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1. Introduction

The starting point of this paper is the nonstationary, incompressible Navier-Stokes problem

∂tu− ν∆u + (u · ∇)u + ∇p = f (1)

∇ · u = 0 (2)

for velocity u and pressure p in a domain Ω ⊂ Rd, d ≤ 3. In an outer loop, an A-stable low-order
method (possibly with control of the time step ∆t) is applied. In an inner loop, we decouple
and linearize the resulting system using a Newton-type iteration per time step. This leads to
problems of Oseen type:

−ν∆u + (b · ∇)u + cu + ∇p = f in Ω (3)

∇ · u = 0 in Ω (4)

with an artificial reaction term cu where c ∼ 1/∆t.
We consider stabilized conforming finite element (FE) schemes with equal-order interpola-

tion of velocity/pressure for problem (3)–(4) with emphasis on anisotropic mesh refinement in
boundary layers. The classical streamline upwind and pressure stabilization (SUPG/PSPG)
techniques for the incompressible Navier-Stokes problem for equal-order interpolation [5], to-
gether with additional stabilization of the divergence constraint (4), are well-understood on
isotropic meshes [13].

Much less is known about the analysis in case of equal-order interpolation schemes with
anisotropic mesh refinement for incompressible flow problems. The Stokes problem has been
considered in [3, 4] for the Q1/Q1-case and in [12] for the P1/P1-case. The extension to the
Oseen problem seems to be new. Numerical experiments for the full Navier-Stokes problem, e.g.
in [9, 7], show the applicability of anisotropic mesh refinement for low-order schemes.

The stabilized FEM for problem (3)-(4) is given in Sec. 2.. In Sec. 3., we derive an a-priori
estimate of Cea-type on arbitrary meshes. This result is even valid for rather general finite
element pairs for velocity and pressure. In Sec. 4. we focus on hybrid meshes with anisotropic
layer refinement of tensor product type and smooth transition to (unstructured) isotropic meshes
away from the layer. Sec. 5. is devoted to error estimates and to the design of stabilization
parameters. Numerical results for simple channel flows in the laminar and the turbulent case
are given in Sec. 6. Full proofs are given in [2].
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2. Residual-based stabilized FEM for linearized Navier-Stokes problem

We consider the generalized Oseen model, for brevity with homogeneous Dirichlet data:

Los(b;u, p) := −ν∆u + (b · ∇)u + cu + ∇p = f in Ω, (5)

∇ · u = 0 in Ω, (6)

u = 0 on ∂Ω (7)

with b ∈ [H1(Ω)]d, (∇ · b)(x) = 0, f ∈ [L2(Ω)]d and constants ν > 0, c ≥ 0. The variational
formulation reads: find U := {u, p} ∈ W := V × Q := [H1

0 (Ω)]d × L2
0(Ω) with L2

0(Ω) := {q ∈
L2(Ω) |

∫

Ω q dx = 0}, s.t.

A(b;U, V ) = L(V ) ∀ V = {v, q} ∈ V × Q (8)

with

A(b;U, V ) := (ν∇u,∇v)Ω + ((b · ∇)u + cu, v)Ω − (p, ∇ · v)Ω + (q, ∇ · u)Ω, (9)

L(V ) := (f , v)Ω. (10)

Let Th be an admissible triangulation of the polyhedron Ω where each T ∈ Th is a smooth
bijective image T = FT (T̂ ) of a unit element T̂ (unit simplex or hypercube in Rd or, for d = 3,
the unit triangular prism). A mixture (with appropiate reference elements for each type) is
admitted. Consider Lagrangian FE of order r ∈ N, i. e., Pr(T̂ ) on T̂ contains the polynomial
set Pr. We set

Xr
h = {v ∈ C(Ω̄) | v|T ◦ FT ∈ Pr(T̂ ) ∀T ∈ Th} (11)

and introduce conforming finite element (FE) spaces for velocity and pressure

Vr
h :=

[

H1
0 (Ω) ∩ Xr

h

]d
, Qs

h := L2
0(Ω) ∩ Xs

h, r, s ∈ N. (12)

The Galerkin method reads: find U = {u, p} ∈ W
r,s
h := Vr

h × Qs
h, s. t.

