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1 Introduction

Near polyhedral corners, the solutions to elliptic boundary value problems are usually not
smooth in the sense of Sobolev regularity. They are composed of a regular and a singular
part. To quantify the singularities, the neighbourhood of the corner is intersected with the
unit ball. This ball is centered at the corner and parametrized with spherical coordinates
(r, ϕ, θ), where r describes the distance to the corner and ϕ, θ are the spherical angles.

Due to Kondrat’ev [18], the solution U of the particular boundary value problem can be
written as a series with terms of the form

rαu(ϕ, θ),

where α is the so-called singular exponent. It turns out [19, 20, 26] that α and u form an
eigenpair of an eigenvalue problem which is defined on the unit sphere and associated with the
given boundary value problem. The eigenvalues (singular exponents) with small real parts
are of particular interest, since they quantify the corner singularities essentially.

For the computation of the corner singularities, the corresponding eigenvalue problem has
to be solved. To this end, the software package COCOS has been developed. The two basic
problems which can be solved with COCOS are the Laplace equation and the linear elasticity
problem (Lamé problem), where each is transformed into a quadratic eigenvalue problem of
the form

α2m(u, v) + αg̃(u, v) = k̃(u, v)

with certain sesquilinear forms m, g̃, k̃. The spectrum of this eigenvalue problem is symmetric
with respect to the lines Re α = − 1

2 and Imα = 0. In order symmetrize the spectrum with
respect to the origin, the substitution λ := α + 1

2 is used and one obtains the quadratic
eigenvalue problem

λ2m(u, v) + λg(u, v) = k(u, v) (1)

with the Hermitian sesquilinear forms m, k and the skew-Hermitian sesquilinear form g, see
Section 5. Indeed, if λ is an eigenvalue of (1) then so are −λ, λ̄, −λ̄, see [7, 26, 27]. This
property is called Hamiltonian eigenvalue symmetry (or quadruplet structure) motivated by
the structure of the spectrum of a Hamiltonian matrix, see, for example, [23]. Figure 1
demonstrates that the eigenvalues of (1) are placed symmetric with respect to the real and
the imaginary axes. If λ is a real eigenvalue, then only the symmetry to the imaginary axis
is given.

-
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Figure 1: The quadruplet structure of the spectrum of problem (1)

For the Laplace problem, the term g(u, v) vanishes. Hence, by the substitution λ̂ = λ2,
problem (1) can be transformed to a linear eigenvalue problem. In the implementation of
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COCOS, however, the eigenvalue problem associated with the Laplace problem is treated in
the quadratic form (1), in order to apply the same algorithms for its solution as for the Lamé
problem. While the eigenvalues and eigenfunctions are real for the Laplace problem, one has
to deal with complex-valued vector functions and complex eigenvalues for the Lamé problem.

The spectral shift λ = α + 1
2 and the corresponding symmetrization of the spectrum are

performed in order to apply special algorithms which exploit the quadruplet structure of the
eigenvalues for an efficient solution of problem (1), see Section 6. Nevertheless, the singular
exponents α are the terms of interest; they can be obtained easily from α = λ − 1

2 .
Meanwhile, COCOS has been enriched by many further features which will be described

in the following sections.

2 General features

COCOS is a combination of C and Fortran routines. It is written so that it can be translated
on different platforms including Linux and HP workstations. The initial and basic part of the
implementation including the mesh generation and the computation of the singular exponents
was made by Th. Apel and U. Reichel. Additional routines for mesh generation to support the
computations for crack problems were added by M. Randianarivony. Further enrichments of
the code like the computation of eigenvectors, graphical output, the adding of new eigenvalue
algorithms or the integration of an hp-version were done by C. Pester and partly by J. Rosam
who also provided COCOS with the computation of stress distributions for the Fichera corner.

After starting COCOS, some control parameters are read from a file named control.dat.
If this file or some parameters are missing, default values are used instead. The list of the
control parameters is summarized in Table 1 and described below. The advantage of this
method is that the user does not have to reenter all the parameters on each start of the
program or that the program has not to be recompiled on changing a parameter so that serial
tests can be performed.

