theorem 2.3.2. A structure L := (L,∧,∨) with a carrier set L and two operations

∧,∨ : L× L → L is a lattice, iff the following properties hold for all x, y, z ∈ L

2.3. LATTICES 17

(1) (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z), (associativity)

(2) x ∨ y = y ∨ x and x ∧ y = y ∧ x, (commutativity)

(3) (x ∨ y) ∧ x = x and (x ∧ y) ∨ x = x. (absorption)

Notice that L and ∨ resp. L and ∧ induce the related upper resp. lower, semilattice. The

equivalence of the last theorem makes clear that, from a mathematical point of view, it plays

no role whether lattices are defined algebraically or via posets and sup/inf . But, we want

to provide a Haskell module for lattices later on. There we will have to consider these two

possibilities.

2.3.2 Order and lattice morphisms, Galois connections

In this section we want to focus on homomorphisms between structured sets (e.g., orders

and lattices). Hence, we have a mathematical concept to construct and compare them.

Definition 2.3.5. Let P1 and P2 be posets and f : P1 → P2 be a mapping. Furthermore let

L1 and L2 be lattices and g : L1 → L2 be a mapping. Then we call f

(1) monotonic :⇔ x ≤ y ⇒ f(x) ≤ f(y)

(2) antitionic :⇔ x ≤ y ⇒ f(y) ≤ f(x)

(3) an order homomorphism :⇔ f is monotonic

(4) an order isomorphism :⇔ f is bijective and f and f−1

are order homomorphisms

and g

(5) a lower semilattice homomorphism :⇔ g(x ∧ y) = g(x) ∧ g(y)

(6) a lower co-semilattice homomorphism :⇔ g(x ∧ y) = g(x) ∨ g(y)

(7) an upper semilattice homomorphism :⇔ g(x ∨ y) = g(x) ∨ g(y)

(8) an upper co-semilattice homomorphism :⇔ g(x ∨ y) = g(x) ∧ g(y)

(9) a lattice homomorphism :⇔ g is a lower and an upper

semilattice homomorphism

(10) a co-lattice homomorphism :⇔ g is a lower and an upper

co-semilattice homomorphism

(11) a (semi)lattice isomorphism :⇔ g is bijective and g and g−1 are

(semi)lattice homomorphisms.

18 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

Furthermore, g is called complete, iff the underlying property can be extended to arbitrary

subsets M ⊆ L1.

From (1) and (3) one can see that the order homomorphisms between two posets P1 and

P2 are just the monotone mappings, which we will denote by P1
mon→ P2. Furthermore, we

denote all antitone mappings between P1 and P2 by P1
anti→ P2. If we refer to the monotone

as well as to the antitone mappings we write P1
∗→ P2.

If we speak of either lower or upper semilattice homomorphisms we will call them semilattice

homomorphisms. Notice that every (semi)lattice homomorphism is monotonic, i.e., an order

homomorphism. The other direction is, in general, not true. If there is an order/lattice

isomorphism between two orders/lattices, we call them isomorphic. Notice that we have

g(1) = g(
∧ ∅) =

∧ ∅ = 1 resp. g(0) = g(
∨ ∅) =

∨ ∅ = 0 for complete lower resp. upper

semilattice homomorphisms. Analogously, we have g(1) = g(
∧ ∅) =

∨ ∅ = 0 resp. g(0) =

g(
∨ ∅) =

∧ ∅ = 1 for complete lower resp. upper co-semilattice homomorphisms. Later on,

complete upper co-semilattice homomorphisms will play an important role. Therefore, we

call them just antimorphisms in analogy to [11].

Unfortunately, not every bijective order homomorphism is an order isomorphism. Consider

the example in Figure 2.1 with two posets P1 = {a, b, c, d} and P2 = {a′, b′, c′, d′} and a

bijective order homomorphism f : P1 → P2 between them.

a

b c

d

a’

b’

c’

d’

-

-

-

-f

Figure 2.1: Bijective order homomorphism, but no isomorphism

Obviously, f−1 is no order homomorphism because b′ ≤ c′ but f−1(b′) 6≤ f−1(c′). Thus,

f is no order isomorphism. It is clear that this behavior cannot occur if P1 and P2 are

linear. Hence, every bijective order homomorphism between two linear posets is an order

isomorphism.

Now the question arises in which case a bijective (semi)lattice homomorphism is a (semi)lattice

isomorphism.

2.3. LATTICES 19

Theorem 2.3.3. Every bijective (semi) lattice homorphism f : L1 → L2 is a (semi) lattice

isomorphism.

The next theorem handles composition of (upper/lower semi)lattice homomorphisms.

Theorem 2.3.4. Let both f : L1 → L2 and g : L2 → L3 be (upper/lower semi)lattice

homomorphisms. Then h := f ; g is an (upper/lower semi)lattice homomorphism between L1

and L3.

Through the notion of (semi)lattice homomorphisms we now have a new (more algebraic)

possibility to describe sub(semi)lattices (cf. Definition 2.3.4).

Lemma 2.3.3. Let L be a (semi)lattice. A subset L′ of L is a sub(semi)lattice, if and only

if there is an injective (semi)lattice homomorphism f : L′ → L.

Finally, we want to examine a special construction dealing with pairs of functions between

posets. It was initialized by Galois and shows its whole strength if the underlying posets

are even lattices.

Definition 2.3.6. Let P1 and P2 be posets. Then a pair (f, g) of functions f : P1 → P2 and

g : P2 → P1 is called a

(1) monotone Galois connection, iff f(x) ≤ y ⇔ x ≤ g(y)

(2) antitone Galois connection, iff y ≤ f(x) ⇔ x ≤ g(y)

holds for all x ∈ P1 and y ∈ P2

If we refer to either monotone or antitone Galois connections, we just speak of Galois con-

nections. The notions of monotone and antitone are motivated by the following lemma.

Furthermore, some basic properties are listed.

Lemma 2.3.4. Let P1 and P2 be posets and f : P1 → P2 and g : P2 → P1 functions. Then

we have :

(1) If (f, g) constitutes a monotone Galois connection, then f and g are monotonic.

(2) If (f, g) constitutes an antitone Galois connection, then f and g are antitonic.

Furthermore, if (f, g) is a Galois connection, then

(3) x ≤ g(f(x)) and y ≤ f(g(y)),

(4) f(x) = f(g(f(x))) and g(y) = g(f(g(y)))

hold for all x ∈ P1 and y ∈ P2.

20 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

We do not want to go into detail with this construction since we do not need more than the

provided results so far.

2.3.3 Special elements

Now, we want to introduce the definitions of special elements within certain lattices. As

we will see, they often play an important role since they may reflect the structure of the

underlying lattice. We start with irreducible elements.

Definition 2.3.7. Let L be a lattice and x ∈ L. Then we define :

(1) If L has a least element 0 then x 6= 0 is join-irreducible :⇔
y ∨ z = x implies x = y or x = z for all y, z ∈ L.

(2) If L has a greatest element 1 then x 6= 1 is meet-irreducible :⇔
y ∧ z = x implies x = y or x = z for all y, z ∈ L.

Obviously, every element of a linear order is join- and meet-irreducible. The join irreducible

elements of the divisibility lattice with gcd and lcm are the prime numbers. The first example

shows that irreducible elements can be in order relationship to each other. The second one

makes clear that they can be used to compute all other elements of the underlying lattice

under some circumstances.

In the following we provide a convenient theorem covering these circumstances for lattices

in which all ascending/descending chains are finite. Ascending/descending chains are tuples

of elements x1, ..., xn ∈ L such that x1 < x2 < ... < xn resp. x1 > x2 > ... > xn holds.

Theorem 2.3.5. Let L be a lattice. We denote the set of join resp. meet irreducible elements

by Mj resp. Mm. Then we have :

(1) If L has a 0 and all descending chains are finite, then x =
∨

M ′
j for all x ∈ L

and a certain M ′
j ⊆ Mj.

(2) If L has a 1 and all ascending chains are finite, then x =
∧

M ′
m for all x ∈ L

and a certain M ′
m ⊆ Mm.

Theorem 2.3.5 obviously gives sufficient conditions such that all elements of L can be par-

titioned via ∧ resp. ∨. We immediately conclude that this result is applicable for every

finite lattice. But, if we again consider linear orders, we see that this partition need not

necessarily be unique. Later on, we will see when this property is true.

A slightly stronger notion is introduced with the following definition.

2.3. LATTICES 21

Definition 2.3.8. Let L be a lattice with least element 0. Then we define :

An element a 6= 0 is an atom :⇔ a ∧ x = a or a ∧ x = 0 holds for all x ∈ L.

Furthermore, L is called atomic iff all elements 0 6= x ∈ L can be computed by

∨
{a ∈ L | a atom, a ≤ x}.

It is easy to see that every atom is join-irreducible. The opposite is, in general, not true.

This can already be seen from the fact that two different atoms cannot be in an order

relationship, i.e., a1 ≤ a2 implies a1 = a2. Atoms play an important role within Boolean

algebras as we will see later on.

Finally, we want to introduce linear elements.

Definition 2.3.9. Let L be a lattice. Then we define :

An element x ∈ L is called linear :⇔ x ∧ y = 0 implies y = 0 for all y ∈ L.

Notice that the fact that all elements of L are linear does not imply that L is linear, i.e.,

x ≤ y or y ≤ x holds for all x, y ∈ L. Linear elements will play a role for the algebraic

treatment of crisp L-fuzzy relations, later on.

2.3.4 Modular lattices

One can imagine that the lattice definitions given in Section 2.3.1 describe a very huge class

of structures which, in general, does not even guarantee distributivity. Therefore, we now

introduce some restricted lattices that provide a more comfortable algebraic environment.

Obviously, the weak modular laws

a ≤ c ⇒ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c,

a ≤ c ⇒ c ∧ (b ∨ a) ≥ (c ∧ b) ∨ a

hold in every lattice. We even have the following.

Lemma 2.3.5. Let L be a lattice and a, b, c ∈ L. Then we have

a ≤ c ⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c iff a ≤ c ⇒ c ∧ (b ∨ a) = (c ∧ b) ∨ a.

22 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

This motivates the following definition.

Definition 2.3.10. A lattice L is called modular, if one of the modular laws holds for all

a, b, c ∈ L.

To see the effect of this restriction, we give an example of a non modular lattice in Figure

2.2.

0

a

c

1

b

Figure 2.2: Non modular lattice LNonMod

Obviously, we have a = a∨(b∧c) < (a∨b)∧c = c. It can be shown that there is an injective

lattice homomorphism f from LNonMod to every non modular lattice L. Thus, LNonMod

can be seen as the non modular lattice. The characteristic mark of LNonMod is that it has

no uniform stratification. We, for example, have two pathes of different length from 0 to 1.

This observation is formally described in the next theorem.

Theorem 2.3.6 (Transposition principle of R. Dedekind). Let L be a modular lattice and

a, b ∈ L. Then the mappings

f : {x ∈ L|b ≤ x ≤ a ∨ b } → {x ∈ L|a ∧ b ≤ x ≤ a } , f(x) = x ∧ a

g : {x ∈ L|a ∧ b ≤ x ≤ a } → {x ∈ L|b ≤ x ≤ a ∨ b } , g(y) = y ∨ b

are lattice isomorphisms such that g = f−1 and f = g−1.

Using this theorem, we are now ready to describe equality of two elements by means of ∨
and ∧.
Corollary 2.3.1. Let L be a modular lattice and a, b, c ∈ L. Then we have

a ≤ c, a ∨ b = c ∨ b, a ∧ b = c ∧ b ⇒ a = c.

Obviously, the resulting equality of a and c comes due to the fact that f and g in Theorem

2.3.6 are bijective.

2.3. LATTICES 23

At the end of this section we want to admit that the modularity property is inherited, i.e.,

every sublattice of a modular lattice is modular.

The standard lattices [0, 1] and P(M) are modular. Furthermore, every linear lattice is

modular.

2.3.5 Distributive lattices

In Corollary 2.3.1 we saw that in a modular lattice not every element can be uniquely

determined by ∨ and ∧ with respect to an element b ∈ L. We needed the restriction a ≤ c

to conclude a = c. Consider the lattice in Figure 2.3.

0

a b c

1

Figure 2.3: Modular, but non distributive lattice LNonDis

Obviously, LNonDis is modular. But, 1 = a ∨ b = c ∨ b and 0 = a ∧ b = c ∧ b do not imply

a = c. This shows that the restriction a ≤ c is essential in modular lattices. Later on, we

need lattices in which certain elements are unique with respect to another element. These

elements are defined by means of ∨ and ∧. Thus, we aim to define lattices in which the

restriction a ≤ c is no longer necessary. This can be achieved by demanding distributivity.

It is easy to see that the weak distributive laws

a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c)

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c)

are valid in every lattice. But, analogous to modular lattices, we even have the following

result.

Lemma 2.3.6. Let L be a lattice and a, b, c ∈ L. Then we have

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) iff a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

This motivates the following definition.

24 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

Definition 2.3.11. A lattice L is called distributive, if one of the distributive laws holds

for all a, b, c ∈ L.

Hence, we have a class of lattices where an element can uniquely be determined by means

of ∨ and ∧.
Theorem 2.3.7. Let L be a distributive lattice and a, b, c ∈ L. Then we have

a ∨ b = c ∨ b, a ∧ b = c ∧ b ⇒ a = c.

Furthermore, we have the following.

Lemma 2.3.7. Let L be a distributive lattice with least/greatest element 0/1. Then the

partition of an element x ∈ L via the join/meet irreducible elements is unique if it exists.

The existential part of the last theorem is (according to Theorem 2.3.5) fulfilled if all de-

scending/ascending chains are finite.

Notice that the lattice shown in Figure 2.3 can be seen as the modular but non distributive

lattice since there is an injective lattice homomorphism f : LNonDis → L from LNonDis to

any modular and non distributive lattice L.
Examples for distributive lattices are again the unit interval [0, 1] and the powerset P(M)

of an arbitrary set M . As a non standard distributive lattice we mention the set of all fuzzy

sets over a universe U (i.e., the set of all mappings γ : U → [0, 1]) together with one of the

possible t-resp. t-conorms as meet resp. join.

2.3.6 Brouwerian lattices

Brouwerian lattices play an important role in the category theoretical approaches to rela-

tional structures. Before we can define them, some preparations have to be done.

First of all, distributivity can be extended to arbitrary subsets M of complete lattices. This

leads us to the notion of completely upwards/downwards distributive lattices which will play

an important role later on.

Definition 2.3.12. Let L be a complete distributive lattice. Then it is called

(1) completely upwards distributive :⇔ x ∧∨
M =

∨
y∈M

(x ∧ y)

for all x ∈ L and M ⊆ L
(2) completely downwards distributive :⇔ x ∨∧

M =
∧

y∈M

(x ∨ y)

2.3. LATTICES 25

for all x ∈ L and M ⊆ L
(3) completely distributive :⇔ it is completely upwards

and downwards distributive

Unfortunately, complete upwards distributivity does, in general, not imply complete down-

wards distributivity and vice versa. Thus, complete distributivity has to be demanded

explicitly if necessary. But, we have the following result for finite lattices.

Lemma 2.3.8. Let L be a finite lattice. Then L is completely upwards distributive iff it is

completely downwards distributive.

This lemma is important since we are only able to deal with finite lattices within our Haskell

module. The last lemma together with Lemma 2.3.6 implies that testing upwards distribu-

tivity suffices to conclude complete upwards distributivity and, hence, complete downwards

distributivity within finite lattices.

Now, we need the notion of relative pseudo complements.

Definition 2.3.13. Let L be a lattice and x, y ∈ L. An element x : y ∈ L is called a

relative pseudo complement of x in y, if and only if the equivalence

a ≤ x : y ⇔ x ∧ a ≤ y

is valid for all a ∈ L.

Obviously, the equivalence within the last definition implies that relative pseudo comple-

ments are unique if they exist. Hence, we can speak of the relative pseudo complement.

If we again have a look at the lattice LNonDis in Figure 2.3, we see that a : 0 does not exist

in LNonDis. Seemingly, the non distributivity is to blame. This motivates the following

theorem in which we get an even stronger result.

Theorem 2.3.8. Let L be a complete lattice. Then the relative pseudo complement x : y

exists for all x, y ∈ L iff L is completely upwards distributive.

Thus, we can define Brouwerian lattices as follows.

Definition 2.3.14. A lattice L is called a Brouwerian lattice, if the pseudo complement

x : y exists for all x, y ∈ L. Furthermore, L is a complete Brouwerian lattice iff it is

completely upwards distributive.

A homomorphism between Brouwerian lattices is a lattice homomorphism preserving relative

pseudo complements. Obviously, all finite and distributive lattices are Brouwerian lattices.

26 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

2.3.7 Boolean lattices

The last section was based on the notion of relative pseudo complements. Now, we want to

introduce an even stronger variant which leads to Boolean lattices.

Definition 2.3.15. Let L be a lattice with least element 0 and greatest element 1. Further-

more, let x ∈ L be an element. Then we call x the complement of x, iff

(1) x ∨ x = 1 and

(2) x ∧ x = 0

holds.

Notice that complements are not necessarily unique. This can already be seen in Figure 2.3

where both b and c are complements to a. But fortunately, we have the following.

Lemma 2.3.9. Let L be a distributive lattice with least element 0 and greatest element 1.

Furthermore, let x, x1, x2 elements of L such that both x1 and x2 are complements to x.

Then x1 = x2.

Together with Definition 2.3.15, we see that the last lemma is a direct conclusion of Theorem

2.3.7. Hence, we have motivated the following definition.

Definition 2.3.16. Let L be a distributive lattice with least element 0 and greatest element

1. Then we call L a Boolean lattice (or Boolean algebra), iff the complement exists

for all x ∈ L.

A homomorphism between Boolean lattices is a homomorphism between distributive lattices

preserving complements. Standard examples for Boolean lattices are the truth values with

or, and and negation and the powerset P(M) of an arbitrary set M together with ∩, ∪ and

set complement. Notice that Boolean lattices need not necessarily be complete.

In the following we have summarized some properties of the complement operator.

Lemma 2.3.10. Let L be a Boolean lattice. Then we have

(1) x = x,

(2) 1 = 0 and 0 = 1,

(3) x ∨ y = x ∧ y and x ∧ y = x ∨ y (de Morgan)

for all x, y ∈ L.

2.3. LATTICES 27

Furthermore, there is an interesting interaction between Boolean and Brouwerian lattices.

Theorem 2.3.9. A Brouwerian lattice L with least element 0 is a Boolean lattice iff

x ∨ x : 0 = 1 holds for all x ∈ L.

As mentioned before, atoms play an important role within Boolean lattices. They are the

base from which every element of the underlying lattice can be constructed. This fact is

summarized in the following theorem.

Theorem 2.3.10. Let L be a Boolean lattice. Then we have the following :

(1) L is atomic.

(2) L is isomorphic to P(at(L)).

Especially property (2) is essential since the set of atoms fixes a Boolean algebra up to

isomorphism.

In the last section we saw that complete Brouwerian lattices are completely upwards distrib-

utive. Furthermore, we mentioned that complete upwards distributivity does, in general, not

imply complete downwards distributivity and vice versa. Hence, one can ask for complete

distributivity within complete Boolean lattices.

Theorem 2.3.11. Let L be a complete Boolean lattice. Then we have that

(1) the generalized distributive laws

x ∧∨
M =

∨
y∈M

(x ∧ y), x ∨∧
M =

∧
y∈M

(x ∨ y)

and

(2) the generalized rules of de Morgan
∨

y∈M

y =
∧

y∈M

y,
∧

y∈M

y =
∨

y∈M

y

hold for all x ∈ L and all subsets M of L.

Thus, complete Boolean lattices constitute a strong and comfortable algebraic structure.

2.3.8 Fixpoints

In Mathematics and Computer Science many operations can be described by fixpoints of

certain functions. Since we want to present a Haskell module for lattices, we want to provide

28 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

the basic results concerning fixpoints and lattices in this section. We start with the following

definition.

Definition 2.3.17. Let f be a monotone endofunction on a given lattice L. Then an element

x ∈ L is called

(1) a prefixpoint of f :⇔ f(x) ≤ x,

(2) a fixpoint of f :⇔ f(x) = x,

(3) the least fixpoint of f greater or equal to a :⇔ x is a fixpoint, a ≤ x

and for all fixpoints y with a ≤ y we have x ≤ y.

In the following we want to provide two central fixpoint theorems which examine the exis-

tence of fixpoints resp. the induced structure of the set of all fixpoints. restriction we

Theorem 2.3.12 (Knaster and Tarski, Part 1). Let L be a complete lattice and f a

monotone endofunction on L. Then

(1) f has a least fixpoint µf =
∧{x ∈ L | f(x) ≤ x},

(2) f has a greatest fixpoint νf =
∨{x ∈ L | x ≤ f(x)}.

Notice that we need complete lattices to apply the last theorem. Property (1) obviously

shows that the least fixpoint can be computed as the infimum of all prefixpoints. Theorem

2.3.12 directly implies

(1) f(x) ≤ x ⇒ µf ≤ x and

(2) x ≤ f(x) ⇒ x ≤ νf .

The next theorem is even more important.

Theorem 2.3.13 (Knaster and Tarski, Part 2). Let L be a complete lattice, f be a

monotone endofunction on L and Fix(f) be the set of all fixpoints of f . Then Fix(f) is a

complete sublattice of L.

From Theorem 2.3.12 we know that Fix(f) 6= ∅. Since 0L and 1L are not necessarily

fixpoints, we can only conclude 0L ≤ 0Fix(f) and 1L ≥ 1Fix(f).

We do not want to undergo further investigations on fixpoint theory since it is not necessary

for this thesis. But, the last two theorems will be applied within our Haskell module for

lattices.

2.4. L-FUZZY SETS AND L-FUZZY RELATIONS 29

2.4 L-fuzzy sets and L-fuzzy relations

J. A. Goguen in [6] generalized the concept of fuzzy sets and fuzzy relations. Instead of the

unit interval [0, 1] he used elements of arbitrary completely distributive lattices as entries.

The necessity of this extended approach to fuzzy theory can already be seen with every day

applications. If a customer, for example, wants to buy a new car, he could make the decision

due to certain quality criteria like price, maximum speed and age of the car. Furthermore,

he could use the phrases BAD,MEDIUM and GOOD to express the degree of fulfillment

of one of these parameters. Now, let C be the set of all cars. Suppose, the customer rates the

offered cars using the quality criteria above and the three phrases. This induces a fuzzy set

representing the degree of fulfillment of the customer’s wishes. According to our terminology,

C is the universe of the resulting fuzzy set. This fuzzy set consists of tuples (c, (v1, v2, v3))

whereas c ∈ C and v1, v2, v3 ∈ {BAD, MEDIUM, GOOD}. Obviously, the induced entry

lattice is no linear order and definitely not the unit interval.

After this motivating example, we want to provide the basic results for L-fuzzy relations.

We do not explicitly introduce L-fuzzy sets since the extension of fuzzy sets to L-fuzzy sets

is obvious. We want to go into detail with L-fuzzy relations as announced at the end of

Section 2.2. Again, all proofs are omitted due to space considerations. We refer to [6] and

especially [11],[13] for the interested reader.

Definition 2.4.1. Let L be a lattice and A,B be sets. Then an L-fuzzy relation R over

L from A to B is a mapping R : A×B → L.

We say R has source A and target B. Furthermore, we identify the entry at position (x, y) by

R(x, y). The induced ordering is denoted by v. Again, we use R` to identify the converse

relation of R. Although the last definition covers L-fuzzy relations over arbitrary lattices

L, we implicitly, unless otherwise stated, want to prerequire L to be a complete Brouwerian

lattice throughout this section. Thus, we again have an identity relation (IA) on every set

A as well as a top resp. bottom relation (>>AB/⊥⊥AB) between two sets A and B.

Because of the fact that L is a lattice, ∧ and ∨ automatically induce a set of componentwise

defined operations on L-fuzzy relations (join, meet, composition). But, we want to examine

derived operations analogous to t- and t-conorms with fuzzy sets and fuzzy relations. This

leads us to the following definition.

Definition 2.4.2. Let L be a distributive lattice with least element 0 and greatest element

1. Furthermore, let ∗ : L × L → L be a binary operation on L and e, z be elements of L.

30 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

Then we call the tuple (L,∗,e,z) a lattice ordered operator set (loos), iff

(1) ∗ is monotonic in both arguments,

(2) x ∗ e = e ∗ x = x for all x ∈ L,
(3) x ∗ z = z ∗ x = z for all x ∈ L

are satisfied, and a lattice ordered semi group (losg), iff additionally

(4) ∗ is associative

holds. Furthermore, a loos/losg (L,∗,e,z) fulfilling

x ∗ (
∨

M) =
∨

y∈M

(x ∗ y) and (
∨

M) ∗ x =
∨

y∈M

(y ∗ x)

for nonempty subsets M of L is called a complete loos/losg (cloos/closg).

Obviously, e resp. z play the role of the unique neutral resp. zero element. Notice that we do

not explicitly demand ∗ to be commutative. Hence, the structures defined above are called

commutative iff ∗ is.

The connection between lattice ordered semi groups and t- resp. t-conorms is obvious. If

L = [0, 1], e = 1, z = 0 and ∗ is commutative, the tuple (L,∗,e,z) is a t-norm. Analogously,

(L,∗,e,z) is a t-conorm, if e = 0, z = 1. In the following we often speak of loos-/losg-/cloos-

/closg-based operators ∗ and omit the tuple if it is not necessary.

The next lemma summarizes some basic properties used later on.

Lemma 2.4.1. Let L be a distributive lattice with least element 0 and greatest element 1

and (L,∗,e,z) be a loos. If e = 1 we have :

(1) z = 0,

(2) x ∗ y ≤ x ∧ y for all x, y ∈ L.

Analogously, the following is true if e = 0 :

(1) z = 1,

(2) x ∨ y ≤ x ∗ y for all x, y ∈ L.

Obviously, this lemma marks ∧ as the greatest loos-based operator with neutral element 1

and ∨ as the least loos-based operator with neutral element 0. We already mentioned this

2.4. L-FUZZY SETS AND L-FUZZY RELATIONS 31

fact in Section 2.2. It is a very important result and will be used to show certain properties

of derived operations in Goguen categories, later on.

Hence, we are ready to define the following operations on L-fuzzy relations.

Definition 2.4.3. Let L be a distributive lattice with 0 and 1, and let (L,∗,e,z) be a loos.

Then we define for L-fuzzy relations Q,Q′ : A → B and R : B → C :

(1) (Q u∗ Q′)(x, y):= Q(x, y) ∗Q′(x, y)

(2) (Q;∗R)(x, z) :=
∨

y∈B

(Q(x, y) ∗R(y, z)).

If ∗ = ∧ we write u instead of u∧ resp. ; instead of ;∧. If ∗ = ∨ we use t for u∨. We then

obviously obtain the standard meet, join and composition operators on L-fuzzy relations.

In the following we often write t∗ instead of u∗ to indicate that ∗ has neutral element 0.

From Lemma 2.4.1 we immediately conclude that Q u∗ Q′ v Q u Q′ holds for all relations

Q,Q′ : A → B, if 1 is the left and right neutral element of ∗. Analogously, QtQ′ v Qt∗Q′,

if 0 is the neutral element of ∗.

The following lemma lists some intuitive properties of the standard operations.

Lemma 2.4.2. Let L be a complete Brouwerian lattice. Furthermore, let I be an index set

and Q, Q′, Qi : A → B, R, Ri : B → C, S : C → D and T : A → C be L-fuzzy relations.

Then we have

(1) Q; IB = Q and IB; R = R,

(2) Q; ⊥⊥BE = ⊥⊥AE and ⊥⊥EB; R = ⊥⊥EC for all nonempty sets E,

(3) Q; (R; S) = (Q;R);S,

(4) (Q uQ′)` = Q` uQ′`,

(5) (Q;R)` = R`; Q`,

(6) (Q`)` = Q,

(7) Q; (
i∈I

Ri) v
i∈I

(Q;Ri) and

(
i∈I

Qi);R v
i∈I

(Qi; R), (meet subdistributivity of ;)

(8) Q; (
⊔
i∈I

Ri) =
⊔
i∈I

(Q;Ri) and

(
⊔
i∈I

Qi);R =
⊔
i∈I

(Qi; R), (join distributivity of ;)

(9) Q; R u T v Q; (R uQ`; T). (modular law)

Notice, that the prerequisite that L is a complete Brouwerian lattice (and, hence, completely

32 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

upwards distributive) is essential for properties (3),(7) and (8). The last lemma includes

many properties (e.g., (7)-(9)) that will be used to axiomatize relational categories, later on.

The possibility to derive operations based on lattice-ordered semi-groups is a characteristic

mark of L-fuzzy relations. Since Goguen categories aim at a convenient algebraic surround-

ing for such relations, derived operations have to be modeled. Since only purely component

free methods are available within relational categories, one has to examine whether there is

a component free counterpart of Definition 2.4.3.

First, we have to find relations which reflect the underlying lattice L. The approach in [11]

uses scalars introduced in [10].

Definition 2.4.4. Let A be a nonempty set, and let L be a lattice with least element 0 and

greatest element 1. For an element u ∈ L we define the corresponding scalar αu
A : A → A

on A by

αu
A(x, y) :=

u, if x = y

0, otherwise
.

Obviously, ⊥⊥AA = α0
A and IA = α1

A which marks the bottom relation as the least and the

identity relation as the greatest scalar on A. The relation αu
A; >>AB containing only entries u

will be denoted by >> u
AB in the following. It is easy to see that the set of scalars is isomorphic

to L.

Now, the question arises how a relation R can be computed using the scalars. To do so, we

need the following.

Definition 2.4.5. Let L be a lattice, R : A → B an L-fuzzy relation and u ∈ L. Then we

define the u-cut of R by

Ru(x, y) :=

1, if R(x, y) ≥ u

0, otherwise
.

The crisp relation Ru obviously marks all entries greater or equal to u by a 1. It is clear

intuitively that we can compute R : A → B by

R =
⊔

u∈L
(αu

A;Ru)

within complete Brouwerian lattices. But, this is still no component free representation

since Ru is defined componentwise. A survey is to compute Ru via residued operations.

2.4. L-FUZZY SETS AND L-FUZZY RELATIONS 33

Definition 2.4.6. Let L be a lattice and Q : A → B, R : B → C and S : A → C be L-fuzzy
relations. Then we define

(1) Q; Y v S ⇔ Y v Q\S, (right residual)

(2) Y ; R v S ⇔ Y v S/R. (left residual)

Notice that we need L to be a complete Brouwerian lattice to guarantee the existence of the

residuals. This becomes clear with the following lemma, which shows how the resiudals can

be computed.

Lemma 2.4.3. Let L be a complete Brouwerian lattice and Q : A → B, R : B → C and

S : A → C be L-fuzzy relations. Then we have

(1) (Q\S)(y, z) =
∧

x∈A

(S(x, z) : Q(x, y))

(2) (S/R)(x, y) =
∧

z∈C

(S(x, z) : R(y, z)).

Obviously, complete Brouwerian lattices are essential since we need to compute relative

pseudo complements and the infimum of certain subsets of L.
Now, consider the relation αu

A\R for a given scalar on A and an L-fuzzy relation R : A → B.

Obviously, this relation has a 1 at position (x, y), iff R(x, y) ≥ u holds. All other entries are

lower then 1 or even 0. Hence, Ru is the greatest crisp relation, which αu
A\R includes. This

motivates the following definition.

Definition 2.4.7. Let L be a lattice with least element 0 and greatest element 1. Further-

more, let R : A → B be an L-fuzzy relation. Then we define two operations as follows:

(1) R↓ is the greatest crisp relation which R includes.

(2) R↑ is the least crisp relation R is included in.

It is easy to see that R↓ and R↑ for a given L-fuzzy relation R can be computed component-

wise by

R↓(x, y) =

1, if R(x, y) = 1

0, otherwise

R↑(x, y) =

1, if R(x, y) 6= 0

0, otherwise
.

Hence, we are able to provide the following theorem.

34 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

Theorem 2.4.1 (α-cut Theorem). Let L be a complete Brouwerian lattice and R : A → B

an L-fuzzy relation. Then we have

R =
⊔

u∈L
(αu

A; (αu
A\R)↓).

From the underlying definitions we see that we have a purely component-free representation

of R. With these remarks, the following characterization of derived operations is obvious.

Lemma 2.4.4. Let L be a complete Brouwerian lattice and Q,Q′ : A → B and R : B → C

be L-fuzzy relations. Furthermore, let (L,∗,e,z) be a loos. Then we have :

Q u∗ Q′ =
⊔

u,v∈L
(αu∗v

A ; ((αu
A\Q)↓ u (αv

A\Q′)↓))

Q;∗R =
⊔

u,v∈L
(αu∗v

A ; (αu
A\Q)↓; (αu

B\R)↓)

Finally, we want to list three essential properties of ↓ and ↑ which will be used later on.

Lemma 2.4.5. Let L be a complete Brouwerian lattice. Furthermore, let Q : A → B be an

L-fuzzy relation and u ∈ L. Then we have :

(1) (αu
A)↑ = IA iff u 6= 0.

(2) Q is crisp iff Q = Q↑ iff Q = Q↓.

(3) (↑,↓) is a monotone Galois connection.

2.5 Category theoretical approach to relations

In this section we introduce a component free algebraic approach to relational structures

by means of category theory. Since category theory is dealing with objects and morphisms

between them, it is pretty well applicable for this purpose. Hence, the developed relational

categories provide a convenient surrounding to reason over relations. As we aim to extend

the RATH system, we combine the category theoretical introduction in this section with

a slight introduction to RATH. Thus, we directly show the practical realization of the

mentioned relational structures. As the RATH system is relatively complex, we only give

an overview of the most important data structures and test routines. For a comprehensive

description we refer to [17]. Furthermore, we assume that the reader is familiar with the

basic concepts of the pure functional programming language Haskell. For an easy to read

and comprehensive introduction we recommend [19] and [20]. As before, we omit all proofs

2.5. CATEGORY THEORETICAL APPROACH TO RELATIONS 35

of the category theoretical results introduced here and refer, for example, to [11],[17] and [9]

for the interested reader.

2.5.1 Categories

Categories constitute the weakest structure within the hierarchy of relational categories.

Their formal definition is given as follows.

Definition 2.5.1. A category C is a tuple (ObjC ,MorC ,_ : _→ _, ; , I) with

(1) a class of objects ObjC,

(2) a class of morphisms MorC,

(3) a ternary relation f : A → B mapping each morphism f ∈ MorC
univalently to its source A and its destination B,

(4) the binary associative composition operator ; which maps each pair of morphisms

f : A → B, g : B → C to the morphism f ; g : A → C,

(5) the unary identity operator I which maps every object A ∈ MorC to

a morphism IA which is right and left neutral with respect to ;,

i.e., IA; f = f and h; IA = h for all morphisms f in C[A,B] and

h in C[C,A] and all objects B, C,

whereas C[A,B] is the class of all morphisms from A to B.

Notice that we speak of classes of objects and morphisms. This does not imply that they are

representable as sets. Furthermore, we use the same symbol ; for the composition operator

as in the previous sections. This should not irritate, and it will be clear from the context

which one is meant. For clearness, the morphisms are often called relations in the following.

Typical categories are, for example, orders together with order homomorphisms, nonempty

sets together with all L-fuzzy relations between them and usual sets with all functions

between them. The underlying identity and composition operators then are obvious.

To express interactions between given categories, we have the notion of a functor.

Definition 2.5.2. A functor F between categories C1 and C2 is a tuple of mappings

(FObj : ObjC1 → ObjC2,FMor : MorC1 → MorC2)

satisfying the following conditions :

(1) f : A → B implies FMor(f) : FObj(A) → FObj(B) for all objects A, B of C1 and

36 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

all morhpisms f in C1[A,B].

(2) FMor preserves composition, i.e., FMor(f ; g) = FMor(f);FMor(g) for all

objects A,B,C of C1 and all morphisms f in C1[A, B], g in C1[B, C].

(3) FMor preserves identity, i.e., FMor(IA) = IFObj(A) for all

objects A of C1.

A functor is called faithful iff FMor is injective. Furthermore, it is called full iff FMor is

surjective on the image of FObj.

A functor F such that FObj and FMor are bijective and F−1 :=(F−1
Obj ,F

−1
Mor) is again a

functor, is called an isomorphism.
We do not want to go into detail with the theory of functors since we do not need it for this
thesis. Our attention goes to the implementation of these structures within RATH. Haskell
provides a type class system, which provides inheritance and, hence, makes a kind of object-
oriented programming possible. The implementation using type classes is straightforward
within RATH.

class Category cat obj mor | cat -> obj, cat -> mor where

isObj :: cat -> obj -> Bool

isMor :: cat -> obj -> obj -> mor -> Bool

objects :: cat -> [obj]

homset :: cat -> obj -> obj -> [mor]

source :: cat -> mor -> obj

target :: cat -> mor -> obj

idmor :: cat -> obj -> mor

comp :: cat -> mor -> mor -> mor

The function isObj delivers, given an object, whether this object is a member of the under-
lying category or not. Analogously does isMor with morphisms. The objects of the category
are stored in the object list objects. The function homset delivers C[A,B] for two given
objects A and B. Source resp. target of a given morphism f can be computed using source

resp. target. Finally, the identity morphism of a given object and the composition opera-
tor are provided. This data structure is a direct realization of Definition 2.5.1, although it
includes some redundant parameters (e.g., isObj and isMor). But, this gives the user the
chance to provide more efficient functions than the standard implementations.
Unfortunately, the type class representation above has a great demerit. Obviously, it takes
three type parameters cat, obj and mor. Type classes of this form are called multi parameter
type classes. Since type inference of such constructs is not yet proven to be mathematically
correct, they are no Haskell 98 standard. Therefore, RATH provides a second approach
using record data structures.

2.5. CATEGORY THEORETICAL APPROACH TO RELATIONS 37

data Cat obj mor = Cat { cat_isObj :: obj -> Bool

,cat_isMor :: obj -> obj -> mor -> Bool

,cat_objects :: [obj]

,cat_homset :: obj -> obj -> [mor]

,cat_source :: mor -> obj

,cat_target :: mor -> obj

,cat_idmor :: obj -> mor

,cat_comp :: mor -> mor -> mor }

This variant provides the same functionality and is Haskell 98 standard. But, it has the

demerit that it does not allow to create instances and, hence, functionality cannot be in-

herited. This will become clear when we introduce the next data structures in the following

section.

These two variants imply that RATH deals with two different views — a type class view
(object oriented) and a view based on record data structures. They can be connected by
instantiating the multi parameter type classes with the corresponding record data structures
as follows.

instance Category (Cat obj mor) obj mor where

isObj = cat_isObj

isMor = cat_isMor

...

comp = cat_comp

Finally, the representation of a functor is straightforward.

data Fun obj2 mor2 obj1 mor1 = Fun { fun_obj :: obj1 -> obj2

,fun_mor :: mor1 -> mor2 }

The reversed order of the type signature comes due to comfortable typing while interacting

with other data structures and should not irritate.

The data structures introduced here are accompanied by comprehensive test routines to

check whether a certain implementation constitutes such a structure (e.g., a category). We

do not want to go into detail with it here and come back to it later.

38 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

2.5.2 Allegories

Allegories provide two additional operations — meet and conversion. The axiomatic de-

scription is given as follows.

Definition 2.5.3. An allegory A is a tuple (ObjA,MorA,_ : _→ _, ; , I, `,u) such that

(1) (ObjA,MorA,_ : _→ _, ; , I) is the underlying category,

(2) A[A,B] together with u is a lower semilattice for all objects A and B in ObjA,

(3) ` is the total and monotonic conversion operator which suffices the following

rules for all relations Q, R : A → B and S : B → C:

(a) (R`)` = R, R` : B → A,

(b) (R; S)` = S`;R`,

(c) (Q uR)` = Q` uR`,

(4) the meet subdistributivity law Q; (R u S) v Q; R uQ; S is valid for all relations

Q : A → B and R, S : B → C,

(5) the modular law Q; R u S v Q; (R uQ`; S) holds for all relations Q : A → B,

R : B → C and S : A → C.

Thus, allegories with conversion and meet can be used to express interactions between given

relations using exclusivly componentfree methods. The induced inclusion operator is denoted

by v. Again, we use the same symbols for conversion, meet and inclusion as for L-fuzzy
relations. The context will make clear which one is meant. Furthermore, it is based on the

fact that nonempty sets with all L-fuzzy relations between them together with ` and u
(defined on L-fuzzy relations) constitute an allegory.

A functor between allegories is a functor preserving meet and conversion. This immediately

implies that a functor F on allegories A1 and A2 is a lower semilattice homomorphism

between the classes A1[A,B] and A2[FObj(A), FObj(B)].

As before, the RATH system provides a type class for allegories.

class Category all obj mor => Allegory all obj mor | all -> obj, all -> mor %%@

where

converse :: all -> mor -> mor

meet :: all -> mor -> mor -> mor

incl :: all -> mor -> mor -> Bool

The context Category all obj mor makes clear that the functionality of the type class

2.5. CATEGORY THEORETICAL APPROACH TO RELATIONS 39

Category is inherited. The additional operations should be clear. Again, the function incl

is redundant from a mathematical point of view, but allows a more efficient, user defined

operation.