A(b;U, V ) = L(V ) ∀V = {v, q} ∈ W
r,s
h . (13)

Well-known sources of instabilities of the Galerkin FEM (13) stem from dominating advection
and from the violation of the discrete inf-sup or LBB-condition for Vr

h ×Qs
h. Note that, in case

of anisotropic elements, the discrete inf-sup constant is often not robust w.r.t. the maximal
aspect ratio.

A standard approach to stabilize the Galerkin scheme is a combination of pressure stabi-
lization (PSPG) with streamline-upwind stabilization (SUPG) together with a stabilization of
the divergence constraint, the so-called grad-div stabilization. This residual-based stabilized
method reads: find U = {u, p} ∈ W

r,s
h , s.t.

Arbs(b;U, V ) = Lrbs(V ) ∀V = {v, q} ∈ W
r,s
h (14)

with

Arbs(b;U, V ) := A(b;U, V ) +
∑

T∈Th

γT (∇ · u,∇ · v)T

+
∑

T∈Th

(Los(b;u, p), δT ((b · ∇)v + ∇q))T (15)

Lrbs(V ) := L(V ) +
∑

T∈Th

(f , δT ((b · ∇)v + ∇q))T . (16)
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Remark 1. A crucial point in the numerical analysis is the Galerkin orthogonality

Arbs(b;U − Uh, Vh) = 0 ∀Vh ∈ W
r,s
h . (17)

Other residual-based variants, containing the SUPG-/PSPG-stabilization with δT = δu
T = δp

T ,
are the Galerkin/ Least-squares (GLS) method [8] and the Douglas/Wang- or algebraic subgrid-
scale (ASGS) method [6] adding

∑

T∈Th

(LOs(b;U) − f , δT LOs(b;V ))T

and
−

∑

T∈Th

(LOs(b;U) − f , δT L∗
Os(b;V ))T ,

respectively, to the Galerkin formulation (13). The analysis of these methods is similar to that
of scheme (14)-(16). �

3. Stability and convergence on arbitrary meshes

The subsequent analysis provides existence, uniqueness and a generalized result of Cea type for
the discrete solution without geometrical conditions on the mesh. Stability of the residual-based
method (14)-(16) with δT = δu

T = δp
T is proved w.r.t.

|[V ]|2rbs := ‖ν 1

2∇v‖2
L2(Ω) + ‖c 1

2v‖2
L2(Ω) + Jrbs(V, V ), (18)

Jrbs(V, V ) :=
∑

T

δT ‖(b · ∇)v + ∇q‖2
L2(T ) +

∑

T

γT ‖∇ · v‖2
L2(T ) (19)

with parameters δT , γT to be determined. A simplified analysis is possible since |[·]|rbs is a
mesh-dependent norm on W

r,s
h if δT > 0.

Consider a (possibly anisotropic) element T ⊂ R
d, d = 2, 3, with sizes h1,T ≥ . . . ≥ hd,T . A

key point in the stability analysis is the local inverse inequality

‖∆w‖[L2(T )]d ≤ µinvh
−1
d,T ‖∇w‖[L2(T )]d×d ∀w ∈ Vr

h. (20)

to bound the term ∆uh in the SUPG-term in (15). Assume that the conditions

0 < δT ≤ 1

2
min

{

h2
d,T

µ2
invν

;
1

c

}

, 0 ≤ γT . (21)

on the stabilization parameters are satisfied. In view of (21), the upper bound of the stabilization
parameter δT is related to hd,T . The inverse inequality (20) and (21) imply that the bilinear
form Arbs(b; ·, ·), defined in (15), satisfies

Arbs(b;Wh,Wh) ≥ 1

2
|[Vh]|2rbs, ∀Wh ∈ W

r,s
h . (22)

This implies existence and uniqueness of the discrete solution of (14)-(16).
The following continuity result is derived using standard inequalities. It reflects the effect

of stabilization with assumption (21): For each U ∈ W with ∆u|T ∈ [L2(T )]d ∀T ∈ Th and
Vh ∈ W

r,s
h there holds

Arbs(b;U, Vh) � Qrbs(U) |[Vh]|rbs (23)
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with

Qrbs(U) := |[U ]|rbs +
(

∑

T∈Th

1

δT
‖u‖2

L2(T )

)
1

2

+
(

∑

T∈Th

1

max(ν, γT )
‖p‖2

L2(T )

