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Structured eigenvalue methods for the computation of

corner singularities in 3D anisotropic elastic structures

Thomas Apel∗ Volker Mehrmann† David Watkins‡

October 5, 2001

Abstract This paper is concerned with the computation of 3D vertex singularities of
anisotropic elastic fields. The singularities are described by eigenpairs of a corresponding
operator pencil on a subdomain of the sphere. The solution approach is to introduce a mod-
ified quadratic variational boundary eigenvalue problem which consists of two self-adjoint,
positive definite sesquilinear forms and a skew-Hermitian form. This eigenvalue problem
is discretized by the finite element method. The resulting quadratic matrix eigenvalue
problem is then solved with the Skew Hamiltonian Implicitly Restarted Arnoldi method
(SHIRA) which is specifically adapted to the structure of this problem. Some numerical
examples are given that show the performance of this approach.

Key Words linear elasticity, Lamé equations, 3D vertex singularities, finite element
methods, quadratic eigenvalue problems, Skew-Hamiltonian/Hamiltonian pencil, implicitly
restarted Arnoldi method

AMS(MOS) subject classification 65N25; 65N30, 65F15, 74G70

1 Introduction

This paper is concerned with the study of the nature of three-dimensional elastic fields
near the vertex of a polyhedron. It is well known that stress singularities can arise in a
neighborhood of the vertex. The detailed knowledge of the singular terms of the elastic
fields is of interest e.g. in crack mechanics, where the intersection of crack fronts or notches
with the surface of the body generates vertices. Moreover, in computational mechanics,
the lack of regularity near edges or corners demands modified discretization procedures.
Our goal is to describe a mathematical method that leads to an efficient computation of
the vertex singularities and to demonstrate the features of the new approach via several
numerical examples.

∗Supported by Deutsche Forschungsgemeinschaft within SFB 393.
†Supported by Deutsche Forschungsgemeinschaft within Project Me12-1
‡Most of this author’s work was performed while visiting TU Chemnitz.
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2 1 Introduction

The key feature of the new approach is the interplay between the mathematical mod-
elling and the analysis of the structure of the model with the numerical methods specifically
designed for the efficient and accurate solution of the resulting quadratic eigenvalue prob-
lem.

We will briefly recall in Section 2 how the linear elasticity problem for isotropic and
even anisotropic materials in a polyhedral domain under the action of body and surface
forces leads to a quadratic operator eigenvalue problem of the form

λ2m(u, v) + λg(u, v)− k(u, v) = 0, (1)

wherem, k are Hermitian forms and g is a skew Hermitian form. Spectral properties of such
eigenvalue problems have been studied for the Lamé system, for example, in [15, 17, 19], see
also [18] and the literature cited therein. Numerical solution techniques with a boundary
element method on graded meshes and a boundary integral method are developed in [31, 34]
and [9], respectively. A finite element approach similar to ours is described and used in
[2, 8, 21]. There are many papers concerning the computation of corner singularities of
plane elasticity problems and of rotationally-symmetric three-dimensional problems which
are much simpler and shall therefore not be reviewed here.

In Section 3, we briefly recall from [1] the construction of a finite element method with
piecewise linear basis functions on graded meshes that produces second order accurate
approximate eigenvalues. This method leads to a quadratic matrix eigenvalue problem of
the form

(λ2M + λG−K)u = 0. (2)

Numerical methods for quadratic eigenvalue problems have recently received a renewed
interest, due to many important applications, see [23, 24] for recent surveys. The solution
of quadratic eigenvalue problems is typically done via a linearization procedure, where the
quadratic problem is embedded into a double size linear generalized eigenvalue problem.
Apart from the doubling of the dimension there are other disadvantages to this linearization
procedure, like the increase of the condition number of the problem, i.e., the linearized
system is sometimes much more sensitive to perturbations in the data than the original
problem, see [33]. On the other hand there are no efficient methods known that work
directly with the quadratic eigenvalue problem. Furthermore, it was observed in [21,
27] that the eigenvalue problems (1) and (2) have a specific symmetry structure in the
spectrum. Similar structures arise also in other applications, see [24].