The counterpart using record data structures is given as follows.

data All obj mor = All { all_cat :: Cat obj mor

,all_converse :: mor -> mor

,all_meet :: mor -> mor -> mor

,all_incl :: mor -> mor -> Bool }

Here we see that the underlying category has to be carried explicitly in the parameter
all_cat. Again, the advantage of type classes becomes clear with the following instantia-
tions.

instance Category (All obj mor) obj mor where

isObj = cat_isObj . all_cat

isMor = cat_isMor . all_cat

...

comp = cat_comp . all_cat

instance Allegory (All obj mor) obj mor where

converse = all_converse

meet = all_meet

incl = all_incl

Obviously, the structure All constitutes both — a category and an allegory. Together with

Cat we already have two instances of Category.

In the following lemma we want to summarize some first results within allegories.

Lemma 2.5.1. Let A be an allegory, A, B and C objects of A and Q, R : A → B, S : B → C

relations. Then we have

(1) I`A = IA,

(2) (Q uR);S v Q;S uR; S,

(3) ; is monotonic in both arguments.

The provided operations within allegories allow to characterize special relations. This is

done by the following definition.

Definition 2.5.4. Let A be an allegory, A and B objects of A and Q : A → B a relation.

Then we define :

40 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

(1) Q is univalent iff Q`; Q v IB.
(2) Q is total iff IA v Q;Q`.

(3) Q is a mapping iff Q is total and univalent.

(4) Q is injective iff Q` is univalent.

(5) Q is surjective iff Q` is total.

(6) Q is bijective iff Q and Q` are mappings.

Confer these characterizations to Lemma 2.1.3. They obviously directly correspond to the

set theoretic counterparts.

Finally, we want to provide some important results which show when meet-subdistributivity

turns into meet-distributivity.

Lemma 2.5.2. Let A be an allegory, A,B, C and D objects of A and Q : A → B, R, S :

B → C, T : C → D, U : A → C relations such that T is injective. Then we have :

(1) If Q is univalent, then Q; (R u S) = Q;R uQ;S.

(2) (R u S);T = R; T u S; T .

(3) If Q is injective, then Q; R u U = Q; (R uQ`; U).

2.5.3 Distributive allegories

The classes of morphisms within allegories form a lower semilattice. The next step is to

extend this structure to distributive lattices.

Definition 2.5.5. A distributive allegory A is a tuple

(ObjA,MorA,_ : _→ _, ; , I, `,u,t, ⊥⊥)

such that

(1) (ObjA,MorA,_ : _→ _, ; , I, `,u) is the underlying allegory,

(2) for all objects A and B in ObjA A[A,B] together with u and t is a distributive

lattice with least element,

(3) ⊥⊥ maps A[A,B] to its least element ⊥⊥A,B,

(4) the join distributivity rule Q; (R t S) = Q; R tQ; S is valid for all relations

Q : A → B and R, S : B → C,

(5) the zero law Q; ⊥⊥B,C = ⊥⊥A,C holds for all relations Q : A → B and all objects

A, B and C.

2.5. CATEGORY THEORETICAL APPROACH TO RELATIONS 41

As before, a functor between distributive allegories is a functor between allegories preserving

t and the bottom elements.

The realization of this data structure within RATH is straightforward by providing addi-

tional operations for t and the determination of the bottom elements. Hence, we omit the

listing due to space considerations.

From Section 2.3 we know that distributive lattices constitute a relatively comfortable alge-

braic surrounding. Of course, all results presented there for distributive lattices are valid in

all morphism classes of distributive allegories. Again, the nonempty sets together with all

L-fuzzy relations between them constitute a distributive allegory.

The following lemma summarizes the interaction of t and ⊥⊥ together with `.

Lemma 2.5.3. Let A be a distributive allegory, A,B objects of A and Q,R : A → B

relations. Then we have

(1) ⊥⊥`
AB = ⊥⊥AB,

(2) (Q tR)` = Q` tR`.

From (1) and axiom (5) we can immediately conclude that ⊥⊥AB is also a left zero for all

relations Q : B → C and all objects A,C.

2.5.4 Division allegories

Residuals are provided with the next relational category.

Definition 2.5.6. A division allegory A is a tuple

(ObjA,MorA,_ : _→ _, ; , I, `,u,t, ⊥⊥ , /)

such that

(1) (ObjA, MorA,_ : _→ _, ; , I, `,u,t, ⊥⊥) is the underlying distributive allegory,

(2) the left residual / fulfilling

Q;R v S ⇔ Q v S/R for all relations Q : A → B

exists in A[A,B] for all relations R : B → C and S : A → C.

Again, the residuals defined for L-fuzzy relations make the nonempty sets together with all

L-fuzzy relations between them constitute a division allegory.

42 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

We again need an extended functor notion. As expected, a functor between division allegories

is a functor between distributive allegories preserving /.

Via conversion and the computation

Q v S/R ⇔ Q;R v S

⇔ R`; Q` v S`

⇔ Q` v R`\S`

we may conclude that there is also a right residual within division allegories and that

S/R = (R`\S`)` holds.

Now, suppose we have two relations Q : A → B and R : A → C and a greatest solution

X : B → C fulfilling

Q; X v R and X; R` v Q`.

In the model provided by nonempty sets and L-fuzzy relations between them, X relates

columns of Q and R by their degree of equality. If the underlying entry lattice is the

Boolean lattice of truth values, only equal columns are related. We will often need this

property of X. The relation X is called the symmetric quotient of Q and R and is defined

by

syQ(Q,R) := (Q\R) u (Q`/R`).

Within RATH, division allegories are again provided pretty intuitively. The only thing to

mention is that the data structures carry separate functions for the left and right residual

as well as for the symmetric quotient.

In the following we want to recall some basic results concerning residuals and symmetric

quotients. For a comprehensive study we refer to [16].

Lemma 2.5.4. Let A be a division allegory and A,B, C, D, E objects of A. Furthermore,

let Q,Q1, Q2 : A → B, R,R1, R2 : B → C, S, S1, S2 : A → C, T : A → D, F : D → A and

G : C → E be relations. Then we have

(1) (S1 u S2)/R = (S1/R) u (S2/R) and Q\(S1 u S2) = (Q\S1) u (Q\S2),

(2) S/(R1 tR2) = (S/R1) u (S/R2) and (Q1 tQ2)\S = (Q1\S) u (Q2\S),

(3) S/IC = IA\S = S,

(4) F ; (S/R) v (F ; S)/R and (Q\S);G v Q\(S; G),

(5) equality holds in (4), if F and G` are mappings,

(6) S/R v (S; G)/(R; G) and Q\S v (F ;Q)\(F ;S),

2.5. CATEGORY THEORETICAL APPROACH TO RELATIONS 43

(7) equality holds in (6), if F` and G are total and injective,

(8) F ; syQ(Q, S) = syQ(Q;F`, S), if F is a function,

(9) syQ(Q,S)` = syQ(S, Q),

(10) syQ(Q,S); syQ(S, T) v syQ(Q,T).

Properties (1) and (2) of the last lemma include that / is monotonic in the first and antitonic

in the second argument. The opposite is true for \. Furthermore, we immediately can

conclude that syQ is neither necessarily monotonic nor antitonic in any of its two arguments.

Especially properties (4)-(8) and (10) are important since they express the interaction of

the three operations and composition.

2.5.5 Dedekind categories

Now, we switch to a structure providing an additional greatest element within the morphism

classes.

Definition 2.5.7. A Dedekind category D is a tuple

(ObjD,MorD,_ : _→ _, ; , I, `,u,t, ⊥⊥ , /, >>)

such that

(1) (ObjD,MorD,_ : _↔ _, ; , I, `,u,t, ⊥⊥ , /) is the underlying division allegory,

(2) D[A,B] is a complete Brouwerian lattice for all objects A, B in ObjD,

(3) >> maps D[A,B] to its greatest element >>A,B.

Dedekind categories have (because of their completeness) the big advantage that every class

of morphisms can be represented by sets. This type of category is called locally small.

The nonempty sets together with all L-fuzzy relations between them constitute a Dedekind

category. Furthermore, every complete Brouwerian lattice L can be represented by a one-

objected Dedekind category. The elements of L are the morphisms. Furthermore, we have

to take ∧ as composition and meet, and ∨ as join. Finally, 0 and 1 are the bottom and top

element, respectively, and the relative pseudo complement is taken as residual. Composition

is trivial since we only have one object. We denote the induced Dedekind category of L by

DL.

As usual, a functor F between two Dedekind categories D1 and D2 is a functor between

division allegories preserving the top elements and completeness. This immediately im-

plies that FMor is a complete Brouwerian lattice homomorphism between D1[A,B] and

44 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

D2[FObj(A), FObj(B)].

We again omit the listing of the RATH data structures. They are implemented straightfor-

ward by providing an additional function to determine the top element belonging to a given

morphism class.

In the following we have summarized some results needed later on.

Lemma 2.5.5. Let D be a Dedekind category, A,B, C objects and Q,Qi : A → B, R,Ri :

B → C, S, Si : A → C relations with i ∈ I for an index set I. Then we have

(1) >>`
AB = >>BA,

(2) >>AA; >>AB = >>AB; >>BB = >>AB,

(3) Q; (
⊔
i∈I

Ri) =
⊔
i∈I

(Q; Ri) and (
⊔
i∈I

Qi);R =
⊔
i∈I

(Qi;R),

(4) Q; (
i∈I

Ri) v
i∈I

(Q; Ri) and (
i∈I

Qi);R v
i∈I

(Qi;R),

(5) (
i∈I

Si)/R =
i∈I

(Si/R) and Q\(
i∈I

Si) =
i∈I

(Q\Si),

(6) S/(
⊔
i∈I

Ri) =
i∈I

(S/Ri) and (
⊔
i∈I

Qi)\S =
i∈I

(Qi\S).

Properties (5) and (6) are the infinitary extensions for the results provided in Lemma 2.5.4.

They are (together with (3) and (4)) a direct consequence of the fact that Dedekind categories

are complete structures.

Unfortunately, the restrictions with property (2) of the last lemma have to be made since

it cannot be shown in general that >>AB; >>BC = >>AC holds in a Dedekind category for all

objects A,B,C. Dedekind categories in which this law is valid are called uniform.

In the following we want to introduce the notions of l-crispness and s-crispness. They are

introduced in [10] by H. Furusawa and constitute the first approach to characterize crisp

relations within the theory of Dedekind categories. Later on we then can examine under

which circumstances these notions are covered within the theory of Goguen categories [11].

The approach in [10] uses scalars to characterize the underlying entry lattice. Hence, we

first have to define these elements within Dedekind categories.

Definition 2.5.8. Let D be a Dedekind category and A an object of D. A relation αA is

called a scalar on A A iff αA v IA and >>AA; αA = αA; >>AA holds.

In the following we denote the set of all scalars on A by ScD(A) whereas D is the underlying

Dedekind category.

2.5. CATEGORY THEORETICAL APPROACH TO RELATIONS 45

The following lemma indicates that this definition delivers the intended elements.

Lemma 2.5.6. Let D be a Dedekind category and A an object of D. Then ScD(A) is a

complete Brouwerian lattice.

The notions of l-/s-crispness are introduced as follows.

Definition 2.5.9. Let D be a Dedekind category, A,B objects of D and R : A → B a

relation. Then R is l-crisp/s-crisp iff αA; Q v R implies Q v R for all linear/nonzero

scalars αA and all relations Q : A → B.

Since Q v R implies αA; Q v R for all relations Q,R : A → B and all scalars αA ∈ ScD(A),

the definition above induces an equivalence.

It is easy to see that >>AB is both l- and s-crisp for all objects A,B. But unfortunately,

⊥⊥AB is not necessarily s-crisp. Let L be a complete Brouwerian lattice and consider the one-

objected Dedekind category DL. For the object A, ⊥⊥AA obviously corresponds to the least

element 0 of L. Furthermore, the scalars are given by the elements of L since 1 ∧ x = x ∧ 1

for all x ∈ L. But, we do not necessarily have that x ∧ y v 0 implies y v 0 for all nonzero

elements x, y ∈ L. This can only be guaranteed if all elements of L are linear. This motivates

the following lemma.

Lemma 2.5.7. Let D be a Dedekind category and A, B objects of D. Then ⊥⊥AB is s-crisp

iff all nonzero scalars are linear.

In the next section we will see that these notions do not (and even cannot) cover crispness

within Dedekind categories.

Finally, we want to introduce three essential constructions within Dedekind categories that

we need for the mathematical treatment of fuzzy controllers later on. In Section 2.1 we

already mentioned the possibility to create the direct sum and cartesian product of given sets.

These constructions now shall be characterized with the language of Dedekind categories.

We start with the direct sum.

Definition 2.5.10. Let D be a Dedekind category and A1, A2 be objects. Then a pair of

relations (called injections) ι1 : A1 → A1 + A2, ι2 : A2 → A1 + A2 together with the object

A1 + A2 is called a relational sum of A1 and A2 iff the following conditions are satisfied :

(1) ιi is total and injective, i.e., ιi; ι
`
i = IAi, 1 ≤ i ≤ 2.

(2) ι1; ι
`
2 = ⊥⊥A1A2 and ι2; ι

`
1 = ⊥⊥A2A1.

(3) ι`1 ; ι1 t ι`2 ; ι2 = IA1+A2.

46 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

The last definition can easily be extended to relational sums of sets of objects. If the

relational sum exists in D for all sets of objects, we say D has relational sums. Definition

2.5.10 determines relational sums up to isomorphism. Hence, we can speak of the relational

sum for a given set of objects.

Cartesian products are provided as follows.

Definition 2.5.11. Let D be a Dedekind category and A1, A2 objects of D. The a pair of

relations (called projections) π1 : A1 × A2 → A1, π2 : A1 × A2 → A2 together with the

object A1 ×A2 is called a relational product iff the following conditions are satisfied :

(1) π`
i is total and injective, i.e., π`

i ; πi = IAi, 1 ≤ i ≤ 2.

(2) π`
1 ; π2 = >>A1A2 and π`

2 ; π1 = >>A2A1.

(3) π1; π
`
1 u π2; π

`
2 = IA1×A2.

If the relational product exists for any two objects of a given Dedekind category D, we say D
has relational products. Notice that this is a slightly weaker prerequisite than for relational

sums.

Again, Definition 2.5.11 determines relational products up to isomorphism so that we can

speak of the relational product for two given objects A1 and A2.

Last but not least, we want to introduce an abstract counterpart of singleton sets which is

used to model sets within the theory of relational categories.

Definition 2.5.12. Let D be a Dedekind category. Then an object I of D is called a unit

if >> II = II and >>AI is total for all objects A of D.

Units are also unique up to isomorphism with this definition. One even can show that I × I

is isomorphic to I. The characteristic mark of units delivers us directly that all relations

Q : A → I are univalent and all relations R : I → B are injective for all objects A,B.

Hence, sets over a given universe B can be modeled by relations R : I → B. This will be

used for the relational model of fuzzy controllers later on.

2.6 Goguen categories

M. Winter in [11] showed that Dedekind categories have an axiomatization which is too weak

to express crispness. To motivate the reader, we want to give the underlying counterexample

used in the proof. Let L together with ∧ and ∨ be the lattice shown in Figure 2.4.

2.6. GOGUEN CATEGORIES 47

0

a b

1

Figure 2.4: Boolean lattice with four elements

Now, let X := {x} and Y := {x, y} be two sets and f : Y → Y , R : X → Y be two L-fuzzy
given as

R :=
(

1 0
)

, f :=

 a b

b a

 .

Obviously, f is bijective since f ; f` = IY . Furthermore, R is crisp. Now suppose there

is a formula φ which is valid for an L-fuzzy relation R if and only if R is crisp. Then

it can be shown within the theory of Dedekind categories that φ holds for every relation

S := g; R; f for given bijections g and f . Hence, it would have to be valid for IX ; R; f . But,

the computation

R; f(x, x) = (R(x, x) ∧ f(x, x)) ∨ (R(x, y) ∧ f(y, x)) = a

R; f(x, y) = (R(x, x) ∧ f(y, x)) ∨ (R(x, y) ∧ f(y, y)) = b

shows that R; f is not crisp. Thus, we have a contradiction.

This implies that an extended approach is necessary. In the following we want reproduce

the basic definitions and properties of Goguen categories needed for this thesis. The proofs

are again omitted.

2.6.1 Definition and properties

Goguen categories are based on a very intuitive approach. They use the two operations ↑

resp. ↓ which map an L-fuzzy relation R to the smallest crisp relation it is included resp.

the greatest crisp relation it includes (cf. Definition 2.4.7). By means of these operations

one then can easily define crispness as shown in Lemma 2.4.5(2). The definition is given as

follows.

48 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

Definition 2.6.1. A Goguen Category G is a tuple

G := (ObjG ,MorG ,_ : _→ _, ; , I, `,u,t, ⊥⊥ , >> , ↑, ↓)

where

(1) (ObjG ,MorG ,_ : _↔ _, ; , I, `,u,t, ⊥⊥ , >>) is the underlying Dedekind category

with ⊥⊥AB 6= >>AB for all objects A and B.

(2) ↑ and ↓ satisfy the following laws :

(2a) R↑, R↓ : A → B for all relations R : A → B.

(2b) (↑, ↓) is a monotonic Galois correspondence.

(2c) (R`; S↓)↑ = R↑`
; S↓ for all R : B → A, S : B → C.

(2d) If αA 6= ⊥⊥A,A is a nonzero scalar then α↑A = IA.

(2e) For all antimorphisms f in ScG(A) anti→ G[A,B] with f(αA)↑ = f(αA), for

all αA ∈ ScG(A) and all R : A → B the equivalence

R v ⊔
αA∈ScG(A)

(αA; f(αA)) ⇔ (αA \R)↓ v f(αA) for all αA ∈ ScG(A)

holds. G is called linear if all nonzero scalars are linear.

Part (2e) constitutes the key property of this definition. It assures that every morphism of

the respective Goguen category can be represented by its α-cut representation (cf. Theorem

2.6.2). Obviously, this property uses second order predicate logic by quantifying over all

antimorphisms. But, the example at the beginning of this section shows that first order

rules do not suffice.

As before, we need a suitable notion of homomorphisms between Goguen categories. Hence,

a homomorphism F between Dedekind categories is a homomorphism between Goguen cat-

egories if it preserves ↑ and ↓.

We have already introduced ↑ and ↓ for L-fuzzy relations (cf. Section 2.4). This automatically

provides the standard model.

Theorem 2.6.1. Let L be a complete Brouwerian lattice. Then L-Rel together with ↑ and
↓ is a Goguen category.

Hence, crispness is defined as expected.

Definition 2.6.2. A relation R : A → B is crisp iff R↑ = R.

2.6. GOGUEN CATEGORIES 49

In the following we sometimes need the class of all crisp relations between two given objects

A and B. Hence, we denote it by CrispG [A,B].

The next lemma summarizes some intuitive results.

Lemma 2.6.1. Let a Goguen category G and three objects A,B and C be given. Further-

more, let R, Ri : A → B, (i ∈ I), be relations. Then we have

(1) R is crisp, iff R↓ = R iff R↓ = R↑,

(2) IA, ⊥⊥A,B and >>A,B are crisp,

(3) (
⊔
i∈I

Ri)↑ =
⊔
i∈I

R↑
i and (

i∈I

Ri)↓ =
i∈I

R↓
i

Especially part (3) that ↑ preserves join and ↓ preserves meet is important. Furthermore,

the fact that ⊥⊥AB is crisp for all objects A and B is to mention since this is, in general, not

true for s-crispness.

Now, we reach the first central theorem.

Theorem 2.6.2 (α-cut Theorem). Let G be a Goguen category and R : A → B be a

relation. Then R can be computed by

R =
⊔

αA∈ScG(A)

(αA; (αA\R)↓).

Since (_\R)↓ : ScG(A) → CrispG [A,B] is an antimorphism for all objects A,B and relations

R : A → B, this result is nearly directly delivered by Definition 2.6.1(2e).

The next lemma summarizes some conclusions of the α-cut Theorem.

Lemma 2.6.2. Let G be a Goguen category, and let R : A → B be a relation.

(1) R↑ =
⊔

αA∈ScG(A)

αA 6=⊥⊥AA

(αA\R)↓,

(2) G is uniform, i.e. >>AB; >>BC = >>AC for all objects A,B, C,

(3) >> CA; R↑; >>BD = >>CD for all objects C, D if R 6= ⊥⊥AB,

(4) Rl v R↑ v Rs.

With this, (2) is essential since this cannot be shown in general for Dedekind categories.

Furthermore, (4) confirms the respective result for Dedekind categories.

The equivalence of the three notions of crispness, l-crispness and s-crispness is covered by

the following theorem.

Theorem 2.6.3. Let G be a Goguen category. Then the following three statements are

equivalent:

50 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

(1) G is linear.

(2) All crisp relations are s-crisp.

(3) All l-crisp relations are crisp.

Hence, these notions are equivalent in linear Goguen categories.

The following lemma collects some intuitive properties of crisp relations.

Lemma 2.6.3. Let G be a Goguen category and Qi, Q : A → B, i ∈ I, R : A → C and

S : B → C be crisp relations. Then

(1)
⊔
i∈I

Qi is crisp,

(2)
i∈I

Qi is crisp,

(3) Q` is crisp,

(4) Q; S is crisp,

(5) R/S and Q\R are crisp.

The last lemma together with Lemma 2.6.1 are absolutely basic properties and will be used

without explicitly mentioning them.

We already admitted before that the set of scalars of a given object A is isomorphic to the

entry lattice L of the underlying L-fuzzy relations. This is shown by the next theorem for

the abstract theory of Goguen categories.01

Theorem 2.6.4. Let G be a Goguen category and A and B objects. Then the complete

Brouwerian lattices ScG(A) and ScG(B) are isomorphic.

This theorem is essential for theory as well as for practice. As we will see, it plays a key role

for the definition and handling of derived operations within Goguen categories.

2.6.2 Derived operations

In this section we introduce a concept to model derived operations from lattice ordered semi

groups. Since the underlying lattice is represented by the set of scalars of a given object A

of the Goguen category, we can easily lift the definition of losg’s to a component free niveau.

Throughout this section let G be a Goguen category and (Sc[G],∗,e,z) be a loos whereas

Sc[G] is the set of all scalars on all objects of G. Again, we often only speak of a loos- based

operation ∗ and omit the induced tuple. Notice that we have a t-conorm like operation if

e = ⊥⊥ and a t-norm like operation if e = I.

2.6. GOGUEN CATEGORIES 51

The first thing we need is a basic operation ♦ from which we can create the derived operation

♦∗. Two candidates for R♦S are ; and u. More generally, ♦ shall satisfy the properties

introduced in the following definition.

Definition 2.6.3. Let G be a Goguen category, and let ♦ an operation. Then ♦ is the base

for a derived operation if the following is satisfied :

(1) For all objects A ♦ is defined for all pairs of relations from G[A,A] . Furthermore,

its value is within G[B, B] for a suitable object B.

(2) If Q♦R is defined for Q : A → B and R : C → D then ♦ is defined for all pairs

of relations from G[A,B] and G[C, D].

(3) If Q♦R is defined for Q : A → B and R : C → D and is within G[E, F] then

Q♦⊥⊥ CD = ⊥⊥AB♦R = ⊥⊥EF .

(4) If >>AB♦>>CD is defined and within G[E, F] then >>AB♦>> CD = >>EF .

(5) For an index set I and relations Q,Qi, R, Ri, i ∈ I we have

Q♦(
⊔
i∈I

Ri) =
⊔
i∈I

(Q♦Ri) and (
⊔
i∈I

Qi)♦R =
⊔
i∈I

(Qi♦R)

whenever the application of ♦ is defined.

(6) If Q♦R is defined for Q : A → B and R : C → D and within G[E,F], then we

have for all α, β ∈ Sc[G]

(αE u βE); (Q♦R) = (αA; Q)♦(βC ;R).

(7) For all crisp relations Q,R such that ♦ is defined, Q♦R is crisp.

The prerequisites of the definition above are quite intuitive. We want to mention that (1)

implies that ♦ has to be defined on the scalars. Furthermore (2) assures that ♦ is either

not defined for a given class of relations or it is defined for the whole class. Property (6)

regulates the interaction of the application of Q♦R and the scalars of the respective objects.

Notice that this prerequisite is only senseful since we have that the complete Brouwerian

lattices of the scalars of different objects A and B are isomorphic (cf. Theorem 2.6.4). Notice

furthermore, that ; and u fulfill Definition 2.6.3.

Now, we want to give the definition of a derived operation.

Definition 2.6.4. Let ♦ be the base for a derived operation. Furthermore, let Q : A → B

and R : C → D be relations such that Q♦R is defined and within G[E,F]. Then the derived

operation ♦∗ is defined by

Q♦∗R :=
⊔

α,β∈Sc[G]

(α ∗ β)E ; ((αA\Q)↓♦(βC\R)↓).

52 CHAPTER 2. INTRODUCTION OF THE MATHEMATICAL CONCEPTS

This definition obviously directly corresponds to the result shown in Lemma 2.4.4. Since

\ in the second argument and ♦ in both arguments are monotonic, the derived operation

♦∗ is also monotonic. As one can see, this definition is rather inefficient with respect to

computational purposes. This will have to be considered with the parametrization for our

module for Goguen categories, later on.

Together with property (6) of Definition 2.6.3, the last definition obviously implies that

; =;u, which is an intuitive result. But, we have an even stronger result.

Lemma 2.6.4. Let ♦ be the base of a derived operation such that it is defined on G[A,B]

and G[C, D]. Then we have

(1) Q♦∗R = Q♦R for all Q : A → B and R : C → D iff ∗ = u,

and, if ♦ = u,

(2) Q♦∗Q′ = Q tQ′ for all Q,Q′ : A → B iff ∗ = t.

In the following we want to summarize some basic results for the cases that ∗ is a t-norm

like resp. t-conorm like operation (i.e., e = I resp. e = ⊥⊥). We start with e = I.

Lemma 2.6.5. Let e = I and Q : A → B, R : C → D be relations such that Q♦R is defined

and within G[E,F]. Then we have :

(1) If Q or R is crisp then Q♦∗R = Q♦R.

(2) Q♦∗; ⊥⊥ CD = ⊥⊥AB♦∗R = ⊥⊥EF .

(3) Qu∗; >>AB = Q and >> CD u∗ R = R.

(4) Q♦∗R v Q♦uR.

Property (4) again marks u as the greatest t-norm like operation.

Now, the analogous results for e = ⊥⊥ follow.

Lemma 2.6.6. Let e = ⊥⊥ and Q : A → B and R : C → D be relations such that Q♦R is

defined and within G[E, F]. Then we have :

(1) If Q or R is crisp then Q♦∗R = (Q♦>> CD) t (>>AB♦R).

(2) Q♦∗; ⊥⊥ CD = ⊥⊥AB♦∗R = ⊥⊥EF .

(3) Qu∗; ⊥⊥AB = Q and ⊥⊥ CD u∗ R = R.

(4) Q♦tR v Q♦∗R.

2.6. GOGUEN CATEGORIES 53

Hence, in the theory of Goguen categories we also have that t is the least t-conorm like

operation. In the following we often use the denotation t∗ instead of u∗ for a meet-based

derived operation to emphasize that ∗ has neutral element ⊥⊥ .

The last two lemmas will often be used later on. They are the basic properties and show

that derived operations in the abstract theory of Goguen categories can be handled quite

intuitively. This is again encouraged by the following theorems.

Theorem 2.6.5. Let ♦ be the base for a derived operation. Then we have :

(1) If ♦ is commutative then ♦∗ is commutative iff ∗ is.

(2) If ♦ is associative and ∗ is complete then ♦∗ is associative iff ∗ is.

(3) If ∗ is cloos-based then

(
⊔
i∈I

Qi)♦∗R =
⊔
i∈I

(Qi♦∗R) and Q♦∗(
⊔
i∈I

Ri) =
⊔
i∈I

(Q♦∗Ri)

for an index set I and relations Q,Qi, R, Ri whenever the application of ♦∗ is

defined.

Finally, we have the following important property concerning conversion.

Theorem 2.6.6. Let (Sc[G],∗,e,z) be a closg. Then we have (Q;∗R)` = R`;∗Q`.

At the end we want to mention that the proofs of the results provided in this section demand

considerably more effort than shown here. For the interested reader we refer to [11] and [13]

for a full mathematical deduction.

Chapter 3

Extending RATH

In this chapter we want to extend the RATH library by providing a suitable structure

for Goguen categories. Since Goguen categories are made to handle L-fuzzy relations, we

additionally have to provide modules for lattices and L-fuzzy relations.

We first want to introduce suitable data structures and test routines for handling lattices.

After that, we provide a module collection for Goguen categories. This is strongly oriented

at the already existing modules of RATH. Finally, we introduce a Haskell module for L-fuzzy
relations and, hence, are able to deliver the standard model of Goguen categories.

3.1 A module collection for lattices

As we are going to treat L-fuzzy relations within the algebraic structure of Goguen categories,

we need a module collection for lattices. The representation of an L-fuzzy relation R by a

mapping R : A × B → L makes this even clearer. But, there is another connection. From

the definitions of the relational categories of Section 2.5 we see that the morphism classes

between two objects of a given relational category (except the pure category) form at least

a lower semilattice. Thus, the morphisms of a Dedekind category, for example, constitute

a complete Brouwerian lattice. We do not aim at a comprehensive package for lattices, but

provide the most necessary operations like the determination of the irreducible elements and

atoms, respectively. Another important point will be the consistency tests for lattices and

lattice morphisms. Always consider that we see this module collection as an “add on” to

RATH. Thus, many design decisions are made with respect to conformance. Nevertheless,

55

56 CHAPTER 3. EXTENDING RATH

we do not use any functionality of RATH within these modules so that they can be used as

a stand-alone package.

We give two different approaches. The first one uses multi parameter type classes which

allows an elegant parametrization and typing but has the drawback that it is no Haskell 98

standard. The second one uses record data structures (Haskell 98 standard) as a compen-

sation of Haskell’s relatively weak module system. Thus, we have consistency in using our

lattice modules together with RATH.

First, we want to have a look at the type classes for lattices. In accordance to Definition
2.3.2 and Theorem 2.3.2, two approaches are possible. We choose to provide a hierarchy
starting with partially ordered sets and then add lattice operations successively. Of course,
the induced ordering and join/meet can be mutually computed by standard operations, but
we let the user the chance to define more efficient operations.

module LatticeClass where

class POrderedSet set el where

isElem :: set -> el -> Bool

elements :: set -> [el]

lEq :: set -> el -> el -> Bool

As we are going to use our lattice module together with RATH later on, we have to take

care of the name spaces to avoid longish qualified names. Thus, we speak of elements rather

than of objects. Furthermore, the ordering is denoted by “lower or equal” (lEq) instead of

incl.

The next step is to provide the sup and inf operation, respectively. This results in upper
resp. lower semilattices.

class POrderedSet lat el => UpSemiLattice lat el where

sup :: lat -> el -> el -> el

topEl :: lat -> el

class POrderedSet lat el => LoSemiLattice lat el where

inf :: lat -> el -> el -> el

botEl :: lat -> el

atomS :: lat -> [el]

We aim to compute finite (thus, complete) lattices. According to Lemma 2.3.1 we therefore

have a least and a greatest element, respectivly, denoted by botEl and topEl, respectively.

3.1. A MODULE COLLECTION FOR LATTICES 57

Furthermore, every non-trivial lower semilattice with least element contains at least one

atom. As the atoms reflect the whole structure in some kinds of lattices (e.g. Boolean, cf.

Section 2.3.7), they play an important role with the consistency tests later on.

The next step is a type class for (standard) lattices.

class (UpSemiLattice lat el, LoSemiLattice lat el) => Lattice lat el where

jIrredS :: lat -> [el]

mIrredS :: lat -> [el]

We do not have to provide any new operations. But, in a finite lattice, all elements can

be computed by the disjunction/conjunction of a finite number of join-/meet-irreducible ele-

ments (cf. Theorem 2.3.5, Definition 2.3.7). Thus, every non-trivial lattice with least/greatest

element contains at least one join-/meet-irreducible element. Again, irreducible elements will

play an important role with the consistency tests and several applications later on.

As we saw in the section about relational categories, Brouwerian lattices are essential.
Within this kind of lattice, we have a new operation for the computation of the relative
pseudo complements. Therefore, we define the following type class.

class (LoSemiLattice lat el) => RelCompLattice lat el where

relComplem :: lat -> el -> el -> el

Notice, that we deliberately do not call the type class “BrouwerianLattice” or similar because

the operation relComplem can be interesting even if the relative pseudo complements do not

exist for every pair of elements. We even do not demand that lat and el form a lattice

because this is not necessary for the definition.

The even stronger notion of a complement (cf. Definition 2.3.15) is taken into account by
the next type class.

class Lattice compLat el => CompLattice compLat el where

complem :: compLat -> el -> el

Again, we avoid designations like “BooleanLattice”.

Hence, we have the type class hierarchy shown in Figure 3.1.

The next step is to provide data structures which respect the Haskell 98 standard. We then
use them to parametrize our type classes so that the user is free to choose the variant he
prefers. Furthermore, several consistency tests and standard operations shall be available
within this module.

58 CHAPTER 3. EXTENDING RATH

POrderedSet

LoSemiLattice UpSemiLattice

LatticeRelCompLattice

CompLattice

Figure 3.1: The hierarchy of the lattice type classes

module Lattice where

import List ((\\),nub,intersect,union)

We start with the explanation of the provided data structures in accordance to the type
classes. Again, the weakest structures are posets.

data PoSet el = PoSet { poSet_isElem :: el -> Bool

,poSet_elements :: [el]

,poSet_lEq :: el -> el -> Bool }

As shown here, we parametrize all record data types by the type of the elements. The

functions are always analogous to the corresponding type class.

A particularity of this approach can be seen with the next data structure.

data USemiLat el = USemiLat { uSemiLat_poSet :: PoSet el

,uSemiLat_sup :: el -> el -> el

,uSemiLat_topEl :: el }

We do not have any inheritance as with the type classes. Thus, we have to carry the functions
of the underlying poset by an explicit function (uSemiLat_poSet). To avoid longish names
for accessing the poset functions, we (in analogy to RATH) introduce abbreviated notations.

uSemiLat_isElem = poSet_isElem . uSemiLat_poSet

3.1. A MODULE COLLECTION FOR LATTICES 59

uSemiLat_elements = poSet_elements . uSemiLat_poSet

uSemiLat_lEq = poSet_lEq . uSemiLat_poSet

The following data structures are constructed analogously.

data LSemiLat el = LSemiLat { lSemiLat_poSet :: PoSet el

,lSemiLat_inf :: el -> el -> el

,lSemiLat_botEl :: el

,lSemiLat_atomS :: [el] }

lSemiLat_isElem = poSet_isElem . lSemiLat_poSet

lSemiLat_elements = poSet_elements . lSemiLat_poSet

lSemiLat_lEq = poSet_lEq . lSemiLat_poSet

data RelCompLat el = RelCompLat { relCompLat_lSemiLat :: LSemiLat el

,relCompLat_relComplem :: el -> el -> el }

relCompLat_poSet = lSemiLat_poSet . relCompLat_lSemiLat

relCompLat_isElem = lSemiLat_isElem . relCompLat_lSemiLat

relCompLat_elements = lSemiLat_elements . relCompLat_lSemiLat

relCompLat_lEq = lSemiLat_lEq . relCompLat_lSemiLat

relCompLat_inf = lSemiLat_inf . relCompLat_lSemiLat

relCompLat_botEl = lSemiLat_botEl . relCompLat_lSemiLat

relCompLat_atomS = lSemiLat_atomS . relCompLat_lSemiLat

data CompLat el = CompLat { compLat_lat :: Lat el

,compLat_complem :: el -> el }

compLat_isElem = lat_isElem . compLat_lat

compLat_elements = lat_elements . compLat_lat

compLat_lEq = lat_lEq . compLat_lat

compLat_sup = lat_sup . compLat_lat

compLat_inf = lat_inf . compLat_lat

compLat_topEl = lat_topEl . compLat_lat

compLat_botEl = lat_botEl . compLat_lat

compLat_atomS = lat_atomS . compLat_lat

compLat_jIrredS = lat_jIrredS . compLat_lat

compLat_mIrredS = lat_mIrredS . compLat_lat

compLat_poSet = lat_poSet . compLat_lat

60 CHAPTER 3. EXTENDING RATH

The construction of standard lattices using upper and lower semi lattices, respectively, can-
not be transferred that easily from the type classes. Obviously, we could get consistency
problems because the data structures LSemiLat and USemiLat each carry their own poset.
Therefore, we choose to redefine all functions explicitly.

data Lat el = Lat{ lat_poSet :: PoSet el

,lat_sup :: el -> el -> el

,lat_inf :: el -> el -> el

,lat_topEl :: el

,lat_botEl :: el

,lat_atomS :: [el]

,lat_jIrredS :: [el]

,lat_mIrredS :: [el] }

Thus, the consistency problem is solved, but we have the new problem that the corresponding
upper and lower semilattice, respectively, cannot be extracted that comfortably. Hence, we
provide the functions

lat_uSemiLat :: Lat el -> USemiLat el

lat_uSemiLat l = USemiLat { uSemiLat_poSet = lat_poSet l

,uSemiLat_sup = lat_sup l

,uSemiLat_topEl = lat_topEl l }

lat_lSemiLat :: Lat el -> LSemiLat el

lat_lSemiLat l = LSemiLat { lSemiLat_poSet = lat_poSet l

,lSemiLat_inf = lat_inf l

,lSemiLat_botEl = lat_botEl l

,lSemiLat_atomS = lat_atomS l }

for the user. Notice, that the structure Lat carries the set of join and meet-irreducible
elements in addition to the functions for upper and lower semilattices, respectively. With
the abbreviations

lat_isElem = poSet_isElem . lat_poSet

lat_elements = poSet_elements . lat_poSet

lat_lEq = poSet_lEq . lat_poSet

the definition of our data structures is complete. Obviously, they directly correspond to the

type class hierarchy of Figure 3.1 so that we are able to provide suitable instances later on.

The definition of the record data types above automatically provides the projections from

3.1. A MODULE COLLECTION FOR LATTICES 61

stronger structures to weaker ones (e.g., from Lat to LSemiLat). But, there are also embed-
dings from the weak structures into stronger ones. In the following we provide standard
implementations of these constructions. We first introduce some auxiliary functions.

partialExt f x [] = x

partialExt f x (y:ys) = if f x y then partialExt f y ys

else partialExt f x ys

partialSupInf f els = \x y -> let bds = [e|e<-els,f x e,f y e]

in if null bds then x

else partialExt (flip f) (head bds) (tail bds)

First of all, partialExt determines the unique maximum/minimum of a given poset. With
this, the parameter f is the ordering on the elements given within the list y:ys. If f is given
as ≤, the maximum is computed. If the reversed ordering ≥ is given, partialExt determines
the minimum.
The function partialSupInf works analogously by computing the supremum/infimum of
all elements of els (if it exists) for the given ordering ≤/≥. Thus, partialSupInf already
delivers two standard constructions and can be used by the following routines.

poSet_uSemiLat :: PoSet el -> USemiLat el

poSet_uSemiLat p@(PoSet isElem els lEq) =

USemiLat { uSemiLat_poSet = p

,uSemiLat_sup = partialSupInf lEq els

,uSemiLat_topEl = partialExt lEq (head els) (tail els) }

poSet_lSemiLat :: PoSet el -> LSemiLat el

poSet_lSemiLat p@(PoSet isElem els lEq) =

let lSL = LSemiLat {

lSemiLat_poSet = p

,lSemiLat_inf = partialSupInf (flip lEq) els

,lSemiLat_botEl = partialExt (flip lEq) (head els) (tail els)

,lSemiLat_atomS = atomSet lSL }

in lSL

uSemiLat_lSemiLat = poSet_lSemiLat . uSemiLat_poSet

lSemiLat_uSemiLat = poSet_uSemiLat . lSemiLat_poSet

lSemiLat_relCompLat :: LSemiLat el -> RelCompLat el

62 CHAPTER 3. EXTENDING RATH

lSemiLat_relCompLat l@(LSemiLat p@(PoSet _ els lEq) inf _ _) =

RelCompLat { relCompLat_lSemiLat = l

,relCompLat_relComplem =

\x y -> let ok = [e|e<-els,lEq (inf x e) y]

in if null ok then y

else partialExt lEq (head ok) (tail ok) }

poSet_relCompLat :: PoSet el -> RelCompLat el

poSet_relCompLat = lSemiLat_relCompLat . poSet_lSemiLat

uSemiLat_lat :: Eq el => USemiLat el -> Lat el

uSemiLat_lat (USemiLat p@(PoSet _ els lEq) sup top) =

let lat = Lat { lat_poSet = p

,lat_sup = sup

,lat_inf = partialSupInf (flip lEq) els

,lat_topEl = top

,lat_botEl = partialExt (flip lEq) (head els) (tail els)

,lat_atomS = atomSet $ lat_lSemiLat lat

,lat_jIrredS = jIrredSet lat

,lat_mIrredS = mIrredSet lat }

in lat

lSemiLat_lat :: Eq el => LSemiLat el -> Lat el

lSemiLat_lat (LSemiLat p@(PoSet _ els lEq) inf bot atomS) =

let lat = Lat { lat_poSet = p

,lat_sup = partialSupInf lEq els

,lat_inf = inf

,lat_topEl = partialExt lEq (head els) (tail els)

,lat_botEl = bot

,lat_atomS = atomS

,lat_jIrredS = jIrredSet lat

,lat_mIrredS = mIrredSet lat }

in lat

poSet_lat :: Eq el => PoSet el -> Lat el

poSet_lat = uSemiLat_lat . poSet_uSemiLat

relCompLat_lat :: Eq el => RelCompLat el -> Lat el

relCompLat_lat = lSemiLat_lat . relCompLat_lSemiLat

3.1. A MODULE COLLECTION FOR LATTICES 63

The implementation is straightforward. The only new construction is provided within
lSemiLat_relCompLat. It is a direct realization of Definition 2.3.13.
Notice that these constructions strongly make use of the fact that we are dealing with fi-
nite, and, hence, complete structures. The correctness of the resulting data structures is no
question that is to answer here. It has to be tested using the test routines introduced below.
Finally, we remain to provide embeddings into complementary lattices.

lat_compLat :: Lat el -> CompLat el

lat_compLat l =

CompLat { compLat_lat = l

,compLat_complem = flip (relCompLat_relComplem

(lSemiLat_relCompLat $ lat_lSemiLat l)) $

lat_botEl l }

poSet_compLat :: Eq el => PoSet el -> CompLat el

poSet_compLat = lat_compLat . poSet_lat

lSemiLat_compLat :: Eq el => LSemiLat el -> CompLat el

lSemiLat_compLat = lat_compLat . lSemiLat_lat

uSemiLat_compLat :: Eq el => USemiLat el -> CompLat el

uSemiLat_compLat = lat_compLat . uSemiLat_lat

relCompLat_compLat :: Eq el => RelCompLat el -> CompLat el

relCompLat_compLat l@(RelCompLat lSL rc) =

CompLat { compLat_lat = relCompLat_lat l

,compLat_complem = flip rc $ lSemiLat_botEl lSL }

Again, the implementation is straightforward. The embedding from RelCompLat into comple-

mentary lattices is trivial since we already have a function for determining relative pseudo

complements. With all other functions, we have to use the standard construction from

above.

