
Performance Analysis of Grappa Parsers
for Hyperedge Replacement Grammars

Mark Minas

June 9, 2017

Abstract

This document reports on some experiments on the performance of
graph parsers generated by Grappa.1 In particular, it compares the per-
formance of PDT [1] and PSR [2] parsers with the more general, but —
as it turns out – slower Cocke-Younger-Kasami-style parsers [4] generated
by DiaGen.2 All experiments have been conducted on a MacBook Pro
2013, 2,7 GHz Intel Core i7, Java 1.8.0.

Contents

1 Nested Triangles 2

2 Nassi-Shneiderman Diagrams 3

3 Palindromes 4

4 Trees 5

5 anbncn Language 6

6 Blowballs 8

1Grappa homepage: www.unibw.de/inf2/grappa
2DiaGen homepage: www.unibw.de/inf2/DiaGen

1

https://www.unibw.de/inf2/grappa/
https://www.unibw.de/inf2/DiaGen/

1 Nested Triangles

Consider nonterminals S and N and the terminal M. We use `x1...xk as a a short-
hand for literals `(x1, . . . , xk). (Here ε denotes the empty variable sequence.)
Then the rules

Sε → Nxyz (1)
Nxyz → Mxuv Muyw Mvwz Nuwv (2)
Nxyz → Mxyz (3)

generate a nested triangle:

Sε⇒
1
N123⇒

2
M145 M426 M563 N465 ⇒

2
M145 M426 M563 M478 M769 M895 N798

⇒
3

M145 M426 M563 M478 M769 M895 M798

In Fig. 1, the graphs of this derivation are drawn as diagrams.3

S ⇒
1

1

2 3

⇒
2

1

2 3

4 5

6

⇒
2

1

2 3

4 5

6

8

7 9

⇒
3

1

2 3

4 5

6

8

7 9

Figure 1: Diagrams of a derivation of a nested triangles. Circles represent nodes,
boxes and triangles represent edges of triangle graphs, which are connected to
their attached nodes by lines; these lines are ordered clockwise around the edge,
starting at the sharper edge of the triangle.

Each triangle graph consists, for some positive integer n, of 3n nodes and 3n−2
edges. Fig. 2a shows the runtime of the PSR and PTD parsers when process-
ing triangle graphs with varying values of n. Runtime has been measured in
milliseconds on the y-axis while n is shown on the x-axis. Note the apparent
linear behavior of the PSR parser and the, slightly slower, PTD parser. Fig. 2b
shows the corresponding diagram for the CYK parser. Note that the runtime
of the CYK parser is not linear in the size of the triangle graph. Note also that
PTD parsing and, in particular, PSR parsing is, by several orders of magnitude,
faster than CYK parsing. For instance, the CYK parser needs 700ms to parse
a triangle graph with n = 1000 whereas the PTD parser needs just 0.97ms, and
the PSR parser just 0.44ms.

3Thanks to Berthold Hoffmann for this description of nested triangles.

2

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

PSR PTD

(a)

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

CYK

(b)

Figure 2: Runtime (in milliseconds) of the PSR as well as the PTD parser (a)
and the CYK parser (b) for nested triangles. Note that the scales in (a) and
(b) differ.

2 Nassi-Shneiderman Diagrams

We also conducted experiments with the more complicated language of Nassi-
Shneiderman diagrams that represent structured programs with conditional
statements and while loops. Fig. 3 shows such diagrams. Each diagram can
be modelled by a graph where statement, condition, and while blocks are rep-
resented by edges of type stmt, cond, and while, respectively. Diagram D1 in
Fig. 3, for instance, is represented by a graph condabcdstmtcefgstmtedgh. The
language of all Nassi-Shneiderman graphs is defined by an HR grammar with
the following rules:

Sε → NSDxyuv

NSDxyuv → NSDxyrs Stmtrsuv | Stmtxyuv

Stmtxyuv → stmtxyuv | condxyrs NSDrmun NSDmsnv | whilexyrsut NSDrstv

We use the shorthand notation L → R1 | R2 to represent rules L → R1 and
L→ R2 with the same left-hand side.

Runtime of the different parsers has been measured for Nassi-Shneiderman
graphs Dn with varying values of n. Fig. 3 recursively defines these graphs
Di for i = 1, 2, 3, . . . and also shows D3 as an example. Each diagram Di

consists of 2 + 6i nodes and 3i edges.

y n
cond

stmt stmt

Di+1:D1:
y n

cond

stmt
stmt

Di
y n
cond

stmt stmt

cond

cond

y

y

n

n

stmt

stmt

stmt stmt

D3:

Figure 3: Nassi-Shneiderman diagrams Di, i = 1, 2, 3,

3

0

200

400

600

800

1000

1200

1400

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

PTD PSR

(a)

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

CYK

(b)

Figure 4: Runtime (in milliseconds) of the PSR as well as the PTD parser (a)
and the CYK parser (b) for Nassi-Shneiderman graphs built as shown in Fig. 3.
Note that the scales in (a) and (b) differ.