For an efficient and accurate procedure it is essential to reflect the structure of the
problem also in the numerical method to solve the algebraic eigenvalue problem. Such a
method has been suggested recently in [27] and we demonstrate in Section 4 the use of
this new approach in the context of the elasticity problem. Implementation details are
described in Section 5. From several test series we document two in Section 6. With this
we show the efficiency of the method.
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2 Setting of the problem

Consider the linear elasticity problem in a polyhedral domain Ω3D under the action of body
and surface forces f = [fi]

3
i=1 and g = [gi]

3
i=1, respectively. The elastic stiffness coefficients

aijkl satisfy the classical symmetry and positivity relations,

aijkl = aklij = ajikl = aijlk,
3
∑

i,j,k,l=1

aijklξijξkl ≥ α
3
∑

i,j=1

ξ2ij ∀ξij ∈ R,

even when the material is anisotropic. We assume that the coefficients are piecewise con-
stant, which means that the material is piecewise homogeneous but can be composite.
Using the notation U = [Ui]

3
i=1 for the displacement field and εij(U) = 1

2
(∂iuj + ∂jui),

i, j = 1, 2, 3, for the components of the corresponding linearized strain tensor, the linear
elasticity problem is described in variational (weak) form by

3
∑

i,j,k,l=1

∫

Ω3D

aijklεij(U)εkl(V ) =

∫

Ω3D

fiVi +

∫

Γ3D
2

giVi ∀V ∈ V 3D
0 ,

where V 3D
0 = {V ∈ H1(Ω3D)3 : V = 0 on Γ3D1 } is the space of admissible displacement

fields.
It is well known, see for example the fundamental work [14], research articles as [11,

19, 17], the monographs [5, 10, 16, 18, 20] and the vast literature cited therein, that the
singular terms of the elastic field near a vertex have the asymptotic form (here written
without logarithmic terms)

∑

i

cir
αiu(i)(ϕ, θ),

where αi are the eigenvalues and u(i) are the eigenfunctions of a quadratic eigenvalue
problem and (r, ϕ, θ) are spherical coordinates centered in the vertex of interest. This
eigenvalue problem is derived, e.g., in [21] and has the form

0 = −α(α + 1) a(u, v)− (α+ 1) b(u, v) + α c(u, v) + d(u, v) ∀v ∈ V0, (3)

with an appropriate complex Hilbert space V0. For its definition we assume that in a
neighborhood of the vertex the three-dimensional domain Ω3D can be described by

Ω3D := {(r cosϕ sin θ, r sinϕ sin θ, r cos θ) ∈ R3 : 0 < r < r0, (ϕ, θ) ∈ Ω}.

The intersection of Ω3D with the unit sphere S2 is therefore

Ω̃ := Ω3D ∩ S2 = {(cosϕ sin θ, sinϕ sin θ, cos θ) ∈ R3 : (ϕ, θ) ∈ Ω}.

Similarly we define Γ̃1 := Γ3D1 ∩ S2. Using the isomorphism Ω ↔ Ω̃ we define the space
V0 := {v : ṽ ∈ Ṽ0} with Ṽ0 := {ṽ ∈ H1(Ω̃) : ṽ = 0 on Γ̃1}.
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For the definition of the sesquilinear forms in (3) we define vector functions A, B, C,
such that ∇U = A∂rU +B 1

r
∂θU + C 1

r
∂ϕU ,

A1 = cosϕ sin θ, B1 = cosϕ cos θ, C1 = − sinϕ/ sin θ,
A2 = sinϕ sin θ, B2 = sinϕ cos θ, C2 = cosϕ/ sin θ,
A3 = cos θ, B3 = − sin θ, C3 = 0,

and we use the abbreviations

sj(ui) = Ajui, ej(ui) = −
1

2
Ajui +Bj∂θui + Cj∂ϕui,

and dω = sin θ dθdϕ. The forms are then given by

a(u, v) =
3
∑

i,j,k,l=1

∫

Ω

aijkl sj(ui) sl(vk) dω,

b(u, v) =
3
∑

i,j,k,l=1

∫

Ω

aijkl [ej(ui) +
1
2
sj(ui)] sl(vk) dω,

c(u, v) =
3
∑

i,j,k,l=1

∫

Ω

aijkl sj(ui) [el(vk) +
1
2
sl(vk)] dω = b(v, u),

d(u, v) =
3
∑

i,j,k,l=1

∫

Ω

aijkl [ej(ui) +
1
2
sj(ui)] [el(vk) +

1
2
sl(vk)] dω.