)
1

2

+
(

∑

T∈Th

δT ‖ − ν∆u + cu‖2
L2(T )

)
1

2

. (24)

The L2-terms in (24) explode for ν, c → 0 and vanishing stabilization with δT = γT = 0.
The standard combination of the stability and continuity estimates (22) and (23) with

Galerkin orthogonality (17) leads to the desired error estimate of Cea-type. Consider solu-
tions U ∈ W and Uh ∈ W

r,s
h of the continuous and of the discrete problem, respectively. Let

{Iu
h,ru, Ip

h,sp} ∈ W
r,s
h be an appropriate interpolant of U , e.g., the Lagrange interpolant. Then

we obtain an quasi-optimal a-priori estimate of Cea-type for the scheme (14)-(16):

|[U − Uh]|rbs � Qrbs({u − Iu
h,ru, p − Ip

h,sp}). (25)

It remains to evaluate the right hand side of (25) using appropriate interpolation estimates and
to fix the parameter sets {δT } and {γT }.

4. Stability and convergence on hybrid meshes

The quasi-optimal a-priori result (25) provides no control of the L2-norm of the pressure. There-
fore we analyze the stabilized method (14)-(16) w.r.t. the norm

|||V |||rbs :=
(

|[V ]|2rbs + σ‖q‖2
L2(Ω)

)
1

2

(26)

with parameter σ to be determined. Here we present a discrete inf-sup condition and a quasi-
optimal error estimate w.r.t. ||| · |||. For simplicity, we restrict ourselvces to the case of equal-oder

interpolation of velocity/pressure, i.e., to r = s.
Of practical interest are hybrid meshes with anisotropic mesh refinement of tensor product

type (in the sense of [1, Chap. 3]) in the boundary layer and a smooth transition to (in general
unstructured) shape-regular (isotropic) meshes away from the layer. We restrict ourselves to the
case that the boundary layer is located at the hyperplane xd = 0. The advantage of this class of
meshes is not only that the coordinate transformation is simplified in regions with anisotropic
elements but also that certain edges/faces of the elements are orthogonal/parallel to coordinate
axes. This is exploited in the analysis. Fig. 1 shows examples of such meshes for the two- and
three-dimensional case.

Figure 1: Examples of hybrid meshes in the two- and three-dimensional case

Meshes of tensor product type in the boundary layer region consist of affine elements of
tensor product type. That means the transformation of a reference element T̂ to the element T
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shall have (block) diagonal form,

x =





AT
... 0

. . . . . . . . . . .

0
... ±hd,T



 x̂ + aT for , (27)

where aT ∈ R
d, AT = ±h1,T for d = 2 and AT ∈ R

2×2 for d = 3 with |det AT | ∼ h2
1,T , ‖AT ‖ ∼

h1,T , ‖A−1
T ‖ ∼ h−1

1,T . In this way the element sizes h1,T , . . . , hd,T are implicitly defined. Note
that the additional conditions yield h1,T ∼ h2,T for d = 3.

Under these assumptions, the triangles/tetrahedra can be grouped into pairs/triples which
form a rectangle/triangular prism of tensor product type. We demand further that there is no
abrupt change in the element sizes, that means hi,T ∼ hi,T ′ for all T ′ with T∩T ′ 6= ∅, i = 1, . . . , d.
This implies that the transition region between the structured mesh in the boundary layer zone
and the unstructured mesh consists of isotropic elements only. In particular, Shishkin’s piecewise
equidistant meshes in boundary layers are excluded.

Here, we consider equal-order interpolation, i.e., r = s ≥ 1. Condition (21) has to be refined
as

0 < µ0h
2
1,T ≤ δT ≤ 1

2
min

{

h2
d,T

µ2
invν

;
1

c

}

, 0 ≤ δT ‖b‖2
[L∞(T )]d ≤ γT . (28)

with some constant µ0 > 0 (see Remark 2). Then there exists a positive constant β, independent
of of all important parameters (ν, c, h1,T , . . . , hd,T , aspect ratio, δT , γT ) such that the modified
inf-sup condition

inf
Uh∈W

r,s

h

sup
Vh∈W

r,s
h

Arbs(b;Uh, Vh)

|||Uh|||rbs|||Vh|||rbs
≥ β (29)

with the weight

√
σ ∼





√
γ +

1

µ0
+

√
ν +

√
cCF +

CF ‖b‖L∞(Ω)
√

ν + cC2
F

+ max
T

hT ‖b‖L∞(T )√
ν





−1

(30)

of the L2-norm of the pressure in (26). Moreover, it denotes γ = maxT∈Th
γT and CF the