Thus, we are ready to switch to operations on lattices and the test functions. As we are only
dealing with complete lattices, fixpoint operations become important. From Theorems 2.3.12
and 2.3.13 we know that the fixpoints of a monotone function f : L → L over a complete
lattice L form a sublattice of L. Furthermore, we know that f has at least one fixed point.
The applications using this fact are manyfold. Therefore, we provide the following functions.

leastFPA :: Eq a => a -> (Lat a) -> (a -> a) -> a

64 CHAPTER 3. EXTENDING RATH

leastFPA a l f = if lat_lEq l a (f a) then leastFPA’ a

else leastFPA’ $ foldl1 (lat_inf l) [x|x<-lat_elements l,

lat_lEq l a (f x)]

where

leastFPA’ b = if (f b) == b then b

else leastFPA’ (f b)

leastFP :: Eq a => (Lat a) -> (a -> a) -> a

leastFP l = leastFPA (lat_botEl l) l

latFPs :: Eq a => (Lat a) -> (a -> a) -> (Lat a)

latFPs l f = let els = [x | x <- lat_elements l, f x == x]

in Lat { lat_poSet = PoSet { poSet_isElem = flip elem $ els

,poSet_elements = els

,poSet_lEq = lat_lEq l }

,lat_sup = lat_sup l

,lat_inf = lat_inf l

,lat_botEl = foldl (lat_inf l) (lat_topEl l) els

,lat_topEl = foldl (lat_sup l) (lat_botEl l) els

,lat_atomS = atomSetBy (lat_poSet l) (lat_botEl l)

(lat_inf l) []

,lat_jIrredS = irredSetBy (lat_poSet l) (lat_botEl l)

(lat_sup l) []

,lat_mIrredS = irredSetBy (lat_poSet l) (lat_topEl l)

(lat_inf l) [] }

First of all, leastFPA determines the least fixpoint of the monotone function f, which is

greater or equal to a given element a from the underlying lattice l. Furthermore, leastFP

delivers the standard variant by computing the least fixpoint of f. The lattice of all fixpoints

of f is generated by latFPs. Notice that we cannot rely on the standard Prelude functions

minimum resp. maximum to determine the least resp. greatest element within the list of fixed

points since these elements do not necessarily exist. Obviously, the correct termination of

all these functions above strongly depends on whether f is monotonic. This property can

be tested by the function testMonoFunc introduced later on. The routines for determining

the atoms and irreducible elements, respectively, are also explained later.

Now, our attention goes to the consistency tests. As we are dealing with potentially big

lattices, some special thoughts go to efficiency considerations. As mentioned above, in a finite

lattice every element can be computed (or partitioned) by a set of irreducible elements. In a

3.1. A MODULE COLLECTION FOR LATTICES 65

distributive lattice this representation is even unique. Atoms play an analogous role within

Boolean lattices. The next lemma shows that all tests in a standard/Boolean lattice can be

reduced to the irreducible elements/atoms.

Lemma 3.1.1. Let L be a set. and ∨ : L × L → L and its extension
∨

be an operation on

L × L. If there is an inclusionminimal subset S of L such that every element x ∈ L can be

computed by
∨

S′ for a subset S′ of S, we have :

(1) If ∨ reduced to S is commutative/associative/idempotent then

it is commutative/associative/idempotent in L.
(2) If ∨ reduced to S is commutative and idempotent then

it is idempotent in L.

The proof is obvious and, therefore, omitted.

Since atoms are join-irreducible elements and in an atomic lattice these two notions are even

equivalent, it would suffice to provide a function that computes the irreducible elements.

But, atoms are defined via the meet operation and join-irreducible elements via the join

operation. One of these operations can be evidently more inefficient than the other.

Thus, we provide both — standard functions to compute the atoms and irreducible elements,
respectively. We start with the function atomSetBy.

atomSetBy :: PoSet el -> el -> (el -> el -> el) -> [el] -> [el]

atomSetBy p botEl inf els =

let

li = if null els then atomSet’ [] (poSet_elements p) 0

else atomSet’ [] els 0

in [head el | el <- map (\x -> filter (\y -> (poSet_lEq p) y x) li) li,

null $ tail el]

where

atomSet’ at [] n = if n>0 then atomSet’ [] at 0 else at

atomSet’ at [a] n = if n>0 then atomSet’ [] (a:at) 0 else (a:at)

atomSet’ at (a1:(a2:els)) n

| (poSet_lEq p) a1 botEl = atomSet’ at (a2:els) (n+1)

| (poSet_lEq p) a2 botEl = atomSet’ at (a1:els) (n+1)

| (poSet_lEq p) a1 a2 = atomSet’ (a1:at) els (n+1)

| (poSet_lEq p) a2 a1 = atomSet’ (a2:at) els (n+1)

| (poSet_lEq p) (inf a1 a2) botEl = atomSet’ (a1:(a2:at)) els n

| otherwise = atomSet’ at els (n+1)

66 CHAPTER 3. EXTENDING RATH

It is parametrized by the underlying poset p, the least element botEl, the meet operation
inf and a list els of elements to which the computation shall be reduced (e.g., a sublattice).
If els is empty, all atoms of the underlying poset are computed.
The parametrization comes due to the intent to make it comfortable for the user to compute
the atoms directly when he creates the data structure for the corresponding (lower semi)
lattice. Thus, a lower semilattice for the divisibility relation could be created by

divLat = let pS = PoSet { poSet_isElem = flip elem $ [1,2,3,4,6,12]

,poSet_elements = [1,2,3,4,6,12]

,poSet_lEq = \x y -> mod y x == 0 }

in LSemiLat { lSemiLat_poSet = pS

,lSemiLat_inf = gcd

,lSemiLat_botEl = 1

,lSemiLat_atomS = atomSetBy pS 1 gcd [] }

Alternatively, the user can assign the empty list to lSemiLat_atomS. For this case, we provide
the standard function

atomSet :: LSemiLat el -> [el]

atomSet l = atomSetBy (lSemiLat_poSet l) (lSemiLat_botEl l) (lSemiLat_inf l) []

which can be used later on to compute the atoms “on demand”. As shown here, the extended

parametrized variant of any function will be ended by By throughout the module.

Back to the function above, the atoms are computed by filtering out those elements 6= 0 that

have exactly one element in the lattice that is lower or equal to them. This computation

tends to be rather extensive. Hence, we reduce the list of possible atoms before we filter

them out. This is done by calling atomSet’ which establishes the key functionality. It

successively constructs the list of atoms at by local comparison of the first two elements in

the element list. The element list steadily becomes shorter. To detect when the element

list has been traversed without causing any changes in the atom list, we use the parameter

n. If it is zero and the list of remaining elements is empty, the computation is completed.

Obviously, the result of atomSet’ strongly depends on the arrangement of the elements

within the element list. Thus, it does not necessarily deliver the set of atoms so that

they have to be filtered out after atomSet’ is finished. Consider the following example

computation for the lattice induced by the powerset P({1, 2, 3}). If we, for example, have

the element list [[1],[1,2],[2],[2,3],[3],[1,3],[],[1,2,3]] and the underlying poset pS,

calling atomSetBy pS [] intersect [] results in

atomSet’ [] [[1],[1,2],[2],[2,3],[3],[1,3],[],[1,2,3]] 0

3.1. A MODULE COLLECTION FOR LATTICES 67

atomSet’ [[1]] [[2],[2,3],[3],[1,3],[],[1,2,3]] 1 (guard 3)

atomSet’ [[1],[2]] [[3],[1,3],[],[1,2,3]] 2 (guard 3)

atomSet’ [[1],[2],[3]] [[],[1,2,3]] 3 (guard 3)

atomSet’ [[1],[2],[3]] [[1,2,3]] 4 (guard 1)

atomSet’ [] [[1,2,3][1],[2],[3]] 0 (since n>0)

atomSet’ [[1]] [[2],[3]] 1 (guard 4)

atomSet’ [[1],[2],[3]] [] 1 (guard 5).

Since n is 1, the list is again traversed but no changes take place so that we omit these func-

tion calls. In this example, we use an arrangement of the elements such that atomSet’ does in-

deed deliver the atoms. But, consider the list [[1],[2,3],[2],[1,3],[3],[1,2],[],[1,2,3]].

Obviously, here only the least element [] is taken out. Thus, the final filtering in atomSet is

necessary.

Now, we switch to the determination of the irreducible elements. Since their definition is
very inefficient for computational purposes, we take the detour over the reducible elements.

redSetBy :: (Eq el) => PoSet el -> (el -> el -> el) -> [el] -> [el]

redSetBy p sup_inf els =

let li = if null els then poSet_elements p

else els

in nub $ redSet’ [] (takeN 2 li)

where

redSet’ red [] = red

redSet’ red (x:xs) = let hX = head x

lX = last x

s = sup_inf hX lX

in if s==hX || s==lX then redSet’ red xs

else redSet’ (s : red) xs

The parametrization is analogous to atomSet, but we here have the opportunity to compute
either the join reducible or the meet reducible elements. Thus, we call the corresponding
parameter sup_inf. First, we compute all pairs of two elements by means of the function
takeN and then call redSet’.

takeN :: Int -> [a] -> [[a]]

takeN _ [] = []

takeN 1 list = [[x] | x<-list]

takeN n (l:list) = [l:li | li<-takeN (n-1) list]++takeN n list

68 CHAPTER 3. EXTENDING RATH

Here, the sup/inf of any pair of elements is computed and compared to these elements. If

it is not equal to any of these two elements, it is reducible (to these elements). Notice, that

takeN can only be used for commutative operations since it only delivers pairs of elements

without considering their arrangement. Calling takeN 2 [1,2,3], for instance, results in the

list [[1,2],[1,3],[2,3]]. If we have a non-commutative operation that shall be applied to

all pairs of elements, we thus have to use list comprehension or equivalent constructs.

With the reducible elements we automatically have the irreducible elements.

irredSetBy :: (Eq el) => PoSet el -> el -> (el -> el -> el) -> [el] -> [el]

irredSetBy p bot_topEl sup_inf els = let li = if null els then poSet_elements p

else els

in li \\ (bot_topEl:(redSetBy p sup_inf li))

The only thing we have to mind is to take out the least/greatest element since it is not
join/meet-irreducible by definition. Notice that we need the least element and the join
operation to compute the join-irreducible elements and the greatest element and the meet
operation to compute the meet-irreducible elements.
Again, we have standard versions for calling the functions above.

jRedSet,mRedSet,jIrredSet,mIrredSet :: (Eq el) => Lat el -> [el]

jRedSet l = redSetBy (lat_poSet l) (lat_sup l) []

mRedSet l = redSetBy (lat_poSet l) (lat_inf l) []

jIrredSet l = irredSetBy (lat_poSet l) (lat_botEl l) (lat_sup l) []

mIrredSet l = irredSetBy (lat_poSet l) (lat_topEl l) (lat_inf l) []

Notice that the determination of the atoms and irreducible elements, respectively, causes

quadratic runtime costs in the worst case scenario. With atomSet it is possible that only

one element is taken out with every pass through the element list. With redSet we have to

generate all pairs of elements, which naturally results in quadratic computation times. But,

consider that the average case for atomSet should be evidently better than for irredSetBy

/ redSetBy (provided that join and meet have comparable computation times). This comes

due to the fact that with irredSetBy the worst case scenario is created a priori by computing

all pairs of elements.

Now, we can proceed with the test functions. Before we start, we want to mention that

the following data structures are already defined within the RATH module RelAlg to test

category theoretical properties. We redefine them so that we have both — conformance to

RATH and a stand alone module Lattice.

3.1. A MODULE COLLECTION FOR LATTICES 69

Of course, we want to know when a test failed and why it failed. Thus, the result of a failed
test can be represented by the data structure

type Result el = (String,[el])

which holds the reason for the failure and a list of the affected elements. From the defini-
tions of the lattice data structures, extensive list operations (in particular, the concatenation
operator (++) to combine several tests) are to expect. As lists are defined recursively, their
concatenation is very slow. In accordance to RATH, we use the standard escape. We “in-
troduce” a new concatenation operator. Consider the lists l1=["A","B"] and l2=["C","D"].
If we represent them by the functions

l1,l2 :: [String] -> [String]

l1 = let

f1 = ("A":)

f2 = ("B":)

in f1 . f2

l2 = let

f3 = ("C":)

f4 = ("D":)

in f3 . f4

we have the composition operator (.) as our new list concatenation. The resulting list
l1++l2 then can be computed by (l1.l2) []. This motivates the definition of

type TestRes el = [Result el] -> [Result el]

which represents a list of failed tests. Furthermore, we need to compute a list of test
results later on. This can be done by extending the predefined function foldr to foldF (fold
function)

foldF :: [a -> a] -> a -> a

foldF l r = foldr id r l

which we here use at the type [TestRes el] -> TestRes el. Last but not least, we provide
a function testP (test predicate)

testP :: Bool -> [el] -> String -> TestRes el

testP p els s = \res -> if p then res else (s,els) : res

to generate a parametrized test result, if the predicate p is False. Thus, we have all necessary

data structures so that we now can proceed with the single consistency tests.

70 CHAPTER 3. EXTENDING RATH

First, the question arises which tests are needed and how to parametrize them. Because of
the two approaches to lattices, we provide order theoretical tests as well as algebraic ones.
The three functions

testRefl, testTrans :: PoSet el -> TestRes el

testRefl p = foldF [testP (poSet_lEq p o o) [o] "Reflexivity:"

| o <- poSet_elements p]

testTrans p = let incl = poSet_lEq p

els = poSet_elements p

in foldF [testP (not (incl x1 x2 && incl x2 x3) || incl x1 x3)

[x1,x2,x3] "Transitivity:"

| x1 <- els, x2 <- els, x3<-els]

testAntiSymm :: (Eq el) => PoSet el -> TestRes el

testAntiSymm p = let incl = poSet_lEq p

in foldF [let x1 = head els

x2 = last els

in testP (not (incl x1 x2 && incl x2 x1) || x1==x2)

[x1,x2] "Antisymmetry:"

| els <- takeN 2 $ poSet_elements p]

together with the all-in-one test

testPoSet :: (Eq el) => PoSet el -> TestRes el

testPoSet p = testRefl p . testTrans p . testAntiSymm p

constitute the order theoretical part by testing reflexivity, transitivity and antisymmetry of

a poset. Notice that testTrans does not use takeN because the arrangement of the three

elements in question is essential. In contrast, testAntiSymm can be supplied by takeN.

The algebraic tests are quite more extensive. Because of the symmetric definition of (al-
gebraic) lattices, we use an at first sight somehow unnatural parametrization. Let us have
a look at the first test, which verifies that a poset is closed under a binary operation (e.g.
join, meet, relative pseudo complement).

testConsBy :: (Eq el) => PoSet el -> (el -> el -> el) -> [el] -> [el] ->

TestRes el

testConsBy p op els targetEls =

foldF [testP ((flip elem $ targetEls)$op (head xs) (last xs)) xs "Consistency:"

| xs<-takeN 2 $ els]

3.1. A MODULE COLLECTION FOR LATTICES 71

The function first of all needs the underlying poset p. Furthermore, the operation op that

shall be tested is necessary. The third parameter els can be used to reduce the test to the

elements given in it, i.e., to set the domain of op. In contrast to atomSetBy and irredSetBy,

els must not be empty. The tests then are not automatically applied to all elements of the

underlying poset. We prefer this variant to avoid longish if ... then phrases. Further-

more, we provide a standard variant for each test so that this approach should be acceptable.

But, notice that we have to use the elem function to determine whether an element is in

els. This can cause a loss in efficiency when membership within the lattice is decided by a

certain predicate and not by checking if it is in the element list. Thus, it is up to the user

to decide whether testConsBy can be used efficiently.

The last parameter can be used to set the range of op. Again, targetEls has no default

setting if an empty list is given as parameter. The following three examples show how

testConsBy can be used to achieve certain goals.

(1) If we want to test the join consistency of a lattice l, we can reduce the test to the join-

irreducible elements whereas the range of the join operation is the set of all elements

of the lattice. Thus, we can use the function above by

testConsBy (lat_poSet l) (lat_sup l) (lat_jIrredS l) (lat_elements l).

(2) Suppose we want to test whether some elements form a sublattice of an arbitrary lat-

tice l with respect to the join operation. Then we can use testConsBy by

testConsBy (lat_poSet l) (lat_sup l) (<elements>) (<elements>).

(3) To test whether a lattice l is closed under join without reducing the test to any ele-

ments, one has to use the default call

testConsBy (lat_poSet l) (lat_sup l) (lat_elements l) (lat_elements l).

Consider that, if the order theoretic tests as well as the two consistency tests above succeed
for join and meet, all remaining algebraic tests for standard lattices are redundant. Nearly
the same is true for the opposite. If all algebraic tests (even without the join/meet consis-
tency) succeed, the induced order is indeed an order and, hence, the order theoretic tests
need not be performed.
To make the use of the test functions more comfortable, we introduce standard calls to check
join/ meet consistency as well as consistency with the relative pseudo complements.

testJCons :: (Eq el) => USemiLat el -> TestRes el

testJCons l = testConsBy (uSemiLat_poSet l) (uSemiLat_sup l)

(uSemiLat_elements l) (uSemiLat_elements l)

72 CHAPTER 3. EXTENDING RATH

testMCons :: (Eq el) => LSemiLat el -> TestRes el

testMCons l = testConsBy (lSemiLat_poSet l) (lSemiLat_inf l)

(lSemiLat_elements l) (lSemiLat_elements l)

testRelCompCons :: (Eq el) => RelCompLat el -> TestRes el

testRelCompCons l = testConsBy (relCompLat_poSet l) (relCompLat_relComplem l)

(relCompLat_elements l) (relCompLat_elements l)

The complement is a unary operation, so that testConsBy cannot be used. Thus, we intro-
duce a second variant together with a standard call.

testConsUnBy :: (Eq el) => PoSet el -> (el -> el) -> [el] -> [el] -> TestRes el

testConsUnBy p op els targetEls =

foldF [testP ((flip elem) targetEls $ op x) [x] "ConsistencyUn:"

| x<-els]

testCompCons :: (Eq el) => CompLat el -> TestRes el

testCompCons l = testConsUnBy (compLat_poSet l) (compLat_complem l)

(compLat_elements l) (compLat_elements l)

Commutativity, associativity, idempotency and the absorption laws of the join/meet opera-
tion can be verified by the following test routines.

testCommBy,testIdemBy, testAssBy :: (Eq el) =>

PoSet el -> (el -> el -> el) -> [el] -> TestRes el

testCommBy p op els = foldF [let o1 = head os

o2 = last os

in testP (op o1 o2 == op o2 o1) os "Commutativity:"

| os<-takeN 2 els]

testIdemBy p op els = foldF [testP (op o o == o) [o] "Idempotency:"

| o<-els]

testAssBy p op els = foldF [let o1 = head os

o2 = head $ tail os

o3 = last os

in testP ((op o1 $ op o2 o3) == (op (op o1 o2) o3))

os "Associativity:"

| os<-takeN 3 els]

testAbsBy :: (Eq el) => PoSet el -> (el -> el -> el) ->

3.1. A MODULE COLLECTION FOR LATTICES 73

(el -> el -> el) -> [el] -> TestRes el

testAbsBy p op1 op2 els = foldF [testP ((op1 o1 $ op2 o1 o2)==o1) [o1,o2]

"Absorption:" | o1<-els, o2<-els]

They are parametrized analogous to testConsBy. Obviously, the list targetEls can be left
out since it plays no role for these tests. Notice that testAbsBy cannot rely on takeN. Again,
the standard variants are provided by the following functions.

testJComm,testJIdem, testJAss :: (Eq el) => USemiLat el -> TestRes el

testJComm l= testCommBy (uSemiLat_poSet l) (uSemiLat_sup l) (uSemiLat_elements l)

testJIdem l= testIdemBy (uSemiLat_poSet l) (uSemiLat_sup l) (uSemiLat_elements l)

testJAss l= testAssBy (uSemiLat_poSet l) (uSemiLat_sup l) (uSemiLat_elements l)

testMComm,testMIdem, testMAss :: (Eq el) => LSemiLat el -> TestRes el

testMComm l= testCommBy (lSemiLat_poSet l) (lSemiLat_inf l) (lSemiLat_elements l)

testMIdem l= testIdemBy (lSemiLat_poSet l) (lSemiLat_inf l) (lSemiLat_elements l)

testMAss l= testAssBy (lSemiLat_poSet l) (lSemiLat_inf l) (lSemiLat_elements l)

testJAbs,testMAbs :: (Eq el) => Lat el -> TestRes el

testJAbs l= testAbsBy (lat_poSet l) (lat_sup l) (lat_inf l) (lat_elements l)

testMAbs l= testAbsBy (lat_poSet l) (lat_inf l) (lat_sup l) (lat_elements l)

Furthermore, we need two functions to verify the correctness of the greatest and least ele-
ment, respectively.

testTopElBy :: USemiLat el -> [el] -> TestRes el

testTopElBy l els =

let top = uSemiLat_topEl l

in foldF (testP (uSemiLat_isElem l top) [top] "Top in List:" :

[testP (uSemiLat_lEq l x top) [x] "Top element:" | x<- els])

testBotElBy :: LSemiLat el -> [el] -> TestRes el

testBotElBy l els =

let bot = lSemiLat_botEl l

in foldF (testP (lSemiLat_isElem l bot) [bot] "Bot in List:" :

[testP (lSemiLat_lEq l bot x) [x] "Bottom element:" | x<- els])

testTopEl :: USemiLat el -> TestRes el

testTopEl l = testTopElBy l (uSemiLat_elements l)

testBotEl :: LSemiLat el -> TestRes el

74 CHAPTER 3. EXTENDING RATH

testBotEl l = testBotElBy l (lSemiLat_elements l)

Hence, we have accomplished the pure consistency tests for standard (upper/lower semi)lattices.
Now, we remain to provide all-in-one tests. This is done by the following functions.

testUpSemiLatticeBy :: (Eq el) => USemiLat el -> [el] -> [el] -> TestRes el

testUpSemiLatticeBy l els targetEls =

let pS = uSemiLat_poSet l

s = uSemiLat_sup l

in testCommBy pS s els . testAssBy pS s els .

testIdemBy pS s els . testConsBy pS s els targetEls .

testTopElBy l els

testLoSemiLatticeBy :: (Eq el) => LSemiLat el -> [el] -> [el] -> TestRes el

testLoSemiLatticeBy l els targetEls =

let pS = lSemiLat_poSet l

i = lSemiLat_inf l

in testCommBy pS i els . testAssBy pS i els .

testIdemBy pS i els . testConsBy pS i els targetEls .

testBotElBy l els

testLatticeBy :: (Eq el) => Lat el -> [el] -> [el] ->

[el] -> [el] -> TestRes el

testLatticeBy l els1 els2 els3 targetEls =

testUpSemiLatticeBy (lat_uSemiLat l) els1 targetEls .

testLoSemiLatticeBy (lat_lSemiLat l) els2 targetEls .

testAbsBy (lat_poSet l) (lat_sup l) (lat_inf l) els3 .

testAbsBy (lat_poSet l) (lat_inf l) (lat_sup l) els3

It should be clear from the previous explanations how the first two functions work. The

test for lattices is special in the sense that we have three parameters els1, els2 and els3,

respectively, to reduce the tests for upper and lower semilattices. Good examples for els1

and els2 are the join resp. meet-irreducible elements. Notice that it makes no sense to

differentiate the parameter targetEls since we want to test a lattice structure.

The standard use of the function above is the following.

testUpSemiLattice :: (Eq el) => USemiLat el -> TestRes el

testUpSemiLattice l = testUpSemiLatticeBy l

(uSemiLat_elements l) (uSemiLat_elements l)

3.1. A MODULE COLLECTION FOR LATTICES 75

testLoSemiLattice :: (Eq el) => LSemiLat el -> TestRes el

testLoSemiLattice l = testLoSemiLatticeBy l

(lSemiLat_elements l) (lSemiLat_elements l)

testLattice :: (Eq el) => Lat el -> TestRes el

testLattice l = testLatticeBy l (lat_jIrredS l) (lat_mIrredS l)

(lat_elements l) (lat_elements l)

Notice that testLattice automatically reduces the test of the upper resp. lower semilattice

to the join resp. meet-irreducible elements. Of course, this presupposes that the lists are

not empty.

The next step is to check modularity, distributivity and atomicity. We start with modularity.

testModularBy :: (Eq el) => Lat el -> [el] -> TestRes el

testModularBy l els =

let sup = lat_sup l

inf = lat_inf l

in foldF [testP (not (lat_lEq l x1 x3) || (sup x1 $ inf x2 x3) ==

inf (sup x1 x2) x3) [x1,x2,x3] "Modularity:"

| x1<-els, x2<-els, x3<-els]

testModular :: (Eq el) => Lat el -> TestRes el

testModular l = testModularBy l (lat_elements l)

From Lemma 2.3.6 we know that the validities of the modular laws imply each other. Thus,

we directly parametrize the function above by the underlying lattice l. Notice that we can-

not use takeN to determine all combinations of any three elements out of l, because the

arrangement of the three elements in question is essential (cf. Definition 2.3.10). Further-

more, the modularity test can, in general, not be reduced to the atoms or join-irreducible

elements, respectively.

The same is true for the following routine which can be used to check distributivity.

testDistrBy :: (Eq el) => PoSet el -> (el -> el -> el) ->

(el -> el -> el) -> [el] -> TestRes el

testDistrBy p op1 op2 els =

foldF [let x1 = head xs

x2 = xs!!1

76 CHAPTER 3. EXTENDING RATH

x3 = last xs

in testP ((op1 x1 $ op2 x2 x3) == op2 (op1 x1 x2) (op1 x1 x3))

xs "Distributivity:"

| xs<-takeN 3 els]

Again, the validity of one of the distributive laws implies the validity of the other (cf.
Lemma 2.3.6) so that the parametrization of this function by the two operations op1 and
op2 is redundant from a mathematical point of view. But, again efficiency considerations
with respect to the join and meet operations drove us to this decision. To determine join
distributivity, we use the join operation three times and the meet operation only twice. The
opposite is true for meet distributivity. The user now can decide which variant is the most
effective. Hence, we provide standard tests for join and meet distributivity, respectively.

testJDistr,testMDistr :: (Eq el) => Lat el -> TestRes el

testJDistr l = testDistrBy (lat_poSet l) (lat_sup l) (lat_inf l) (lat_elements l)

testMDistr l = testDistrBy (lat_poSet l) (lat_inf l) (lat_sup l) (lat_elements l)

From Theorem 2.3.8 we know that the notions of complete upwards distributivity and com-
plete Brouwerian lattices are equivalent. Furthermore, we can conclude the equivalence of
complete upwards and downwards distributivity within finite lattices. Thus, testing distrib-
utivity can be substituted by testing the existence of the relative pseudo complements for
all pairs of elements and vice versa.

testRelComplBy :: (Eq el) => RelCompLat el -> [el] -> TestRes el

testRelComplBy l els =

foldF [testP ((flip elem) els (relCompLat_relComplem l

(head xs) (last xs))) xs "Rel.pseudo compl.:"

| xs <- takeN 2 els]

testRelCompl :: (Eq el) => RelCompLat el -> TestRes el

testRelCompl l = testRelComplBy l (relCompLat_elements l)

Now, we proceed with atomicity. This test tends to be rather costly with respect to effi-
ciency. Unfortunately, we have no general possibility to delimit it. One approach could be
to test whether all join-irreducible elements are atoms. But, the quadratic complexity of
determining the join-irreducible elements indicated by irredSetBy only permits a gain in
efficiency, if the user is able to provide a faster way to compute them. Thus, we deliver
two functions — one that tests the join-irreducible elements and one that directly checks
whether all elements can be computed by the disjunction of a certain number of atoms.

3.1. A MODULE COLLECTION FOR LATTICES 77

testAtomicIrred :: (Eq el) => Lat el -> TestRes el

testAtomicIrred l =

let incl = lat_lEq l

in foldF [let x1 = head xs

x2 = last xs

in testP (not (incl x1 x2 || incl x2 x1) || x1==x2)

xs "Atomicity(irr.el.):" | xs<-takeN 2 $ lat_jIrredS l]

testAtomicBy :: (Eq el) => Lat el -> [el] -> TestRes el

testAtomicBy l els =

foldF [let as = [a | a<-lat_atomS l, (lat_lEq l) a x]

in if null as then id

else testP (x==foldl1 (lat_sup l) as) (x:as) "Atomicity:"| x<-els]

testAtomic :: (Eq el) => Lat el -> TestRes el

testAtomic l = testAtomicBy l (lat_elements l)

The parametrization of these two functions is a bit different. If the user, for example, wants

to test a sublattice of l, he has to create a new data structure or to use testAtomicBy.

The atomicity test within testAtomicIrred is done by checking whether there are two (differ-

ent) elements such that they are in the underlying order relation. If not, all join-irreducible

elements are atoms.

Notice that we leave the user to check whether the atom set and set of irreducible elements,

respectively, are correct. This can, for example, be done by comparing them to the result

of atomSetBy and irredSetBy, respectively.

Now, only the complement operation is left. The check is done by the following functions.

testComplBy :: CompLat el -> [el] -> TestRes el

testComplBy l els =

let lEq = compLat_lEq l

complem = compLat_complem l

in foldF [testP (lEq (compLat_topEl l) (compLat_sup l x (complem x)) &&

lEq (compLat_inf l x $ complem x) (compLat_botEl l) &&

lEq x (complem $ complem x) &&

lEq (complem $ complem x) x) [x] "Complement:"

| x <- els]

testCompl :: CompLat el -> TestRes el

testCompl l = testComplBy l (compLat_elements l)

78 CHAPTER 3. EXTENDING RATH

Obviously, we test whether x ∨ x = 1, x ∧ x = 0 and x = x hold.

Thus, we can introduce all-in-one tests for Boolean lattices.

testBoolLatticeBy :: (Eq el)=>CompLat el->[el]->[el]->[el]->[el]->TestRes el

testBoolLatticeBy l els1 els2 els3 targetEls =

testComplBy l els1 . testLatticeBy (compLat_lat l) els2 els3 els1 targetEls

testBoolLattice :: (Eq el) => CompLat el -> TestRes el

testBoolLattice l =

let els = compLat_elements l

in testBoolLatticeBy l els (compLat_atomS l) (compLat_mIrredS l) els

With the standard variant we again automatically reduce the tests to the atoms and meet-

irreducible elements, respectively, to test the lattice structure.

Finally, our attention goes to morphism tests. According to Definition 2.3.5, we differenti-
ate between (upper/lower semi) lattice and co-lattice morphisms, respectively. Furthermore,
morphisms between Brouwerian/Boolean lattices, which respect the relative pseudo comple-
ments/complements are of interest. Obviously, all kinds of morphisms have in common that
they respect unary or binary operations within their domain and range, respectively. Hence,
we can introduce two functions as follows.

testMorphBy :: (Eq el2) => PoSet el1 -> PoSet el2 ->

(el1 -> el1 -> el1) ->

(el2 -> el2 -> el2) -> String -> (el1 -> el2) -> TestRes el1

testMorphBy l1 l2 opL1 opL2 text f =

foldF [let x1 = head xs

x2 = last xs

in testP ((f $ opL1 x1 x2) == (opL2 (f x1) $f x2)) xs text

| xs <- takeN 2 $ poSet_elements l1]

testMorphUnBy :: (Eq el2) => PoSet el1 -> PoSet el2 ->

(el1 -> el1) -> (el2 -> el2) ->

String -> (el1 -> el2) -> TestRes el1

testMorphUnBy l1 l2 opL1 opL2 text f =

foldF [testP ((f $ opL1 x) == (opL2 $ f x)) [x] text | x <- poSet_elements l1]

In both functions f is the morphism in question. The only difference is that testMorphBy

gets binary operations (e.g., sup, inf) and testMorphUnBy gets unary (e.g., complement).

The string text is used to generate an appropriate output when a test fails.

3.1. A MODULE COLLECTION FOR LATTICES 79

With help of these two functions, we now can easily provide the required tests.

testUpSemiLatMorph :: (Eq el2) =>

USemiLat el1 -> USemiLat el2 -> (el1 -> el2) -> TestRes el1

testUpSemiLatMorph l1 l2 =

testMorphBy (uSemiLat_poSet l1) (uSemiLat_poSet l2)

(uSemiLat_sup l1) (uSemiLat_sup l2) "USemiLatMorph:"

testLoSemiLatMorph :: (Eq el2) =>

LSemiLat el1 -> LSemiLat el2 -> (el1 -> el2) -> TestRes el1

testLoSemiLatMorph l1 l2 =

testMorphBy (lSemiLat_poSet l1) (lSemiLat_poSet l2)

(lSemiLat_inf l1) (lSemiLat_inf l2) "LSemiLatMorph:"

testLatMorph :: (Eq el2) =>

Lat el1 -> Lat el2 -> (el1 -> el2) -> TestRes el1

testLatMorph l1 l2 f =

testUpSemiLatMorph (lat_uSemiLat l1) (lat_uSemiLat l2) f.

testLoSemiLatMorph (lat_lSemiLat l1) (lat_lSemiLat l2) f

testUpCoSemiLatMorph :: (Eq el2) =>

USemiLat el1 -> LSemiLat el2 -> (el1 -> el2) -> TestRes el1

testUpCoSemiLatMorph l1 l2 =

testMorphBy (uSemiLat_poSet l1) (lSemiLat_poSet l2)

(uSemiLat_sup l1) (lSemiLat_inf l2) "UCoSemiLatMorph:"

testLoCoSemiLatMorph :: (Eq el2) =>

LSemiLat el1 -> USemiLat el2 -> (el1 -> el2) -> TestRes el1

testLoCoSemiLatMorph l1 l2 =

testMorphBy (lSemiLat_poSet l1) (uSemiLat_poSet l2)

(lSemiLat_inf l1) (uSemiLat_sup l2) "LCoSemiLatMorph:"

testCoLatMorph :: (Eq el2) => Lat el1 -> Lat el2 -> (el1 -> el2) -> TestRes el1

testCoLatMorph l1 l2 f =

testUpCoSemiLatMorph (lat_uSemiLat l1) (lat_lSemiLat l2) f .

testLoCoSemiLatMorph (lat_lSemiLat l1) (lat_uSemiLat l2) f

testBoolLatMorph :: (Eq el2) =>

CompLat el1 -> CompLat el2 -> (el1 -> el2) -> TestRes el1

testBoolLatMorph l1 l2 f =

80 CHAPTER 3. EXTENDING RATH

testLatMorph (compLat_lat l1) (compLat_lat l2) f .

testMorphUnBy (compLat_poSet l1) (compLat_poSet l2)

(compLat_complem l1) (compLat_complem l2) "Complement:" f

Special endomorphisms, namely monotone and antitone functions, can be tested using the
following routines.

testMonoFunc, testAntiFunc :: PoSet el -> (el -> el) -> TestRes el

testMonoFunc l f = let lEq = poSet_lEq l

in foldF [let x1 = head xs

x2 = last xs

in testP ((not (lEq x1 x2) || lEq (f x1) (f x2)) &&

(not (lEq x2 x1) || lEq (f x2) (f x1)))

xs "Func.Mono :" | xs <- takeN 2 $ poSet_elements l]

testAntiFunc l f = let lEq = poSet_lEq l

in foldF [let x1 = head xs

x2 = last xs

in testP ((not (lEq x1 x2) || lEq (f x2) (f x1)) &&

(not (lEq x2 x1) || lEq (f x1) (f x2)))

xs "Func.Anti :" | xs <- takeN 2 $ poSet_elements l]

Obviously, the tests are done componentwise. Notice that the weakest structure in which

the two notions above make sense are posets.

Thus, our module Lattice is complete and should suffice for our purposes. The only thing

left to do, is to connect the class view and the module view by building suitable instances.

This is done within the module LatticeInstances. A listing can be found in Appendix A.

3.2 Using the lattice module

Now, we want to demonstrate how the module of the last section can be used to instantiate
some standard lattices. With these remarks it then should be clear how the module works.
Throughout this section, we only instantiate data structures that form lattices or comple-
mentary lattices. The corresponding (semi)lattice structures then can be extracted using
the standard routines of the last section.

module StandardLattices where

import Lattice

3.2. USING THE LATTICE MODULE 81

import List (delete,nub,union)

import Sets

First, we want to create the complete Boolean lattice induced by the powerset of a given set.
To do so, we import the Sets module. Unfortunately, this module provides no Eq instance
for the Set data structure. Since we need this, we have to implement our own instance.

instance (Eq obj,Ord obj) => Eq (Set obj) where

(==) s1 s2 = let ls1 = sizeSet s1

in ls1 == (sizeSet s2) &&

ls1 == (sizeSet $ intersectSet s1 s2)

Furthermore, we need a function that, given a set, returns the powerset.

power :: [a] -> [[a]]

power l = power’ id l []

where

power’ f [] = ((f []):)

power’ f (x:xs) = power’ f xs . power’ (f . (x:)) xs

With this sets are represented by a simple element list. Hence, we are able to instantiate
the induced Boolean lattice using the Set data structure.

powerSetLat :: (Eq el,Ord el) => [el] -> CompLat (Set el)

powerSetLat els =

let els’ = map listToSet $ power els

ats = map (listToSet.(:[])) $ nub els

tEl = listToSet els

in CompLat { compLat_lat =

Lat { lat_poSet =

PoSet { poSet_isElem = flip elem $ els’

,poSet_elements = els’

,poSet_lEq = \x y -> intersectSet

x y == x }

,lat_sup = joinSet

,lat_inf = intersectSet

,lat_topEl = tEl

,lat_botEl = zeroSet

,lat_atomS = ats

,lat_jIrredS = ats

,lat_mIrredS = map (diffSet tEl) ats }

82 CHAPTER 3. EXTENDING RATH

,compLat_complem = diffSet tEl }

The implementation is straightforward and mainly uses the predefined functions of the Sets
module. Notice that we explicitly provide the atoms and irreducible elements, respectively,
to avoid unnecessary computation times.
Now, we have to check whether the lattice is instantiated correctly. First, we exemplary
want to have a look at the created elements and the atoms of the powerset lattice induced
by the set {1, 2, 3, 4}. The Hugs session

StandardLattices> compLat_elements $ powerSetLat [1..4]

[{},{4},{3},{3, 4},{2},{2, 4},{2, 3},{2, 3, 4},{1},

{1, 4},{1, 3},{1, 3, 4},{1, 2},{1, 2, 4},{1, 2, 3},{1, 2, 3, 4}]

StandardLattices> compLat_atomS $ powerSetLat [1..4]

[{1},{2},{3},{4}]

shows that these elements are generated correctly. The same is true for all other parts of
the data structure. Calling the consistency tests

StandardLattices> testBoolLattice (powerSetLat [1..4]) []

[]

StandardLattices> testAtomic (compLat_lat $ powerSetLat [1..4]) []

[]

makes sure that we indeed have a correctly instantiated Boolean lattice.