By changing the parameter α to λ = α+1/2 the eigenvalue problem (3) can be written
as

λ2m(u, v) + λg(u, v)− k(u, v) = 0, (4)

with sesquilinear forms

m(u, v) =
3
∑

i,j,k,l=1

∫

Ω

aijkl sj(ui) sl(vk) dω,

g(u, v) =
3
∑

i,j,k,l=1

∫

Ω

aijkl [ej(ui) sl(vk)− sj(ui) el(vk)] dω,

k(u, v) =
3
∑

i,j,k,l=1

∫

Ω

aijkl ej(ui) el(vk) dω.

The advantage of rewriting the system in this form is that these sesquilinear forms have
nice symmetry properties, namely

m(u, v) = m(v, u),

g(u, v) = −g(v, u),

k(u, v) = k(v, u).

Due to these symmetries we also have a symmetry in the spectrum.
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Figure 1: Real part of the eigenvalues α with Reα ∈ [0, 3] for the Dirichlet problem in a
circular cone with opening angle ξ; numerical calculations with mesh parameter h = 3◦ =
π/60 ≈ 0.052

Proposition 1 [27] If λ is an eigenvalue of (4), then also −λ is an eigenvalue. If λ is
not real, then λ and −λ are also eigenvalues, so the eigenvalues come in quadruples.

We remark that such symmetry results were known previously both in the analysis
community, see e. g. [18, Thm. 11.3.1], and in the engineering community, see e. g. [21].

In our application we are interested in few eigenvalues (and eigenvectors) nearest to
the imaginary axis. As an example, Figure 1 displays the real part of all approximated
eigenvalues α with real part in the interval [0, 3] for the corner of a circular cone with
opening angle ξ. For simplicity in this example we have considered an isotropic material
with Poisson ratio ν = 0.3. We display the eigenvalues α of problem (3) instead of λ
since the former are originally sought and the latter were introduced only to simplify the
mathematical model. We see lines of simple (thin) and double (thick) eigenvalues which can
be real (solid) or complex (dashed). We also observe points where two or more eigenvalue
curves cross (crossing points), and points where two real eigenvalues become a pair of
complex conjugate eigenvalues (bifurcation points).

Apart from the computation of the eigenvalues themselves it is also an important prob-
lem to determine the crossing and bifurcation points. In particular, eigenvalues with a
geometric multiplicity that differs from the algebraic multiplicity lead to instabilities of
the asymptotic expansion of the displacement field, known as the Sternberg–Koiter para-
dox, see [30] and the references therein.
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Figure 2: Illustration of different cases of triangles

3 The discretized eigenvalue problem

For the numerical solution of the continuous eigenvalue problem we construct a finite
element subspace V0h ⊂ V0 and look for the finite element solutions of problem (4), i.e., for
λh ∈ C and uh ∈ V0h \ {0} such that

λ2h m(uh, vh) + λh g(uh, vh)− k(uh, vh) = 0 ∀vh ∈ V0h. (5)

In our case, the space V0h is defined by the set of continuous functions from V0 which are
piecewise linear on a triangular finite element mesh Th. This approach to solve the problem
is widely used in the engineering literature, see, e. g., [21, 32].

In order to describe the meshes we make the simplifying assumption that the domain
Ω is polygonal. Note that Ω is not uniquely defined; in particular, we have the freedom
to choose the north pole appropriately. We consider a family of meshes Th = {T} with
the usual admissibility conditions: We assume that Ω =

⋃

T∈Th
T where the elements T

are mutually disjoint open triangles. Any side of any triangle T is either part of the
boundary ∂Ω or side of another triangle T ′ ∈ Th. For each triangle we define the number
θ−,T := inf(ϕ,θ)∈T sin θ.

Concerning the shape of the elements, we distinguish two cases and make the following
assumption. For triangles T with θ−,T ≥ θ∗ = const. > 0 we assume that T has bounded
aspect ratio, without further constraints. The diameter of T is denoted by hT . For an
illustration see Figure 2, left hand side. In the second case, when θ−,T < θ∗, we assume
that two edges of T are parallel to the coordinate axes. Their lengths are denoted by hϕ,T
and hθ,T which can be chosen independently, see also Figure 2, middle and right. That
means the aspect ratio of T may not be bounded by a constant.

If Ω̃ is a smooth domain then the eigenfunctions are regular and no local mesh refine-
ment is needed for their approximation. This means hT ∼ h for all T ∈ Th, and the aspect
ratio of all elements is bounded.

