
Chair of
„Secure Digital Circuits“

High-Level Synthesis of a Generic Cordic Accelerator

Introduction

The Cordic algorithm, which enables the
hardware-efficient calculation of
trigonometric functions, is one of the
work horses of digital integrated
circuits. Thereby, the optimal hardware
architecture highly depends on
throughput and silicon area
requirements. With this regard, a High-
Level-Synthesis approach, for which the
integrated circuit is modelled in a high
programming language such as SystemC
or C, is promising as it enables an easy
adaption towards different requirement sets.

Short Project Description

The goal of this project is to develop a generic Cordic description in C language
which can be synthesized to an integrated circuit. The benefit of the approach is
proven by synthesizing a Cordic hardware accelerators for different throughput
requirements and compare implementation costs to state-of-the-art Cordic
implementations.

Prerequisites

- Interest in signal processing and VLSI design
- Basic knowledge in SystemC or C is helpful

What you will learn

After the project you will be able to design digital integrated circuits using a High-
Level-Synthesis design flow. In addition, you get familiar with one of the most
powerful digital algorithms used in many modern communication systems.

Contact

matthias.korb@unibw.de

HLS

void cic::CicThread(){ {
 HLS_DEFINE_PROTOCOL("reset");
 din.reset();
 dout.reset();
 wait()
 }
 output_t int_reg[4] = { 0, 0, 0, 0 };
 output_t kamm_reg[4] = { 0, 0, 0, 0};
 output_t r;
 sc_uint<5> counter = -1;
 while (1) {
 HLS_PIPELINE_LOOP(HARD_STALL, 1, "main_loop");
 for (unsigned i = 3; i > 0; i=i-1) {
 int_reg[i] = int_reg[i] + int_reg[i-1];
 }
 int_reg[0] = int_reg[0] + din.get();

 if (counter == 31) {
 output_t kamm_signal[4];
 kamm_signal[0] = int_reg[3];
 kamm_signal[1] = int_reg[3] - kamm_reg[0];

 for (unsigned i = 2; i < 5; i++) {
 kamm_signal[i] = kamm_reg[i-1] - kamm_reg[i];
 }

 for (unsigned i = 0; i < 5; i++) {
 kamm_reg[i] = kamm_signal[i];
 }
 dout.put(kamm_reg[3]);
 counter = 0;
 } else {
 counter++;
 }
 }
}