Fig. 4a shows the runtime of the PSR and the PTD parser for graphs Dn with n
being shown on the x-axis and the runtime in milliseconds on the y-axis. Fig. 4b
shows the corresponding diagram for the CYK parser. The PSR parser and the
CYK parser have been generated from the HR grammar presented above. For
generating the PTD parser, a slightly modified grammar with merging rules [1]
had to be used because the presented grammar is not PTD.
Note that the runtime of the PSR parser and the slower PTD parser is linear
in the size of the input graph whereas the runtime of the CYK parser is not
linear. Note again that the scales in the diagrams shown in Fig. 4a and b differ
and that PTD parsing and, in particular, PSR parsing is, by several orders of
magnitude, faster than CYK parsing. For instance, the CYK parser needs 1.2s
to parse D1000 whereas the PTD parser needs just 12ms, and the PSR parser
just 1.0ms.

3 Palindromes

We consider palindromes, i.e., words that read the same backward as forward,
over the alphabet {a, b} and model them by string graphs using an HR grammar
with the following rules:

Sε → P xy

P xy → axu avy Puv | bxu bvy Puv | axu auy | bxu buy | axy | bxy

Note that the string language of palindromes is not deterministic and cannot
be parsed by an LL(k) or LR(k) parser, but its string graph language is PTD
as well as PSR.
In the experiment, we considered palindromes wn of length n starting with
letter a and alternating letters as long as possible, i.e., w1 = a,w2 = aa,w3 =

4

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

PSR PTD

(a)

0

100

200

300

400

500

600

700

800

900

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

odd even

(b)

Figure 5: Runtime (in milliseconds) of the PSR as well as the PTD parser
(a) and the CYK parser (b) for palindromes. Note that the scales in (a) and
(b) differ and that the upper and lower graphs in (b) show the runtime for
palindromes of odd and even length, respectively.

aba, w4 = abba, w5 = ababa, w6 = abaaba, w7 = abababa, . . ., and measured the
runtime of the PSR parser, the PTD parser, and the CYK parser. Fig. 5a shows
the runtime of the PSR and the PTD parser for palindromes wn with n being
shown on the x-axis and the runtime in milliseconds on the y-axis. Note that
the runtime of the PSR parser and the slower PTD parser is linear in the size
of the input graph.

Fig. 5b shows the parsing time for the CYK parser as two graphs: the upper
graph shows the parsing time for palindromes wn where n is odd and the lower
graph for n being even. This is so because the CYK parser must follow many
more possible reverse derivations leading into dead ends for odd values of n than
for even values of n. Note again that the scales in the diagrams shown in Fig. 4a
and b differ and that PTD parsing and, in particular, PSR parsing is, by several
orders of magnitude, faster than CYK parsing. For instance, the CYK parser
needs 820ms and 500ms to parse w399 and w400, respectively, whereas the PTD
parser needs 0.16ms, and the PSR parser just 44µs for w399 and w400.

4 Trees

We also conducted experiments with trees built by an HR grammar with the
following rules [1]:

Sε → T x

T x → ε | edgexu T x Tu

For the experiment, we considered binary trees Tn with n nodes. Each tree Tn

has all of its levels but the last one completely filled; the last level is filled up
from left to right in order to obtain a binary tree with n nodes.

5

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

PSR PTD

(a)

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

total	avg

(b)

Figure 6: Runtime (in milliseconds) of the PSR as well as the PTD parser (a)
and the CYK parser (b) for binary trees Tn. Note that the scales in (a) and (b)
differ.

Fig. 6a shows the runtime of the PSR and PTD parsers when processing Tn with
varying values of n. Runtime has been measured in milliseconds on the y-axis
while n is shown on the x-axis. Note the apparent linear behavior of the PSR
parser and the, slightly slower, PTD parser. Fig. 7b shows the corresponding
diagram for the CYK parser. Note that the runtime of the CYK parser is not
linear in the size of the triangle graph. The “steps” in the graph are a result of
the ambiguity of the grammar and the varying numbers of different derivation
trees of Tn when n varies.

Note also that PTD parsing and, in particular, PSR parsing is, by several orders
of magnitude, faster than CYK parsing. For instance, the CYK parser needs
220ms to parse tree T37 whereas the PTD parser needs 26µs, and the PSR parser
just 9.5µs.