However, the eigenfunctions have, in general, singularities near corners of Ω̃ or near
points of ∂Ω̃ where the boundary conditions change their type, in the following also referred
to as corners. Therefore, it was suggested in [1] to use refined meshes in these critical
regions. For their description we need some further notation and distinguish two cases.
Let the corner be denoted by P = (ϕ0, θ0) in the parameter plane. Determine a lower
estimate α̃ for the leading singularity exponent α of the edge created by the corner P , e. g.
α̃ = 0.5 for the Dirichlet problem. Choose a parameter β ∈ (1− α, 1), e. g. β = 1− α̃.



3 The discretized eigenvalue problem 7

Figure 3: Graded mesh for the Fichera example.

Case 1, θ0 6∈ {0, π}: The aspect ratio of the elements is bounded and

hT ∼

{

h1/(1−β) if dist (P, T ) = 0,

h [dist (P, T )]β if dist (P, T ) > 0.

This means that hT ∼ h for dist (P, T ) > C∗ = const.

Case 2, θ0 ∈ {0, π}: The refinement zone is determined by sin θ < θ∗. The elements might
be anisotropic,

hϕ,T ∼ h, hθ,T ∼

{

h1/(1−β) if θ−,T = 0,

h θβ−,T if θ−,T > 0.

In Figure 3, we display a mesh which was used in [1] and below in Section 6 for the
well-known Fichera corner domain.

The following approximation results are formulated for meshes defined by the rules
above.

Proposition 2 Consider an eigenpair (λ, u) of (4) and denote by κ the maximal size of
an associated Jordan block. For a sequence of eigenpairs {(λh, uh)}h→0 with λh → λ0 the
estimates

|λ0 − λh| ≤ Ch2/κ,

‖u0 − uh‖V ≤ Chα, α = min{1, 2/κ}

hold.

According to [13] the convergence rate can be improved for κ > 1 by averaging.

Proposition 3 For an eigenvalue λ0 with algebraic multiplicity m there exist m disjoint
sequences {λh,i} with λh,i → λ0, i = 1, . . . ,m. Then for the arithmetic mean λ̂h :=
1
m

∑m
i=1 λh,i the improved estimate

|λ0 − λ̂h| ≤ Ch2

holds.
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These propositions were proved in [1] for the Dirichlet problem. Anisotropic materials
are included. Other boundary conditions can be treated in a similar way. Composite
materials are also included if the subdomains with different material properties can be
resolved by the finite element mesh.

4 The algebraic eigenvalue problem

The quadratic eigenvalue problem (5) is equivalent to a quadratic matrix eigenvalue prob-
lem in the space RN , N = dimV0h: Find λ ∈ C, u ∈ RN \ {0} such that

(λ2M + λG−K)u = 0. (6)

As we have already indicated, this problem has considerable structure, and one should use
methods that exploit this structure.

From the properties of the sesquilinear form it follows that

M = MT > 0, G = −GT , K = KT > 0,

so we need to store only the upper triangle part of each matrix. The symmetries also
imply the eigenvalue symmetry in Proposition 1. Therefore, if we have a method to solve
eigenvalue problem that does not disturb this symmetry, only a fraction of about one
quarter to one half of the eigenvalues needs to be approximated. Furthermore, methods
that respect the structure tend to be more stable and accurate than methods that do not.
This has been shown for small problems with the given eigensymmetry in [4]. Finally,
the matrices M , K, and G are large sparse finite element matrices. That means that
the multiplication of such a matrix by a vector is a cheap operation, much cheaper (with
respect to time and memory) than, for example, a matrix factorization.

The standard approach for solving quadratic eigenvalue problems is to make an appro-
priate linearization. Simple linearizations are obtained by setting v = λu, for example,

[

O I
K −G

] [

u
v

]

= λ

[

I O
O M

] [

u
v

]

,

[

O I
K O

] [

u
v

]

= λ

[

I O
G M

] [

u
v

]

.

However, these linearizations do not preserve the structure. Following [27] we set v = λMu
and use the linearization

λ

[

I G
O I

] [

v
u

]

=

[

O K
M−1 O

] [

v
u

]

.