The second standard Boolean lattice consists of the truth values with implication ⇒ as the
ordering and True resp. False as greatest resp. least element. It is the base for constructing
Boolean matrices using the LFuzzyRel module.

logicLat :: CompLat Bool

logicLat = let els = [True,False]

in CompLat { compLat_lat =

Lat { lat_poSet =

PoSet { poSet_isElem = flip elem $ els

,poSet_elements = els

,poSet_lEq = \x y -> not x || y }

,lat_sup = (||)

,lat_inf = (&&)

,lat_topEl = True

3.2. USING THE LATTICE MODULE 83

,lat_botEl = False

,lat_atomS = [True]

,lat_jIrredS = [True]

,lat_mIrredS = [False] }

,compLat_complem = not }

Obviously, this definition is consistent.

Another important class are linear lattices (i.e., a ≤ b or b ≤ a holds for every two elements).
The unit interval [0, 1], for instance, constitutes such a lattice. We provide the function

linLat :: Ord el => [el] -> Lat el

linLat els = let

mi = minimum els

ma = maximum els

notMi = delete mi els

in Lat { lat_poSet = PoSet { poSet_isElem = flip elem $ els

,poSet_elements = els

,poSet_lEq = (<=) }

,lat_sup = max

,lat_inf = min

,lat_topEl = ma

,lat_botEl = mi

,lat_atomS = [minimum notMi]

,lat_jIrredS = notMi

,lat_mIrredS = delete ma els }

which instantiates the lattice in question. Notice that all elements except the least are
join-irreducible and all elements except the greatest are meet-irreducible. Again, typing, for
example

StandardLattices> testLattice (linLat [1,2,3,4,6,12]) []

[]

assures the consistency.

The next construction is of a somehow mathematical nature. We provide the lattice induced
by the divisibility relation with lcm and gcd as supremum resp. infimum operation.

divLat :: Int -> Int -> Lat Int

divLat lB uB = let

84 CHAPTER 3. EXTENDING RATH

els = [x | x<-[lB..uB],mod uB x == 0]

mi = minimum els

pS = PoSet { poSet_isElem = flip elem $ els

,poSet_elements = els

,poSet_lEq = \x y -> mod y x == 0 }

in Lat { lat_poSet = pS

,lat_sup = lcm

,lat_inf = gcd

,lat_topEl = uB

,lat_botEl = mi

,lat_atomS = atomSetBy pS mi gcd []

,lat_jIrredS = irredSetBy pS mi lcm []

,lat_mIrredS = irredSetBy pS uB gcd [] }

Since we are dealing with finite structures, the user has to give a lower and upper bound,

respectively, which delimit the possible elements of the lattice. We take uB as the greatest

element so that lB is not necessarily the least element of the resulting lattice. It is the least

element, if and only if it is a divisor of uB. Notice that the atoms of the resulting lattice are

exactly the prime factors of uB if lB is 1.

Finally, we want to implement the non-modular and non-distributive lattice. They are
interesting in the way that we can compare whether the modularity resp. distributivity
check fail.

nonModLat, nonDistrLat :: Lat String

nonModLat =

let els = ["0","a","b","c","1"]

irr = ["a","b","c"]

in Lat { lat_poSet = PoSet { poSet_isElem = flip elem $ els

,poSet_elements = els

,poSet_lEq = \x y -> x=="0" || y=="1" ||

x==y || (x=="a" && y=="b") }

,lat_sup = \x y -> if x=="0" then y else

if y=="0" then x else

if x==y then x else

if (x=="a")&&(y=="b")||

(x=="b")&&(y=="a") then "b" else "1"

,lat_inf = \x y -> if x=="1" then y else

if y=="1" then x else

if x==y then x else

3.2. USING THE LATTICE MODULE 85

if (x=="a")&&(y=="b")||

(x=="b")&&(y=="a") then "a" else "0"

,lat_topEl = "1"

,lat_botEl = "0"

,lat_atomS = ["a","c"]

,lat_jIrredS = irr

,lat_mIrredS = irr }

nonDistrLat =

let els = ["0","a","b","c","1"]

ats = ["a","b","c"]

in Lat { lat_poSet = PoSet { poSet_isElem = flip elem $ els

,poSet_elements = els

,poSet_lEq = \x y -> x=="0" || y=="1" ||

x==y }

,lat_sup = \x y -> if x=="0" then y else

if y=="0" then x else

if x==y then x else "1"

,lat_inf = \x y -> if x=="1" then y else

if y=="1" then x else

if x==y then x else "0"

,lat_topEl = "1"

,lat_botEl = "0"

,lat_atomS = ats

,lat_jIrredS = ats

,lat_mIrredS = ats }

The implementations directly correspond to the lattices shown in Figure 2.2 and 2.3. The
Hugs session

StandardLattices> testModular nonModLat []

[("Modularity:",["a","c","b"])]

StandardLattices> testModular nonDistrLat []

[]

StandardLattices> testJDistr nonDistrLat []

[("Distributivity:",["a","b","c"])]

StandardLattices> testMDistr nonDistrLat []

86 CHAPTER 3. EXTENDING RATH

[("Distributivity:",["a","b","c"])]

indeed shows that nonModLat is not modular and nonDistrLat is modular but not distribu-

tive.

3.3 A general extension for Goguen categories

In Section 2.6, we gave the definition of a Goguen category introduced in [11]. We aim

to provide a suitable computer-aided framework for this kind of category by extending the

RATH module system. Fortunately, Goguen categories do not make any changes within

the RATH modules necessary since the possibility to express crispness is not essential for

the hierarchical definition of relational categories. As mentioned before, RATH uses two

different views of relational categories — the class view and the module view (brought

about by record data structures). To guarantee consistency, we also differentiate here, and

provide the modules GoguenClass, Goguen and GoguenInstances.

First, we introduce a new type class for Goguen categories

module GoguenClass where

import RelAlgClasses (DedCat)

class DedCat gog obj mor =>

GoguenCat gog loos obj mor | gog -> loos, gog -> obj, gog -> mor where

up :: gog -> mor -> mor

down :: gog -> mor -> mor

derOp :: gog -> String -> loos -> mor -> mor -> mor

such that the new operations ↑ and ↓ (cf. Section 2.6) are supported. Furthermore, derived

operations play an important role within Goguen categories to reason over and represent

fuzzy controllers. Hence, we provide the function derOp which makes it possible to use as

many user-defined operations as wanted. The certain operations are identified by a label

and are parametrized by a given loos and the two arguments. Notice that the loos data

structure is still an abstract parameter within this module. We will have to provide a proper

definition within our module for L-fuzzy relations later on.

Obviously, in conformance to the definition, our type class for Goguen categories is an

3.3. A GENERAL EXTENSION FOR GOGUEN CATEGORIES 87

extension of Dedekind categories. Thus, we have the new type class hierarchy shown in

Figure 3.2.

Category

Allegory

DistribAllegory

DivisionAllegory

DedCat

RelAlg

GoguenCat

Figure 3.2: Extended type class hierarchy of RATH

The next part is to provide a suitable record data structure as well as consistency tests.
This is done within the following module.

module Goguen where

import RelAlg

import Lattice

import List (intersect)

import LFuzzyRel

Later on, it will become clear why we make use of Lattice. The data structure

data Gog loos obj mor = Gog { gog_ded :: Ded obj mor

,gog_up :: mor -> mor

,gog_down :: mor -> mor

,gog_derOp :: String -> loos -> mor -> mor -> mor }

directly reflects our type class for Goguen categories. Notice, that standard definitions for ↑

and ↓ that are valid for all Goguen categories do not exist. Hence, the user has to provide

these functions. The opposite is true for derived operations. M. Winter in [11] gave a

88 CHAPTER 3. EXTENDING RATH

standard definition that operates on all scalars of a given object. This is rather inefficient,

and we think that a standard implementation can be omitted. Thus, the user has to provide

this routine himself. Later on, we will give an implementation for the standard model within

the LFuzzyRel module.

For abbreviated notations, we introduce the following functions.

gog_isObj = ded_isObj .gog_ded

gog_isMor = ded_isMor .gog_ded

gog_objects = ded_objects .gog_ded

gog_homset = ded_homset .gog_ded

gog_source = ded_source .gog_ded

gog_target = ded_target .gog_ded

gog_idmor = ded_idmor .gog_ded

gog_comp = ded_comp .gog_ded

gog_converse = ded_converse .gog_ded

gog_meet = ded_meet .gog_ded

gog_incl = ded_incl .gog_ded

gog_join = ded_join .gog_ded

gog_bottom = ded_bottom .gog_ded

gog_rres = ded_rres .gog_ded

gog_lres = ded_lres .gog_ded

gog_syq = ded_syq .gog_ded

gog_top = ded_top .gog_ded

gog_divAll = ded_divAll .gog_ded

gog_distrAll = divAll_distrAll.gog_divAll

gog_all = distrAll_all .gog_distrAll

gog_cat = all_cat .gog_all

Thus, the extension of RATH with respect to the new data structures is complete. Our

attention now goes to the consistency tests. Which checks are necessary, can directly be

inferred from Definition 2.6.1. For Property (1) we only have to check whether >>AB 6= ⊥⊥AB

holds for all objects A,B. The test for Dedekind categories is already provided by RATH.

With property (2) the parts (2a)-(2d) are essential with respect to the ↑ and ↓ operation,

because they guarantee that our interpretation of these two operations is valid. Part (2e) is

fundamental for the α-cut Theorem (2.6.2) and, thus, plays a key role. But, unfortunately,

for any two objects A and B of the underlying Dedekind category, we need all antimorphisms

between ScG [A] and CrispG [A,B]. Obviously, this computation tends to be very inefficient.

The trivial implementation would be to compute all mappings and then test which one is an

3.3. A GENERAL EXTENSION FOR GOGUEN CATEGORIES 89

antimorphism. Of course, this is unacceptable. Therefore, our first thoughts go to possible

improvements.

It is clear that there will be no general function that delivers a certain computation formula

for every antimorphism. Furthermore, an approach to find certain structural interactions

between ScG [A] and CrispG [A,B] will fail. If we, for example, take the standard Goguen

category provided by Theorem 2.6.1, we see that the structure of ScG [A] strongly depends

on the underlying lattice L. But, the structure of CrispG [A,B] only depends on the objects

A and B.

Thus, we have to go another way. Again, our rescue is that we are dealing with finite

structures. The scalars ScG [A] of an arbitrary object A within our Goguen category form

a lattice (cf. Lemma 2.5.6). Thus, every scalar can be determined by the corresponding

join-irreducible elements and, hence, any mapping f : L1 → L2 fulfilling

f(
∨

M) =
∧

x∈M

f(x) for M ⊆ L1

can even uniquely be described by its reduction to the join-irreducible elements of L1. We

therefore only need to compute all (possible) images of f reduced to the join-irreducible

elements of L1 such that the property above holds. To do so, we have to hold in mind

that there can be an order relationship between two irreducible elements. Let, for example,

x1, x2 ∈ L1 be join-irreducible elements such that x1 ≤1 x2 holds. Then we have to take care

that f(x2) ≤2 f(x1) is true. In the case that x1 and x2 are incomparable, any combination

of f(x1) and f(x2) in respect to ≤ is possible. Having computed the images of all join-

irreducible elements of L1, we can compute the image of any element of x ∈ L1 by

f(x) =
∧
{ f(y) | y ≤1 x, y join-irreducible }. (3.1)

Notice the special role of the least element of L1. We have to guarantee f(01) = f(12). This

follows immediately if we set M = ∅ in the equation above.

Hence, we are able to provide a relatively efficient standard function for this purpose. But
first, we need some auxiliary functions. The explanations above indicate that we need our
Lattice module to compute the set of join-irreducible elements. Therefore, we introduce the
following functions

gog_poSet g src trg elements =

PoSet { poSet_isElem = flip elem $ gog_homset g src trg

,poSet_elements = elements

,poSet_lEq = gog_incl g }

90 CHAPTER 3. EXTENDING RATH

gog_lat g src trg elements = let pS = gog_poSet g src trg elements

bE = gog_bottom g src trg

tE = gog_top g src trg

m = gog_meet g

j = gog_join g

in Lat { lat_poSet = pS

,lat_sup = j

,lat_inf = m

,lat_topEl = gog_top g src trg

,lat_botEl = bE

,lat_atomS = atomSetBy pS bE m []

,lat_jIrredS = irredSetBy pS bE j []

,lat_mIrredS = irredSetBy pS tE m [] }

which create the according data structures for the morphisms between src and trg. Further-
more, we need two more functions for the determination of the scalars and crisp relations,
respectively.

scalars :: (Eq mor) => Ded obj mor -> obj -> [mor]

scalars d a = filter (\m -> ded_incl d m (ded_idmor d a) &&

ded_comp d m (ded_top d a a) ==

ded_comp d (ded_top d a a) m)

$ ded_homset d a a

crispRel :: (Eq mor) => Gog l obj mor -> obj -> obj -> [mor]

crispRel g a b = filter (\m -> gog_up g m == m) $ gog_homset g a b

Obviously, they are direct realizations of the underlying definitions. Having this, we can
compute the antimorphisms. Since extensive computations are to expect, we provide a
convenient parametrization such that the user is able to support our functions throughout
this module. For antimorphisms, we provide two routines that are parametrized analogous
to our Lattice module.

antiMorphBy :: (Eq mor) =>

Gog l obj mor -> (Ded obj mor -> obj -> [mor]) ->

(Gog l obj mor -> obj -> obj -> [mor]) ->

obj -> obj -> [mor -> mor]

antiMorphBy g sc crisp src trg =

[\x -> foldl1 (gog_meet g) [f_i | (i,f_i)<-m,gog_incl g i x]

| m <- anti (sc (gog_ded g) src) (crisp g src trg)]

3.3. A GENERAL EXTENSION FOR GOGUEN CATEGORIES 91

where

anti os1 os2 =

let botG = gog_bottom g src src

irred = irredSetBy (gog_poSet g src src os1)

botG (gog_join g) []

in map ((botG, gog_top g src trg):) $ anti’ irred os2 []

anti’ [] os2 _ = [[]]

anti’ (a:os) os2 morph = [res:f | f<-anti’ os os2 morph,

res<-foldl1 intersect $ getPart f a os2]

getPart [] a os2 = [[(a,f_a)| f_a <- os2]]

getPart ((b,f_b):fs) a os2

| gog_incl g a b = [(a,f_a)| f_a <- os2, gog_incl g f_b f_a]

: getPart fs a os2

| gog_incl g b a = [(a,f_a)| f_a <- os2, gog_incl g f_a f_b]

: getPart fs a os2

| otherwise = getPart fs a os2

antiMorph :: (Eq mor) => Gog l obj mor -> obj -> obj -> [mor -> mor]

antiMorph g = antiMorphBy g scalars crispRel

The function antiMorphBy is, among others, parametrized by two functions to determine the

scalars and crisp relations, respectively. The standard variant then is delivered by antiMorph.

Obviously, we represent an antimorphism f as a list of tuples (x, f(x)). The computation

is divided into three steps.

The first one is done by the function getPart. It is called by anti’ and gets an (already

partially computed) antimorphism f, which shall be extended by all possible combinations

of an element a and its image f_a such that the new morphisms are still antimorphisms.

To guarantee this, getPart generates a list of possible tuples (a,f_a) for every single tuple

(b,f_b), which is already in the list representing f. The intersection of all these lists delivers

all possible extensions for f. The extension then is done in anti’ where a list of the resulting

new morphisms is generated.

The second step is to guarantee that f(01) = f(12) holds. This is made by the function anti,

which inserts the pair (gog_bottom g src src, gog_top g src trg) into every computed list

after anti’ is finished.

As we only have lists of tuples up to now, we finally have to provide suitable functions that

can be returned. This is done by antiMorphBy which makes use of Formula 3.1. Notice that

the computation in antiMorphBy definitely succeeds, even for the special case f(01).

92 CHAPTER 3. EXTENDING RATH

Now, we are ready to test Property (2e) of Definition 2.6.1. Notice that we (in analogy to
the Lattice module) prefer to extract this test so that the user has direct access and does
not necessarily need to perform the whole consistency check.

testAntiMorphBy :: (Eq obj, Eq mor) => Gog l obj mor ->

(Gog l obj mor -> obj -> obj -> [mor -> mor]) ->

(Ded obj mor -> obj -> [mor]) ->

(Gog l obj mor -> obj -> obj -> [mor]) ->

obj -> obj -> TestResult obj mor

testAntiMorphBy g anti sc crisp src trg =

ffold [let scG = sc (gog_ded g) src

inclG = gog_incl g

supSc = foldl1 (gog_join g) [gog_comp g s (a s) | s<-scG]

in ffold [test (gog_incl g m supSc == foldl1 (&&)

[gog_incl g (gog_down g (gog_rres g s m)) (a s)|s<-scG])

[src] [m] "Antimorphisms:"]

| m <- gog_homset g src trg,

a <- anti g src trg]

testAntiMorphAllBy :: (Eq obj, Eq mor) => Gog l obj mor ->

(Gog l obj mor -> obj -> obj -> [mor -> mor]) ->

(Ded obj mor -> obj -> [mor]) ->

(Gog l obj mor -> obj -> obj -> [mor]) ->

TestResult obj mor

testAntiMorphAllBy g anti sc crisp =

ffold [testAntiMorphBy g anti sc crisp src trg | src <- gog_objects g,

trg <- gog_objects g]

testAntiMorph :: (Eq obj, Eq mor) =>

Gog l obj mor -> obj -> obj -> TestResult obj mor

testAntiMorph g = testAntiMorphBy g antiMorph scalars crispRel

testAntiMorphAll :: (Eq obj, Eq mor) => Gog l obj mor -> TestResult obj mor

testAntiMorphAll g = testAntiMorphAllBy g antiMorph scalars crispRel

Obviously, we separate the tests twofold. Thus, the user on the one hand has the chance

to provide its own functions for determining the needed antimorphisms, scalars and crisp

relations, respectively. On the other hand, he can decide whether he wants to test every

pair of objects of the underlying Goguen category or if he only wants to check one specific

combination of source and target. The tests themselves are a direct realization of Definition

3.3. A GENERAL EXTENSION FOR GOGUEN CATEGORIES 93

2.6.1(2e). Again, the standard variants are given by testAntiMorph and testAntiMorphAll,

respectively.

The all-in-one tests for ↑ and ↓ are provided analogously.

testUpDownBy :: (Eq obj, Eq mor) => Gog l obj mor ->

(Gog l obj mor -> obj -> obj -> [mor -> mor]) ->

(Ded obj mor -> obj -> [mor]) ->

(Gog l obj mor -> obj -> obj -> [mor]) ->

obj -> obj -> obj -> TestResult obj mor

testUpDownBy g anti sc crisp src trg trg2 =

let incl = gog_incl g; up = gog_up g

down = gog_down g; comp = gog_comp g

source = gog_source g; target = gog_target g

homset = gog_homset g; conv = gog_converse g

scG = sc (gog_ded g) src

in

testAntiMorphBy g anti sc crisp src trg .

ffold [test (s == gog_bottom g src src || up s == gog_idmor g src)

[src] [s] "Up(a) = I:" | s<-scG] .

ffold [ffold [test (source (up m) == src && target (up m) == trg)

[src,trg] [m] "Domain/Range Up:" .

test (source (down m) == src && target (down m) == trg)

[src,trg] [m] "Domain/Range Down:"] .

ffold [test (incl m (down m2) == incl (up m) m2)

[src,trg] [m,m2] "UpDown-Galois:"

| m2 <- homset src trg]

| m <- homset src trg] .

ffold [test (up (comp (conv m) (down m2)) ==

comp (conv $ up m) (down m2))

[src,trg,trg2] [m,m2] "Comp/Conv/UpDown:"

| m <- homset trg src,

m2 <- homset trg trg2]

testUpDownAllBy :: (Eq obj, Eq mor) => Gog l obj mor ->

(Gog l obj mor -> obj -> obj -> [mor -> mor]) ->

(Ded obj mor -> obj -> [mor]) ->

(Gog l obj mor -> obj -> obj -> [mor]) ->

TestResult obj mor

testUpDownAllBy g anti sc crisp =

94 CHAPTER 3. EXTENDING RATH

ffold [testUpDown g src trg trg2 | src <- gog_objects g,

trg <- gog_objects g,

trg2 <- gog_objects g]

testUpDown :: (Eq obj, Eq mor) =>

Gog l obj mor -> obj -> obj -> obj -> TestResult obj mor

testUpDown g = testUpDownBy g antiMorph scalars crispRel

testUpDownAll :: (Eq obj, Eq mor) => Gog l obj mor -> TestResult obj mor

testUpDownAll g = testUpDownAllBy g antiMorph scalars crispRel

Hence, we can test Goguen categories as follows.

gog_TESTBy :: (Eq obj, Eq mor) => Gog l obj mor ->

(Gog l obj mor -> obj -> obj -> [mor -> mor]) ->

(Ded obj mor -> obj -> [mor]) ->

(Gog l obj mor -> obj -> obj -> [mor]) ->

TestResult obj mor

gog_TESTBy g anti sc crisp =

let top = gog_top g

bot = gog_bottom g

in ffold [test (not (top src trg == bot src trg))

[src,trg] [top src trg,bot src trg] "Top==Bot:"

| src <- gog_objects g, trg <- gog_objects g] .

testUpDownAllBy g anti sc crisp .

ded_top_incl_TEST (gog_ded g) .

divAll_lres_TEST (gog_divAll g) .

distrAll_TEST (gog_distrAll g)

gog_TEST :: (Eq obj, Eq mor) => Gog l obj mor -> TestResult obj mor

gog_TEST g = gog_TESTBy g antiMorph scalars crispRel

Linear Goguen categories are essential to get the equivalence of the three notions of crispness,
s-crispness and l-crispness (cf. Theorem 2.6.3). Thus, we provide predefined tests to check
linearity within a Goguen category.

testLinearBy :: Eq mor => Gog l obj mor -> (Ded obj mor -> obj -> [mor]) ->

TestResult obj mor

testLinearBy g sc =

ffold [let scG = sc (gog_ded g) o

bG = gog_bottom g o o

3.3. A GENERAL EXTENSION FOR GOGUEN CATEGORIES 95

in ffold [test (s1 == bG || gog_meet g s1 s2 /= bG || s2 == bG)

[o] [s1,s2] "Linearity:"

|s1 <- scG ,s2 <- scG]

| o <- gog_objects g]

testLinear :: (Eq mor) => Gog l obj mor -> TestResult obj mor

testLinear g = testLinearBy g scalars

Obviously, the test is done by checking all scalars of all objects for the linearity property.

With all kinds of relational categories, functors (cf. Definition 2.5.2) are essential to express
interactions between them. Hence, we provide suitable tests to check whether a given functor
is a functor between Goguen categories. RATH already provides the data structure Fun

shown in Section 2.5.1. Unfortunately, suitable tests are only included up to the level of
allegories so that we cannot rely on a preimplemented test for functors between Dedekind
categories. Hence, we have to provide the missing test ourself.

gog_fun_TEST :: Eq mor2 => Gog l obj1 mor1 -> Gog l obj2 mor2 ->

Fun obj2 mor2 obj1 mor1 -> TestResult obj1 mor1

gog_fun_TEST g1 g2 f@(Fun fObj fMor) =

let os = gog_objects g1

in ffold [test (fMor (gog_join g1 m1 m2)==gog_join g2 (fMor m1) (fMor m2))

[o1,o2] [m1,m2] "Join:" .

test (fMor (gog_lres g1 m1 m2)==gog_lres g2 (fMor m1) (fMor m2))

[o1,o2] [m1,m2] "LRes:"

| o1<-os, o2<-os, m1<-gog_homset g1 o1 o2, m2<-gog_homset g1 o1 o2].

ffold [test (fMor (gog_up g1 m)==gog_up g2 (fMor m))

[o1,o2] [m] "Up:" .

test (fMor (gog_down g1 m)==gog_down g2 (fMor m))

[o1,o2] [m] "Down:"

| o1<-os, o2<-os, m<-gog_homset g1 o1 o2] .

ffold [test (fMor (gog_bottom g1 o1 o2)==gog_bottom g2 (fObj o1) (fObj o2))

[o1,o2] [gog_bottom g1 o1 o2] "Bottom:" .

test (fMor (gog_top g1 o1 o2)==gog_top g2 (fObj o1) (fObj o2))

[o1,o2] [gog_top g1 o1 o2] "Top:"

| o1<-os, o2<-os] .

allrepr_TEST (gog_all g1) (gog_all g2) f

We check whether a given functor f between two given Goguen categories g1 and g2 respects

join and the left residual as well as the up/down operation and the top/bottom elements.

96 CHAPTER 3. EXTENDING RATH

The composition, conversion and meet operators are already tested by allrepf_TEST.

Finally, we again have to connect the class and module view, respectively, by providing

suitable instances. A listing can be found in Appendix B.

3.4 A module for L-fuzzy relations

In this chapter we aim at a module to support the standard instantiation of Goguen cate-
gories using L-fuzzy relations. Thus, we first have to make ourselves clear what this module
shall be able to do and, just as important, what it does not have to.
Of course, we need a data structure representing an L-fuzzy relation. Furthermore, the user
shall be able to manipulate and construct a relation. To guarantee extendability, a very
important design rule with this is to hide the implementation. Thus, we have to provide
certain access routines to create an L-fuzzy relation starting from the top/bottom relation
between certain source and target. Furthermore, the standard matrix operations shall be
available. Within fuzzy control, new intersection and composition operators derived from
lattice-ordered operator sets (loos’) (cf. Definition 2.4.2) play an important role. Hence, we
have to provide an appropriate data structure as well as special functions for this purpose.
The export list

module LFuzzyRel (FRel(..),Loos(..),fZip,fIncl,fComp,fJoin,fMeet,fConv,fCompLoos,

fOpLoos,fUp,fDown,fTop,fBot,fLRes,fRRes,fSyQ,fLResLoos,

fRResLoos,fSyQLoos,fDerOp,fScalar,fId,fUpd,fUpdUnBy,

fUpdAllUnBy,fUpdBinBy,fEntryAt,fExtSrc,fExtTrg,getFRelsBy,

getFRels,getAllFRelsBy,getAllFRels,lat_infLoos,lat_supLoos,

) where

shows the provided data structures FRel and Loos, the basic operations (join, meet, con-

version etc.), as well as their counterparts for derived operations (fOpLoos and fCompLoos

etc.), the top and bottom relation, some functions for manipulating relations component-

wise (fUpd, fUpdUnBy, etc.) and different routines to compute all L-fuzzy relations fulfilling

a certain predicate between given source and target (getFRelsBy, getAllFRelsBy, etc.). The

last functions become interesting when we instantiate relational categories later on.

This basic functionality suffices for our purposes and leaves space for future extensions.

These extensions could, for example, go into deep with L-fuzzy relations and provide an

implementation of special operations like fuzzy implication or fuzzy negation.

3.4. A MODULE FOR L-FUZZY RELATIONS 97

Now, we are ready to switch to the implementation. Since the entries of our L-fuzzy relations
have to constitute a complete Brouwerian lattice, we obviously have to import the Lattice

module. Furthermore, some special list operations are needed later on.

import Lattice

import List (transpose,nub)

The next step is the FRel data structure. Several design decisions have to be made here.

data FRel e obj1 obj2 = FRel { lat :: Lat e

,src :: [obj1]

,trg :: [obj2]

,rel :: [[e]] }

An L-fuzzy relation consists of its underlying entry lattice lat, its source and target (src,

trg) and the real relation rel represented as a matrix.

Notice that we deliberately do not use the Set module to describe source and target, re-

spectively. The reason is that the interpretability of our relations would suffer because we

would not know how the rows and columns are labeled. Thus, src resp. trg can be seen as

the labeling of the given relation.

As mentioned above, we use the matrix representation for our L-fuzzy relations and im-
plement it by a list of lists of entries. Another possibility would have been to use the
preimplemented Array module, which has the advantage that we can rely on predefined
functions and have a comprehensive error detection. But, there are several drawbacks of
this approach. The first one is that the range of an array has to be indexable, i.e., any
type we would use for src and trg had to implement the Ix type class. For Double and
Rational values this is at least difficult. The second (even worse) drawback is that we could
only use coherent source and target ranges, respectively. Thus, the source {1, 2, 3, 5} would
not be allowed. At least with the automated construction of relations this causes problems.
Consider, for example, two relations R : A → B and S : A → C with B := {1, 2, 3} and
C := {7, 8, 9, 10}. Obviously, we have to represent them by

relR = { lat = ... relS = { lat = ...

,src = ... ,src = ...

,trg = (1,3) ,trg = (7,10)

,rel = ... } ,rel = ... }

if we use the array implementation. But, if we want to construct the direct sum, we get

problems computing the trg parameter of the resulting injections. Obviously, (1,10) is not

98 CHAPTER 3. EXTENDING RATH

allowed. Since the construction of trg would only be possible with considerable efforts and

the interpretability of the resulting relations would suffer anyway, we use the list representa-

tion. Now, one could still use the Array module to represent the matrix by mapping source

and target to suitable array ranges (e.g., each element could be mapped to its list index).

But, tests showed that the Array module is slower than the list operations. All this drove

us to define FRel as shown above. Of course, several consistency tests for matrices have to

be provided with our approach.

Later on, we need Show and Eq instances of FRel.

instance (Show e,Show obj1, Show obj2) => Show (FRel e obj1 obj2) where

show r = "Source: "++ (show $ src r) ++ "\n" ++

"Target: "++ (show $ trg r) ++ "\n" ++

"Rel : "++ "\n" ++ (show $ rel r)++"\n"

instance (Eq e, Eq obj1, Eq obj2) => Eq (FRel e obj1 obj2) where

(==) rel1 rel2 = src rel1 == src rel2 &&

trg rel1 == trg rel2 &&

rel rel1 == rel rel2

The Eq instance again makes clear that two relations are only equal if they have equally

labeled rows and columns as well as equal matrix entries.

The data structure for loos’ is implemented as follows.

data Loos el = Loos { loos_lat :: Lat el

,loos_op :: el -> el -> el

,loos_e :: el

,loos_z :: el }

It is a direct realization of the underlying definition whereas e is the neutral and z the zero
element. This data structure induces some standard instantiations since conventional join
and meet, respectively, constitute a loos.

lat_infLoos,lat_supLoos :: Lat el -> Loos el

lat_infLoos l = Loos { loos_lat = l

,loos_op = lat_inf l

,loos_e = lat_topEl l

,loos_z = lat_botEl l }

lat_supLoos l = Loos { loos_lat = l

3.4. A MODULE FOR L-FUZZY RELATIONS 99

,loos_op = lat_sup l

,loos_e = lat_botEl l

,loos_z = lat_topEl l }

Obviously, the neutral and zero elements, respectively, are dual with lat_infLoos and

lat_supLoos.

In the following some auxiliary functions are defined. Notice, that they are not exported.
Later on, we want to provide different functions to access certain entries of L-fuzzy relations
and to set/update/read them. Thus, we provide the functions

updateAtBy :: (a -> a) -> Int -> Int -> [[a]] -> [[a]]

updateAtBy f i j mat = let

matSplitted = splitAt i mat

rowSplitted = splitAt j (head $ snd matSplitted)

in (fst matSplitted)++[(fst rowSplitted)++

(f (head $ snd rowSplitted) : tail(snd rowSplitted))]++

(tail $ snd matSplitted)

insertAt :: Int -> Int -> a -> [[a]] -> [[a]]

insertAt i j el = updateAtBy (const el) i j

for this purpose. They are different in the manner that insertAt only inserts an element el

in a matrix mat at position (i,j), and updateAtBy updates the element in question using the

unary function f.

For error handling we provide the following error message to inform the user properly.

srcTrgError :: String

srcTrgError = "Underlying sources/targets not suitable !"

Hence, we are ready to implement the standard operations for L-fuzzy relations. To avoid
name space conflicts, all standard functions for L-fuzzy relations will be started by f.
The inclusion operation is delivered by the following function.

fIncl :: (Eq obj1, Eq obj2) => FRel e obj1 obj2 -> FRel e obj1 obj2 -> Bool

fIncl rel1 rel2 = let l = lat rel1

in if (src rel1)==(src rel2) && (trg rel1) == (trg rel2) then

fIncl’ l (rel rel1) (rel rel2)

else error srcTrgError

where

100 CHAPTER 3. EXTENDING RATH

fIncl’ l [] [] = True

fIncl’ l ([]:r1s) ([]:r2s) = fIncl’ l r1s r2s

fIncl’ l ((x:xs):r1s) ((y:ys):r2s) = (lat_lEq l x y) &&

fIncl’ l (xs:r1s) (ys:r2s)

The inclusion check is done componentwise and immediately finished when two elements are

found that are not in the corresponding order relation. Notice that our error detection is

restricted to determining whether the matrices are compatible with respect to their sources

and targets. We do not test whether the matrix given in rel really corresponds to the given

source and target, respectively. This has to be done manually by the user after constructing

the L-fuzzy relation. To do so, the test functions introduced later on can be used. With

this restriction we are able to guarantee consistency and acceptable run times.

The next step is to provide join, meet and composition operations. We start with operations
derived from loos’. Since standard join and meet constitute a loos we then can rely on these
functions.

fZip :: (Eq obj1, Eq obj2) =>

(e -> e -> e) -> FRel e obj1 obj2 -> FRel e obj1 obj2 -> FRel e obj1 obj2

fZip f rel1 rel2 = let l = lat rel1

in

if (src rel1)==(src rel2) && (trg rel1) == (trg rel2) then

FRel l (src rel1) (trg rel2) $

zipWith (zipWith f) (rel rel1) (rel rel2)

else error srcTrgError

fOpLoos :: (Eq obj1, Eq obj2) =>

Loos e -> FRel e obj1 obj2 -> FRel e obj1 obj2 -> FRel e obj1 obj2

fOpLoos loos = fZip (loos_op loos)

fCompLoos :: (Eq obj2) =>

Loos e -> FRel e obj1 obj2 -> FRel e obj2 obj3 -> FRel e obj1 obj3

fCompLoos loos rel1 rel2 =

let l = lat rel1

in if (trg rel1)==(src rel2)then

FRel l (src rel1) (trg rel2)

[[foldr1 (lat_sup l) $ zipWith (loos_op loos) x [y!!i|y<-rel rel2]

| i<-[0..length (head $ rel rel2)-1]]

| x<-rel rel1]

else error srcTrgError

3.4. A MODULE FOR L-FUZZY RELATIONS 101

The key functionality for derived join/meet operations is established in fZip which takes

two L-fuzzy relations and then concatenates them using a given binary function f. Hence,

fOpLoos can use fZip parametrized by the loos operator loos_op of loos. Finally, the derived

composition operator is delivered by fCompLoos.

Using lat_infLoos and lat_supLoos from above, we are now able to provide the standard
operations.

fJoin,fMeet :: (Eq obj1, Eq obj2) =>

FRel e obj1 obj2 -> FRel e obj1 obj2 -> FRel e obj1 obj2

fJoin rel1 = fOpLoos (lat_supLoos $ lat rel1) rel1

fMeet rel1 = fOpLoos (lat_infLoos $ lat rel1) rel1

fComp :: (Eq obj2) => FRel e obj1 obj2 -> FRel e obj2 obj3 -> FRel e obj1 obj3

fComp rel1 = fCompLoos (lat_infLoos $ lat rel1) rel1

Conversion and the up/down operators are implemented as follows.

fConv :: FRel e obj1 obj2 -> FRel e obj2 obj1

fConv rel1 = FRel (lat rel1) (trg rel1) (src rel1) (transpose $ rel rel1)

fUp,fDown :: FRel e obj1 obj2 -> FRel e obj1 obj2

fUp rel1 = let l = lat rel1

in FRel l (src rel1) (trg rel1) $

map (map (\x -> if lat_lEq l x $ lat_botEl l then x

else lat_topEl l)) $ rel rel1

fDown rel1 = let l = lat rel1

in FRel l (src rel1) (trg rel1) $

map (map (\x -> if lat_lEq l (lat_topEl l) x then x

else lat_botEl l)) $ rel rel1

Now, we want to introduce some standard relations which have to be used to construct any
other relation componentwise.

fScalar :: Lat e -> e -> [obj1] -> FRel e obj1 obj1

fScalar e el s = let lS = length s

botEl = lat_botEl e

in FRel e s s [replicate i botEl ++

(el : replicate (length s-i-1) botEl)

102 CHAPTER 3. EXTENDING RATH

| i<-[0..length s-1]]

fId :: Lat e -> [obj1] -> FRel e obj1 obj1

fId e = fScalar e (lat_topEl e)

fTop,fBot :: Lat e -> [obj1] -> [obj2] -> FRel e obj1 obj2

fTop e s t = FRel e s t $ replicate (length s)

(replicate (length t) $ lat_topEl e)

fBot e s t = FRel e s t $ replicate (length s)

(replicate (length t) $ lat_botEl e)

From the function names it is obvious which kind of relation they implement. All routines

have to get the underlying lattice as well as the source and target object. Since source and

target are identical with the scalars and the identity relation, we need only one parameter.

Notice that the set of all scalars for a given source plays an important role within Goguen

categories since it is isomorphic to the elements of the entry lattice.

As indicated by the α-cut Theorem (cf. Theorem 2.6.2), the left and right residual as well

as the symmetric quotient of two given L-fuzzy relations are important operations within

Goguen categories. Before we can implement them, we have to undergo some efficiency

considerations. The following lemma characterizes the entries of the left residual. Notice that

the underlying definition Q; R v S ⇔ Q v (S/R) indicates that new residued operations

can be derived from lattice-ordered semigroups. Hence, we consider the general case.

Lemma 3.4.1. Let R : B → C and S : A → C be two L-fuzzy relations over L. Fur-

thermore, let ∗ be a loos based derived operation on L. Then the left residual S/∗R can be

computed componentwise by (S/∗R)(x, y) =
∨{a ∈ L | ∀z : a ∗R(y, z) ≤ S(x, z)}.

Proof. We show

∀x, z : (Q;∗R)(x, z) ≤ S(x, z) ⇔ ∀x, y : Q(x, y) ≤ ∨{a ∈ L | ∀z : a ∗R(y, z) ≤ S(x, z)} .

The assertion immediately follows from

∀x, y : Q(x, y) ≤ ∨{a ∈ L | ∀z : a ∗R(y, z) ≤ S(x, z)}
⇔ ∀x, y, z : Q(x, y) ∗R(y, z) ≤ S(x, z)

⇔ ∀x, z :
∨
y
(Q(x, y) ∗R(y, z)) ≤ S(x, z)

⇔ ∀x, z : (Q;∗R)(x, z) ≤ S(x, z).

3.4. A MODULE FOR L-FUZZY RELATIONS 103

Since Q\∗S = (S`/∗Q`)` we automatically have that (Q\∗S)(y, z) can be computed by
∨{a ∈ L | ∀x : a ∗Q(x, y) ≤ S(x, z)}.

With the implementation, we again first introduce functions for derived operations and then
give the standard variants as a special case.

fLResLoos :: (Eq obj1, Eq obj2, Eq obj3) => Loos e ->

FRel e obj1 obj3 -> FRel e obj2 obj3 -> FRel e obj1 obj2

fLResLoos loos t s =

let targ = src s

sour = src t

l = lat t

sup = lat_sup l

lEq = lat_lEq l

f = loos_op loos

in FRel { lat = l

,src = sour

,trg = targ

,rel = part (length targ)

[let sl = (rel s !! y)

tl = (rel t !! x)

els = [el | el<-lat_elements l, and $

zipWith (\a b -> lEq (f el a) b) sl tl]

in if length els>1 then foldl1 sup els

else head els

| x<-[0..length sour-1], y<-[0..length targ-1]] }

where

part i [] = []

part i xs = let (s1,s2) = splitAt i xs

in s1 : part i s2

fRResLoos,fSyQLoos :: (Eq obj1, Eq obj2, Eq obj3) => Loos e ->

FRel e obj1 obj2 -> FRel e obj1 obj3 -> FRel e obj2 obj3

fRResLoos loos s t = fConv $ fLResLoos loos (fConv t) (fConv s)

fSyQLoos loos s t = fMeet (fRResLoos loos s t) $ fLResLoos loos (fConv s) (fConv t)

fLRes :: (Eq obj1, Eq obj2, Eq obj3) =>

104 CHAPTER 3. EXTENDING RATH

FRel e obj1 obj3 -> FRel e obj2 obj3 -> FRel e obj1 obj2

fLRes t = fLResLoos (lat_infLoos $ lat t) t

fRRes,fSyQ :: (Eq obj1, Eq obj2, Eq obj3) =>

FRel e obj1 obj2 -> FRel e obj1 obj3 -> FRel e obj2 obj3

fRRes s = fRResLoos (lat_infLoos $ lat s) s

fSyQ s t = fMeet (fRRes s t) $ fLRes (fConv s) (fConv t)

Obviously, the realization of fLResLoos directly corresponds to Lemma 3.4.1. The other
functions can rely on it so that no separate implementations are necessary. Notice that with
fSyQLoos and fSyq we definitely have to use the fMeet function to concatenate the left resp.
right residual. This comes due to the fact that the and operator of the underlying definition
X v syQ(Q, S), iff X v (Q\S) and X v (Q`/S`) has to be represented by fMeet.
As we saw in the Goguen module, we need a standard routine that generates certain derived
operations within Goguen categories. This is done by the following function.

fDerOp :: (Eq obj) => String -> Loos e ->

FRel e obj obj -> FRel e obj obj -> FRel e obj obj

fDerOp l =

case l of

"Meet" -> fOpLoos

"Comp" -> fCompLoos

"LRes" -> fLResLoos

"RRes" -> fRResLoos

"syQ" -> fSyQLoos

The label l indicates which kind of derived operation shall be generated. According to the

definition of gog_derOp, the user only has to provide the loos to have a derived operation

within Goguen categories.