5 anbncn Language

We now consider the string language {anbncn | n = 1, 2, 3, . . .}, which is not
context-free. However, when modelled by string graphs, it is the graph language
of an HR grammar with the following rules [3]:

Sε → axu buy cyz | axu bvy cyw Auvwz

Axyqz → axu bvy cqw Auvwz | axu buy cqz

Grappa requires HR grammars to have a unique start rule to be PSR. We
therefore used an equivalent HR grammar with the following rules:

Sε → Zxyz

Zxyz → axu buy cyz | axu bvy cyw Auvwz

Axyqz → axu bvy cqw Auvwz | axu buy cqz

6

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

PSR PTD

(a)

0

500

1000

1500

2000

2500

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

CYK

(b)

Figure 7: Runtime (in milliseconds) of the PSR as well as the PTD parser (a)
and the CYK parser (b) for anbncn string graphs. Note that the scales in (a)
and (b) differ.

Sε → Treexy

Treexy → pairxy |
Childxyu Treexy

Childxyu → edgexyuv Treeuv Nextxyu

Nextxyu → Childxyu |
ε

Figure 8: Blowball graph grammar. Figure 9: Blowball graph B10.

Fig. 7a shows the runtime of the PSR and PTD parsers when processing anbncn

string graphs with varying values of n. Runtime has been measured in millisec-
onds on the y-axis while n is shown on the x-axis. Note the apparent linear
behavior of the PSR parser and the, slightly slower, PTD parser. Fig. 7b shows
the corresponding diagram for the CYK parser. Note that the runtime of the
CYK parser is not linear in the size of the triangle graph. Note also that PTD
parsing and, in particular, PSR parsing is, by several orders of magnitude, faster
than CYK parsing. For instance, the CYK parser needs 2.5s to parse the string
graph for a300b300c300 whereas the PTD parser needs 0.27ms, and the PSR
parser just 0.11ms.

7

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

PSR	(hash) PSR	(no	hash)

(a)

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16

CYK

(b)

Figure 10: Runtime (in milliseconds) of the PSR parser (a) with hash tables
(faster) and without hash tables (slower) and the CYK parser (b) for blowball
graphs Bn. Note that the scales in (a) and (b) differ.

6 Blowballs

The PSR parsers described above make use of determining nodes and, therefore,
do not require hash tables to obtain linear parsing time. In order to demonstrate
the speed-up produced by hash tables, we constructed an HR grammar (see
Fig. 8), called blowball grammar because of the shapes of its graphs. Its PSR
parser must perform some edge look-ups without determining nodes. Grappa
has been used to generate two versions of a PSR parser: Version PSR (hash)
uses hash tables to speed up these edge look-ups, whereas version PSR (no hash)
iterates over lists of candidates instead. Moreover, a PTD and a CYK parser
have been generated. For the experiments, we considered blowball graphs Bn,
n ≥ 1, like B10 shown in Fig. 9: Bn consists of n pair edges (represented by
arrows in Fig. 9), one in the center and the rest forming stars where the number
of edges in each star is as close to the number of stars as possible. Runtime of
the different parsers has been measured for these graphs Bn with varying values
n. Fig. 10a shows the results of the two PSR parsers. The PSR (no hash) parser
has quadratic parsing time and is much slower than the PSR (hash) parser with
linear parsing time. For instance, PSR (no hash) needs 360ms to parse B10000,
whereas PSR (hash) needs just 10ms. Parsing time of the PTD parser is similar
to the PSR (no hash) parser and is not shown here. Fig. 10b shows the results
of the CYK parser, which is again by several orders of magnitude slower than
the other parsers. For instance, the CYK parser needs 1.6s to parse B16 whereas
the PTD parser needs just 9µs, and the PSR parsers (both versions) just 5µs.

References

[1] F. Drewes, B. Hoffmann, and M. Minas. Predictive top-down parsing for
hyperedge replacement grammars. In F. Parisi-Presicce and B. Westfechtel,

8

editors, Graph Transformation - 8th International Conference, ICGT 2015.
Proceedings, volume 9151 of Lecture Notes in Computer Science, pages 19–
34. Springer, 2015.

[2] F. Drewes, B. Hoffmann, and M. Minas. Predictive shift-reduce parsing
for hyperedge replacement grammars. In J. de Lara and D. Plump, edi-
tors, Graph Transformation - 10th International Conference, ICGT 2017.
Proceedings, Lecture Notes in Computer Science. Springer, 2017. To appear.

[3] A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643
in Lecture Notes in Computer Science. Springer, 1992.

[4] M. Minas. Concepts and realization of a diagram editor generator based on
hypergraph transformation. Science of Computer Programming, 44(2):157–
180, 2002.

9

	Nested Triangles
	Nassi-Shneiderman Diagrams
	Palindromes
	Trees
	an bn cn Language
	Blowballs