Introducing the matrices

B =

[

I G
O I

]

, A =

[

O K
M−1 O

]

, J =

[

O I
−I O

]

,
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we find that the matrix B is skew Hamiltonian, a property which is defined by (JB)T =
−JB, and the matrix A is Hamiltonian, defined by (JA)T = JA, see [4, 25]. Therefore, the
matrix pencil λB−A is called Skew-Hamiltonian Hamiltonian pencil, shortly SHH pencil.
The properties of such pencils are studied in detail in [25, 26]. Every SHH pencil has the
eigenvalue symmetry described in Proposition 1 and thus, this linearization has preserved
an essential structural property.

We can perform some more transformations with the SHH pencil. The matrix B can
be factorized by

B =

[

I G
O I

]

=

[

I 1
2
G

O I

] [

I 1
2
G

O I

]

= Z2,

see [3, 27] for factorizations of this kind. Thus the SHH pencil can be written as

λB − A = Z(λ I − Z−1AZ−1)Z = Z(λ I −H)Z

with H = Z−1AZ−1, where the matrix H is again Hamiltonian. Since

Z−1 =

[

I −1
2
G

O I

]

,

we conclude that we are interested in the eigenvalues of the Hamiltonian matrix

H =

[

I −1
2
G

O I

] [

O K
M−1 O

] [

I −1
2
G

O I

]

.

Iterative methods such as subspace iteration and the Arnoldi method are easy to apply
to this Hamiltonian matrix, but they typically give the eigenvalues with largest moduli. In
our application the eigenvalues of interest are the one with smallest real part, so it makes
more sense to work with the inverted matrix

H−1 =

[

I 1
2
G

O I

] [

O M
K−1 O

] [

I 1
2
G

O I

]

,

which is also Hamiltonian. In the interest of faster convergence, it would be even better to
shift the matrix and then invert. Thus one would work with the shifted, inverted matrix
(H − τ I)−1, where τ is a shift value that targets the eigenvalues we are interested in.
Unfortunately (but not surprisingly) the shift destroys the Hamiltonian structure. If we
wish to find eigenvalues near τ ∈ R while also preserving structure, we must simultaneously
seek the eigenvalues near −τ . Thus we should also use −τ as a shift. This suggests using
the operator (H − τ I)−1(H + τ I)−1, which turns out to be skew Hamiltonian [27, Prop.
3.2]. If τ is not real, we should also use τ and −τ as targets. Thus we consider two cases,

C =

{

(H − τ I)−1(H + τ I)−1 if τ is real,
(H − τ I)−1(H + τ I)−1(H − τ I)−1(H + τ I)−1 if τ is complex.

(7)

In both cases C is real and skew Hamiltonian.
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We have lost the Hamiltonian structure but gained a related structure, which can be
exploited in the Skew Hamiltonian Implicitly Restarted Arnoldi method, SHIRA [27]. Im-
plicitly Restarted means that the standard Arnoldi method is combined with a subspace
iteration. The modification for skew Hamiltonian matrices consists of an additional or-
thogonalization step. Normally the Arnoldi process builds a set of orthonormal vectors
q1, . . . , qk. SHIRA does this too, but it also ensures that Jq1, . . . , Jqk are orthogonal to
q1, . . . , qk. This additional orthogonality condition, which is called isotropy, is satisfied
automatically in theory if C is skew Hamiltonian. However, it is lost in practice due to
roundoff errors, unless it is enforced explicitly. Explicit enforcement of isotropy is crucial
to the efficiency of the method [27].

SHIRA is an iterative method that multiplies C by a vector in each iteration. The
matrix C consists of factors of the type

(H − σI)−1 = (Z−1AZ−1 − σI)−1 = Z(A− σB)−1Z (B = Z2)

=

[

I 1
2
G+ σM

O I

] [

O M
−Q(σ)−1 O

] [

I 1
2
G+ σM

O I

]

(8)

with Q(σ) = σ2M + σG −K. The expensive part of the application of the operator C is
the solve with Q(σ). This matrix is symmetric only for σ = 0 and real only for real σ. In
general a sparse complex LU decomposition is necessary [27].

We note that one LU decomposition suffices for all factors of C since Q(−λ) = Q(λ)T

and Q(λ) = Q(λ). We note also that the method becomes particularly cheap in memory
when τ = 0 is sufficient for approximating the desired eigenvalues. In this case we can
work with a Cholesky decomposition. In our numerical tests we have good experience with
real shifts, so in the following we restrict ourselves to this case.