The parameter ndof allows to switch between the Laplace and the Lamé problems. In
addition to these two model problems, it is possible to solve the mixed boundary value problem
for the Laplace-Beltrami operator by choosing ion = 313.

COCOS provides both, the h- and the p-version of the Finite Element Method. The
parameter pgrad can be used to choose between these two versions. For the p-version, the
desired polynomial degree of the basis functions has to be assigned to pgrad. Then a coarse
quadrilateral mesh is read from a file which has to be specified by the user. (The appropriate
code was provided by SFB 393 of Chemnitz University of Technology [17] and adapted to our
purposes.) All coordinates have to be given relative to π (or relative to a parameter ξ for the
notch or the circular cone, see Section 4), this means that, for example, the point specified by
(1.5, 1.0) in the mesh file is read as the node ( 3

2π, π). The required structure of the mesh file is
summarized in Table 2 and explained in detail in [17]. The mesh can be modified afterwards;
in particular, a geometric refinement to the corner is possible, so that, in fact, an hp-version
is performed for pgrad > 0. Depending on pgrad and the geometry of the chosen mesh, finite
element matrices are generated then.

For the h-version (pgrad ≤ 0), linear basis functions and triangular meshes are used.
Here, the user has to choose the desired domain (see Section 4), the refinement (number of
divisions into the ϕ- and θ-directions) and possibly other parameters specifying the domain
(boundary conditions, opening angles etc.). Based on the entered data, the corresponding
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Name Default value Meaning

ion 1 Output control: ion < 0: no output; ion = 0: minimal
output; ion > 0: output of additional information

iso 1 Mesh type: iso = 1: isotropic triangulation; iso = 0:
anisotropic triangulation of the sphere

iter 1000/2000 Maximum number of iterations during the eigenvalue al-
gorithm (the second value is accessed only for mode = 1)

epsilon 5E-6/5E-4 Stopping criterion for the eigenvalue iteration

nint 3 Number of integration points per element;
nint = 0: the optimal value is chosen automatically

pgrad 2 Polynomial degree of the basis functions:
pgrad ≤ 0: h-version with linear basis functions on a rectan-
gular mesh;
pgrad > 0: p-version or hp-version on a quadrilateral mesh

nei 6 Number of eigenvalues to be computed

typ 2 Type of the material parameters: typ = 1: (λ, µ);
typ = 2: (E, ν)

param 1.0/0.1 Values of the material parameters (according to typ)

write 0 Additional output into files

ndof 3 Number of degrees of freedom: ndof = 1: Laplace;
ndof = 3: Lamé

solve 1 Eigenvalue computation: solve=1: yes; solve=0: no;
if desired also computation of eigenvectors

mode 2 Eigenvalue algorithm (see Section 6)

shift 0.5/0.0 Real and imaginary part of the shift value (compute eigen-
values close to shift)

Table 1: Control parameters for COCOS
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line data

1 0 (no material data) or 1
2 Nnode Nedge Nelem Ndof NDir NNeum (Nmat Nmatinfo)

Nnode

{ 1
...

Nnode

x1
...

xNnode

y1
...

yNnode

Nedge

{ 1
...

Nedge

V1,start
...

VNedge,start

V1,end
...

VNedge,end

V1,middle
...

VNedge,middle

geom1
...

geomNedge

Nelem

{ 1
...

Nelem

E1,1
...

ENelem,1

E1,2
...

ENelem,2

E1,3
...

ENelem,3

(E1,4)
...

(ENelem,4)

(Mat1)
...