Friedrichs constant. Note that σ is only used for the analysis. A critical point in the stabil-
ity analysis is the following interpolation result for a modified Scott-Zhang quasi-interpolation
operator Iqi

h,r : H1(Ω) → Xr
h:

‖∇m(v − Iqi
h,rv)‖L2(T ) ≤ Cqi,mh1−m

1,T ‖v‖H1(ωT ), m = 0, 1 (31)

where ωT :=
⋃

T ′∩T 6=∅ T ′. (31) can be derived using ideas of [1, Chap. 3.4].
A combination of (29) with the continuity estimate (24) leads again to a modified quasi-

optimal estimate (25) of Cea type where we replace the |[·]|rbs-norm by the ||| · |||rbs-norm.
Remark 2. The lower bound of δT in assumption (28) implicitly implies

√
µ0 max

T∈Th

h1,T

hd,T
≤ 1

µinv

√
2ν

(32)

with a restriction on the aspect ratio of T . A reasonable choice in boundary layers at a wall is
hd,T ≥ √

νh1,T ; thus guaranteeing that µ0 = O(1), see also Sect. 5.. �
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5. Error estimates and design of stabilization parameters

Based on the quasi-optimal of Section 4., we derive error estimates and design the parameters
δT , γT with emphasis on the anisotropy of an element. Here, we assume that the solution of
problem (5)-(7) is smooth enough such that the global Lagrangian interpolant can be used.

Appropriate anisotropic interpolation estimates of the FE spaces Xr
h are required in order to

compensate large derivatives in some direction xd by the small element diameter hd,T . We refer
to [1] for a basic interpolation theory which relies on some geometrical conditions (maximal
angle condition and the coordinate system condition) which are valid for the hybrid meshes
introduced in Sec. 4.. The anisotropic interpolation result for the Lagrangian interpolation
operator Ih,r : C(T ) → Pr(T ) reads as follows, see [1, Chap. 3].

Let Th be a hybrid mesh as introduced in Section 4., and T ∈ Th. Assume that v ∈ W ℓ,p(T ),
with ℓ ∈ {1, . . . , r+1}, p ∈ [1,∞], such that p > 2/ℓ. Fix m ∈ {0, . . . , ℓ−1}. Then the following
estimate holds

||v − Ih,rv‖W m,p(T ) ≤ C
∑

|α|=ℓ−m

hα
T ‖Dαv‖W m,p(T ) hα

T := hα1

1 . . . hαd

d . (33)

Assume that the solution U = {u, p} ∈ W is continuous and satisfies u|T ∈ [Hk(T )]d,
p|T ∈ Hk(T ) with k > 1 for all T ∈ Th. Then, using the notation l := min(r, k − 1) for the
convergence order, we obtain

|||Uh|||2rbs �
∑

T

∑

|α|=l,|β|=1

h2α
T

(

Ep
T,β‖Dα+βp‖2

L2(T ) + Eu
T,β‖Dα+βu‖2

L2(T )

)

, (34)

Ep
T,β := δT + γ−1

T h
2β
T (35)

Eu
T,β := ν + ch2

1,T + γT + δT ‖b‖2
[L∞(T )]d + δ−1

T h
2β
T . (36)

The mixed character of the problem requires a careful approach to fix the parameters δT , γT .
Using h̃T ∈ [hd,T , h1,T ] and based on assumption (28), we propose to define the parameters
according to

δT ∼ min
( h2

d,T

µ2
invν

;
1

c
;

h̃T

‖b‖(L∞(T ))d

)

, γT ∼ h̃2
T

δT
. (37)

In the isotropic region Ωiso away from the boundary layer, we propose to set h1,T ∼ h̃T which
leads to the standard design and to the standard error contributions (see [8, 6]).