Up to now, we are only able to handle given L-fuzzy relations. But, we need some suitable
functions to construct them in a componentwise manner. The most simple operation is to
read an element at a given position in the relation.

fEntryAt :: FRel e obj1 obj2 -> (Int,Int) -> e

fEntryAt rel1 (i,j) = ((rel rel1) !! i) !! j

The user has to give the row i and the column j of the entry he wants to read. Obviously,

i and j have to describe the position in the matrix of the relation rel1 so that we can rely

on the !! operator. Notice that the row and column count, respectively, start with 0.

3.4. A MODULE FOR L-FUZZY RELATIONS 105

The following functions can be used to update given L-fuzzy relations. This can be done
threefold. First, the user can give a list of tuples, each tuple containing an index pair and
the element that shall be set. This is covered by fUpd which relies on the above defined
function insertAt.

fUpd :: FRel e obj1 obj2 -> [((Int,Int),e)] -> FRel e obj1 obj2

fUpd rel1 els = FRel (lat rel1) (src rel1) (trg rel1) $ insertAll els (rel rel1)

where

insertAll [] m = m

insertAll (((i,j),x):xs) m = insertAt i j x $ insertAll xs m

The second variant is to update an element in the matrix by a unary function f. Here we can
differentiate two cases. If one explicitly wants to give the indices that shall be updated, one
can use fUpdUnBy. If the whole matrix shall be updated, the function fUpdAllUnBy, which
makes use of the above defined function updateAtBy, is to use.

fUpdUnBy :: (e -> e) -> FRel e obj1 obj2 -> [(Int,Int)] -> FRel e obj1 obj2

fUpdUnBy f rel1 ixs = FRel (lat rel1) (src rel1) (trg rel1) $

updateAllBy f ixs (rel rel1)

where

updateAllBy _ [] m = m

updateAllBy f ((i,j):ixs) m = updateAtBy f i j $

updateAllBy f ixs m

fUpdAllUnBy :: (e -> e) -> FRel e obj1 obj2 -> FRel e obj1 obj2

fUpdAllUnBy f rel1 = FRel (lat rel1) (src rel1) (trg rel1)

[[f y | y<-x] | x<-rel rel1]

Notice that these three functions would suffice to construct and manipulate L-fuzzy relations
quite comfortably. But, one may want to update certain entries by a binary function applied
to the old entry and another (given) element. A typical scenario is the “partial join” operation
of two matrices where only some selected fields shall be joined. We support this kind of
operation by the function

fUpdBinBy :: (e -> e -> e) -> FRel e obj1 obj2 -> [((Int,Int),e)] ->

FRel e obj1 obj2

fUpdBinBy f rel1 els = FRel (lat rel1) (src rel1) (trg rel1) $

updateAllBy f els (rel rel1)

where

updateAllBy _ [] m = m

updateAllBy f (((i,j),e):xs) m = updateAtBy (f e) i j $

106 CHAPTER 3. EXTENDING RATH

updateAllBy f xs m

which again makes use of updateAtBy. It takes a binary function together with a list of tuples,

each tuple containing an index pair and an element, and updates the entries in question.

Obviously, fUpdBinBy could be easily reduced to fUpdUnBy. But, for efficiency considerations,

we again implement updateAllBy with the only difference that f here is a binary (instead of

unary) function.

Thus, we have the basic functionality. Later on, we want to instantiate different kinds of
relational categories using this module. From the underlying definitions we know that the
relations (morphisms) have to form certain kinds of structures. Hence, we can support these
instantiations by providing functions that automatically compute certain L-fuzzy relations
between given source and target. The function

getFRelsBy :: (FRel e obj1 obj2 -> Bool) -> Lat e -> [obj1] -> [obj2] ->

[FRel e obj1 obj2]

getFRelsBy pr e s t =

let lS = length s

lT = length t-1

in filter pr [FRel e s t x | x <- map (split $ lT+1)

(allocate (length s*length t-1) e)]

where

allocate 0 e = map (:[]) $ lat_elements e

allocate n e = [o:m | o<-lat_elements e, m<-allocate (n-1) e]

split _ [] = []

split i xs = let s = splitAt i xs

in fst s : split i (snd s)

takes a unary predicate pr on the set of all L-fuzzy relations between source s and target t
and an entry lattice e. It then returns a list of all L-fuzzy relations between s and t fulfilling
pr. This is done with the help of two functions. First, allocate constructs all possibilities
to combine length s * length t elements of the entry lattice. It returns a list for every
combination. Obviously, the length of such a list exactly corresponds to the number of
entries in a relation between s and t. To achieve our matrix representation, we then use the
split function to split the lists. The result then can be used to construct the final L-fuzzy
relations. At the end we filter out the relations fulfilling pr.
The standard variant of getFRelsBy returns all L-fuzzy relations.

getFRels :: Lat e -> [obj1] -> [obj2] -> [FRel e obj1 obj2]

getFRels = getFRelsBy $ const True

3.4. A MODULE FOR L-FUZZY RELATIONS 107

Good examples for a special predicates are “is crisp” or “is total”.

The function

getAllFRelsBy :: Eq obj =>

(FRel e obj obj -> Bool) -> Lat e -> [[obj]] -> [[FRel e obj obj]]

getAllFRelsBy pr entry objs = let os = nub objs

in [getFRelsBy pr entry src trg | src<-os,trg<-os]

goes a step further. It takes a list of sources and targets (objs) and computes all L-fuzzy
relations fulfilling the predicate pr between any two elements out of objs. With this it
relies on getFRelsBy. Later on, getAllFRelsBy can be used in quite a comfortable way to
instantiate certain relational categories. Furthermore, we see a little demerit of Haskell’s
strong typing. We can only use one type of sources/targets because we put them all together
into one list. The same is true for the resulting L-fuzzy relations.
Again, we provide a standard version that computes all relations.

getAllFRels :: Eq obj => Lat e -> [[obj]] -> [[FRel e obj obj]]

getAllFRels = getAllFRelsBy $ const True

Before we come to the end, we want to provide two auxiliary functions which will be used
within our module for fuzzy controllers, later on.

fExtSrc,fExtTrg :: [[obj]] -> FRel e obj obj -> [[obj]] ->

FRel e obj obj

fExtSrc usrcs r lsrcs = FRel (lat r) (concat usrcs++src r++concat lsrcs) (trg r)

(rel (fBot (lat r) (concat usrcs) $ trg r)++rel r++

rel (fBot (lat r) (concat lsrcs) $ trg r))

fExtTrg ltrgs r rtrgs =

FRel (lat r) (src r) (concat ltrgs++trg r++concat rtrgs)

(zipWith (++) (rel $ fBot (lat r) (src r) $ concat ltrgs) $

zipWith (++) (rel r) (rel $ fBot (lat r) (src r) $ concat rtrgs))

Their manner of function shall be explained with an example. Suppose, R : A1 → B is a

relation and A2 is a set. If we want to extend R to be of type A1 + A2 → B, we have to use

the induced crisp injection ι : A1 → A1+A2 and compute ι`1 ; R. But, this computation does

nothing more than to add |A2| zero rows to R. Hence, we can avoid to use the composition

operator and, thus, can compute the term rather efficiently. This is exactly what is done by

fExtSrc. The parameter usrcs is a list of objects and causes fExtSrc to extend the given

relation r to the upper side. Analogously, lsrcs is used to extend r to the lower side. The

108 CHAPTER 3. EXTENDING RATH

function fExtTrg does exactly the same, but extends the target of r. This corresponds to

adding zero columns to the left resp. right side of r.

Last but not least, we provide a consistency check.

check :: FRel e obj1 obj2 -> Bool

check r = length (rel r) == length (src r) &&

and (map ((== length (trg r)).length) $ rel r)

We test whether the given matrix is consistent with the given source and target of the

L-fuzzy relation, respectively.

At this point the implemented functions are sufficient for our purposes. We are now ready

to provide suitable lattice instantiations as well as instantiations of the relational categories.

3.5 Lattices of L-fuzzy relations

In this section we deliver predefined functions to instantiate certain kinds of lattices of
L-fuzzy relations.

module LFuzzyRelLattices (fRelPoSetBy ,fRelPoSet ,fRelPoSetList ,

fRelUSemiLatBy,fRelUSemiLat,fRelUSemiLatList,

fRelLSemiLatBy,fRelLSemiLat,fRelLSemiLatList,

fRelLatBy ,fRelLat ,fRelLatList) where

import LFuzzyRel

import Lattice

The export list shows the structures that can be generated. To do so, we have to import
the modules shown above.
We start with the weakest structure PoSet.

fRelPoSetBy :: (Eq obj1, Eq obj2) =>

(FRel e obj1 obj2 -> Bool) -> Lat e ->

[obj1] -> [obj2] -> PoSet (FRel e obj1 obj2)

fRelPoSetBy pr e s t = PoSet { poSet_isElem = \x -> src x==s && trg x==t && pr x

,poSet_elements = getFRelsBy pr e s t

,poSet_lEq = fIncl }

fRelPoSet :: (Eq obj1, Eq obj2) =>

3.5. LATTICES OF L-FUZZY RELATIONS 109

Lat e -> [obj1] -> [obj2] -> PoSet (FRel e obj1 obj2)

fRelPoSet = fRelPoSetBy $ const True

fRelPoSetList :: (Eq e, Eq obj1, Eq obj2) =>

Lat e -> [FRel e obj1 obj2] -> PoSet (FRel e obj1 obj2)

fRelPoSetList e rs = PoSet { poSet_isElem = flip elem $ rs

,poSet_elements = rs

,poSet_lEq = fIncl }

As shown here, posets can be generated threefold. To get the poset of all relations between

source s and target t fulfilling a unary predicate pr, one can use the function fRelPoSetBy.

It relies on getFRelsBy to generate the requested L-fuzzy relations. The test whether a

certain relation belongs to this poset is done by checking source and target of the relation in

question as well as the predicate property. As another possibility, one could check whether

the relation is in the element list poSet_elements. But, we think testing a single predicate

is faster in the most general cases (e.g., for the crispness property). Furthermore, we avoid

a more detailed parametrization since a user can easily instantiate “special” posets himself.

The second variant then is the standard version. It delivers the poset of all L-fuzzy relations

between given source and target.

The last function fRelPoSetList takes a list of the relations that shall belong to the cre-

ated poset. It then delivers the requested structure. Notice that we do not perform any

consistency checks with the given relation list.

Having this, we can proceed with lattice structures. The construction of upper semilattices
is shown with the next three functions.

fRelUSemiLatBy :: (Eq obj1, Eq obj2) =>

(FRel e obj1 obj2 -> Bool) -> Lat e ->

[obj1] -> [obj2] -> USemiLat (FRel e obj1 obj2)

fRelUSemiLatBy pr e s t = USemiLat { uSemiLat_poSet = fRelPoSetBy pr e s t

,uSemiLat_sup = fJoin

,uSemiLat_topEl = fTop e s t }

fRelUSemiLat :: (Eq obj1, Eq obj2) =>

Lat e -> [obj1] -> [obj2] -> USemiLat (FRel e obj1 obj2)

fRelUSemiLat = fRelUSemiLatBy $ const True

fRelUSemiLatList :: (Eq e, Eq obj1, Eq obj2) =>

Lat e -> [FRel e obj1 obj2] -> USemiLat (FRel e obj1 obj2)

110 CHAPTER 3. EXTENDING RATH

fRelUSemiLatList e rs = let

s = if null rs then [] else src $ head rs

t = if null rs then [] else trg $ head rs

in

USemiLat { uSemiLat_poSet = fRelPoSetList e rs

,uSemiLat_sup = fJoin

,uSemiLat_topEl = fTop e s t }

Notice that with fRelUSemiLatList we have to catch the case that the relation list is empty.

In this situation we take the empty list as source and target, respectively, to construct the

top element uSemiLat_topEl.

From the definitions of the underlying data types we know that we need to compute the
atoms for lower semi lattices and lattices as well as the join resp. meet-irreducible elements
for lattices. To do so, we first have to make ourselves clear which L-fuzzy relations over a
certain lattice are irreducible and atoms, respectively. Obviously, an L-fuzzy relation is an
atom or irreducible, respectively, if and only if all occurrent entries are.
We support this by providing the auxiliary function specialEls.

specialEls :: Lat e -> FRel e obj1 obj2 -> [e] -> [FRel e obj1 obj2]

specialEls e bt xs = [fUpd bt [((i,j),x)]

| i<-[0..length (src bt)-1],j<-[0..length (trg bt)-1],x<-xs]

First it takes the entry lattice e. For efficiency reasons the parameter bt is useful. If we
consider the Boolean lattice with atoms a and b with least/greatest element 0/1, the lattice
of all L-fuzzy relations between source {1, 2} and target {3, 4} has the following atoms and
join-irreducible elements
(

a 0

0 0

)
,

(
0 a

0 0

)
,

(
0 0

a 0

)
,

(
0 0

0 a

)
,

(
b 0

0 0

)
,

(
0 b

0 0

)
,

(
0 0

b 0

)
,

(
0 0

0 b

)
.

The meet-irreducible elements are given by
(

a 1

1 1

)
,

(
1 a

1 1

)
,

(
1 1

a 1

)
,

(
1 1

1 a

)
,

(
b 1

1 1

)
,

(
1 b

1 1

)
,

(
1 1

b 1

)
,

(
1 1

1 b

)
.

Hence, for the atoms/join-irreducible elements it is useful to successively update the bottom

relation between given source and target. For the meet-irreducible elements it is better to

use the full relation. Which one to use is told by the parameter bt. Last but not least, the

atoms/join- resp. meet-irreducible elements of the entry lattice e have to be given in the

parameter xs so that the computation can be done.

The next functions generate lower semilattices in analogy to the poset functions above.

3.5. LATTICES OF L-FUZZY RELATIONS 111

fRelLSemiLatBy :: (Eq obj1, Eq obj2) =>

(FRel e obj1 obj2 -> Bool) -> Lat e ->

[obj1] -> [obj2] -> LSemiLat (FRel e obj1 obj2)

fRelLSemiLatBy pr e s t =

LSemiLat { lSemiLat_poSet = fRelPoSetBy pr e s t

,lSemiLat_inf = fMeet

,lSemiLat_botEl = fBot e s t

,lSemiLat_atomS = filter pr (specialEls e (fBot e s t) $

lat_atomS e) }

fRelLSemiLat :: (Eq obj1, Eq obj2) =>

Lat e -> [obj1] -> [obj2] -> LSemiLat (FRel e obj1 obj2)

fRelLSemiLat = fRelLSemiLatBy $ const True

fRelLSemiLatList :: (Eq e, Eq obj1, Eq obj2) =>

Lat e -> [FRel e obj1 obj2] -> LSemiLat (FRel e obj1 obj2)

fRelLSemiLatList e rs =

let

s = if null rs then [] else src $ head rs

t = if null rs then [] else trg $ head rs

in

LSemiLat { lSemiLat_poSet = fRelPoSetList e rs

,lSemiLat_inf = fMeet

,lSemiLat_botEl = fBot e s t

,lSemiLat_atomS = specialEls e (fBot e s t) $ lat_atomS e }

There is nothing special to mention except the fact that we have to take care with the

computation of the atoms with fRelLSemiLatBy. Since the L-fuzzy relations between given

source and target fulfilling a certain predicate may form a true sub(semi)lattice of the lattice

of all L-fuzzy relations, we have to filter out the atoms fulfilling the predicate pr.

Analogously we provide standard routines to determine the lattice of certain L-fuzzy rela-
tions between given source and target.

fRelLatBy :: (Eq obj1, Eq obj2) =>

(FRel e obj1 obj2 -> Bool) -> Lat e ->

[obj1] -> [obj2] -> Lat (FRel e obj1 obj2)

fRelLatBy pr e s t =

Lat { lat_poSet = fRelPoSetBy pr e s t

,lat_sup = fJoin

112 CHAPTER 3. EXTENDING RATH

,lat_inf = fMeet

,lat_botEl = fBot e s t

,lat_topEl = fTop e s t

,lat_atomS = filter pr (specialEls e (fBot e s t) $ lat_atomS e)

,lat_jIrredS = filter pr (specialEls e (fBot e s t) $ lat_jIrredS e)

,lat_mIrredS = filter pr (specialEls e (fTop e s t) $ lat_mIrredS e) }

fRelLat :: (Eq obj1, Eq obj2) =>

Lat e -> [obj1] -> [obj2] -> Lat (FRel e obj1 obj2)

fRelLat = fRelLatBy $ const True

fRelLatList :: (Eq e, Eq obj1, Eq obj2) =>

Lat e -> [FRel e obj1 obj2] -> Lat (FRel e obj1 obj2)

fRelLatList e rs =

let

s = if null rs then [] else src $ head rs

t = if null rs then [] else trg $ head rs

in Lat { lat_poSet = fRelPoSetList e rs

,lat_sup = fJoin

,lat_inf = fMeet

,lat_botEl = fBot e s t

,lat_topEl = fTop e s t

,lat_atomS = specialEls e (fBot e s t) $ lat_atomS e

,lat_jIrredS = specialEls e (fBot e s t) $ lat_jIrredS e

,lat_mIrredS = specialEls e (fTop e s t) $ lat_mIrredS e }

3.6 Relational categories of L-fuzzy relations

In this section we provide suitable instances of certain relational categories using the module
LFuzzyRel. We then have the bridge to a component-free (i.e., algebraic) treatment of L-
fuzzy relations.

module LFuzzyRelCategories (fRelCat,fRelAll,fRelDistrAll,fRelDivAll,fRelDedCat,

fRelGogCat,gogCatFromAnti) where

import LFuzzyRel

import LFuzzyRelLattices

import RelAlg

3.6. RELATIONAL CATEGORIES OF L-FUZZY RELATIONS 113

import List (nub)

import Goguen

import Lattice

From the export list one can see the relational categories covered by this module. Further-

more, the function gogCatFromAnti is exported. It implements the standard construction of

a Goguen category from given antimorphisms between the set of scalars over an entry lattice

L and the lattice of all crisp L-fuzzy relations over L.

We start with categories.

fRelCat :: (Eq e, Eq obj) => Lat e -> [[FRel e obj obj]] ->

Cat [obj] (FRel e obj obj)

fRelCat entryLat allMs =

let objs = nub $ foldr (\(rel:rels) -> (src rel:) . (trg rel :)) [] $

filter (not.null) allMs

test o1 o2 f = if elem o1 objs && elem o2 objs then f

else error "Illegal objects!"

in Cat { cat_isObj = flip elem $ objs

,cat_isMor = \o1 o2 z -> test o1 o2 $

elem z (head $ dropWhile (\(m:ms) -> (src m/=o1) ||

(trg m/=o2)

) allMs)

,cat_objects = objs

,cat_homset = \o1 o2 -> test o1 o2 $

let l = dropWhile (\(m:ms) -> (src m/=o1) ||

(trg m/=o2)) allMs

in if null l then [] else head l

,cat_source = src

,cat_target = trg

,cat_idmor = fId entryLat

,cat_comp = fComp }

From the typing we can see the step from the componentwise consideration to the algebraic

level. As we aim at standard routines, we avoid unnecessarily manifold parametrizations.

Obviously, we only need the entry lattice entryLat and all morphisms (i.e., all L-fuzzy
relations) allMs over entryLat that shall form the category. Notice that we demand the

morphisms of allMs to be ordered by source and target. Remember that the functions

getFRelsBy and getAllFRelsBy (cf. Section 3.4), respectively, can be used to support the

114 CHAPTER 3. EXTENDING RATH

determination of allMs.

Finally, we are able to easily compute the list of objects objs and the remaining functions

of the data structure Cat.

The rest can be implemented analogously. The different allegories are provided by the next
three functions.

fRelAll :: (Eq e, Eq obj) => Lat e -> [[FRel e obj obj]] ->

All [obj] (FRel e obj obj)

fRelAll entryLat allMs = All { all_cat = fRelCat entryLat allMs

,all_converse = fConv

,all_meet = fMeet

,all_incl = fIncl }

fRelDistrAll :: (Eq e, Eq obj) => Lat e -> [[FRel e obj obj]] ->

DistrAll [obj] (FRel e obj obj)

fRelDistrAll entryLat allMs =

DistrAll { distrAll_all = fRelAll entryLat allMs

,distrAll_bottom = fBot entryLat

,distrAll_join = fJoin

,distrAll_atomset = \s t -> lat_atomS $ fRelLat entryLat s t

,distrAll_atoms = \m -> let fLat = fRelLat entryLat (src m) (trg m)

in filter (\y -> lat_lEq fLat y m) $

lat_atomS fLat }

fRelDivAll :: (Eq e, Eq obj) => Lat e -> [[FRel e obj obj]] ->

DivAll [obj] (FRel e obj obj)

fRelDivAll entryLat allMs =

DivAll { divAll_distrAll = fRelDistrAll entryLat allMs

,divAll_rres = fRRes

,divAll_lres = fLRes

,divAll_syq = fSyQ }

The implementations are straightforward. We use the standard functions of the module

LFuzzyRel to compute the resulting allegory. The same is true for the distributive allegory.

But, here we additionally need the Lattice and LFuzzyRelLatticesmodules to determine the

atom set of the given L-fuzzy relations between source and target (distrAll_atomset) resp.

the atoms that can be used to compute a given morphism (distrAll_atoms). For division

allegories we need the residual operations. Here we use the standard implementations fRRes,

fLRes and fSyQ, respectively, from the module LFuzzyRel.

3.6. RELATIONAL CATEGORIES OF L-FUZZY RELATIONS 115

Finally, Dedekind and Goguen categories can be instantiated through the following functions.
They again only use standard routines of the module LFuzzyRel.

fRelDedCat :: (Eq e, Eq obj) => Lat e -> [[FRel e obj obj]] ->

Ded [obj] (FRel e obj obj)

fRelDedCat entryLat allMs = Ded { ded_divAll = fRelDivAll entryLat allMs

,ded_top = fTop entryLat }

fRelGogCat :: (Eq e, Eq obj) => Lat e -> [[FRel e obj obj]] ->

Gog (Loos e) [obj] (FRel e obj obj)

fRelGogCat entryLat allMs = Gog { gog_ded = fRelDedCat entryLat allMs

,gog_up = fUp

,gog_down = fDown

,gog_derOp = fDerOp }

At the end we provide a function to generate a Goguen category G from given antimor-

phisms. For this construction we normally would have to use antimorhpisms f : ScG(A) →
CrispG [A,B] for given objects A and B. For L-fuzzy relations this corresponds to the com-

putation R =
⊔

u∈L
αu

A; f(αu
A) known from Section 2.4. This is rather inefficient. But, we

know that the set of scalars of a given source is isomorphic to the set of elements of the

entry lattice. We use this fact to gain efficiency here. Consider the following lemma.

Lemma 3.6.1. Let L be a complete Brouwerian lattice, R : A → B be an L-fuzzy relation

and f : L → CrispL[A, B] be an antimorphism such that R =
⊔

u∈L
αu

A; f(u). Then we have

R =
⊔

u∈L
(>> u

A,A u f(u)).

Proof. This is immediately seen by the computation

R(x, z) = [
⊔

u∈L
(αu

A; f(u))](x, z)

=
∨

u∈L

∨
y∈A

(αu
A(x, y) ∧ f(u)(y, z)) (definition ;)

=
∨

u∈L
(αu

A(x, x) ∧ f(u)(x, z)) (definition αu
A)

=
∨

u∈L
(u ∧ f(u)(x, z)) (definition αu

A)

=
∨

u∈L
(>> u

AB(x, z) ∧ f(u)(x, z)) (definition >> u
AB)

= [
⊔

u∈L
(>> u

AB u f(u))](x, z).

116 CHAPTER 3. EXTENDING RATH

Notice that we do not need the antimorphism property of f in the proof. The lemma indeed
is true for arbitrary mappings. We used antimorphisms only for convenience.
Hence, we can finally compute a Goguen category given by certain antimorphisms.

gogCatFromAnti :: (Eq e, Eq obj) => Lat e ->

[[e -> FRel e obj obj]] -> Gog (Loos e) [obj] (FRel e obj obj)

gogCatFromAnti e ms = fRelGogCat e $ map (computeRels $ lat_jIrredS e) ms

where

computeRels ir morphs = [foldl1 fJoin [fUpdAllUnBy (lat_inf e irEl) (m irEl)

| irEl<-ir] | m<-morphs]

Chapter 4

Fuzzy Control Based on Goguen

Categories

In this chapter we want to examine a very important application of Goguen categories.

Fuzzy controllers have become a widespread interest of research over the last years. Their

applications in the real world are manyfold and reach from controllers for traffic lights

to washing machines. With these applications, fuzzy controllers often have to steer safety

sensitive devices. Hence, it would be nice to have an algebraic framework for such controllers

to make it possible to prove certain properties. M. Winter in [12] showed that the algebra

of Goguen categories is suitable for this purpose.

After an introduction to fuzzy control, we present an algebraic model for a certain kind of

fuzzy controller. Then we are ready to provide the mathematical base for the construction

of the Haskell module. We introduce certain operations on fuzzy controllers and show their

behavior. Finally, we provide a framework to construct and test such controllers within the

algebraic surrounding of Goguen categories.

4.1 Introduction to fuzzy controllers

In the following we want to have a look at fuzzy controllers based on the linguistic model

(explained below). We want to mention that there are also other approaches. But, they

are not suitable for our purposes and, hence, we refer to the generous literature for further

reading (e.g., [7]).

The linguistic model is interesting for us since it induces a kind of relational semantics.

117

118 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

Hence, it can be represented by certain L-fuzzy relations. In the following we explain general

controllers based on the linguistic model and then switch to so called Mamdani controllers

which are of special interest in practice as we will see later on. The structure of a fuzzy

controller is shown in Figure 4.1. The controller has to get an input value (e.g. a velocity),

Preprocessing PostprocessingFuzzification Defuzzification- - - -

Rulebase

Inference

?
6

Figure 4.1: The general structure of a fuzzy controller

which often has to be extracted from a technical process. This is mostly done using certain

measuring devices. These devices then transform an analog signal into a digital one, which

can be interpreted by the controller. This whole procedure of generating an interpretable

input value is called preprocessing. With the linguistic model, the input variables are called

linguistic variables.

Having the input, the fuzzy controller has to transform the input value into an output

value, which then can be used to steer the technical process. To do so, linguistic entities are

used. They are fuzzy sets ranging over the input resp. output space of the controller. For

a controller that regulates the speed of a certain vehicle, one could, for example, introduce

the input entities LOW and HIGH. An entry in the corresponding fuzzy set then gives the

degree to which the vehicle is slow resp. fast. The table below shows exemplary how these

entities are interpreted.

v = 10 20 30 40 50 60 70 80 90 100 110
LOW = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.0}
HIGH = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9}

With the linguistic entities for the input, the controller is able to interprete given input

values. Mapping the input to the input entities is also called fuzzification.

The next step is to react on the input and generate appropriate steering signals. Again,

we need linguistic entities (output entities). In our example, this could be SLOWER and

FASTER. Mapping the output entities to the output value then is called defuzzification.

But, we furthermore need some rules, which express when the vehicle should go slower or

4.1. INTRODUCTION TO FUZZY CONTROLLERS 119

faster. For this purpose, we have to provide a rulebase, which includes a finite number of

rules of the form

If xi is Qj then yi is Sk

where xi resp. yi are linguistic variables for the input and output, respectively, and Qj resp.

Sk are input resp. output entities.

Last but not least, the inference engine decides to which degree a certain rule is applicable.

Rulebase and inference engine together are often called the core of a controller. Obviously,

these two parts are the most important ones.

Finally, the output value has to be transformed into a steering signal, which the technical

process can understand. This part is summarized under the notion of postprocessing.

After this short overview we want to go into detail with the rulebase and inference engine.

Inference within the linguistic model

The main question to answer while constructing a fuzzy controller is how the input and

output entities, respectively, shall be connected so that the controller shows the intended

behavior. With this it is important to see that the “If ... then ...” rulebase does not

necessarily correspond to the mathematical implication ⇒. We rather want to express a

causal connection like

If speed is HIGH then braking distance is LONG.

Using this expression we mean that high speed induces a long braking distance. Furthermore,

we want to model that the braking distance decreases with the speed. It is clear that this

fact cannot be expressed using ⇒. This becomes even clearer if we consider the equivalence

of x ⇒ y and ¬x ∨ y.

Our intention with this example can be expressed more generally by using the generalized

modus ponens introduced in [4]. A fuzzy controller has two inputs at any time — the

measured input value from the technical process and the rulebase. The inference of the

output using a certain input and a rule can be visualized by the following scheme :
If x is F then y is G

x is F ′
y is G′

In the example above, the rule
If speed is HIGH then braking distance is HIGH

speed is LOW

braking distance is LOW

120 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

shall be valid. In contrast, the following output shall not be inferred.

If speed is HIGH then braking distance is HIGH
speed is MIDDLE

braking distance is V ERY HIGH

These examples show that the inference engine is a non-trivial construct and strongly de-

pends on the application. Furthermore, we see that after modeling at least one correctness

proof has to be brought about; the following shall hold for all rules in the rulebase :

If x is F then y is G
x is F
y is G

This formula obviously expresses the modus ponens. If it is true for a rule, the controller

is called to be locally correct for this rule. Analogously, it is totally correct if it is locally

correct for all rules.

We now want to describe how to model such a rule inference in the general case. The first

thing we need is a function to interprete the implicative meaning of the “If ... then ...”

phrase. This function can differ from rule to rule, and we do not yet want to restrict it to

be of a specific form. Let “If x is F then y is G” be a rule, L a lattice and F resp. G L-fuzzy
sets over given universes U resp. V . Furthermore, let ¯ : L × L → L be a function. Then

we can define the matrix

MF,G
¯ (x, y) := F (x)¯G(y)

which obviously fixes to which degree an element of the input fuzzy set F shall be mapped to

an element of the output set G. This shows that ¯ really determines the implicative behavior

of the corresponding rule. Hence, we call it the implication function. Notice that ¯ induces

a crisp relation R on L × L with (a1, a2) ∈ R :⇔ a1 ¯ a2 6= 0L. In the following we write

(a1, a2) ∈ ¯ to express this fact. One often uses ¯ = ∧ which seems to be counterintuitive

at first sight. But, consider the case where F and G are crisp and ¯ is the min operator.

Then MF,G
¯ is nothing more than the matrix representing the cross product F ×G.

Now, we can proceed with modeling the inference. Let the input F ′ be an L-fuzzy set over

U . Using the rule from above, we want to deduce the corresponding output. An element

y ∈ V shall be in the output set G′, if there is an x ∈ U such that x ∈ F ′ and (x, y) ∈ ¯. In
other words : The element y shall be in the output set, if there is an x in the input set such

that the fact that x is the input implies y is the output. In the theory of L-fuzzy relations,

this phrase can be expressed using a certain t-norm like loos (L,∗,1L,0L) as “and” operator.
We define

G′(y) :=
∨
{x ∈ U |F ′(x) ∗ (F (x)¯G(y))}

4.1. INTRODUCTION TO FUZZY CONTROLLERS 121

The output G′ obviously directly corresponds to the composition F ′;∗MF,G
¯ using the derived

operation ;∗. The standard variant is given by ∗ = ∧ and, hence, ;∗=;. With this approach,

one has to show F ; MF,G
¯ = G to prove partial correctness of the rule “If x is F then y is G”.

Notice that others than the existence quantifier are thinkable in the formula above. But,

the existence quantifier is mostly used with actual applications.

The next step is to extend the rulebase such that it contains a finite number of rules. We

then have to examine how to connect these rules to a globel inference engine. Let

If x is F1 then y is G1

If x is F2 then y is G2

...

If x is Fn then y is Gn

be our new rulebase whereas F1, ..., Fn resp. G1, ..., Gn are L-fuzzy relations over U resp. V .

Due to the explanations above, this induces n matrices

MF1,G1
¯1

(x, y) := F1(x)¯1 G1(y)

MF2,G2
¯2

(x, y) := F2(x)¯2 G2(y)
...

MFn,Gn
¯n

(x, y) := Fn(x)¯n Gn(y).

Now, let F ′ be the input of our controller. It is clear that we have to combine this input

with every single rule to infer the output. This is done by combining (aggregating) all

interpretaions of the rules to a global matrix and then applying the input to this matrix.

The aggregation is done by a given function ⊕ and the new interpretation matrix is defined

by

M⊕(x, y) := ⊕(MF1,G1
¯1

(x, y), ...,MFn,Gn
¯n

(x, y)).

In the following we denote the to matrices extended version of ⊕ by
⊎
. Notice that this

extension is well-defined since the rulebase (and, thus, the resulting matrix) is finite. Hence,

M⊕ can be computed by
⊎
i

MFi,Gi
¯i

.

Finally, the output is inferred using the formula

G′(F ′) := F ′;∗M⊕. (4.1)

122 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

Mamdani inference

The considerations of the last section show that rule inference based on fuzzy implication

induces a relational calculus to infer the output (cf. Formula 4.1) where we have to store the

additional relation M⊕. The relational computation may cause problems in the case that

the input sets range over a non-discrete universe. This would induce that M has both non-

discrete source and target, respectively. Since the relational calculus is only applicable for

relations of discrete source and target, one would have to discretize the universe. This can

be critical for analytical considerations to show a specific behaviour of a given controller.

An escape can be found by restricting the implication and aggregation function (cf. [8])

which results in the Mamdani inference. Using the rulebase of the last section, the standard

Mamdani model is given by the following restrictions :

(1) ¯i = ∧,
(2) ⊕ = ∨,
(3) ∗ = ∧.

Hence, we have

MFi,Gi∧ (x, y) = Fi(x) ∧Gi(y)

M∨(x, y) =
∨

i∈{1,...,n}
MFi,Gi∧ (x, y)

and finally can derive the output for a given input F ′ by

G′(F ′) = F ′;M∨.

In the following we omit the indices and only write MFi,Gi for MFi,Gi∧ resp. M for M∨. Now,

we want to consider the last formula on the level of components and show how the output

inference can be simplified. The little computation

G′(F ′)(y) = (F ′; M)(y)

=
∨

x∈U

(F ′(x) ∧ (
∨

i∈{1,...,n}
MFi,Gi(x, y)))

=
∨

x∈U

∨

i∈{1,...,n}
(F ′(x) ∧MFi,Gi(x, y))

=
∨

x∈U

∨

i∈{1,...,n}
(F ′(x) ∧ Fi(x) ∧Gi(y))

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 123

=
∨

i∈{1,...,n}
((

∨

x∈U

(F ′(x) ∧ Fi(x))) ∧Gi(y))

:=
∨

i∈{1,...,n}
(βi ∧Gi(y))

shows that we can extract the supremum over all i to the left and, hence, avoid to ex-

plicitly store the aggregation matrix M and to use the relational calculus. This implies

that a discretization of the universe is not necessary and one can use analytically defined

membership functions. Notice that βi delivers the degree of fulfillment of rule i. The last

considerations have made Mamdani inference (often called max-min-inference) popular in

real applications.

4.2 A relational model for fuzzy controllers

From the introduction to fuzzy controllers we see that the linguistic model is good to handle

by L-fuzzy relations and, thus, by Goguen categories. We aim at a module to support

creating and testing controllers. This module shall rely on a mathematical base. Hence, we

have to provide a suitable algebraic model. We will see that some restriction on the fuzzy

controllers allow nice handling.

Michael Winter in [12] gave a proposal how to model controllers based on the linguistic

model within Goguen categories. We want to take over this model and extend it at some

points. In this approach the linguistic entities for the input as well as for the output are

modelled by L-fuzzy relations Q : I → A where A is an arbitrary object of the underlying

Goguen category and I is a unit (i.e., II = >> II and >>BI is total for all objects B). Hence,

the interpretation of a rule “If x is Q then y is S” in the general case corresponds to the

computation Q`;¯ S using a derived composition-based operation. With the standard model

for Goguen categories this corresponds to the matrix MQ,S
¯ introduced in Section 4.1.

Now, we extend the rulebase to be of the form

if x is Q1 then y is S1

if x is Q2 then y is S2

...

if x is Qn then y is Sn.

whereas all rules are interpreted by their own interpretation function ;¯i . The aggregation

in this model corresponds to a u-based derived operation u⊕. Since we want to restrict ⊕

124 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

to have neutral element ⊥⊥ (i.e., to be t-conorm like), we denote the derived operation by

t⊕. The extension to arbitrary sets is denoted by
⊎
. Hence, the core of the controller can

be computed by

C :=
⊎

i∈{1,..,n}
(Q`

i ;¯i Si). (4.2)

So far we can see that this model is a direct realization of the relational semantics of the

linguistic model introduced in the last section. We have only lifted all operations to a

component-free niveau.

If all interpretation functions are cloos-based (i.e., ¯i preserves suprema, 1 ≤ i ≤ n), a

rulebase can be represented in quite a nice way using a crisp relation. If we, for example,

have three input entites Q1, Q2, Q3 : I → A and two output entities S1, S2 : I → B, the

rules

if x is Q1 then y is S1

if x is Q2 then y is S2

if x is Q3 then y is S2

can be represented by the relation

R =

1 0

0 1

0 1

 .

Hence, R has source I + I + I (for the three input entities) and target I + I (for the output

entities). In an algebraic way R can be computed using the crisp injections ιi : I → I +I +I

resp. κj : I → I + I of the corresponding input resp. output entities. We then have

R = ι`1 ;κ1 t ι`2 ; κ2 t ι`3 ; κ2 or, more generally,

R =
⊔
i,j

if x is Qi then y is Sj
is a rule

ι`i ; κj .

Thus, the core of the respective controller can be computed by

C ′ :=
⊎
i,j

j∈R(i)

((Q`
i ; ιi);¯i (R; (κ`

j ; Sj))) (4.3)

where i ranges over the input and j over the output entities. The following lemma shows

that Formulae 4.2 and 4.3 are equivalent if additionally I is a left and right neutral element

for ¯i and ¯i is associative for all 1 ≤ i ≤ n, i.e., ¯i is closg-based.

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 125

Lemma 4.2.1. Let the rulebase and operations be given as above. Furthermore, I shall

be left and right neutral element for the closg-based operations ¯1, ...,¯n. Then we have

C = C ′.

Proof. Throughout the proof we will use ∗ to refer to the fact that ιi; ιj` = ⊥⊥ if i 6= j for

a pair of crisp injections. Hence, the computation

⊎
i,j

j∈R(i)

((Q`
i ; ιi);¯i (R; (κ`

j ;Sj))) =
⊎
i,j

j∈R(i)

((Q`
i ; ιi);¯i (

⊔
k,l

l∈R(k)

(ι`k ; κl); (κ
`
j ; Sj))) (definition R)

=
⊎
i,j

j∈R(i)

((Q`
i ; ιi);¯i (

⊔
k

R(i)∩R(k) 6=∅

(ι`k ; Sj))) (∗)

=
⊎
i,j

j∈R(i)

(
⊔
k

R(i)∩R(k)6=∅

(Q`
i ; ιi);¯i (ι`k ; Sj)) (¯i complete)

=
⊎
i,j

j∈R(i)

(
⊔
k

R(i)∩R(k)6=∅

(Q`
i ;¯i ιi);¯i (ι`k ;¯i Sj)) (Lem. 2.6.5)

=
⊎
i,j

j∈R(i)

(
⊔
k

R(i)∩R(k)6=∅

(Q`
i ;¯i (ιi;¯i ι`k);¯i Sj)) (¯i ass.)

=
⊎
i,j

j∈R(i)

(
⊔

k,i=k

(Q`
i ;¯i (ιi; ι

`
k);¯i Sj)) (Lem. 2.6.5,∗)

=
⊎
i,j

j∈R(i)

(Q`
i ;¯i Sj)

shows the result.

We want this equation to be valid with our fuzzy controllers. Hence, we demand all inter-

pretation functions ¯i to satisfy

(1) ¯i is closg-based, 1 ≤ i ≤ n,

(2) I is left and right neutral element for ¯i, 1 ≤ i ≤ n.

It is clear that Formula 4.2 is the more likely variant with respect to computational pur-

poses. Thus, it will be used within our module for fuzzy controllers later on. In contrast,

the second alternative is better to visualize the developed model. Hence, we use it in Figure

4.2 to show the model developed so far.

In the following we call a controller with a core corresponding to this model a simple con-

troller. We will give a formal definition later on.

Now, the question arises, how the output shall be inferred for a given input. Since we

are dealing with a component-free view, the input value is represented by a crisp function

126 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

A

+

+

+

···

I

I

I

Q1

Q2

Qm

¼¾

Y

B

+

+

+

···

I

I

I

S1

S2

Sn

j-

*

R -

Figure 4.2: The core of a fuzzy controller

x : I → A whereas A is the source of the given controller and I is a unit. Thus, our input

value is already an L-fuzzy set so that IA can be used as a special fuzzification function.

There are other operations thinkable (e.g., relational shifting, weakening or strenghtening).

The final decision which one to use strongly depends on the application. The fuzzification

function will be denoted by Φ in the following.