5 Programming details

The meshes were generated by using a collection of subroutines [29] written by Uwe Reichel,
TU Chemnitz. The library allows easy generation of meshes when the domain is the union
of rectangles. Special routines allow for mesh grading to special points or lines, and for
the treatment of various types of boundary conditions including periodic ones.

The integrals in the definition of the matrix entries were approximated by a 7-point rule
of algebraic order 5. The matrices were generated using libraries that have been maintained
for many years by the Chemnitz numerics group [12]. The graphics tool was supplied by
Matthias Pester [28].

The implementation of the SHIRA algorithm is based on the ARPACK package [22].
Only a slight modification is made to enforce isotropy, as discussed in Section 4.

To apply the operator C from (7) using the factorization (8), we have to solve systems
with the sparse matrices Q(τ) and Q(−τ) = Q(τ)T . For this we used version 1.1 of
the package SuperLU [7]. We are doing also tests with version 2.2 of UMFPACK [6].
The computation time is comparable with that of SuperLU; in many cases UMFPACK is
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slightly slower than SuperLU, but in some cases also quicker. In order to avoid confusion
we report in Section 6 only the results with SuperLU.

For comparison purposes we also applied ARPACK to (H − τI)−1. Again, we used
version 1.1 of the package SuperLU for the factorization of Q(τ).

In all cases we used the Arnoldi method with a stopping tolerance of 10−12.
It is well known that the convergence of the Arnoldi method will depend on the starting

vector q0. In one mode of the program we use a chaotic starting vector q0. This means the
entries of q0 were generated by a random number generator with always the same seed. So
we ensure a fair comparison by using in all tests the same q0.

In the examples described below we are interested in solving several eigenvalue problems
that differ only by a smoothly changing parameter. Therefore we expect continuously
changing eigenvalues from one computation to the next. In order to exploit the results
from the previous calculation we average all the Arnoldi vectors generated in the previous
calculation. In a further mode of the program this vector is used as the starting vector in
the next calculation.

All tests were carried out on a Linux machine with an 800 MHz Intel processor and 768
MByte RAM.

6 Numerical Results

We tested the algorithms with the following two examples.

Example 1 (Fichera corner) The three-dimensional domain Ω3D can be described as a
cube from which a cube of smaller size has been removed. A representation of Ω in the
parameter plane is shown in Figure 3. This problem has been considered in the literature
for isotropic material, for example in [31] for a single material and Dirichlet boundary
conditions and in [8] for a bi-material joint and Neumann boundary conditions. Our tests
are similar to those in the latter reference.

The material is defined by

ν = 0.3, E =

{

E1 = 1.0 for θ < 1
2
π,

E2 for θ > 1
2
π,

where E2 is varied in the interval [0.016, 64]. These values of E do not describe particular
materials but the eigenvalues depend only on ν and the ratio of E1 and E2.

The pure Neumann problem has three eigenvalues α = 0 (rigid body translation) and
three eigenvalues α = 1 (rigid body rotation). The eigenvalues of interest are those five in
between since they create the singularities in the displacement. They are plotted against
E2 in Figure 4. With this example we have shown that we can accomplish parameter
studies with composite materials.

Example 2 (Crack) We consider a halfspace with a crack intersecting the surface. In
the parameter plane we can use

Ω = {(φ, θ) : φ ∈ (0, π), θ ∈ (0, π)} \ {(φ, θ) : φ = ξ, θ ∈ (0, 1
2
π]},
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Figure 4: Fichera example: Eigenvalues α ∈ (0, 1) for various material parameters, calcu-
lated with h = π/128 ≈ 0.025

see Figure 5 for an illustration. At a workshop held in Chemnitz in April 2000 this problem
was suggested as the most challenging of four benchmark examples for computing singu-
larity exponents. In our tests we used isotropic material with ν = 0.3 and E = 1 (in the
uni-material case the eigenvalues do not depend on E) and computed the eigenvalues for
varying angle ξ ∈ (0, 1

2
π] = (0◦, 90◦].

As in example 1 we investigated the case of pure Neumann boundary conditions. There-
fore we have triple eigenvalues α = 0 and α = 1, see the thick lines in Figure 6. All further
integers are also multiple eigenvalues. Moreover, we found three single real eigenvalues
α ∈ (0, 1) where one of them is very close to one. Since the distribution of the eigenvalues
in the interval (1, 2) is much more attractive, we computed them as well. Again, dashed
lines indicate eigenvalues with nonzero imaginary part. Example 2 shows that we can treat
cracks.