The parameter design in the boundary layer region Ωaniso at xd = 0 is more involved. The
crucial point is that the (anisotropic) mesh allows a resolution of the scale

√
ν at the wall. From

Prandtl’s boundary layer theory for laminar flows, we know that p varies at most slowly with
xd, whereas u can have large gradients in xd-direction. This motivates a mesh refinement in
xd-direction towards the wall by setting hd,T ∼ g(xd)h1,T with a strongly increasing monitor
function g(·) s.t. g(xd) ∼

√
ν in the mesh layer nearest to the wall and g(xd) ∼ 1 in the transition

region to the isotropic part of the hybrid mesh.
The velocity error part in the error contribution (30) contains the critical term δ−1

T h2β
T which

is at most of order O(1) in the mesh layer nearest to the wall at xd = 0 since hd,T ∼ √
νh1,T .

On the other hand, we observe that the stabilization parameters do not deteriorate there since
ν−1h2

d,T ∼ h2
1,T .

It remains to discuss the choice of h̃T . We obtain from (37) that an increasing h̃T implies an
increasing γT , thus giving improved control of ∇ · u. On the other hand, the control parameter√

σ of ‖p − ph‖L2(Ω) behaves like 1/
√

σ ≤ maxT
√

γT , i.e. the control of this norm gets worse

with increasing γT . Our favoured choice is h̃T = (meas(T ))
1

d , as a reasonable compromise to
balance control of pressure and of divergence.

6



6. Application to channel flow

We present some numerical results for the Navier-Stokes problem (1)-(2) using the research code
Parallel NS with P1-approximations for velocity/pressure.

Consider the laminar stationary flow in the channel Ω = (0, 1)2 with the data ν = 10−6,
b = u, c = 0, f = 0 and solution p =

√
ν(1 − x), u = (1 − (e−y/

√
ν + e(y−1)/

√
ν), 0)T . The

layer-adapted hybrid mesh is equidistant in x-direction and has a mesh grading in y-direction
with yi = 1

2 + 1
2 tanh( 2iγ

Ny−1)/ tanh(γ), i = −1
2(Ny − 1), . . . , 1

2(Ny − 1). The parameter γ can be

chosen such that condition (30) holds with µ0 = O(1).
In Fig. 2 (left), we show the pointwise error (u1−u1,h)(1

2 , y), 0 ≤ y ≤ 1 for increasing values
of Ny. In Fig. 2 (right), we present a zoom in a semilogarithmic scale for fixed Ny = 129 together
with different values of γ (leading to different percentage of mesh points in the boundary layer
regions (0, 1) × (0, δ99) and (0, 1) × (1 − δ99, 1) where δ99 is given by u1(x, δ99) = (0.99, 0)). On
the grid with Ny = 129, the L∞-error is reduced to ≤ 0.2% if 37.5 or 50 % of the grid points are
located in the layer regions for resolving the gradient, whereas the solution on the corresponding
uniform mesh has a L∞-error of 10 %.

Figure 2: Error (u1 − u1,h)(1
2 , y) (left) and zoom for Ny = 129 (right)

Finally, we consider the turbulent 3d-channel flow in Ω = (0,H)2 × (0, L) with H = 1 [m]
and L = 5 [m]. We apply the k− ǫ−v2−f -model of Durbin in the ”user-friendly” ϕ−f -version
[11] for the RANS version of problem (1)-(2) where the viscosity ν is replaced with νe = ν + νt

based on the turbulent viscosity νt = cµ kϕmax
(

k
ǫ , 6

√

ν
ǫ

)

. The turbulent quantities k, ǫ, ϕ, f

are determined by a coupled nonlinear advection-diffusion-reaction system.
We compare the solution to DNS data of [10] for Reτ = Huτ

ν = 395 based on the friction

velocity uτ =
√

τw ≡
√

ν ∂u2

∂y |Γw = 1.2087 · 10−2. This corresponds to ReC = UCH/2
ν ≈ 14.000.

Moreover, we have f = τW

H ex. Our calculations are performed on a FE-mesh with 33 × 49 × 65
nodes. In y-direction, we use the above tanh-distribution with γ s.t. the first off-wall node is at
yuτ/ν = 1. The sets δT , γT are based on h̃T = |meas(T )| 13 .

In Fig. 3, we present the relevant quantities u+ = u1

uτ
and k+ = k

u2
τ

in wall units at x = 3[m]

and x = 4.5[m] in wall units. The results are in reasonable agreement with the DNS data and
even better than results presented in [11].

Acknowledgment: We thank M. Wannert and R. Gritzki for performing the numerical results
for the laminar and turbulent test problems.
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