The next step is to infer the output from the fuzzified input. This is, in general, done by

U(x) := Φ(x);∗C

using a composition-based derived operation ;∗.

But, the inferred output is neither necessarily crisp nor univalent. Hence, we have to extend

the model so that a crisp output value is produced. In [11] the problem is divided into two

aspects :

(1) The output shall be crisp.

(2) The output shall be univalent.

Again, many defuzzification functions are thinkable to generate a crisp output. But, one

special possibility is delivered automatically by Goguen categories. If we take a function Θ

which maps the input to a scalar Θ(x) on I we can compute

D(U(x)) := (Θ(x)\U(x))↓

which obviously delivers a crisp relation. Now, suppose U(x) = Φ(x);∗C with a closg-based

operation ∗. Furthermore, assume that Φ(x) = x;FΦ for a certain FΦ. If additionally

x`; Θ(x) = SA; x` holds for a partial identity SA we have U(x) = x; (FΦ;∗C) and can

conclude

D(U(x)) = x; (SA\(FΦ;∗C)).

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 127

This shows that the resulting controller is a relational term whereas the inference of the

output is just done by the usual composition operator. A deduction of the formula above

can be found in [11]. It is furthermore shown there that constant functions Θ as well as the

function of maximal degree of membership Θ(x) = U(x); >>BI u II fulfill the property above.

It is clear that this approach does not necessarily deliver a univalent function. Hence, we

have to dedicate some special thoughts to this property. The most general approach to

achieve the goal is based on symmetric quotients and relational powers (introduced in [18]).

Let X : A → B be a relation. If we compare the columns of X` and εPB
via syQ(X`, εPB

),

we map every a ∈ A to its image under X if X is total. If we now apply a function f to

this result, we generate a univalent output. Thus, the final term is given by

D(U(x)) = syQ((Θ(x)\U(x))↓, εP(B)); f

if we use the cut approach as defuzzification. If again Θ and Φ fulfill the properties described

above, D(x) can be computed by

∆(U(x)) = syQ((Θ(x)\U(x))↓, εP(B)); f

= syQ(x; (SA\(FΦ;∗C))↓, εP(B)); f

= x; syQ((SA\(FΦ;∗C))↓, εP(B)); f.

At the end of this section we want to mention that the introduced approaches for fuzzification

and defuzzification are only special alternatives. In general, we have abstract functions.

Hence, the explanations above induce that a simple controller FC can be considered to be

a tupel of the following form.

Definition 4.2.1. Let I, A and B be objects of a Goguen category G such that I is a unit.

Then we call a 7-tupel

FC := (Φ : G[I, A] → G[I, A] (fuzzification)

, Π : G[I, A] → G[A, B] → G[I, B] (application)

, Lin : {G[I, A]} (ling. entities input)

, Lout: {G[I, B]} (ling. entities output)

, R : {(G[A, I] → G[I, B]) → G[A,B])×Rule} (rulebase)

, t⊕ : G[A,B] → G[A, B] → G[A,B] (aggregation)

, ∆ : G[I, B] → G[I, B]) (defuzzification)

a simple controller iff

128 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

(1) ∆(y) is defined and crisp for all y ∈ G[I, B],

(2) Π is a derived operation ;∗ such that ∗ is closg-based with left and right

neutral element I,

(3) all interpretation functions in R are derived operations ;¯i such that

¯i is closg-based and I is left and right neutral element for ¯i,

(4) Φ is a mapping,

(5) the induced core
⊎

(;¯,(Q,S))

∈R

(Q`;¯ S) is total.

Obviously, the rulebase is represented by pairs consisting of an interpretation function ;¯i

and the corresponding rule i. The other functions should be clear. Restriction (1) is a

direct conclusion from the explanations above. Property (3) assures that the interpretation

functions are t-norm-based and, hence, the rulebase of FC can be represented by a crisp

relation (cf. Equation 4.3). Finally, (4) and (5) together with (1) assure that each input can

be interpreted by the controller.

Hence, we can compute C using Lin, Lout, R and the to sets of arguments extended aggre-

gation function t⊕. Furthermore, we can infer the output for a given input x using the

term

FC(x) = ∆(Π(Φ(x))(C)) (4.4)

= ∆(Π(Φ(x))(
⊎

(;¯,(Q,S))

∈R

(Q`;¯ S))). (4.5)

This implies that a simple controller in general constitutes a function FC : G[I, A] → G[I,B].

Definition 4.2.1 and the last considerations will be the base for our Haskell module. In the

following we often write FC and omit the induced tuple.

Finally, we want to mention that storing the linguistic entities within the tuple above is

not necessary for the following mathematical considerations. But, we use the representation

above as a data structure in the Haskell module later on. Hence, it seems advantageous to

make the reader get familiar with it as early as possible.

4.2.1 Operations on fuzzy controllers

The simple model for fuzzy controllers induces certain operations. In this section we want

to introduce suitable combinators which allow reasoning on the level of fuzzy controllers.

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 129

They constitute the mathematical base for the Haskell module developed later on.

The following standard constructions are thinkable :

(1) derived join (t̂⊕′),
(2) derived direct sum (+̂t⊕′),

(3) derived meet (û∗),
and

(4) derived cross product (×̂u∗).

In a first account, these operations shall be operations on fuzzy controllers (cf. Definition

4.2.1), i.e., on tuples of certain elements and not necessarily on terms of the underlying

Goguen category. We will examine conditions such that these operations are operations on

the core and, hence, on given terms of the Goguen category. If we mean an operation to

be on the level of fuzzy controllers, we designate it by an additional ̂ (e.g., t̂⊕′). These

operations naturally induce an operation on the cores under some circumstances. On this

level we omit the ̂ and only write t⊕′ instead of t̂⊕′ , for example.

The next definition gives us the prerequisites we need throughout this section.

Definition 4.2.2. Let FC1 and FC2 be two simple controllers of a Goguen category. We

call FC1 and FC2 combinable, if the following holds :

(1) t1⊕ = t2⊕.

(2) All rules of FC1 and FC2 are interpreted by the same ;-based derived operation

;¯.

(3) R; (
⊎
i

xi) =
⊎
i
(R; xi) if R is crisp and univalent, and

(
⊎
i

xi);R =
⊎
i
(xi; R) if R is crisp and injective.

(4) (
⊎
i

xi) u¯ (
⊎
j

yj) =
⊎
i,j

(xi u¯ yj), i.e., t⊕ distributes together with u¯.

(5) (Q u¯ Q′);¯ (S u¯ S′) = Q;¯ S u¯ Q′;¯ S′ for all Q, Q′ : A → I

and S, S′ : I → B whereas I is a unit.

(6) ⊥⊥ is left and right neutral element for ⊕.

Notice that the fact that FC1 and FC2 are simple controllers implies that ¯ is closg-based.

Property (1) demands FC1 and FC2 to have the same aggregation function. Otherwise

the respective function for the resulting controller could not be determined properly. The

necessity of restrictions (2)-(6) will become clear with the following explanations. But,

already notice that t⊕ = t, u¯ = u and ;¯=; fulfill these properties. That (3),(4) and (6)

130 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

are satisfied should be clear and (5) is shown by the following lemma.

Lemma 4.2.2. Let Q,Q′ : A → I and S, S′ : I → B be relations such that I is a unit. Then

we have

(Q uQ′); (S u S′) = Q; S uQ′;S′

Proof. From Q`;Q v >> II = II and S;S` v >> II = II we know that Q and Q′ (thus,

Q u Q′) are univalent and S and S′ (thus, S u S′) are injective. Using this fact we can

compute

Q;S uQ′;S′ v Q; (S uQ`;Q′; S′) (modular law)

v Q; (S u >> II ; S′)

= Q; (S u II ; S′) (I unit)

= Q; S uQ; S′ (Q univalent)

Q′; S′ uQ; S v Q′; (S′ uQ′`; Q; S) (modular law)

v Q′; (S′ u >> II ;S)

= Q′; (S′ u II ; S) (I unit)

= Q′; S′ uQ′; S. (Q′ univalent)

Finally, we have

Q;S uQ′;S′ = Q; S uQ; S′ uQ′; S′ uQ′; S (above)

= Q; (S u S′) uQ′; (S u S′) (Q,Q′ univalent)

= (Q uQ′); (S u S′). (S u S′ injective)

Hence, we conclude that Mamdani inference is covered by the following considerations and

all results for the examined operations can be applied.

The following definition connects combinable controllers and operations on them.

Definition 4.2.3. Let FC1 and FC2 be two combinable fuzzy controllers with aggregation

function t⊕ and interpretation function ¯. Furthermore, let Op := (t̂⊕′ ,+̂t⊕′ ,û∗,×̂u∗) be a

4-tupel of binary operations on fuzzy controllers. Then Op combines FC1 and FC2 If the

conditions

(1) t⊕′ = t⊕, i.e., ⊕′ = ⊕
(2) ∗ = ¯

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 131

are satisfied.

Throughout this section let G be a Goguen category, FC1 and FC2 be two combinable

controllers and Op a tupel of operations such that Op combines FC1 and FC2. If we use

components that are equal with FC1 and FC2 (e.g., Φ1), we automatically omit the index.

The to finite sets of elements extended variant of t⊕ is again denoted by
⊎
.

The derived join operation

To apply the join operation the two controllers need to have the same source and target

as well as the same fuzzification, defuzzification and application functions. Hence, we ad-

ditionally suppose both FC1 and FC2 to be of the form G[I,A] → G[I, B] with Φ1 = Φ2,

∆1 = ∆2, Π1 = Π2. In the following we omit the indices for the respective functions. Notice

that a join operation on two fuzzy controllers after defuzzification makes no sense since we

need to have the same output with both controllers to make the joined output univalent.

This induces that this operation can only be an operation on the core resp. on the linguistic

entities and the rulebase. We first define t̂⊕ on the level of the rulebase.

Definition 4.2.4. Let FC1 and FC2 be two combinable controllers. Then we define

FC1t̂⊕FC2 := (Φ, Π, Lin1 ∪ Lin2 , Lout1 ∪ Lout2 , R1 ∪R2,t⊕, ∆).

We denote the respective elements of the resulting controller by the subscript ct⊕ (e.g., Rct⊕
for the rulebase).

The little computation

Cct⊕ =
⊎

(;¯,(Q,S))

∈R1∪R2

(Q`;¯ S)

=
⊎

(;¯,(Q,S))

∈R1

((Q`;¯ S)) t⊕
⊎

(;¯,(Q′,S′))
∈R2

(Q′`;¯ S′)

= C1 t⊕ C2

shows that t̂⊕ induces an operation t⊕ on the cores. Obviously, prerequisites (1) of Defi-

nition 4.2.3 and (1),(2) of Definition 4.2.2 from above are the key properties that this can

hold.

132 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

The derived direct sum

The next step is to provide separate input/output spaces for separate input and output

entities, respectively. We can omit the additional restrictions of the last section, i.e., the

fuzzification, defuzzification and application functions of FC1 and FC2 need not necessarily

be identical. Michael Winter in his example in [11], for example, provided some output

entities for regulating a temperature and a seperate output entity for an alert signal. In the

general case this corresponds to the model shown in Figure 4.3.

Am

+

+

+

···

I

I

I

Qm
1

Qm
2

Qm
km

¼¾

Y

Bn

+

+

+

···

I

I

I

Sn
1

Sn
2

Sn
ln

j-

*

R -

A1

+

+

···

I

I

Q1
1

Q1
k1

¼

Y

+

+

···
+

+

···

B1

+

+

···

I

I

S1
1

S1
l1

j

*

+

+

···
+

+

···

Figure 4.3: The direct sum of the cores of two controllers

One could say that these controllers can equivalently be described by controllers with only

one range for the input resp. output entities using the crisp injections ιi : Ai → A1 + ... +

Am, 1 ≤ i ≤ m resp. κj : Bj → B1 + ... + Bn, 1 ≤ j ≤ n. But, we aim at a comfortable

treatment of fuzzy controllers with our module. Hence, we support the user with automatic

computations where it is possible. A controller of the form shown in Figure 4.3 will be called

sum controller in the following.

Now, we define the derived direct sum operation on the level of fuzzy controllers.

Definition 4.2.5. Let FC1 : G[I,A1] → G[I,B1] and FC2 : G[I, A2] → G[I, B2] be two

combinable controllers. Furthermore, let ιi : Ai → A1 + A2, κi : Bi → B1 + B2, 1 ≤ i ≤ 2,

be the induced crisp injections. Then we define :

FC1+̂t⊕FC2 := (Φ d+t⊕ , Π d+t⊕ ,

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 133

{(Q; ι1)` | Q ∈ Lin1} ∪ {(Q′; ι`2)` | Q′ ∈ Lin2},
{S;κ1 | S ∈ Lout1} ∪ {S′; κ2 | S′ ∈ Lout2},
{(;¯ , (Q; ι1, S; κ1)) | (;¯ , (Q,S)) ∈ R1} ∪
{(;¯ , (Q′; ι2, S′; κ2)) | (;¯ , (Q′, S′)) ∈ R2},
t⊕, ∆ d+t⊕)

whereas Φ d+t⊕ , Π d+t⊕ and ∆ d+t⊕ are defined elementwise for a given input x : I → A1 + A2

and output y : I → B1 + B2 as follows :

Φ d+t⊕ (x) := Φ1(x; ι`1); ι1 t⊕ Φ2(x; ι`2); ι2

Π d+t⊕ (x)(C) := (Π1(x; ι`1)(ι1; C; κ`
1));κ1 t⊕ (Π2(x; ι`2)(ι2; C; κ`

2));κ2

∆ d+t⊕ (y) := ∆1(y; κ`
1);κ1 t⊕ ∆2(y;κ`

2);κ2.

The +̂t⊕ operator is defined pretty intuitively by connecting the linguistic entities with the

respective injections and lifting the rulebase to the new defined entities. The resulting fuzzi-

fication, defuzzification and application functions are lifted analogously. In the following we

denote the respective elements of the resulting controller by the subscript d+t⊕ .

Again, we want to examine whether this operation is an operation on the cores. We abbre-

viate

R′
1 := {(;¯ , (Q; ι1, S;κ1)) | (;¯ , (Q,S)) ∈ R1}

R′
2 := {(;¯ , (Q′; ι2, S′;κ2)) | (;¯ , (Q′, S′)) ∈ R2}

and compute

C d+t⊕
=

⊎
(;¯,(Q,R))

∈R′1∪R′2

(Q`;¯ S) (definition C d+t⊕)

=
⊎

(;¯,(Q,S))

∈R′1

(Q`;¯ S) t⊕
⊎

(;¯,(Q′,S′))
∈R′2

(Q′`;¯ S′)

=
⊎

(;¯,(Q,S))

∈R1

((Q; ι1)`;¯ (S; κ1)) t⊕
⊎

(;¯,(Q′,S′))
∈R2

((Q′; ι2)`;¯ (S′; κ2)) (Definition 4.2.5)

=
⊎

(;¯,(Q,S))

∈R1

((Q;¯ ι1)`;¯ (S;¯ κ1)) t⊕
⊎

(;¯,(Q′,S′))
∈R2

((Q′;¯ ι2)`;¯ (S′;¯ κ2)) (Lemma 2.6.5)

=
⊎

(;¯,(Q,S))

∈R1

(ι`1 ;¯ (Q`;¯ S);¯ κ1) t⊕
⊎

(;¯,(Q′,S′))
∈R2

(ι`2 ;¯ (Q′`;¯ S′);¯ κ2) (¯ closg-based)

=
⊎

(;¯,(Q,S))

∈R1

(ι`1 ; (Q`;¯ S);κ1) t⊕
⊎

(;¯,(Q′,S′))
∈R2

(ι`2 ; (Q′`;¯ S′);κ2) (Lemma 2.6.5)

134 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

= ι`1 ; (
⊎

(;¯,(Q,S))

∈R1

(Q`;¯ S));κ1 t⊕ ι`2 ; (
⊎

(;¯,(Q′,S′))
∈R2

(Q′`;¯ S′));κ2 (Definition 4.2.2(3))

= (ι`1 ; C1; κ1) t⊕ (ι`2 ; C2;κ2) (definition)

=: C1 +t⊕ C2.

Hence, we see that our prerequisites suffice to induce the operation +t⊕ on the cores.

In particular, we need prerequisites (1)-(3) of Definition 4.2.2 to make this computation

possible.

To show the convenience of the +̂t⊕ operator we want to study how the input-output

behavior of the resulting controller is affected by the lifted fuzzification, defuzzification and

application function. This is shown by the following theorem.

Theorem 4.2.1. Let FC1 and FC2 be two combinable simple controllers such that

FC1+̂t⊕FC2 is defined. Then we have

(FC1+̂t⊕FC2)(x) = (FC1(x; ι`1));κ1 t⊕ (FC2(x; ι`2));κ2

whereas ιi and κi, 1 ≤ i ≤ 2, are the induced crisp injections.

Proof. First, we have

Φ d+t⊕ (x); ι`1 = (Φ1(x; ι`1); ι1 t⊕ Φ2(x; ι`2); ι2); ι
`
1 (definition Φ d+t⊕)

= Φ1(x; ι`1); ι1; ι
`
1 t⊕ Φ2(x; ι`2); ι2; ι

`
1 (Definition 4.2.2(3))

= Φ1(x; ι`1) (Definition 4.2.2(6))

and analogously Φ d+t⊕ (x); ι`2 = Φ2(x; ι`2).

Furhtermore, the following is true

ι1; C d+t⊕ ; κ`
1 = ι1; ((ι

`
1 ; C1;κ1) t⊕ (ι`2 ; C2;κ2));κ

`
1 (definition C d+t⊕)

= (ι1; ι
`
1 ; C1; κ1;κ

`
1) t⊕ (ι1; ι

`
2 ; C2;κ2; κ

`
1) (Definition 4.2.2(3))

= C1

and analogously ι2; C1 d+t⊕2; κ
`
2 = C2, so that we can compute

(FC1+̂t⊕FC2)(x)

= ∆ d+t⊕ (Π d+t⊕ (Φ d+t⊕ (x))(C d+t⊕)) (definition)

= ∆ d+t⊕ ((Π1(Φ d+t⊕ (x); ι`1)(ι1; C d+t⊕ ;κ`
1));κ1t⊕

(Π2(Φ d+t⊕ (x); ι`2)(ι2; C d+t⊕ ;κ`
2));κ2) (definition Π d+t⊕)

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 135

= ∆ d+t⊕ ((Π1(Φ1(x; ι`1))(C1));κ1 t⊕ ((Π2(Φ2(x; ι`2))(C2));κ2) (above)

= ∆1((Π1(Φ1(x; ι`1))(C1));κ1; κ
`
1);κ1t⊕

∆2((Π2(Φ2(x; ι`2))(C2));κ2; κ
`
2);κ2 (definition ∆ d+t⊕)

= ∆1(Π1(Φ1(x; ι`1)(C1)));κ1 t⊕ ∆2(Π2(Φ2(x; ι`2)(C2)));κ2

= (FC1(x; ι`1));κ1 t⊕ (FC2(x; ι`2));κ2. (definition)

This shows that FC1+̂t⊕FC2 infers the output in the intuitively expected way. If the input

set x : I → A1 + A2 is an element of G[I,A1], the output is inferred by FC1. Otherwise, it

is inferred by FC2.

Now, we want to introduce two modifications of the +̂t⊕ operator.

Definition 4.2.6. Let FC1 and FC2 be two combinable controllers. Then we define

(1) FC1+̂t⊕
t
FC2 := (Φ, Π, Lin1 ∪ Lin2, Lout d+t⊕

,

{(;∗ , (Q,S; κ1)) | (;∗ , (Q,S)) ∈ R1}∪
{(;∗ , (Q′, S′; κ2)) | (;∗ , (Q′, S′)) ∈ R2},
t⊕, ∆ d+t⊕),

iff FC1 : G[I, A] → G[I, B1], FC2 : G[I, A] → G[I,B2], Φ1 = Φ2 =: Φ and

Π1 = Π2 =: Π,

(2) FC1+̂t⊕
s
FC2 := (Φ d+t⊕ ,Π d+t⊕ , Lin d+t⊕

, Lout1 ∪ Lout2,

{(;∗ , (Q; ι1, S)) | (;∗ , (Q,S)) ∈ R1}∪
{(;∗ , (Q′; ι2, S′)) | (;∗ , (Q′, S′)) ∈ R2},
t⊕, ∆),

iff FC1 : G[I, A1] → G[I, B], FC2 : G[I,A2] → G[I, B] and ∆1 = ∆2 =: ∆,

whereas ιi and κi, 1 ≤ i ≤ 2, are the induced crisp injections.

Obviously, +̂t⊕
t only creates the direct sum of the targets of the cores of FC1 and FC2.

This is indicated by the superscript t. To let this operation be well defined, both controllers

must have the same source. In contrast, +̂t⊕
s computes the direct sum of the sources and

lets the target of both cores unchanged. Hence, both controllers must have the same target.

Notice that letting both source and target unchanged leads to the derived join operation

(cf. Definition 4.2.4). With these remarks and Theorem 4.2.1 it is easy to see that

(FC1+̂t⊕
t
FC2)(x) = (FC1(x));κ1 t⊕ (FC2(x));κ2

136 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

(FC1+̂t⊕
s
FC2)(x′) = ∆(Π1(Φ1(x; ι`1))(C1) t⊕ Π2(Φ2(x; ι`2))(C2))

(FC1t̂⊕FC2)(x) = ∆(Π(Φ(x))(C1) t⊕ Π(Φ(x))(C2))

holds for given inputs x : A → B1 + B2 resp. x′ : A1 + A2 → B and controllers FC1 and

FC2 on which the operations are defined.

At the end we want to show a special behavior of a meet-based derived operation t⊕ together

with crisp injections if ⊕ has neutral element ⊥⊥ . Since we prerequired this property of ⊕,
the result is applicable for +̂t⊕ .

Lemma 4.2.3. Let G be a Goguen category and R1 : A1 → B, R2 : A2 → B be two relations.

Furthermore, let ιi : Ai → A1 + A2, 1 ≤ i ≤ 2, be a pair of crisp injections. Then we have

ι`1 ;R1 t⊕ ι`2 ; R2 = ι`1 ; R1 t ι`2 ; R2

if ⊥⊥ is the neutral element of ⊕.

Proof. First, let α 6= ⊥⊥ and β 6= ⊥⊥ be two scalars on A1 + A2. Then we have

(α⊕ β); ((α\ι`1 ; R1)↓ u (β\ι`2 ; R2)↓)

v (α⊕ β); ((ι2; α\ι2; ι`1 ; R1)↓ u (ι1; β\ι1; ι`2 ;R2)↓) (Lemma 2.5.4, ↓ monotonic)

= (α⊕ β); ((ι2; α\⊥⊥A2B)↓ u (ι1; β\⊥⊥A1B)↓) (Definition 2.5.10)

= (α⊕ β); ⊥⊥ (A1+A2)B (α, β 6= ⊥⊥)

= ⊥⊥ (A1+A2)B.

With this preparation, we now can compute

ι`1 ; R1 t⊕ ι`2 ;R2 =
⊔

α,β∈Sc[G]

(α⊕ β); ((α\ι`1 ; R1)↓ u (β\ι`2 ; R2)↓) (Definition 2.6.4)

=
⊔

α,β∈Sc[G]
α=⊥⊥ or β=⊥⊥

(α⊕ β); ((α\ι`1 ; R1)↓ u (β\ι`2 ; R2)↓) (above)

=
⊔

α,β∈Sc[G]
α=⊥⊥ or β=⊥⊥

(α t β); ((α\ι`1 ; R1)↓ u (β\ι`2 ; R2)↓) (⊥⊥ neutral element)

=
⊔

α,β∈Sc[G]

(α t β); ((α\ι`1 ; R1)↓ u (β\ι`2 ; R2)↓) (above)

= ι`1 ; R1 t ι`2 ; R2. (definition)

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 137

The result indicates that the function fExtSrc (cf. Section 3.4) is applicable. Since the

similar result

S1; ι1 t⊕ S2; ι2 = S1; ι1 t S2; ι2

follows by transposition for suitable relations S1 and S2, we also can use fExtTrg. Hence,

we can efficiently compute the extended linguistic entities within our module for fuzzy con-

trollers later on.

The derived meet operation

As with derived join, we again need FC1 and FC2 to have same source and target to apply

the derived meet operation. Furthermore, we need Φ1 = Φ2, Π1 = Π2 and ∆1 = ∆2 so that

we can omit the indices of these functions in the following. Now, we define û¯ on the level

of simple controllers.

Definition 4.2.7. Let FC1 and FC2 be two combinable fuzzy controllers. Then we define :

FC1û¯FC2 := (Φ, Π,

{Q u¯ Q′ | Q ∈ Lin1 , Q′ ∈ Lin2},
{S u¯ S′ | S ∈ Lout1 , S′ ∈ Lout2},
{(;¯ , (Q u¯ Q′, S u¯ S′)) | (;¯ , (Q,S)) ∈ R1, (;¯ , (Q′, S′)) ∈ R2}
t⊕,∆)

This operation seems not to be as intuitive as the other ones. We have to compute a com-

pletely new set of linguistic entites for both input and output and, hence, a new rulebase.

Again, we identify the respective elements of the resulting controller by the additional sub-

script cu¯ .

In the following we want to show that Definition 4.2.7 also induces an operation on the cores

of FC1 and FC2. We conclude

Ccu¯ =
⊎

(;¯,(Q,S))

∈R
1du¯2

(Q`;¯ S) (definition)

=
⊎

(;¯,(Q,S))∈R1
(;¯,(Q′,S′))∈R2

((Q u¯ Q′)`;¯ (S u¯ S′)) (definition Rcu¯)

=
⊎

(;¯,(Q,S))∈R1
(;¯,(Q′,S′))∈R2

((Q`;¯ S) u¯ (Q′`;¯ S′)) (Definition 4.2.2(5))

= (
⊎

(;¯,(Q,S))∈R1

(Q`;¯ S)) u¯ (
⊎

(;¯,(Q′,S′))∈R2

(Q′`;¯ S′)) (Definition 4.2.2(4))

138 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

= C1 u¯ C2

which shows the assertion. As one can see, prerequisites (4) and (5) of Definition 4.2.2 are

essential for the equality. We again want to mention that
⊔

and u provide these properties.

With the operation above we are able to model extended rulebases. If we take the standard

case t⊕ = t and u¯ = u, we can represent rules of the form

if x is Qi1 and ... and x is Qin then y is Sj1 and ... and y is Sjm

whereas we only could express rules of the form

if x is Qi1 or ... or x is Qin then y is Sj1 or ... or y is Sjm

before.

The derived cross product

Although we have already extended the amount of expressable rules by the derived meet

operation, we are up to now only able to model controllers with one linguistic variable

for input and output, respectively. But, in practice one often wants to make the output

variable(s) dependent from several input variables or vice versa. This, in general, corresponds

to rules of the form

if x1 is Qi1 and ... and xn is Qin then y1 is Sj1 and ... and ym is Sjm .

These rules can be modeled by relational products (cf. Definition 2.5.11), and more generally,

by derived relational products.

Definition 4.2.8. Let FC1 : G[I,A1] → G[I,B1] and FC2 : G[I, A2] → G[I, B2] be two

combinable fuzzy controllers. Furthermore, let πi : A1×A2 → Ai and ρi : B1×B2 → Bi,1 ≤
i ≤ 2 be the induced crisp projections. Then we define :

FC1×̂u¯FC2 := (Φ d×u¯ , Π d×u¯ ,

{(Q; π`
1) u¯ (Q′;π`

2) | Q ∈ Lin1 , Q′ ∈ Lin2},
{(S; ρ`

1) u¯ (S′; ρ`
2) | S ∈ Lout1 , S′ ∈ Lout2},

{(;¯ , ((Q; π`
1) u¯ (Q′;π`

2), (S; ρ`
1) u¯ (S′; ρ`

2))),

| (;¯ , (Q,S)) ∈ R1, (;¯ , (Q′, S′)) ∈ R2},
t⊕,∆ d×u¯).

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 139

whereas Φ d×u¯ , Π d×u¯ and ∆ d×u¯ are defined elementwise for a given input x : I → A1 ×A2

and output y : I → B1 ×B2 as follows :

Φ d×u¯ (x) := Φ1(x; π1);π
`
1 u¯ Φ2(x; π2);π

`
2 ,

Π d×u¯ (x)(C) := (Π1(x; π1)(π
`
1 ;C; ρ1)); ρ

`
1 u¯ (Π2(x; π2)(π

`
2 ; C; ρ2)); ρ

`
2 ,

∆ d×u¯ (y) := ∆1(y; ρ1); ρ
`
1 u¯ ∆2(y; ρ2); ρ

`
2 .

We again have that Definition 4.2.8 induces an operation on the cores of FC1 and FC2.

This is shown by the computation

C d×u¯ =
⊎

(;¯,(Q,S))

∈R
1 d×u¯2

(Q`;¯ S) (definition)

=
⊎

(;¯,(Q,S))∈R1
(;¯,(Q′,S′))∈R2

(((Q;π`
1) u¯ (Q′; π`

2))`;¯ ((S; ρ`
1) u¯ (S′; ρ`

2))) (def. R1 d×u¯2)

=
⊎

(;¯,(Q,S))∈R1
(;¯,(Q′,S′))∈R2

(((Q;π`
1)`;¯ (S; ρ`

1)) u¯ ((Q′;π`
2)`;¯ (S′; ρ`

2))) (Def. 4.2.2(5))

= (
⊎

(;¯,(Q,S))

∈R1

((π1;Q`);¯ (S; ρ`
1))) u¯ (

⊎
(;¯,(Q′,S′))

∈R2

((π2; Q′`);¯ (S′; ρ`
2))) (Def. 4.2.2(4))

= (
⊎

(;¯,(Q,S))

∈R1

((π1;¯Q`);¯ (S;¯ ρ`
1)))u¯

(
⊎

(;¯,(Q′,S′))
∈R2

((π2;¯Q′`);¯ (S′;¯ ρ`
2))) (Lem. 2.6.5)

= (
⊎

(;¯,(Q,S))

∈R1

(π1;¯ (Q`;¯ S);¯ ρ`
1)) u¯ (

⊎
(;¯,(Q′,S′))

∈R2

(π2;¯ (Q′`;¯ S′);¯ ρ`
2)) (¯ ass.)

= π1; (
⊎

(;¯,(Q,S))

∈R1

(Q`;¯ S)); ρ`
1 u¯ π2; (

⊎
(;¯,(Q′,S′))

∈R2

(Q′`;¯ S′)); ρ`
2 (Def. 4.2.2(3))

= (π1;C1; ρ
`
1) u¯ (π2; C2; ρ

`
2) (definition)

=:C1 ×u¯ C2.

This implies that the ×̂u¯ operation with the restrictions in Definition 4.2.2 and 4.2.3 is

equivalent to having separate controllers for each pair of input/output variables.

With this result we are able to treat derived products of fuzzy controllers on the level of the

cores. The corresponding model is shown in Figure 4.4. Controllers of this form are called

product controllers in the following.

The next step is to examine the input-output behavior of product controllers. Unfortunately,

we are not be able to show an analogous equality as in Theorem 4.2.1. This comes due to the

fact that we cannot even guarantee u¯ subdistributivity for a u-based derivded operation.

140 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

Am

+

+

+

···

I

I

I

Qm
1

Qm
2

Qm
km

¼¾

Y

Bn

+

+

+

···

I

I

I

Sm
1

Sm
2

Sm
lm

j-

*

Rm -

A1

+

+

···

I

I

Q1
1

Q1
k1

¼

Y

···
···

B1

+

+

···

I

I

S1
1

S1
l1

j

*

×

×
···

×

×
···

R1 -

Figure 4.4: The core of the relational product of simple controllers

But, we want to provide a theorem which delivers a convenient result for the standard case

of Mamdani inference. To do so, we first need the following lemma.

Lemma 4.2.4. Let G be a Goguen category, A,B, C objects of G and Q,Q′ : A → B and

R : B → C relations such that R is crisp. Furthermore, let u¯ be a meet-based derived

operation. Then we have

(Q u¯ Q′);R v Q;R u¯ Q′; R

Proof. We immediately compute

(Q u¯ Q′);R = (
⊔

α,β∈Sc[G]

(α¯ β); ((α\Q)↓ u (β\Q′)↓));R (Definition 2.6.4)

=
⊔

α,β∈Sc[G]

(α¯ β); ((α\Q)↓ u (β\Q′)↓);R (Lemma 2.5.5(3))

=
⊔

α,β∈Sc[G]

(α¯ β); ((α\Q)↓ u (β\Q′)↓);R↓ (R crisp)

v ⊔
α,β∈Sc[G]

(α¯ β); ((α\Q)↓; R↓ u (β\Q′)↓; R↓) (u subdistributivity)

v ⊔
α,β∈Sc[G]

(α¯ β); ((α\Q; R)↓ u (β\Q′;R)↓) (Lemma 2.5.4(4),↓ mon.)

= Q; R u¯ Q′; R. (Definition 2.6.4)

Hence, the following can be deducted from our prerequisites.

4.2. A RELATIONAL MODEL FOR FUZZY CONTROLLERS 141

Theorem 4.2.2. Let FC1 and FC2 be two combinable simple controllers such that

FC1×̂u¯FC2 is defined. Then we have

Π d×u¯ (Φ d×u¯ (x))(C d×u¯) v (Π1(Φ1(x; π1))(C1)); ρ
`
1 u¯ (Π2(Φ2(x; π2))(C2)); ρ

`
2

whereas πi and ρi, 1 ≤ i ≤ 2, are the induced crisp projections.

Proof. First we have

Π1(Φ d×u¯ ; π1)(π
`
1 ; C d×u¯ ; ρ1)

= Π1((((Φ1(x;π1));π
`
1) u¯ ((Φ2(x;π2));π

`
2));π1)(π

`
1 ; C d×u¯ ; ρ1) (def. Φ d×u¯)

v Π1(((Φ1(x; π1));π
`
1 ; π1) u¯ ((Φ2(x; π2));π

`
2 ;π1))(π

`
1 ;C d×u¯ ; ρ1) (Lemma 4.2.4)

= Π1(Φ1(x; π1) u¯ ((Φ2(x; π2)); >>A2A1))(π
`
1 ;C d×u¯ ; ρ1)

v Π1(Φ1(x; π1) u¯ >> IA1)(π
`
1 ; C d×u¯ ; ρ1)

= Π1(Φ1(x; π1)(π
`
1 ; C d×u¯ ; ρ1) (Lemma 2.6.5)

= Π1(Φ1(x; π1))(π
`
1 ((π1; C1; ρ

`
1) u¯ (π2; C2; ρ

`
2)); ρ1) (def. C d×u¯)

v Π1(Φ1(x; π1))((π
`
1 ; π1;C1; ρ

`
1 ; ρ1) u¯ (π`

1 ; π2; C2; ρ
`
2 ; ρ1)) (Lemma 4.2.4)

v Π1(Φ1(x; π1))(C1 u¯ (>>A1A2 ; C2; >>B1B2))

v Π1(Φ1(x; π1))(C1 u¯ >>A1B2)

= Π1(Φ1(x; π1))(C1) (Lemma 2.6.5)

and analogously Π2(Φ d×u¯ ; π2)(π
`
2 ; C d×u¯ ; ρ2) v Π2(Φ2(x; π2))(C2). Hence, we compute

(Π d×u¯ (Φ d×u¯ (x))(C d×u¯)

= (Π1(Φ d×u¯ ;π1)(π
`
1 ; C d×u¯ ; ρ1)); ρ

`
1 u¯

(Π2(Φ d×u¯ ;π2)(π
`
2 ; C d×u¯ ; ρ2)); ρ

`
2 (definition Π d×u¯)

v (Π1(Φ1(x;π1))(C1)); ρ
`
1 u¯ (Π2(Φ2(x; π2))(C2)); ρ

`
2 . (above, u¯ mon.)

Notice that an analogous result including the defuzzification part ∆ d×u¯ can, in general, not

be deducted since we did not prerequire the defuzzification function to be monotonic.

Considering the cases where only subequality holds in the last theorem motivates the fol-

lowing corollary.

142 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

Corollary 4.2.1. Let FC1 and FC2 be two combinable simple controllers such that

FC1×̂uFC2 is defined. Furthermore, suppose both FC1 and FC2 use identity as fuzzifi-

cation, ; as application and t as aggregation function. If additionally C↓
1 6= ⊥⊥ and C↓

2 6= ⊥⊥
holds, we have

(FC1×̂uFC2)(x) = ∆c×u(Π1(Φ1(x; π1))(C1) uΠ2(Φ2(x;π2))(C2)).

Thus, Mamdani inference with two further restrictions on the fuzzification function and the

cores is covered in quite a nice way by this operation. Before defuzzification we can apply

the input separately to FC1 and FC2 without changing the behavior of FC1×̂uFC2. Notice

that the prerequisites C↓
1 6= ⊥⊥ and C↓

2 6= ⊥⊥ are essential to conclude

>> ; C1; >> w >> ;C↓
1 ; >>

= >> ;C↓↑
1 ; >>

= >> (Lemma 2.6.2)

and analogously >> ; C2; >> = >> . The restriction should not be too limitating since already

one crisp entry within C1 and C2, respectively, suffices. This means that the rulebase of

FC1/FC2 has to connect at least one element of the domain of FC1/FC2 to an element of

the range of FC1/FC2 with degree 1.

Now, we again want to introduce two modifications of ×̂u¯ (cf. Definition 4.2.6). Imagine

the special situations that

(1) the cores of FC1 and FC2 have the same source or

(2) the cores of FC1 and FC2 have the same target.

Case (1) obviously makes it possible to “melt” the controllers in the way that different output

variables are controlled by a single input variable. The second case represents the dual

situation that separate input variables control only one output variable. These operations

are provided with the next definition.

Definition 4.2.9. Let FC1 and FC2 be two combinable controllers. Then we define

(1) FC1×̂u¯
t
FC2 := (Φ, Π,

{Q u¯ Q′ | Q ∈ Lin1 , Q′ ∈ Lin2},
Lout d×u¯

,

{(;¯ , ((Q u¯ Q′), (S; ρ`
1) u¯ (S′; ρ`

2)))

4.3. A MODULE FOR FUZZY CONTROLLERS 143

| (;¯ , (Q, S)) ∈ R1, (;¯ , (Q′, S′)) ∈ R2},
t⊕, ∆ d×u¯),

iff FC1 : G[I, A] → G[I, B1], FC2 : G[I, A] → G[I,B2], Φ1 = Φ2 =: Φ

and Π1 = Π2 =: Π,

(2) FC1×̂u¯
s
FC2 := (Φ d×u¯ ,Π d×u¯ ,

Lin d×u¯
,

{S u¯ S′ | S ∈ Lout1 , S′ ∈ Lout2},
{(;¯ , ((Q; π`

1) u¯ (Q′; π`
2), S u¯ S′))

| (;¯ , (Q, S)) ∈ R1, (;¯ , (Q′, S′)) ∈ R2},
t⊕, ∆),

iff FC1 : G[I, A1] → G[I, B], FC2 : G[I,A2] → G[I, B], and ∆1 = ∆2 =: ∆,

whereas πi and ρi, 1 ≤ i ≤ 2, are the induced crisp projections.

From these operations we see that melting both source and target of the cores of FC1 and

FC2 results in the derived meet operation. Hence, we see from Theorem 4.2.2 that the

input-output behavior of the modified operation ×̂u¯
s is given as follows

Π d×u¯
s(Φ d×u¯

s(x))(C d×u¯
s) v Π1(Φ1(x; π1))(C1) u¯ Π2(Φ2(x; π1))(C2).

But, in contrast, we only can conclude

Π d×u¯
t(Φ d×u¯

t(x))(C d×u¯
t) v (Π(Φ(x))(C1)); ρ

`
1 u¯ (Π(Φ(x))(C2)); ρ

`
2 ,

Πcu¯(Φcu¯(x))(Ccu¯) v Π(Φ(x))(C1) u¯ Π(Φ(x))(C2)

if the fuzzification part Φ delivers crisp values for all inputs x. Again, equality holds in the

formulae above if we are dealing with Mamdani inference.

4.3 A module for fuzzy controllers

With the relational model and the operations on fuzzy controllers developed in the last
section, we are now able to provide a module for handling controllers. With this we aim
at suitable combinators to construct them and test their behavior in an algebraic (i.e.,
essentially component-free) manner. We then have the necessary background to develop a
graphical user interface (GUI) to make the module

144 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

module FContr where

import LFuzzyRel

import LFuzzyRelCategories

import LFuzzyRelLattices

import Goguen

import Lattice

import List (elemIndex,nub,intersect,(\\))

comfortable to use.

The data structures

Essentially, we need two data structures — one for linguistic entities and one for fuzzy
controllers. Since linguistic entities are single morphisms of the underlying Goguen category
and it plays no role how they were created (by ordering-based weakening/strengthening,
shifting etc.), the most simple variant to represent them is chosen.

data LingEntity mor = LingEntity { entLabel :: String

,entRel :: mor }

The only thing we have to add is a label for each entity. These labels are important to model
the rulebase later on. Throughout this module we will use instances of type LingEntity

(FRel e obj obj) of the data structure above.
Furthermore, the function

entTrg :: LingEntity (FRel e obj1 obj2) -> [obj2]

entTrg = trg . entRel

which obviously gives back the target object of the linguistic entity, is useful.
The Eq and Show instances are implemented as follows.

instance Eq (LingEntity mor) where

x1 == x2 = entLabel x1 == entLabel x2

instance (Show mor) => Show (LingEntity mor) where

show le = "ENTITY NAME : "++entLabel le++"\n"++

"ENTITY RELATION : "++"\n" ++ show (entRel le)

Notice that the user has to take care to avoid duplicate entity names since they are the only

equality criteria of the Eq instance. We prefer this variant due to efficiency considerations.