(MatNelem)
EDir,i BitmaskDir,i

NDir*

(Ndof+1)
(i = 1, . . .,

NDir)















BDir1,i,start

...
BDirNdof,i,start

BDir1,i,end

...
BDirNdof,i,end

BDir1,i,middle

...
BDirNdof,i,middle

}

Ndof

ENeum,i BitmaskNeum,i
NNeum*

(Ndof+1)
(i = 1, . . .,

NNeum)















BNeum1,i,start

...
BNeumNdof,i,start

BNeum1,i,end

...
BNeumNdof,i,end

BNeum1,i,middle

...
BNeumNdof,i,middle

}

Ndof

Mati Nparami2*Nmat
(i = 1, . . .,

Nmat)







P1,i, . . . , PNparami,i

Nnode . . . number of nodes
Nedge . . . number of edges
Nelem . . . number of elements
Ndof . . . number of degrees of freedom

per node
NDir . . . number of Dirichlet edges
NNeum . . . number of Neumann edges
Nmat . . . number of material types
Nmatinfo . . . maximum number of material

information per material type
Nparami . . . number of material info/

parameters for material i
Mati . . . material type number for

element i
Pj,i . . . material parameters for

material Mati

xi, yi . . . coordinates of node i

Vi,start, . . . numbers of the end nodes of the
Vi,end i-th edge
Vi,middle . . . number of the middle node of the

i-th edge if contained in the node
list; otherwise 0

geomi . . . geometry of the i-th edge (0 for
straight edges, 1 for circular arcs,

2 for parabolic edges)
Ei,j . . . number of the j-th edge of element i

1 ≤ j ≤ 3 for triangles
1 ≤ j ≤ 4 for quadrilaterals

EDir,i . . . number of the i-th Dirchlet edge
ENeum,i . . . number of the i-th Neumann edge
Bitmaski . . . bitmask, see below
BDirj,i,∗, B

Neum
j,i,∗ . . . boundary data for the corresponding

(1≤j≤Ndof) node of edge EDir,i or ENeum,i

In COCOS (eigenvalue problems):
first line: 0 – material data is provided by COCOS
second line: NNeum = 0 – no Neumann data is specified; no material information

Ndof = 1 for the Laplace problem, Ndof = 3 for the Lamé problem
coordinates xi, yi devided by π; Vi,middle = 0 for all edges; geomi = 0 for all edges;
in case of Dirichlet data (NDir > 0): BDirj,i,∗ = 0 (one value per node of the edge EDir,i)
Bitmaski: set one bit for each degree of freedom for which the data is to be read,
in general (and in COCOS): Bitmaski = 2Ndof − 1

Table 2: Overview of the structure of a mesh file which is read by COCOS to generate the
mesh
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mesh is generated and the finite element matrices are assembled. Furthermore, one can
choose between isotropic and anisotropic meshes using the parameter iso. Isotropic means
that the elements are shape regular on the sphere (they have approximately the same spatial
dimensions), but they are anisotropic in the parameter domain. The anisotropic mesh means
that the parameter domain is divided evenly into both directions with the effect that the
elements on the sphere become the smaller the closer they are placed to a pole. In order to
compute an error estimator for the eigenpairs and to do an adaptive mesh refinement, it is
necessary to choose an isotropic mesh [6, 28].

After the assembly of the finite element matrices, the discretized form of problem (1) is
given by the matrix eigenvalue problem: Find λ ∈ C, u ∈ C

N such that

λ2Mu + λGu = Ku (2)

with M = M> ∈ R
N×N , G = −G> ∈ R

N×N and K = K> ∈ R
N×N , where N is the

problem size (depending on the refinement level of the mesh, the polynomial degree of the
basis functions, the number of the degrees of freedom per node (ndof) and the boundary
condition). Furthermore, M and K are positive definite.

Various algorithms were implemented into COCOS to compute some of the eigenvalues and
corresponding eigenvectors of problem (2). The desired number of the eigenvalues to compute
can be chosen by the parameter nei. Usually, the nei eigenvalues with smallest real part are
computed. If one wishes to shift the spectrum, this can be done with the parameter shift,
see Section 6.