Figure 7 shows the time for computing the smallest 15 eigenvalues, those in the interval
[0, 2), with different versions of the solver. The dimension of the matrices K, G and M
is 43383. The time includes the assembly of the matrices, LU-factorization of Q(τ) and
the Arnoldi iteration. Eigenvectors are not computed. For each angle the iteration started
with the same chaotic vector which makes the computation time comparable. We compare
SHIRA (solid lines) with a standard shift-and-invert implicitly restarted Arnoldi method
(IRA, dashed lines).

The advantage of SHIRA can be seen best when comparing the case with the shift τ = 0
(diagrams on the left hand side). While SHIRA computes only the desired 15 eigenvalues,
IRA computes also the uninteresting eigenvalues −λ, so we have to solve for 30 eigenvalues
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Figure 5: Illustration of part of the three-dimensional crack domain (left) and of the
corresponding two-dimensional domain in the parameter space (right)
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Figure 6: Crack example: Real part of eigenvalues α with Reα ∈ (−0.1, 2.1) for various
angles, calculated with h = 1.5◦ = π/120 ≈ 0.026; dashed lines for eigenvalues with
Imα 6= 0
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Figure 7: Crack example: Computing time in seconds for 15 eigenvalues in [0, 2), calculated
with h = π/120 and chaotic starting vector; solid lines: SHIRA, dashed lines: IRA with
(H − τI)−1; left: τ = 0, right: τ = 1

in order to get the 15 desired ones, which is much more expensive.

For an appropriately chosen shift value τ , for example τ = 1, we need to compute with
IRA only 15 eigenvalues, too. Then we find comparable computing times for SHIRA and
IRA, with a small advantage for SHIRA. Note that the shift value τ = 1.5 is too large,
the (wanted) eigenvalues α = 0 (i. e. λ = 0.5) have the same distance as the (not wanted)
eigenvalues α = 2 (i. e. λ = 2.5). Also, shifts τ < 1 lead IRA to the calculation to compute
negative eigenvalues α = −1 (i. e. λ = −0.5).

To summarize, if we have a good shift, that is, if we have good advance knowledge of
where the eigenvalues of interest lie, then IRA performs nearly as well as SHIRA. However,
if we do not have a good shift, SHIRA will obtain the desired eigenvalues much more
quickly than IRA does. Notice that SHIRA, unlike IRA, is relatively insensitive to the
choice of shift. Although the flop counts reported in [27] indicate much lower complexity
for SHIRA compared to IRA when the shift parameter is not chosen well, the runtimes of
the Fortran/C implementation of the two methods are often not that different.

The computing time depends also on the parameter ξ. A minimum is achieved near
40◦ where the 15-th eigenvalue is best separated from the 16-th, which is α = 2.

In the tests we have seen that the eigenvalues are identical up to 10 digits. The stabi-
lizing effect of SHIRA seems to be unnecessary for this kind of application.

We hoped to save computing time by using a linear combination of the Arnoldi vectors
of previous calculations to initialize the eigensolver, since the eigenpairs depend continously
on the parameter. The potential of this method can be seen in the savings of about 30–40%
when an example is calculated a second time. But the savings reduce to 15–20% when the
parameter ξ is changed by 0.001◦. However, a change of ξ by 0.01◦ produces a computing
time comparable with that using a chaotic starting vector. The situation improves slightly
when we search only for the two well separated eigenvalues α ∈ (0, 1) but still savings can
only be obtained when the parameter changes in impractically small steps.
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7 Conclusions

We have developed codes to compute 3D vertex singularities of anisotropic elastic fields.
The singularities are described by eigenpairs of an operator pencil on a subdomain of the
sphere. We solved the problem by introducing a quadratic variational boundary eigen-
value problem which consists of two self-adjoint, positive definite sesquilinear forms and a
skew-Hermitian form. This eigenvalue problem was then discretized by the finite element
method. Finally, the resulting quadratic matrix eigenvalue problem was solved with the
Skew Hamiltonian Implicitly Restarted Arnoldi method (SHIRA), which preserves and ex-
ploits the structure of this problem. Numerical results show that SHIRA is more efficient
than a competing method that ignores the structure, particularly in situations when a good
target shift for the eigenvalues is not known in advance.
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