4.3. A MODULE FOR FUZZY CONTROLLERS 145

From Definition 4.2.1 we know that a simple controller includes a fuzzification, application,
aggregation and defuzzification function. Some of these parameters are restricted to be equal
with two fuzzy controllers that shall be put together by one of the introduced operations.
This implies that we will have to check them for equality at some point. Hence, they have
to be labeled analogously to the linguistic entities.

data UnFunc mor = UnFunc { unLabel :: String,

unFunc :: mor -> mor }

data BinFunc mor = BinFunc { binLabel :: String,

binFunc :: mor -> mor -> mor }

data DerOp e = DerOp { opLabel :: String,

opLoos :: Loos e,

comm :: Bool,

idem :: Bool }

Obviously, we have structures for unary functions UnFunc (fuzzification, defuzzification),
binary functions BinFunc (application) and derived operations DerOp (aggregation). The
structure for derived operations carries two additional flags to determine whether the loos
is commutative (comm) and idempotent (idem), respectively. This helps to compute the
rulebase more efficiently, later on. Notice that we also restricted the application function
to be a composition-based derived operation. But, we have to generate a new application
function, if we apply one of the operations +̂t⊕ resp. ×̂u¯ to given controllers. Hence, DerOp
would not suffice to model this.
The induced Show and Eq instances are implemented as follows.

instance Eq (DerOp e) where

op1 == op2 = opLabel op1 == opLabel op2

instance Eq (UnFunc mor) where

f1 == f2 = unLabel f1 == unLabel f2

instance Eq (BinFunc mor) where

f1 == f2 = binLabel f1 == binLabel f2

instance Show (DerOp e) where

show = show . opLabel

instance Show (UnFunc mor) where

show = show . unLabel

instance Show (BinFunc mor) where

show = show . binLabel

Now, we are ready to focus on the controller data structure. Our target is a GUI for a
comfortable creation of fuzzy controllers. Therefore, it is essential that the data structures

146 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

make some kind of rollback possible. It has to carry the history of creation so that the user
can step back to a previous state without losing information. This induces a recursive data
structure. From Figures 4.3 and 4.4 we know that a fuzzy controller may form the sum or
the product of several subcontrollers. Hence, we need a variant record covering three cases
— a simple controller, a sum controller and a product controller.

type Rule e = (DerOp e,(String,[String]))

data Header e obj mor = Header { contrLabel :: String -- controller label

,unitObj :: [obj] -- unit object

,entryLat :: Lat e -- entry lattice

,fuzz :: UnFunc mor -- fuzzification

,appl :: BinFunc mor -- application

,defuzz :: UnFunc mor} -- defuzzification

data FuzContr e obj = SimpleContr { header :: Header e obj (FRel e obj obj)

,aggr :: DerOp e -- aggregation

,rules :: [Rule e] -- rulebase

,lingEntIn :: [LingEntity (FRel e obj obj)]

,lingEntOut :: [LingEntity (FRel e obj obj)]}

| SumContr { header :: Header e obj (FRel e obj obj)

,srcSum :: Bool

,trgSum :: Bool

,derJoin :: DerOp e

,subContrs :: [FuzContr e obj]}

| ProdContr { header :: Header e obj (FRel e obj obj)

,srcProd :: Bool

,trgProd :: Bool

,derMeet :: DerOp e

,subContrs :: [FuzContr e obj]}

The data structures Rule (for a single rule) and Header are pretty intuitive. A rule consists

of an interpretation function (DerOp), an input entity and a list of output entities it shall be

connected with. A list of such rules then forms the rulebase of a controller. For example,

the rulebase

if x is Q1 then y is S1

if x is Q2 then y is S3 and S4

4.3. A MODULE FOR FUZZY CONTROLLERS 147

has to be represented by the list

[(<op1>,("Q1",["S1"])),(<op2>,("Q2",["S3","S4"]))] .

Notice that the arrangement of the list entries plays no role if the aggregation function is

commutative.

The header is, in wide areas, a realization of the needed functionality to infer the output.

Thus, the header is needed by all three kinds of controller. As an extension to Definition

4.2.1, the header includes a label for the controller (contrLabel), the underlying entry lattice

(entryLat) of the L-fuzzy relations and a unit object (unitObj). The last two parameters

are needed to automatically construct the underlying Goguen category, later on.

With these preparations, the FuzContr data structure is straightforward. The simple con-

troller SimpleContr, in addition to the header, gets all needed functions to create the core.

This includes an aggregation function aggr, a rulebase rules and the linguistic entities for

the input (lingEntIn) and output (lingEntOut), respectively. Notice that Header is instan-

tiated using FRel e obj obj for the type parameter. This implies that the modules FContr

and LFuzzyRel can only be used together. A more general approach seems not to be senseful

since too much specific functionality of LFuzzyRel is used.

The data structures SumContr and ProdContr are implemented equally. Besides the header,

they get two flags which indicate, whether the direct sum resp. cross product shall be gen-

erated with the source resp. target of the controller. The meaning of these two flags is

summarized in Table 4.3.

sS/sP tS/tP Operation SumContr Operation ProdContr

True True +̂t⊕ ×̂t¯
True False +̂t⊕

s ×̂t¯
s

False True +̂t⊕
t ×̂t¯

t

False False t⊕ t¯

Table 4.1: The meaning of the flags sS/tS and sP/tP

Furthermore, both SumContr and ProdContr carry a u-based derived operation derJoin resp.

derMeet. Notice, that the controllers in the subcontroller list subctrs have to be combin-

able (cf. Definition 4.2.2) and derJoin / derMeet have to fulfill Definition 4.2.3 to make all

operations of the table above applicable.

Finally, we want to mention that the information the header carries could be extracted form

the subcontroller list with SumContr and ProdContr. Hence, the header would not be neces-

sary for these structures. But, we prefer this variant to have quick access to the parameters.

Since no really high depth of the FuzContr data structure is to expect, the resulting overhead

148 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

should be acceptable. Real applications will have to show whether this approach suffices

or changes have to be made. Furthermore, the variants SumContr and ProdContr could have

been put together to a single variant ExtendedContr or similar using an additional flag to

determine which operation is wanted. But again, we prefer to have separate structures for

convenience and clearness.

Again, we provide Eq and Show instances.

instance Eq (FuzContr e obj) where

fc1 == fc2 = contrLabel (header fc1) == contrLabel (header fc2)

instance (Show obj, Show e) => Show (FuzContr e obj) where

show (SimpleContr (Header l u e f ap d) ag rs lI lO) =

let presentEnt =

concat .

map (\x -> "\n"++" ENTITY NAME : "++ entLabel x++"\n"++

" RELATION : "++ "\n"++ show (entRel x))

in

"CONTROLLER NAME : "++ l ++"\n"++

"UNIT OBJECT : "++ show u ++ "\n" ++

"LING.ENTITUES INPUT : "++ presentEnt lI ++

"LING.ENTITIES OUTPUT: "++ presentEnt lO ++ "\n"++

"RULEBASE : "++ (concat $ map (\x -> show x++"\n"++

" ") rs)

show (SumContr (Header l u _ _ _ _) _ _ _ subctrs) =

"CONTROLLER NAME : "++ l ++"\n"++

"UNIT OBJECT : "++ show u ++"\n"++

"SUBCONTROLLERS : "++ concat (map (contrLabel.header) subctrs)

show (ProdContr (Header l u e f ap d) dM sP tP subctrs) =

show (SumContr(Header l u e f ap d) dM sP tP subctrs)

As with LingEntity, equality of two controllers is reduced to label equality. If the user

explicitly wants to test whether the cores of two different controllers are equal, he has to

use the function core introduced later on.

Computing the core of a controller

Having the necessary data structures, we now aim at suitable auxiliary functions to make
the instantiation of fuzzy controllers and the computation of their cores comfortable for

4.3. A MODULE FOR FUZZY CONTROLLERS 149

the user. With the next functions we want to support constructing the input resp. output
linguistic entites. We introduce ordering and residual-based strengthening/weakening as
well as shifting to build up linguistic entities that fit together.

greaterThan e m = fConv $ fLRes (fConv e) m

lessThan e m = fConv $ fLRes e m

very xi m 1 = fLRes m xi

very xi m i = fLRes (very xi m $ i-1) xi

roughly xi m 1 = fComp m xi

roughly xi m i = fComp (roughly xi m $ i-1) xi

shiftL m bij 1 = fComp m $ fConv bij

shiftL m bij i = fComp (shiftL m bij $ i-1) $ fConv bij

shiftR m bij 1 = fComp m bij

shiftR m bij i = fComp (shiftR m bij $ i-1) bij

These routines are direct realizations of the underlying definitions. Notice that we delibe-

rately do not yet use the Goguen module to compute the terms. Throughout this module

we differentiate between two different levels of abstraction. Everything that has to be done

to construct a controller is done on a level that is not pure algebraic. For these actions the

modules LFuzzyRel and Lattice are used. But, all operations on controllers themselves are

done using the underlying Goguen category, which is automatically generated. This has the

further advantage that the user does not have to instantiate it himself.

The following functions help to compute the underlying Goguen category of a fuzzy con-
troller.

contrDom, contrRan :: FuzContr e obj -> [obj]

contrDom (SimpleContr _ _ _ lI _) = if null lI then [] else entTrg $ head lI

contrDom (SumContr _ sS _ _ subctrs) =

if sS then concat $ map contrDom subctrs

else contrDom (head subctrs)

contrDom (ProdContr _ sP _ _ subctrs) =

if sP then crossProd $ map contrDom subctrs

else contrDom (head subctrs)

contrRan (SimpleContr _ _ _ _ lO) = if null lO then [] else entTrg $ head lO

150 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

contrRan (SumContr _ _ tS _ subctrs) =

if tS then concat $ map contrRan subctrs

else contrRan (head subctrs)

contrRan (ProdContr _ _ tP _ subctrs) =

if tP then crossProd $ map contrRan subctrs

else contrRan (head subctrs)

catObjects :: (Eq obj) => FuzContr e obj -> [[obj]]

catObjects fc@(SimpleContr h _ _ _ _) =

nub $ [unitObj h,contrDom fc,contrRan fc]

catObjects fc =

nub $ contrDom fc : contrRan fc : map (concat . catObjects) (subContrs fc)

contrCat :: (Eq e, Eq obj) => FuzContr e obj ->

Gog (Loos e) [obj] (FRel e obj obj)

contrCat fc = let eLat = entryLat $ header fc in

fRelGogCat eLat (getAllFRels eLat $ catObjects fc)

Obviously, contrDom resp. contrRan deliver the domain and range of the controller, respec-

tively. To do so in the SimpleContr case, they build up the direct sums by simple list

concatenation. In the ProdContr case, the function crossProd is used to compute the re-

lational products of the domains resp. ranges of all subcontrollers. The exact manner of

function of this routine is explained below.

The necessary objects to instantiate the underlying Goguen category are delivered by

catObjects. The simple case SimpleContr provides the unit object, the domain and range of

the controller and the targets of all input and output entities, respectively. With controllers

of type ProdContr we again have to add the products of the input resp. output spaces of the

subcontrollers.

To understand the computation of the core of a product controller later on, it is very
important to know how the function

crossProd :: [[obj]] -> [obj]

crossProd xs = concat $ replicate (product $ map length (init xs)) (last xs)

works. Obviously, crossProd is parametrized by the list xs of the objects whichs cross
product shall be generated. But again, Haskell’s strong typing turns into a demerit. It
would be nice if we could represent the resulting cross product by a list of tuples. Thus, for
instance, the product {1, 2} × {3, 4} could be represented by the list

[(1,2),(1,4),(2,3),(2,4)].

4.3. A MODULE FOR FUZZY CONTROLLERS 151

But, as shown above, we aim at an instance of a Goguen category (Gog) where all objects
have to be of the same type. Thus, the lists [1,2], [3,4] and [(1,2),(1,4),(2,3),(2,4)]

cannot be objects of the same Goguen category. The escape we use is to simply replicate
the elements of the last object of xs n times whereas n is the product of the lengths of
all objects out of xs except the last one. The resulting list then is isomorphic to the cross
product. In our example we get [3,4,3,4].
The interpretability suffers from this construction. Hence, we provide the function

getLabel :: Int -> [[obj]] -> [Int]

getLabel i srcs = getLabel’ i $ map length srcs

where

getLabel’ i [l] = [i]

getLabel’ i (l:ls) = div i (product ls) : getLabel’ (mod i $ product ls) ls

which delivers the interpretation of a position in the product of several lists. To do so it
has to get the position in question (i) and the sources srcs from which the cross product
was created. The result then is a list of positions — one for each list out of srcs. In our
example, typing getLabel 2 [[1,2],[3,4]] results in the output [1,0]. Notice that counting
the position starts with zero. Notice furthermore, that getLabel presupposes that the cross
product was created right associative (as shown with crossProd) whereas the arrangement
of the elements of srcs is decisive. This convention comes due to the fact that it allows a
relatively comfortable computation of the (crisp) projections, which is done by the following
function.

projections :: Gog (Loos e) [obj] (FRel e obj obj) ->

Lat e -> [[obj]] -> [obj] -> [FRel e obj obj]

projections g e srcs trg = projs’ 1 srcs

where

projs’ _ [] = []

projs’ n (s:ss) =

let l1 = length s - 1

l2 = product (map length (ss)) - 1

in fUpd (gog_bottom g trg s) [((k*(l1+1)*(l2+1)+j*(l2+1)+i,j)

,lat_topEl e) | k<-[0..n-1],

i<-[0..l2],

j<-[0..l1]]

: projs’ (n*(l1+1)) ss

Consider, for example, the three sets {1, 2, 3}, {4, 5} and {6, 7}. The relational product of

{1, 2, 3} × ({5, 6} × {8, 9}) with the convention above then is computed by the projections

152 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

shown in Figure 4.5.

src/trg 1 2 3 5 6 8 9
(1,5,8) 1 0 0 1 0 1 0
(1,5,9) 1 0 0 1 0 0 1
(1,6,8) 1 0 0 0 1 1 0
(1,6,9) 1 0 0 0 1 0 1
(2,5,8) 0 1 0 1 0 1 0
(2,5,9) 0 1 0 1 0 0 1
(2,6,8) 0 1 0 0 1 1 0
(2,6,9) 0 1 0 0 1 0 1
(3,5,8) 0 0 1 1 0 1 0
(3,5,9) 0 0 1 1 0 0 1
(3,6,8) 0 0 1 0 1 1 0
(3,6,9) 0 0 1 0 1 0 1
proj. ρ1 ρ2 ρ3

Figure 4.5: The projections for {1, 2, 3} × ({5, 6} × {8, 9})

With this, 1 and 0 are the greatest resp. least element of the underlying entry lattice of the

L-fuzzy relations. One can see the periodicity of the 1-entries which makes the computation

quite comfortable. In ρ1 we have period 4, i.e., we have four 1-entries below each other in

every column. This comes due to the fact that 4 =| {5, 6} | · | {8, 9} |. Analogously, we

have period 2 =| {8, 9} | with ρ2 and so on. With these remarks it should be clear how

projections works. It takes the underlying Goguen category g, the underlying entry lattice

e to have access to its least resp. greatest element, and the objects srcs from which the cross

product trg was created. The computation of the projections then is straightforward. Notice

that all terms are computed on the abstraction level of Goguen categories since projections

shall support the determination of the core of a controller.

The function

injections :: Gog (Loos e) [obj] (FRel e obj obj) ->

Lat e -> [[obj]] -> [obj] -> [FRel e obj obj]

injections g e srcs trg = inj’ srcs 0

where

inj’[] _ = []

inj’(s:ss) n = fUpd (gog_bottom g s trg)

[((i,j),lat_topEl e) | i <- [0..length s-1],

j <- [i..length trg-1], i+n==j]

: inj’ ss (n+length s)

4.3. A MODULE FOR FUZZY CONTROLLERS 153

delivers the counterpart of projections by computing the (crisp) injections for a direct sum

trg that was created out of the objects srcs. Again, the computation is straightforward

whereas the arrangement of srcs is decisive.

Now, we are ready to compute the core of a controller. To do so, we make use of the
underlying equations (cf. Section 4.2.1).

core :: (Eq obj, Eq e) => FuzContr e obj -> FRel e obj obj

core fc@(SimpleContr (Header _ _ _ _ _ _) agg rs lEIn lEOut) =

let g = contrCat fc

in foldl (gog_derOp g "Meet" (opLoos agg))

(gog_bottom g (contrDom fc) (contrRan fc)) $

map (\(intFun,(x,y)) -> gog_derOp g "Comp" (opLoos intFun)

(gog_converse g x) y)

(sortEnt lEIn lEOut rs)

where

getMor les s = let ents = filter ((== s).entLabel) les

in if null ents then error "No such entity !"

else head ents

sortEnt _ _ [] = []

sortEnt lesI lesO ((iF,(s,[])):ss) = sortEnt lesI lesO ss

sortEnt lesI lesO ((iF,(s,t:ts)):ss) =

(iF, (entRel $ getMor lesI s,

entRel $ getMor lesO t)) : sortEnt lesI lesO ((iF,(s,ts)):ss)

core fc@(SumContr _ sS tS derJoin subctrs) =

let

g = contrCat fc;

doms = map contrDom subctrs; dom = concat doms

rans = map contrRan subctrs; ran = concat rans

subCores = case (sS,tS) of

(True,True) -> injR [] rans . injL [] doms

(True,False) -> injL [] doms

(False,True) -> injR [] rans

(False,False) -> id

in

foldl1 (gog_derOp g "Meet" (opLoos derJoin)) $ subCores $ map core subctrs

where

injL us [l] (x:xs) = [fExtSrc us x []]

injL us (l:ls) (x:xs) = fExtSrc us x ls : injL (us++[l]) ls xs

injR us [l] (x:xs) = [fExtTrg us x []]

154 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

injR us (l:ls) (x:xs) = fExtTrg us x ls : injR (us++[l]) ls xs

core fc@(ProdContr h sP tP derMeet subctrs) =

let

g = contrCat fc

compG = gog_comp g

doms = map contrDom subctrs; dom = crossProd doms

rans = map contrRan subctrs; ran = crossProd rans

projL xs = zipWith compG (projections g (entryLat h) doms dom)xs

projR xs = zipWith (\r p -> compG r $ gog_converse g p) xs $

projections g (entryLat h) rans ran

subCores = case (sP,tP) of

(True,True) -> projR . projL

(True,False) -> projL

(False,True) -> projR

(False,False) -> id

in foldl1 (gog_derOp g "Meet" (opLoos derMeet)) $ subCores $ map core subctrs

We again have to differentiate between the three cases SimpleContr, SumContr and ProdContr.

The computation for simple controllers is straightforward by reading out the rulebase and

interpreting the corresponding rules. With sum and product controllers we have to treat

the four different cases arising from the setting of the flags sS / tS resp. sP / tP. According

to their state, the cores of the subcontrollers have to be extended by the (automatically

generated) injections and projections, respectively. We want to mention a difference between

the computations for sum controllers and product controllers. From Lemma 4.2.3 we know

that a term ι`1 R1t⊕ ι`2 R2 is equivalent to ι`1 R1tι`2 R2 for relations R1 : A1 → B, R2 : A2 →
B and the induced crisp injections ιi : Ai → A1 +A2 if t⊕ is a meet-based derived operation

with neutral element ⊥⊥ . Thus, applying the injections in this term corresponds to simply

extending the matrices R1 resp. R2 by zero rows such that the resulting matrices R′
1 and R′

2

have source A1 + A2 and target B. This means that the operations fExtSrc and fExtTrg of

the LFuzzyRel module are applicable. An analogous computation for the relational product

is obviously not to expect.

Combinators for fuzzy controllers

After the basic routines on fuzzy controllers, we now want to provide suitable combinators
to construct them step by step. Furthermore, we then have the possibility to construct new

4.3. A MODULE FOR FUZZY CONTROLLERS 155

fuzzy controllers in a component-free manner. Building up a fuzzy controller always starts
with the empty controller.

emptyContr l unit eLat = let emptyLoos = Loos { loos_lat = eLat

,loos_op = const $ id

,loos_e = lat_botEl eLat

,loos_z = lat_botEl eLat}

emptyDerOp = DerOp "" emptyLoos True True

emptyFunc = UnFunc "" id

emptyBFunc = BinFunc "" (const $ id)

in if l=="" then error ("Empty label!")

else SimpleContr (Header l unit eLat emptyFunc

emptyBFunc emptyFunc)

emptyDerOp [] [] []

Obviously, emptyContr only takes a minimal set of parameters. The remaining part can

be set to default values. Notice that a controller of type SumContr or ProdContr with an

empty subContrs list is seen to be invalid. Furthermore, the empty label is not allowed for

a controller. The reason for this becomes clear later on.

An empty controller can be updated by new rules and linguistic entities, respectively. Fur-
thermore, the corresponding parts of the header can be set. This is covered by the following
routines.

hUpdFuzz f (Header l u e _ ap d) = Header l u e f ap d

hUpdAppl ap (Header l u e f _ d) = Header l u e f ap d

hUpdDefuzz d (Header l u e f ap _) = Header l u e f ap d

contrUpdFuzz f (SimpleContr h ag rs lEIn lEOut) =

SimpleContr (hUpdFuzz f h) ag rs lEIn lEOut

contrUpdFuzz f (SumContr h sS tS dJ sC) =

SumContr (hUpdFuzz f h) sS tS dJ sC

contrUpdFuzz f (ProdContr h sP tP dM sC) =

ProdContr (hUpdFuzz f h) sP tP dM sC

contrUpdAppl ap (SimpleContr h ag rs lEIn lEOut) =

SimpleContr (hUpdAppl ap h) ag rs lEIn lEOut

contrUpdAppl ap (SumContr h sS tS dJ sC) =

SumContr (hUpdAppl ap h) sS tS dJ sC

contrUpdAppl ap (ProdContr h sP tP dM sC) =

156 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

ProdContr (hUpdAppl ap h) sP tP dM sC

contrUpdAggr ag (SimpleContr h _ rs lEIn lEOut) =

SimpleContr h ag rs lEIn lEOut

contrUpdDefuzz d (SimpleContr h ag rs lEIn lEOut) =

SimpleContr (hUpdDefuzz d h) ag rs lEIn lEOut

contrUpdDefuzz d (SumContr h sS tS dJ sC) =

SumContr (hUpdDefuzz d h) sS tS dJ sC

contrUpdDefuzz d (ProdContr h sP tP dM sC) =

ProdContr (hUpdDefuzz d h) sP tP dM sC

contrUpdRuleIn, contrUpdRuleOut ::

String -> [Rule e] -> FuzContr e obj -> FuzContr e obj

contrUpdRuleIn cLabel xs fc@(SimpleContr (Header l u e f ap d) ag rs lI lO) =

if cLabel == "" || l == cLabel then

SimpleContr (Header l u e f ap d) ag (xs++rs) lI lO

else fc

contrUpdRuleIn cLabel xs (SumContr (Header l u e f ap d) dJ sS tS subctrs) =

if cLabel == "" || l == cLabel then

error ("Label \""++cLabel++"\" specifies a sum controller"++

" or is invalid !")

else SumContr (Header l u e f ap d) dJ sS tS $

map (contrUpdRuleIn cLabel xs) subctrs

contrUpdRuleIn cLabel xs (ProdContr (Header l u e f ap d) dM sP tP subctrs) =

if cLabel == "" || l == cLabel then

error ("Label \""++cLabel++"\" specifies a product controller"++

" or is invalid !")

else ProdContr (Header l u e f ap d) dM sP tP $

map (contrUpdRuleIn cLabel xs) subctrs

contrUpdRuleOut l xs =

contrUpdRuleIn l (concat $ map (\(iF,(t,ss)) -> [(iF,(s,[t])) | s<-ss]) xs)

contrUpdEntIn, contrUpdEntOut :: (Eq obj) =>

String -> [(DerOp e,

(LingEntity (FRel e obj obj),[String]))] ->

FuzContr e obj -> FuzContr e obj

contrUpdEntIn cLabel lEs fc@(SimpleContr (Header l u e f ap d) ag rs lI lO) =

if cLabel == "" || l == cLabel then

4.3. A MODULE FOR FUZZY CONTROLLERS 157

SimpleContr (Header l u e f ap d) ag

(map (\(iF,(e,ts)) -> (iF, (entLabel e,ts))) lEs ++ rs)

(map (fst.snd) lEs ++ lI)

lO

else fc

contrUpdEntIn cLabel lEs (SumContr (Header l u e f ap d) dJ sS tS subctrs) =

if cLabel == "" || l == cLabel then

error ("Label \""++cLabel++"\" specifies a sum controller"++

" or is invalid !")

else SumContr (Header l u e f ap d) dJ sS tS $

map (contrUpdEntIn cLabel lEs) subctrs

contrUpdEntIn cLabel lEs (ProdContr (Header l u e f ap d) dM sP tP subctrs) =

if cLabel == "" || l == cLabel then

error ("Label \""++cLabel++"\" specifies a product controller"++

" or is invalid !")

else ProdContr (Header l u e f ap d) dM sP tP $

map (contrUpdEntIn cLabel lEs) subctrs

contrUpdEntOut cLabel lEs fc@ (SimpleContr (Header l u e f ap d) ag rs lI lO) =

if cLabel == "" || l == cLabel then

SimpleContr (Header l u e f ap d) ag

(concat (map (\(iF,(e,ts)) -> [(iF,(t,[entLabel e]))

| t<-ts]) lEs) ++ rs)

lI

(map (fst.snd) lEs ++ lO)

else fc

contrUpdEntOut cLabel lEs (SumContr (Header l u e f ap d) dJ sS tS subctrs) =

if cLabel == "" || l == cLabel then

error ("Label \""++cLabel++"\" specifies a sum controller"++

" or is invalid !")

else SumContr (Header l u e f ap d) dJ sS tS $

map (contrUpdEntOut cLabel lEs) subctrs

contrUpdEntOut cLabel lEs (ProdContr (Header l u e f ap d) dM sP tP subctrs) =

if cLabel == "" || l == cLabel then

error ("Label \""++cLabel++"\" specifies a product controller"++

" or is invalid !")

else ProdContr (Header l u e f ap d) dM sP tP $

map (contrUpdEntOut cLabel lEs) subctrs

158 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

The functions for the header should be clear. For updating the rulebase, we have

contrUpdRuleIn resp. contrUpdRuleOut. For the case that the rulebase of a subcontroller

within a sum or product controller is to update, we introduce the parameter cLabel. As

shown here, the SumContr and ProdContr parts of every function shown above are recursive.

The operation in question is then applied to every subcontroller having the name cLabel. If

cLabel specifies a sum or product controller, the functions above fail with an error message.

Notice again, that we demand the controller labels to be unique.

For simple controllers cLabel plays no role and, hence, the user can set it to "". Here we see

the reason why controllers with an empty label are not allowed.

Back to the functions for updating rules, the parameter xs specifies the new rules carrying

the list of new target entities a source entity shall be connected with. Notice that we have

a difference here between updating rules for input entities and updating them for output

entities. With contrUpdRuleIn the source entity is an input entity and the targets are output

entities. This exactly corresponds to our interpretation of the data type Rule. But, with

contrUpdRuleOut the source is an output entity. Hence, we have to modify the list in the

way shown above such that we can use contrUpdRuleIn to compute the resulting controller.

The functions for updating linguistic entities work analogously. The only interesting thing

is the structure of the new parameter lEs. It consists of a list of tuples each carrying the

new linguistic entity and a list of entities it shall be connected with in the rulebase. Hence,

we are able to update the rulebase simultaneously without having to perform a separate

function call.

All these operations above are still somehow componentwise. The next constructions are
based on ready created fuzzy controllers. The product of two controllers can be build by
the function

contrProd, contrSum :: (Eq e, Eq obj) => Bool -> Bool -> FuzContr e obj ->

FuzContr e obj -> DerOp e -> FuzContr e obj

contrProd sP tP c1 c2 derMeet =

let dummy = ProdContr (header c1) sP tP derMeet [c1,c2]

eLat = entryLat $ header c1; g = contrCat dummy

compG = gog_comp g; convG = gog_converse g

dom1 = contrDom c1; dom2 = contrDom c2

ran1 = contrRan c1; ran2 = contrRan c2

pI = projections g eLat [dom1,dom2] $ crossProd [dom1,dom2]

pO = projections g eLat [ran1,ran2] $ crossProd [ran1,ran2]

(newF,newApp) =

let f1 = fuzz (header c1); f2 = fuzz (header c2)

4.3. A MODULE FOR FUZZY CONTROLLERS 159

ap1 = appl (header c1); ap2 = appl (header c1)

a1 = binFunc ap1; a2 = binFunc ap2

in

if not sP then (f1,ap1)

else

(UnFunc (unLabel f1++"**"++unLabel f2)

(\x -> foldl1 (gog_derOp g "Meet" (opLoos derMeet)) $

zipWith (\p f -> compG (f $ compG x p) $ convG p)

pI [unFunc f1,unFunc f2]),

BinFunc (binLabel ap1++"**"++binLabel ap2)

(\x y -> gog_derOp g "Meet" (opLoos derMeet)

(compG (a1 (compG x (head pI)) $

(compG (compG (convG $ head pI) y) $ head pO))

$ convG (head pO))

(compG (a2 (compG x (last pI)) $

(compG (compG (convG $ last pI) y) $ last pO))

$ convG (last pO))))

newDF =

let df1 = defuzz (header c1); df2 = defuzz (header c2) in

if not tP then df1

else UnFunc (unLabel df1++"**"++unLabel df2)

(\x -> foldl1 (gog_derOp g "Meet" (opLoos derMeet)) $

zipWith (\p f -> compG (f $ compG x p) $ convG p)

pO [unFunc df1,unFunc df2])

in ProdContr (Header

(contrLabel (header c1)++"**"++contrLabel (header c2))

(unitObj $ header c1) (entryLat $ header c1)

newF newApp newDF)

sP tP

derMeet

[c1,c2]

which is straightforward due to the explanations in Section 4.2.1. The only things that have

to be computed are the fuzzification, application and defuzzification functions in confor-

mance with the flags sP and tP. This is done by newF, newAppl and newDF, respectively. The

label of the resulting controller is simply created by connecting the labels of c1 and c2 with

an additional **. Notice that we do not have to differentiate between the three variants of

FuzContr since we only need parameters of the header of c1 and c2. But, notice that the

function is not associative in the sense that the resulting data structures are equal. But, for

160 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

the mathematical interpretation (the core) this plays no role since the relational product

is associative. Furthermore, we use the labels of two controllers as the equality criteria in

our Eq instance. As one can see, the computation of the label of the resulting controller in

contrProd is associative. Notice that the operation above preserves only the properties both

c1 and c2 have, i.e., a rule of the product controller can only fire if this rule would cause c1

and c2 to fire. This is immediately seen by the fact that the loos derMeet is restricted to

have I as neutral element and, hence, ⊥⊥ as zero.

The next construction is the relational sum of two controllers.

contrSum sS tS c1 c2 derJoin =

let dummy = SumContr (header c1) sS tS derJoin [c1,c2]

eLat = entryLat $ header c1; g = contrCat dummy

compG = gog_comp g; convG = gog_converse g

dom1 = contrDom c1; dom2 = contrDom c2

ran1 = contrRan c1; ran2 = contrRan c2

iI = injections g eLat [dom1,dom2] $ dom1++dom2

iO = injections g eLat [ran1,ran2] $ ran1++ran2

(newF,newApp) =

let f1 = fuzz (header c1); f2 = fuzz (header c2)

ap1 = appl (header c1); ap2 = appl (header c1)

a1 = binFunc ap1; a2 = binFunc ap2

in

if not sS then (f1,ap1)

else

(UnFunc (unLabel f1++"++"++unLabel f2)

(\x -> foldl1 (gog_derOp g "Meet" (opLoos derJoin)) $

zipWith (\i f -> compG (f $ compG x (convG i)) i)

iI [unFunc f1,unFunc f2]),

BinFunc (binLabel ap1++"++"++binLabel ap2)

(\x y -> gog_derOp g "Meet" (opLoos derJoin)

(compG (a1 (compG x $ convG (head iI)) $

(compG (compG (head iI) y) $ convG (head iO)))

$ head iO)

(compG (a2 (compG x $ convG (last iI)) $

(compG (compG (last iI) y) $ convG (last iO)))

$ last iO)))

newDF =

let df1 = defuzz (header c1); df2 = defuzz (header c2) in

if not tS then df1

4.3. A MODULE FOR FUZZY CONTROLLERS 161

else UnFunc (unLabel df1++"++"++unLabel df2)

(\x -> foldl1 (gog_derOp g "Meet" (opLoos derJoin)) $

zipWith (\i f -> compG (f $ compG x (convG i)) i)

iO [unFunc df1,unFunc df2])

in SumContr (Header

(contrLabel (header c1)++"++"++contrLabel (header c2))

(unitObj $ header c1) (entryLat $ header c1)

newF newApp newDF)

sS tS

derJoin

[c1,c2]

The implementation is analogous and a direct realization of the underlying operation. The
following two functions mark the derived meet resp. derived join operation on two fuzzy
controllers as special cases for the functions above.

contrJoin, contrMeet :: (Eq e, Eq obj) => FuzContr e obj -> FuzContr e obj ->

DerOp e -> FuzContr e obj

contrJoin = contrSum False False

contrMeet = contrProd False False

Now, we want to switch to contrMelt. The main motivation for this function is the reduction
of the underlying data structure FuzContr and a gain in efficiency for several computations
(e.g., contrSum). The resulting controller shall be of type SimpleContr and contain at maxi-
mum one kind of linguistic entities for each input and output, i.e., all input/output entities
shall have the same target. But, notice that the history of creation of the underlying con-
troller is automatically deleted when using contrMelt and cannot be reconstructed. We start
with sum controllers.

contrMelt :: (Eq e, Eq obj) => FuzContr e obj -> FuzContr e obj

contrMelt fc@(SumContr h sS tS derJoin subctrs) =

let

subms = map contrMelt subctrs; ag = aggr $ head subms

doms = map contrDom subms; rans = map contrRan subms

lEIn = map lingEntIn subms; lEOut = map lingEntOut subms

rs = concat $ map rules subms

extLab = case (sS,tS) of

(True,True) -> map (\(iF,(s,ts))->(iF,(s++"++",map (++"++") ts)))

(True,False) -> map (\(iF,(s,ts))->(iF,(s++"++",ts)))

(False,True) -> map (\(iF,(s,ts))->(iF,(s,map(++"++") ts)))

(False,False)-> id

162 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

in SimpleContr h ag

(extLab $ meltRs (comm ag) (idem ag) (head rs) [] $ tail rs)

(nub $ concat $ if sS then injR [] doms lEIn else lEIn)

(nub $ concat $ if tS then injR [] rans lEOut else lEOut)

where

injR us [l] (x:xs) = [map (\le -> LingEntity (entLabel le++"++")

(fExtTrg us (entRel le)[]))x]

injR us (l:ls) (x:xs) = map (\le -> LingEntity (entLabel le++"++")

(fExtTrg us (entRel le)ls)) x

: injR (us++[l]) ls xs

meltRs _ _ x [] [] = [x]

meltRs c i x (r:rs) [] = x:meltRs c i r [] rs

meltRs c i x@(iF,(l,trgs)) rs (t@(iF2,(l2,trgs2)):ts)=

if (l==l2) && (opLabel iF==opLabel iF2) && c then

meltRs c i (iF,(l,if i then nub $ trgs++trgs2

else trgs++trgs2)) rs ts

else meltRs c i x (t:rs) ts

The header need not be computed again. This has already been done with the creation
of the data structure using contrSum. The aggregation function is delivered by the melted
subcontrollers (subms). Notice that we choose the first element of this list. Indeed, we could
choose an arbitrary element since we implicitly presuppose that the subcontrollers are com-
binable.
The computation of the new linguistic entities and rulebase is a straightforward realization
of Definitions 4.2.5 and 4.2.6. Notice that the resulting input and output entities get new
labels if they are extended to new targets. For the computation of the new rulebase we
explicitly consider whether the aggregation function is commutative (c) or idempotent (i).
Idempotency implies that we can omit duplicate output entities within a rule, and commu-
tativity allows, presupposed equal interpretation functions, to put two rules together, which
have the same input entity. Finally, we again want to mention that this construction does
not affect the input-output behavior of the resulting controller (cf. Theorem 4.2.1).
Melting two product controllers is done analogously.

contrMelt fc@(ProdContr h sP tP derMeet subctrs) =

let g = contrCat fc; subms = map contrMelt subctrs

lEIn = map lingEntIn subms; lEOut = map lingEntOut subms

compG = gog_comp g; convG = gog_converse g

concProj = zipWith (\p (LingEntity l r) ->

(LingEntity l (compG r $ convG p)))

extLab = case (sP,tP) of

4.3. A MODULE FOR FUZZY CONTROLLERS 163

(True,True) -> map (\(s,ts) -> (s++"&&",map (++"&&") ts))

(True,False) -> map (\(s,ts) -> (s++"&&",ts))

(False,True) -> map (\(s,ts) -> (s,map(++"&&") ts))

(False,False) -> id

in SimpleContr h (aggr $ head subms)

(newRules $ map rules subms)

(nub $ prodEnts concProj g

lEIn (map contrDom subms) sP)

(nub $ prodEnts concProj g

lEOut (map contrRan subms) tP)

where

newRules [] = []

newRules [rs] = rs

newRules (rs:ruls) = [(iF,(l ++ (if sP then "**" else "&&") ++ l2,

[n++ (if tP then "**" else "&&") ++ n2

| n<-ls,n2<-ls2]))

|(iF,(l,ls)) <- rs, (iF2,(l2,ls2)) <- newRules ruls]

prodEnts _ _ [] _ _ = error ("Empty entity list while "++

"computing the relational products!")

prodEnts f g ents trgs cP =

let es = prodEnts’ ents

cp = crossProd trgs

pr = projections g (entryLat h) trgs cp

(f’,t,conc) = if cP then (f pr,cp,"**")

else (id,head trgs,"&&")

in map (\en -> LingEntity (tail $ tail $ foldl (\x y -> x ++ conc ++

entLabel y) "" en)

(foldl (\x y -> gog_derOp g "Meet"

(opLoos derMeet) x (entRel y))

(gog_top g (unitObj h) t)

$ f’ en)) es

prodEnts’ [] = error ("Empty entity list while computing " ++

"the relational products!")

prodEnts’ [es] = map (:[]) es

prodEnts’ (es:ents) = let en = prodEnts’ ents

in concat [[e1:es2 | es2<-en] | e1<-es]

The key functionality is established by prodEnts and prodEnts’, respectively. The second

function creates all pairs of linguistic entities arising from the melted subcontrollers. These

pairs are represented by lists. The lists are the base for prodEnts to generate the projections,

164 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

if necessary, and then compute the resulting linguistic entities (cf. Definitions 4.2.8, 4.2.9).

The entities of the melted controller also get new labels. If they are extended using the

projections (i.e., sP or tP are True), they are concatenated by **. Otherwise, we use &&.

This labeling is a good indicator if one wants to list the resulting controller using the show

function.

With product controllers we have to remember that the input-output behavior of the melted

controller is affected. This immediately follows from Theorem 4.2.2. But, we have in every

case that calling

core $ contrProd sProd tProd c1 c2 derM

and

core (contrMelt $ contrProd sProd tProd c1 c2 derM)

deliver the same result for given parameters sProd, tProd, c1, c2 and derM. The same is true

for contrSum.

The standard case of contrMelt (for simple controllers) is trivial.

contrMelt f = f

Finally, we want to introduce predefined functions to infer the output for a given controller
and a given input.

fuzzify fc x = unFunc (fuzz $ header fc) x

apply fc x = binFunc (appl $ header fc) x $ core fc

defuzzify fc y = unFunc (defuzz $ header fc) y

infer fc = defuzzify fc . apply fc . fuzzify fc

They can be used quite intuitively.

With these combinators a convenient use of the module should be possible. The user now

has the chance to manually and (in wide areas) automatically construct and manipulate

fuzzy controllers.

4.4 Example controller

In this section we want to provide the module

module FContrTest where

4.4. EXAMPLE CONTROLLER 165

import FContr

import Lattice

import LFuzzyRel

import LFuzzyRelLattices

import List (elemIndex)

in which we develop a little example controller to show how to use FContr. With the example

we do not aim at a sophisticated controller, but try to involve as many operations as possible.

Suppose we have the crossroad shown in Figure 4.6 where the traffic is regulated by two

traffic lights “L1” and “L2”. The signal flow of both traffic lights shall be dependent from

L1L2

..

...

¾
-

?

6

Street 1

Street 2

Figure 4.6: A crossroad controlled by a fuzzy controller

the amount of traffic on both streets. Our aim is to develop a controller steering both “L1”

and “L2”. This can be achieved by creating two separate controllers and then applying the

cross product operation to them. This corresponds to a kind of “concurrent” modeling.

A first simple approach to control a single traffic light is the following. We want to make

the controller dependent from the amount of traffic on the two streets. Hence, we have to

get an input from two sensors each measuring the traffic of its street. We denote the output

domain of a sensor by A and, thus, have the input space A × A for the controllers. We

provide the linguistic input entities

LT : I → A×A - low traffic,

MT - medium traffic,

HT - high traffic.

The output entities are the following :

166 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

TR : I → B - turn red,

S - stay unchanged,

TG - turn green.

They obviously directly correspond to the possible actions a traffic light can do. The range

B includes the possible states of a traffic light. Normally, we would have red, yellow and

green. But, yellow is a time-dependent (and not traffic-dependent) state. Since we do not

have modeled time in our approach, we omit this state so that we have B := {red, green}.

Now, the question arises which entry lattice to choose. An entry in the input entities shall

express to which degree the traffic on street one and two, respectively, is low, medium or

high. Hence, we choose [0, 1]× [0, 1] as the underlying entry lattice.

At this point we have enough information to model the single controllers “L1” and “L2”.
First, we provide the entry lattice. It is clear that we have to use an approximation of
[0, 1]× [0, 1]. We use a granularity of 1

100 .

gran = (100::Int)

eLat :: Lat (Int,Int)

eLat = let els = [(x,y) | x<-[0..gran], y<-[0..gran]]

in Lat{lat_poSet = PoSet { poSet_isElem = flip elem $ els

,poSet_elements = els

,poSet_lEq = \(x1,y1) (x2,y2)->x1<=x2 &&

y1<=y2 }

,lat_sup = \(x1,y1) (x2,y2) -> (max x1 x2,max y1 y2)

,lat_inf = \(x1,y1) (x2,y2) -> (min x1 x2,min y1 y2)

,lat_botEl = (0,0)

,lat_topEl = (gran,gran)

,lat_atomS = [(1,0),(0,1)]

,lat_jIrredS = [(0,x)|x<-[1..gran]]++[(x,0)|x<-[1..gran]]

,lat_mIrredS = [(gran,x)|x<-[0..gran-1]]++[(x,gran)|x<-[0..gran-1]]}

The parameter gran sets the granularity. The lattice then is instantiated quite intuitively.
The only thing to mention is that we use the componentwise ordering

(x1, y1) ≤ (x2, y2) :⇔ x1 ≤ x2 and y1 ≤ y2

on [0, 1]× [0, 1] so that we cannot rely on the standard Prelude function (<=). The definition
above is consistent which is shown by the following session on Hugs or GHC.

FContrTest> lat_atomS eLat == atomSet (lat_lSemiLat eLat)

True

4.4. EXAMPLE CONTROLLER 167

FContrTest> lat_mIrredS eLat == mIrredSet eLat

True

FContrTest> lat_jIrredS eLat == jIrredSet eLat

True

FContrTest> testLattice eLat []

[]

Notice that checking both the join-irreducible and meet-irreducible elements before calling

testLattice is necessary since testLattice automatically reduces the underlying tests to

these elements (cf. Section 3.1).

Now, we can start to model the linguistic entities. First, some parameters are introduced.

unit,trafficSrc,tLightTrg,trafficAB :: [Int]

unit = [1]

trafficSrc = [0..9]

tLightTrg = [20,21]

trafficAB = crossProd [trafficSrc,trafficSrc]

With this unit delivers the unit object which constitutes the source of the linguistic entities.

Furthermore, trafficSrc gives the range of the measuring devices for the traffic and can

be interpreted as the amount of cars at the crossroad on the respective street. Hence, it

corresponds to the set A introduced above. The target of the output entities (B from above)

is provided by the parameter tLightTrg. Since we have to type all lists equally, the entries

have to be interpreted as red (20) and green (21), respectively. Finally, the cross product

A×A is delivered by trafficAB.

We want to construct our linguistic input entities using the intensifying modifier “more or
less”. This corresponds to the application F ;∗ Ξ for a given fuzzy set F , modifier Ξ and a
derived operation ;∗. We exemplary explain the procedure while constructing the linguistic
entity HT . In the following we use ; for ;∗. First, we introduce two given crisp fuzzy sets
F1 and F2 over A × A expressing which amount of cars constitutes a high traffic on street
one resp. two. With this we suppose that street one is the main street and, hence, shall be
preferred with state green.

highA = fUpd (fBot eLat [1::Int] trafficAB) [((0,80+i),(gran,0))|i<-[0..19]]

highB = fUpd (fBot eLat [1::Int] trafficAB) [((0,i*10+9),(0,gran))|i<-[0..9]]

Notice that trafficAB was created using the crossProd operation. Together with the ex-

planations of Section 4.3 it then should be clear that highA and highB are mathematically

168 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

described by

F1(1, (x, y)) :=

(1, 0) , if x ≥ 8

(0, 0) , otherwise
, F2(1, (x, y)) :=

(0, 1) , if y = 9

(0, 0) , otherwise
.

Obviously, already eight cars on street one are seen as high traffic whereas nine cars are

needed on street two. The starting fuzzy sets F1 and F2 now have to be modified. Again,

we have to provide a granularity how sensitive the controller shall react on little changes

in the traffic amount. To avoid unnecessarily many state changes with the traffic lights, a

change in the traffic amount lower than two cars on one street shall not affect the behavior.

This is modeled by the fuzzy relation Ξ : A×A → A×A

Ξ((x1, y1), (x2, y2)) := (min(1,max(0, 1.2− 0.2 · |x1− x2|)),
min(1,max(0, 1.2− 0.2 · |y1− y2|))). (4.6)

One can see that IA×A v Ξ holds. If we now compute F1; Ξ, the interpretation of “high
traffic” is preserved within F1. But, everything that is “nearly high traffic” gets a weakened
entry. Thus, we, for example, have (F1; Ξ)(5, 0) = (0.6, 0). To achieve the overall fuzzy set
HT , we finally have to compute (F1 t F2); Ξ. With these remarks the Haskell code should
be understandable.

trAB :: [(Int,Int)]

trAB = [(x,y) | x<-trafficSrc,y<-trafficSrc]

mayBeVal (Just i) = i

mayBeVal Nothing = 0

xi :: FRel (Int,Int) Int Int

xi = fUpd (fBot eLat trafficAB trafficAB)

[((mayBeVal $ elemIndex (x1,y1) trAB, mayBeVal $ elemIndex (x2,y2) trAB),

(min gran $ max 0 $ gran+20-20*abs (x1-x2),

min gran $ max 0 $ gran+20-20*abs (y1-y2)))

| (x1,y1)<-trAB, (x2,y2)<-trAB]

highT = LingEntity "HT" $ roughly xi (fJoin highA highB) 1

The function trAB represents A× A. It differs from trafficAB because it consists of tuples
and, hence, allows a comfortable creation of Ξ. Furthermore, getMayBeValue is an auxiliary
function which is also needed with xi. The implementation of xi then is a straightforward
realization of Formula 4.6. Finally, HT is computed by highT which makes use of the
predefined function roughly (cf. Section 4.3).
The linguistic entities MT and LT for medium resp. low traffic are provided analogously.

4.4. EXAMPLE CONTROLLER 169

upd1 = fUpd (fBot eLat unit trafficAB)

mediumA = upd1 [((0,30+i),(gran,0))|i<-[0..9]]

mediumB = upd1 [((0,i*10+4),(0,gran))|i<-[0..9]]

lowA = upd1 [((0,i),(gran,0))|i<-[0..9]]

lowB = upd1 [((0,i*10),(0,gran))|i<-[0..9]]

mediumT = LingEntity "MT" $ roughly xi (fJoin mediumA mediumB) 1

lowT = LingEntity "LT" $ roughly xi (fJoin lowA lowB) 1

Now, we switch to the output entities. They are realized as follows.

upd2 = fUpd (fBot eLat unit tLightTrg)

tRed = LingEntity "TR" $ upd2 [((0,0),lat_topEl eLat)]

tGreen = LingEntity "TG" $ upd2 [((0,1),lat_topEl eLat)]

stay = LingEntity "S" $ upd2 [((0,0),(div gran 2,div gran 2)),

((0,1),(div gran 2,div gran 2))]

The entities TR and TG, implemented by tRed resp. tGreen, are crisp whereas S is not.

This representation is chosen arbitrarily.

The input and output entities have to be connected within the rulebase. With the model

developed so far we choose a very intuitive variant.

If x is HT then y is TG

If x is MT then y is S

If x is LT then y is TR

The rulebase demands to turn red when there is only low traffic on the respective street.

Analogously, turning green is demanded with high traffic. Medium traffic shall cause the

traffic light to stay unchanged.

Now, we construct “L1” and “L2”. Throughout this example we want all rules to be inter-
preted by ;. The application function of the resulting controllers also shall be the common
composition operator. Furthermore, we use the identity operator as fuzzification, and join
is used as aggregation function. Hence, we introduce the following abbreviations.

infOp, supOp :: DerOp (Int,Int)

infOp = DerOp "Inf" (lat_infLoos eLat) True True

supOp = DerOp "Sup" (lat_supLoos eLat) True True

170 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

compBinFunc :: BinFunc (FRel (Int,Int) Int Int)

compBinFunc = BinFunc "Comp" fComp

The controller for street one is computed as follows.

deFuzz sc = UnFunc "Res" (fDown . fRRes sc)

tLightCtrA = contrUpdEntIn "" [(infOp,(lowT,["TR"])),

(infOp,(highT,["TG"])),

(infOp,(mediumT,["S"]))] $

contrUpdEntOut "" [(infOp,(tRed,[])),

(infOp,(tGreen,[])),

(infOp,(stay,[]))] $

contrUpdDefuzz (deFuzz $ fScalar eLat (80,0) unit) $

contrUpdAggr supOp $

contrUpdAppl compBinFunc $

emptyContr "TLA" unit eLat

The construction is delivered as expected. Notice that we do not explicitly have to provide

the identity function as fuzzification since emptyContr uses it per definition (cf. Section 4.3).

The only things we have to set are the aggregation and defuzzification function as well as the

linguistic entities for input and output, respectively. As defuzzification we choose the cut

approach with the function ∆(y) := (α(0.8,0)
I \y)↓. Of course, the parameter (0.8, 0) strongly

affects the behavior of the resulting controller and has to be investigated properly. The

second component of this tuple is set to zero since we want to control street one.

The controller for the second street is implemented analogously.

tLightCtrB = contrUpdEntIn "" [(infOp,(lowT,["TR"])),

(infOp,(highT,["TG"])),

(infOp,(mediumT,["S"]))] $

contrUpdEntOut "" [(infOp,(tRed,[])),

(infOp,(tGreen,[])),

(infOp,(stay,[]))] $

contrUpdDefuzz (deFuzz $ fScalar eLat (0,80) unit) $

contrUpdAggr supOp $

contrUpdAppl compBinFunc $

emptyContr "TLB" unit eLat

The only difference is the label and the defuzzification function. Here the first component
of the scalar for the cut computation is set to zero since we want to control street two.

4.4. EXAMPLE CONTROLLER 171

Finally, we have to put tLightCtrA and tLightCtrB together to one product controller. This
is done by the function

tLightCtr’ = contrProd False True tLightCtrA tLightCtrB infOp

which uses the standard cross product (indicated by infOp). Notice that only the range of

the resulting controller has to be extended so that it steers two traffic lights. It is clear

that now the critical states (green,green) and (red,red) can occur. Hence, we modify the

defuzzification function of tLightCtr’ such that these states are excluded. We choose the

most simple variant by providing a function f : A×A → A×A that can be applied to the

defuzzified output of tLightCtr’. It shall be of the following form :

(green,green) 7→ (red,green),

(green,red) 7→ (green,red),

(red,green) 7→ (red,green),

(red,red) 7→ (green,red).

Obviously, the non-critical states are not changed. But, when both streets have green, we

decide to turn red on the main street and let the cars of street two pass. This is done due

to fairness considerations. Otherwise it would be possible that “L2” never turns green (e.g.,

during the peak time). The traffic flow on the main street should not be affected too strong

with this regulation since “L1” and “L2” are programmed to prefer street one with state

green if less than nine cars are waiting on street two.

Finally, the state (red,red) shall be turned into (green,red) which makes even clearer that

we prefer the main street with state green.

Since A×A is represented by the list [20,21,20,21] which can be thought as
[(red,red),(red,green),(green,red),(green,green)],

we can achieve the intended behavior by applying the matrix

R :=

0 0 1 0

0 1 0 0

0 0 1 0

0 1 0 0

to the defuzzified output. If we denote the old defuzzification function of tLightCtr’ by

∆′, we have the new defuzzification function ∆(y) := ∆′(y);R.

The following Haskell code realizes our intent.

172 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

tLightCtr = let df’ = defuzz $ header tLightCtr’

tLT = crossProd [tLightTrg,tLightTrg]

tEl = lat_topEl eLat

r = fUpd (fBot eLat tLT tLT)

[((0,2),tEl),((1,1),tEl),((2,2),tEl),((3,1),tEl)]

in contrUpdDefuzz (UnFunc (unLabel df’) $

\x -> fComp (unFunc df’ x) r) tLightCtr’

Now, we examplary want to have a look at the rulebase of tLightCtr to see the effect of the
contrProd operation. We compute the rulebase as follows.

FContrTest> rules $ contrMelt tLightCtr

[("Inf",("LT&<",["TR**TR"])),("Inf",("LT&&HT",["TR**TG"])),

("Inf",("LT&&MT",["TR**S"])),("Inf",("HT&<",["TG**TR"])),

("Inf",("HT&&HT",["TG**TG"])),("Inf",("HT&&MT",["TG**S"])),

("Inf",("MT&<",["S**TR"])),("Inf",("MT&&HT",["S**TG"])),

("Inf",("MT&&MT",["S**S"]))]

Here we see that indeed only the output entities are extended (indicated by the concatenator
**). This rulebase is the direct realization of our intended controller.
The effect of the extended defuzzification function of tLightTrg can be seen by the following
computations.

FContrTest>infer tLightCtr’ $ fUpd (fBot eLat unit $ contrDom tLightCtr’)

[((0,89),(100,100))]

Source: [1]

Target: [20,21,20,21]

Rel :

[[(0,0),(0,0),(0,0),(100,100)]]

FContrTest>infer tLightCtr $ fUpd (fBot eLat unit $ contrDom tLightCtr)

[((0,89),(100,100))]

Source: [1]

Target: [20,21,20,21]

Rel :

[[(0,0),(100,100),(0,0),(0,0)]]

With the first call we compute the resulting state of the two traffic lights when we have

eight cars on the main street and nine cars on street two. The result indeed indicates that

this causes both “L1” and “L2” to turn green if they are controlled by tLightCtr’.

4.4. EXAMPLE CONTROLLER 173

With the second call we use the modified controller tLightCtr. It computes state (red,green)

for the same amount of traffic.

Now, suppose we want to introduce an additional signal which causes the traffic lights to
go inactive (often indicated by a flashing yellow light). For this purpose we provide a new
controller as follows.

offSrc = unit

offCtr = let offEnt l = LingEntity l $ fTop eLat [1] offSrc

in contrUpdEntIn "" [(infOp,(offEnt "OffI",["OffO"]))] $

contrUpdEntOut "" [(infOp,(offEnt "OffO",[]))] $

contrUpdAppl compBinFunc $

emptyContr "Off" unit eLat

It does nothing more than to react on a special input signal and generate the corresponding
output signal. If we combine this controller and tLightCtr by

extTLightCtr = contrSum True True tLightCtr offCtr supOp

the resulting controller can be turned off by a special signal. The following computation
makes this clear.

FContrTest> apply extTLightCtr $ fUpd (fBot eLat unit $ contrDom extTLightCtr)

[((0,100),(100,100))]

Source: [1]

Target: [20,21,20,21,1]

Rel :

[[(0,0),(0,0),(0,0),(0,0),(100,100)]]

The domain of extTLightCtr is (A×A) + I. Hence, we have 101 entries in the domain such

that the last entry represents the off signal. Using this fact, we create the crisp input fuzzy

set shown above and, hence, the lights are turned off after the application of this input to

the core of extTLightCtr.

The computation

FContrTest> infer extTLightCtr $ fUpd (fBot eLat unit $ contrDom extTLightCtr)

[((0,90),(100,100))]

Source: [1]

Target: [20,21,20,21,1]

Rel :

[[(0,0),(0,0),(100,100),(0,0),(0,0)]]

174 CHAPTER 4. FUZZY CONTROL BASED ON GOGUEN CATEGORIES

shows that the controller does not generate the signal to turn off if we have an input

representing the amount of traffic. We choose position 90 of the domain which means

that we have nine cars on street one and zero cars on street two. Hence, the controller infers

the output shown above. It corresponds to the tuple (green,red), i.e., we have green on

street one and red on street two.

Chapter 5

Conclusion

In this thesis we, on the one hand, provided a collection of different Haskell modules to make

it possible to explore Goguen categories using the RATH system. For this purpose we had

to introduce suitable data structures and functions to create, manipulate and test different

lattice-structures. How these functions can be used properly was shown with the module

StandardLattices where we implemented some standard lattice constructions.

The Lattice module delivered the necessary auxiliary functions to implement the Goguen

module which provides the key functionality to include Goguen categories into RATH and

test their correct instantiation. The main effort with this module was to implement the

test routines efficiently. Especially the antimorphism property of the underlying definition

caused some problems which could be solved quite well.

On the other hand, this thesis covers a very important application of Goguen categories

— fuzzy controllers. We first introduced the module LFuzzyRel which constitutes a frame-

work for a comfortable handling of L-fuzzy relations. With this framework we also support

derived operations from lattice-ordered semigroups such that this important construction

can be applied. Furthermore, LFuzzyRel is used to create the standard model of Goguen

categories.

With these preparations we then were able to provide suitable combinators to create and

test fuzzy controllers within the abstract theory of Goguen categories. To do so, we mo-

tivated why the linguistic model (thus, Mamdani inference) is good to handle by L-fuzzy
relations and, hence, by Goguen categories. After that, we defined when two controllers

are combinable, introduced a set of operations on combinable controllers (e.g., derived di-

rect sum, derived cross product) and examined their influence on the input-output behavior

175

176 CHAPTER 5. CONCLUSION

of the resulting controller. We saw that the derived sum in the case that the controllers

are combinable and the derived cross product in the case of Mamdani inference affects the

input-output behavior in the expected way.

Thus, we had the mathematical base to provide the module FContr which implements these

operations as well as all necessary functionality to create and test fuzzy controllers based

on the linguistic model. In a final example where we implemented a fuzzy controller that

steers two traffic lights at a crossroad, we demonstrated how to use this module.

But, there are still many things to do.

The auxiliary modules Lattice and LFuzzyRel only provide the most necessary functionality

that was needed for the instantiation of Goguen categories and for the FContr module. In a

future work, these frameworks could be extended such that they provide functionality that

goes into deep with the respective topic. Thus, LFuzzyRel could, for example, support the

construction of fuzzy negation and fuzzy implication operators.

The more important issue of future extensions should be to provide a GUI for the FContr

module. Thus, the user would have the chance to create and test controllers in a comfortable

and clear way.

Finally, the efficiency of the provided algorithms could be improved. Especially with FContr

comprehensive computations are done. We think that a considerable gain in efficiency can

be achieved there if further investigation is done.

List of Figures

2.1 Bijective order homomorphism, but no isomorphism 18

2.2 Non modular lattice LNonMod . 22

2.3 Modular, but non distributive lattice LNonDis 23

2.4 Boolean lattice with four elements . 47

3.1 The hierarchy of the lattice type classes . 58

3.2 Extended type class hierarchy of RATH . 87

4.1 The general structure of a fuzzy controller . 118

4.2 The core of a fuzzy controller . 126

4.3 The direct sum of the cores of two controllers 132

4.4 The core of the relational product of simple controllers 140

4.5 The projections for {1, 2, 3} × ({5, 6} × {8, 9}) 152

4.6 A crossroad controlled by a fuzzy controller 165

177

Bibliography

[1] G. Grätzer : General Lattice Theory, Birkhäuser, 1978

[2] G. Birkhoff : Lattice Theory, American Mathematical Society Colloquium Publications

Vol. XXV, 3rd edition, 1940

[3] H. Gericke : Theorie der Verbände, Hochschultaschenbücher Verlag, Bibliographisches

Institut AG, Mannheim, 1967

[4] Zadeh : Fuzzy Sets, Information and Control 8, pp. 338-353, 1965

[5] H. Thiele : Einführung in die Fuzzy Logik, University of Dortmund, 1993

[6] J. A. Goguen : L-fuzzy Sets, J. Math. Anal. Appl. 18, pp. 145-157, 1967

[7] Robert Babuška : Fuzzy and Neural Control, Faculty of Information Technology

and Systems, Control Engineering Laboratory, Delft University of Technology, Delft,

Netherlands, 2001

[8] R. Jager : Fuzzy Logic in Control, PhD Thesis, Delft University of Technology, Delft,

Netherlands, 1995

[9] P. Freyd, A. Scedrov : Categories, Allegories, North-Holland, Amsterdam, 1990

[10] Y. Kawahara, H. Furusawa : An Algebraic Formalisation of Fuzzy Relations, Fuzzy

Sets and Systems 101, pp. 125-135, 1999

[11] M. Winter : A New Algebraic Approach to L-fuzzy Relations Convenient to Study

Crispness, INS Information Sciences 139/3-4, pp. 233-252, 2001

[12] M. Winter : Goguen Categories: An Algebraic Approach to L-fuzzy Relations, PhD Ha-

bilitation, Department of Computer Science, Institute for Mathematics and Theoretical

Computer Science, University of the Federal Armed Forces, Munich, 2000

179

180 BIBLIOGRAPHY

[13] M. Winter : Derived Operations in Goguen Categories, TAC Theory and Applications,

of Categories, Vol.10, No. 11, pp. 220-247, 2002

[14] G. Schmidt, T. Ströhlein : Relationen und Graphen, Springer, 1989

[15] G. Schmidt, T. Ströhlein : Relations and Graphs, Discrete Mathematics for Computer

Scientists, EATCS Monographs on Theoretical Computer Science, Springer, 1993

[16] H. Furusawa, W. Kahl : A Study on Symmetric Quotients, University of the Federal

Armed Forces Munich, 1998

[17] W. Kahl, G. Schmidt : Exploring (Finite) Relation Algebras Using Tools Written in

Haskell, Technical Report No. 2000-02, Department of Computer Science, Institute for

Software Technology, University of the Federal Armed Forces, Munich, 2000

[18] M. Winter : Strukturtheorie heterogener Relationenalgebren mit Anwendung auf Nicht-

determinismus in Programmiersprachen, Dissertationsverlag NG Kopierladen GmbH,

München, 1998

[19] S. Thompson : The Craft of Functional Programming, second edition, Addison-Wesley,

1999

[20] A. J. T. Davie : An Introduction to Functional Programming Systems using Haskell,

Cambridge University Press, 1992

Appendix A

Lattice Instances and Export of the

Functions

In the following we want to connect the type class view and the record data structures of
our lattice module provided in Section 3.1. We start by instantiating the type classes.

module LatticeInstances where

import Lattice

import LatticeClass

instance POrderedSet (PoSet el) el where

isElem = poSet_isElem

elements = poSet_elements

lEq = poSet_lEq

instance POrderedSet (LSemiLat el) el where

isElem = lSemiLat_isElem

elements = lSemiLat_elements

lEq = lSemiLat_lEq

instance POrderedSet (USemiLat el) el where

isElem = uSemiLat_isElem

elements = uSemiLat_elements

lEq = uSemiLat_lEq

instance POrderedSet (RelCompLat el) el where

isElem = relCompLat_isElem

181

182 APPENDIX A. LATTICE INSTANCES AND EXPORT OF THE FUNCTIONS

elements = relCompLat_elements

lEq = relCompLat_lEq

instance POrderedSet (Lat el) el where

isElem = lat_isElem

elements = lat_elements

lEq = lat_lEq

instance POrderedSet (CompLat el) el where

isElem = compLat_isElem

elements = compLat_elements

lEq = compLat_lEq

instance LoSemiLattice (LSemiLat el) el where

inf = lSemiLat_inf

botEl = lSemiLat_botEl

atomS = lSemiLat_atomS

instance LoSemiLattice (RelCompLat el) el where

inf = relCompLat_inf

botEl = relCompLat_botEl

atomS = relCompLat_atomS

instance LoSemiLattice (Lat el) el where

inf = lat_inf

botEl = lat_botEl

atomS = lat_atomS

instance LoSemiLattice (CompLat el) el where

inf = compLat_inf

botEl = compLat_botEl

atomS = compLat_atomS

instance UpSemiLattice (USemiLat el) el where

sup = uSemiLat_sup

topEl = uSemiLat_topEl

instance UpSemiLattice (Lat el) el where

sup = lat_sup

topEl = lat_topEl

183

instance UpSemiLattice (CompLat el) el where

sup = compLat_sup

topEl = compLat_topEl

instance RelCompLattice (RelCompLat el) el where

relComplem = relCompLat_relComplem

instance Lattice (Lat el) el where

jIrredS = lat_jIrredS

mIrredS = lat_mIrredS

instance Lattice (CompLat el) el where

jIrredS = compLat_jIrredS

mIrredS = compLat_mIrredS

instance CompLattice (CompLat el) el where

complem = compLat_complem

Furthermore, we need the reversed instances to export the tests and functions.

revPoSet :: (POrderedSet p el) => p -> PoSet el

revPoSet p = PoSet { poSet_isElem = isElem p

,poSet_elements = elements p

,poSet_lEq = lEq p }

revLSemiLat :: (LoSemiLattice l el) => l -> LSemiLat el

revLSemiLat l = LSemiLat { lSemiLat_poSet = revPoSet l

,lSemiLat_inf = inf l

,lSemiLat_botEl = botEl l

,lSemiLat_atomS = atomS l }

revUSemiLat :: (UpSemiLattice l el) => l -> USemiLat el

revUSemiLat l = USemiLat { uSemiLat_poSet = revPoSet l

,uSemiLat_sup = sup l

,uSemiLat_topEl = topEl l }

revRelCompLat :: (RelCompLattice r el) => r -> RelCompLat el

revRelCompLat r = RelCompLat { relCompLat_lSemiLat = revLSemiLat r

,relCompLat_relComplem = relComplem r }

184 APPENDIX A. LATTICE INSTANCES AND EXPORT OF THE FUNCTIONS

revLat :: (Lattice l el) => l -> Lat el

revLat l = Lat { lat_poSet = revPoSet l

,lat_sup = sup l

,lat_inf = inf l

,lat_topEl = topEl l

,lat_botEl = botEl l

,lat_atomS = atomS l

,lat_jIrredS = jIrredS l

,lat_mIrredS = mIrredS l }

revCompLat :: (CompLattice c el) => c -> CompLat el

revCompLat c = CompLat { compLat_lat = revLat c

,compLat_complem = complem c }

Hence, we are able to transfer the functions to our type class view. To avoid name space
conflicts, we start all function names by t_.

t_leastFPA :: (Eq a, Lattice l a) => a -> l -> (a -> a) -> a

t_leastFPA a l = leastFPA a (revLat l)

t_leastFP :: (Eq a, Lattice l a) => l -> (a -> a) -> a

t_leastFP l = t_leastFPA (botEl l) l

t_latFPs :: (Eq a, Ord a, Lattice l a) => l -> (a -> a) -> (Lat a)

t_latFPs l = latFPs (revLat l)

t_atomSetBy :: (POrderedSet p el) => p -> el -> (el -> el -> el) -> [el] -> [el]

t_atomSetBy p = atomSetBy (revPoSet p)

t_redSetBy :: (Eq el,POrderedSet p el) => p -> (el -> el -> el) -> [el] -> [el]

t_redSetBy p = redSetBy (revPoSet p)

t_irredSetBy :: (Eq el,POrderedSet p el)=>p->el->(el -> el -> el)->[el]->[el]

t_irredSetBy p = irredSetBy (revPoSet p)

t_jRedSet,t_jIrredSet,t_mRedSet,t_mIrredSet :: (Eq el, Lattice l el) => l -> [el]

t_jRedSet l = redSetBy (revPoSet l) (sup l) []

t_jIrredSet l = irredSetBy (revPoSet l) (botEl l) (sup l) []

t_mRedSet l = redSetBy (revPoSet l) (inf l) []

185

t_mIrredSet l = irredSetBy (revPoSet l) (topEl l) (inf l) []

t_testRefl, t_testTrans :: (POrderedSet p el) => p -> TestRes el

t_testRefl = testRefl . revPoSet

t_testTrans = testTrans . revPoSet

t_testAntiSymm,t_testPoSet :: (Eq el, POrderedSet p el) => p -> TestRes el

t_testAntiSymm = testAntiSymm . revPoSet

t_testPoSet = testPoSet . revPoSet

t_testConsBy :: (Eq el,POrderedSet p el) => p -> (el -> el -> el) ->

[el] -> [el] -> TestRes el

t_testConsBy p = testConsBy (revPoSet p)

t_testJCons :: (Eq el,UpSemiLattice u el) => u -> TestRes el

t_testJCons = testJCons . revUSemiLat

t_testMCons :: (Eq el,LoSemiLattice l el) => l -> TestRes el

t_testMCons = testMCons . revLSemiLat

t_testRelCompCons :: (Eq el,RelCompLattice r el) => r -> TestRes el

t_testRelCompCons = testRelCompCons . revRelCompLat

t_testConsUnBy :: (Eq el,POrderedSet p el) => p -> (el -> el) ->

[el] -> [el] -> TestRes el

t_testConsUnBy p = testConsUnBy (revPoSet p)

t_testCompCons :: (Eq el,CompLattice c el) => c -> TestRes el

t_testCompCons = testCompCons . revCompLat

t_testCommBy,t_testIdemBy,t_testAssBy :: (Eq el,POrderedSet p el) =>

p -> (el -> el -> el) -> [el] -> TestRes el

t_testCommBy p = testCommBy (revPoSet p)

t_testIdemBy p = testIdemBy (revPoSet p)

t_testAssBy p = testAssBy (revPoSet p)

t_testJComm,t_testJIdem,t_testJAss :: (Eq el,UpSemiLattice u el)=>u->TestRes el

t_testJComm = testJComm . revUSemiLat

t_testJIdem = testJIdem . revUSemiLat

t_testJAss = testJAss . revUSemiLat

186 APPENDIX A. LATTICE INSTANCES AND EXPORT OF THE FUNCTIONS

t_testMComm,t_testMIdem,t_testMAss :: (Eq el,LoSemiLattice l el)=>l->TestRes el

t_testMComm = testMComm . revLSemiLat

t_testMIdem = testMIdem . revLSemiLat

t_testMAss = testMAss . revLSemiLat

t_testTopElBy :: (UpSemiLattice u el) => u -> [el] -> TestRes el

t_testTopElBy u = testTopElBy (revUSemiLat u)

t_testBotElBy :: (LoSemiLattice l el) => l -> [el] -> TestRes el

t_testBotElBy l = testBotElBy (revLSemiLat l)

t_testTopEl :: (UpSemiLattice u el) => u -> TestRes el

t_testTopEl = testTopEl . revUSemiLat

t_testBotEl :: (LoSemiLattice l el) => l -> TestRes el

t_testBotEl = testBotEl . revLSemiLat

t_testUpSemiLatticeBy :: (Eq el,UpSemiLattice u el) =>

u -> [el] -> [el] -> TestRes el

t_testUpSemiLatticeBy u = testUpSemiLatticeBy (revUSemiLat u)

t_testLoSemiLatticeBy :: (Eq el,LoSemiLattice l el) =>

l -> [el] -> [el] -> TestRes el

t_testLoSemiLatticeBy l = testLoSemiLatticeBy (revLSemiLat l)

t_testLatticeBy :: (Eq el,Lattice l el) => l -> [el] -> [el] -> TestRes el

t_testLatticeBy l = testLatticeBy (revLat l)

t_testUpSemiLattice :: (Eq el,UpSemiLattice u el) => u -> TestRes el

t_testUpSemiLattice = testUpSemiLattice . revUSemiLat

t_testLoSemiLattice :: (Eq el,LoSemiLattice l el) => l -> TestRes el

t_testLoSemiLattice = testLoSemiLattice . revLSemiLat

t_testLattice :: (Eq el,Lattice l el) => l -> TestRes el

t_testLattice = testLattice . revLat

t_testModularBy :: (Eq el,Lattice l el) => l -> [el] -> TestRes el

t_testModularBy l = testModularBy (revLat l)

187

t_testModular :: (Eq el,Lattice l el) => l -> TestRes el

t_testModular = testModular . revLat

t_testDistrBy :: (Eq el,POrderedSet p el) => p -> (el -> el -> el) ->

(el -> el -> el) -> [el] -> TestRes el

t_testDistrBy p = testDistrBy (revPoSet p)

t_testJDistr,t_testMDistr :: (Eq el,Lattice l el) => l -> TestRes el

t_testJDistr = testJDistr . revLat

t_testMDistr = testMDistr . revLat

t_testRelComplBy :: (Eq el,RelCompLattice r el) => r -> [el] -> TestRes el

t_testRelComplBy r = testRelComplBy (revRelCompLat r)

t_testRelCompl :: (Eq el,RelCompLattice r el) => r -> TestRes el

t_testRelCompl = testRelCompl . revRelCompLat

t_testAtomicIrred :: (Eq el,Lattice l el) => l -> TestRes el

t_testAtomicIrred = testAtomicIrred . revLat

t_testAtomicBy :: (Eq el,Lattice l el) => l -> [el] -> TestRes el

t_testAtomicBy l = testAtomicBy (revLat l)

t_testAtomic :: (Eq el,Lattice l el) => l -> TestRes el

t_testAtomic = testAtomic . revLat

t_testComplBy :: (CompLattice c el) => c -> [el] -> TestRes el

t_testComplBy c = testComplBy (revCompLat c)

t_testCompl :: (CompLattice c el) => c -> TestRes el

t_testCompl = testCompl . revCompLat

t_testBoolLatticeBy :: (Eq el,CompLattice c el)=>c -> [el] -> [el] -> TestRes el

t_testBoolLatticeBy c = testBoolLatticeBy (revCompLat c)

t_testBoolLattice,t_testBoolLatticeIrred :: (Eq el,CompLattice c el) =>

c -> TestRes el

t_testBoolLattice = testBoolLattice . revCompLat

t_testBoolLatticeIrred = testBoolLatticeIrred . revCompLat

188 APPENDIX A. LATTICE INSTANCES AND EXPORT OF THE FUNCTIONS

t_testMorphBy :: (Eq el2,POrderedSet p1 el1, POrderedSet p2 el2) => p1 -> p2 ->

(el1 -> el1 -> el1) ->

(el2 -> el2 -> el2) -> String -> (el1 -> el2) -> TestRes el1

t_testMorphBy p1 p2 = testMorphBy (revPoSet p1) (revPoSet p2)

t_testMorphUnBy :: (Eq el2,POrderedSet p1 el1, POrderedSet p2 el2) => p1 -> p2 ->

(el1 -> el1) -> (el2 -> el2) ->

String -> (el1 -> el2) -> TestRes el1

t_testMorphUnBy p1 p2 = testMorphUnBy (revPoSet p1) (revPoSet p2)

t_testUpSemiLatMorph :: (Eq el2,UpSemiLattice u1 el1, UpSemiLattice u2 el2) =>

u1 -> u2 -> (el1 -> el2) -> TestRes el1

t_testUpSemiLatMorph u1 u2 = testUpSemiLatMorph (revUSemiLat u1)

(revUSemiLat u2)

t_testLoSemiLatMorph :: (Eq el2,LoSemiLattice l1 el1, LoSemiLattice l2 el2) =>

l1 -> l2 -> (el1 -> el2) -> TestRes el1

t_testLoSemiLatMorph l1 l2 = testLoSemiLatMorph (revLSemiLat l1)

(revLSemiLat l2)

t_testLatMorph :: (Eq el2,Lattice l1 el1, Lattice l2 el2) =>

l1 -> l2 -> (el1 -> el2) -> TestRes el1

t_testLatMorph l1 l2 = testLatMorph (revLat l1) (revLat l2)

t_testUpCoSemiLatMorph :: (Eq el2,UpSemiLattice l1 el1, LoSemiLattice l2 el2) =>

l1 -> l2 -> (el1 -> el2) -> TestRes el1

t_testUpCoSemiLatMorph l1 l2 = testUpCoSemiLatMorph (revUSemiLat l1)

(revLSemiLat l2)

t_testLoCoSemiLatMorph :: (Eq el2,LoSemiLattice l1 el1, UpSemiLattice l2 el2) =>

l1 -> l2 -> (el1 -> el2) -> TestRes el1

t_testLoCoSemiLatMorph l1 l2 = testLoCoSemiLatMorph (revLSemiLat l1)

(revUSemiLat l2)

t_testCoLatMorph :: (Eq el2,Lattice l1 el1 ,Lattice l2 el2) =>

l1 -> l2 -> (el1 -> el2) -> TestRes el1

t_testCoLatMorph l1 l2 = testCoLatMorph (revLat l1) (revLat l2)

t_testBoolLatMorph :: (Eq el2,CompLattice c1 el1, CompLattice c2 el2) =>

189

c1 -> c2 -> (el1 -> el2) -> TestRes el1

t_testBoolLatMorph c1 c2 = testBoolLatMorph (revCompLat c1) (revCompLat c2)

t_testMonoFunc, t_testAntiFunc :: (POrderedSet p el)=>p->(el -> el)->TestRes el

t_testMonoFunc p = testMonoFunc (revPoSet p)

t_testAntiFunc p = testAntiFunc (revPoSet p)

Appendix B

Goguen Instances and Export of the

Functions

In the following we want to provide instances for the class GoguenCat provided in Section 3.3.
Furthermore, the according test routines shall be exported. Thus, we connect our Goguen

module and the RATH system.

module GoguenInstances where

import RelAlgClasses

import RelAlgInstances (dedDict)

import GoguenClass

import Goguen

import RelAlg

instance Category (Gog loos obj mor) obj mor where

isObj = gog_isObj

isMor = gog_isMor

objects = gog_objects

homset = gog_homset

source = gog_source

target = gog_target

idmor = gog_idmor

comp = gog_comp

instance Allegory (Gog loos obj mor) obj mor where

converse = gog_converse

191

192 APPENDIX B. GOGUEN INSTANCES AND EXPORT OF THE FUNCTIONS

meet = gog_meet

incl = gog_incl

instance DistribAllegory (Gog loos obj mor) obj mor where

join = gog_join

bottom = gog_bottom

instance DivisionAllegory (Gog loos obj mor) obj mor where

rres = gog_rres

lres = gog_lres

syq = gog_syq

instance DedCat (Gog loos obj mor) obj mor where

top = gog_top

instance GoguenCat (Gog loos obj mor) loos obj mor where

up = gog_up

down = gog_down

derOp = gog_derOp

Before we can export the tests, we need the reverse instance of the Goguen class.

gogDict :: GoguenCat g l obj mor => g -> Gog l obj mor

gogDict g = Gog { gog_up = up g

,gog_down = down g

,gog_derOp = derOp g }

Hence, the consistency tests and necessary functions are exported to be available within the
type class view. Notice that we cannot export those functions that are parametrized by
given functions to determine the scalars or crisp relations (e.g., antiMorphBy). To do so, we
would, for example, have to transform a function f of type

f::(DedCat d obj mor) => d -> obj -> [mor]

into a new function
f’:: Ded obj mor -> obj -> [mor]

which is, in general, not possible. Thus, we only export the tests using the standard functions
for the determination of the scalars and crisp relations, respectively.

t_antiMorph :: (Eq mor,GoguenCat g l obj mor) => g -> obj -> obj -> [mor -> mor]

t_antiMorph g = antiMorph $ gogDict g

193

t_testAntiMorph :: (Eq obj, Eq mor, GoguenCat g l obj mor) =>

g -> obj -> obj -> TestResult obj mor

t_testAntiMorph g = testAntiMorph $ gogDict g

t_testAntiMorphAll :: (Eq obj,Eq mor,GoguenCat g l obj mor) =>

g -> TestResult obj mor

t_testAntiMorphAll g = testAntiMorphAll $ gogDict g

t_testUpDown :: (Eq obj, Eq mor, GoguenCat g l obj mor) =>

g -> obj -> obj -> obj -> TestResult obj mor

t_testUpDown g = testUpDown $ gogDict g

t_testUpDownAll :: (Eq obj, Eq mor, GoguenCat g l obj mor) =>

g -> TestResult obj mor

t_testUpDownAll g = testUpDownAll $ gogDict g

goguen_TEST :: (Eq obj, Eq mor, GoguenCat g l obj mor) => g -> TestResult obj mor

goguen_TEST g = gog_TEST $ gogDict g

t_testLinear :: (Eq mor, GoguenCat g l obj mor) => g -> TestResult obj mor

t_testLinear g = testLinear $ gogDict g

goguen_fun_TEST :: (Eq mor2,GoguenCat g1 l obj1 mor1,GoguenCat g2 l obj2 mor2)=>

g1 -> g2 -> Fun obj2 mor2 obj1 mor1 -> TestResult obj1 mor1

goguen_fun_TEST g1 g2 = gog_fun_TEST (gogDict g1) $ gogDict g2