Once the eigenvalues are computed, it is possible to compute and display the corresponding
eigenvectors. For the Lamé problem, the eigenvectors correspond to displacements and can
be visualized in 3D, see [31]. Moreover, for isotropic meshes (h-version), an error estimator
will be computed which can be used for an adaptive refinement of the mesh.

Basic routines, such as matrix-vector operations for sparse matrices or graphical output,
are provided by the SFB 393 (Sonderforschungsbereich) of Chemnitz University of Technol-
ogy [29].

3 Generation of finite element meshes

As outlined in Section 1, we consider eigenvalue problems on the unit sphere which is
parametrized by the spherical angles ϕ ∈ [0, 2π) and θ ∈ [0, π] via the transformation

x = cos ϕ sin θ, y = sin ϕ sin θ, z = cos θ.

The parameter domain which is spanned by ϕ and θ is a bounded domain in R
2. The unit

sphere S2 is given by
S2 = {(ϕ, θ) | ϕ ∈ [0, 2π), θ ∈ [0, π]}.

Some example domains with their intersections with the unit sphere and the corresponding
parameter domains are displayed in Section 4.

For the discretization of problem (1) and for the simplification of the implementation, we
use a triangulation with straight-lined elements in the parameter domain.

As described in Section 2, three possible discretization techniques are supported by COCOS;
they are demonstrated in Figure 2.
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a) b) c)

Figure 2: a) uniform triangulation (anisotropic triangulation of the sphere, iso=0); b) non-
uniform triangulation (isotropic triangulation of the sphere, iso=1); c) coarse quadrilateral
mesh for the p-version (pgrad > 0)

For a better approximation of the singularities of the solution a graded mesh refinement is
used, see [7]. This means that near the corners of the domain some nodes are shifted according
to a certain grading parameter µ (typical for the h-version, usually µ = 0.5) or some elements
are added scaled by a certain factor σ (typical for the p-version, usually σ = 0.17).

For the h-version, the shifting of the nodes works as follows: The mesh is generated
without grading; then the coordinates of nodes in the neighbourhood of a corner (ϕref , θref )
are redefined so that they are moved to the corner (reference point). If (ϕ, θ) are the original
coordinates and if |ϕ − ϕref | + |θ − θref | =: r < b for a given distance b to the corner, then
the new coordinates are given by

[

ϕnew

θnew

]

=

[

ϕref

θref

]

+

[

ϕ − ϕref

θ − θref

]

·
(r

b

)
1

µ
−1

.

The mesh grading is demonstrated in Figure 2.

4 Example domains for the h-version

In this section, an overview of the domains is given that can be chosen as computational
domains for the h-version in COCOS. For each of them, some short information will be given
followed by the graphics of their geometry (the 3D domain, its intersection with the unit
sphere and the corresponding parameter domain). The parameter domains are relevant for
the computations in COCOS; they are triangulated as described in Section 2. Dashed lines
in the appropriate figures correspond to periodic boundary conditions (i.e. the values of any
function at ϕ = 2π have to be the same as at ϕ = 0), whereas bold lines mean that either
Dirichlet or Neumann boundary conditions can be chosen for this part of the boundary.

For each example domain, some numerical results are added for isotropic material with
ν = 0.3. The tables show the real parts of the singular exponents which are closest to zero.
For those eigenvalues with |Im (α)| > 10−3, the imaginary part is printed as well. Otherwise,
complex eigenvalues are merely marked in bold face. Since α = 0 is always an eigenvalue of
multiplicity ndof (1 for the Laplace problem and 3 for the Lamé problem) in case of Neumann
boundary conditions, these values are omitted in the tables; the tables start immediately with
Re αndof+1, where we write αi instead of Re αi.

Fichera Corner The Fichera corner is a cube where 1/8 is cut out, that is the set (−1, 1)3 \
[−1, 1]3. Extended to infinity, the Fichera corner corresponds to a polyhedral cone. Its
intersection with the unit sphere is implemented into COCOS in a slightly generalized
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way, where the angle ξ ∈ (0, 2π) of the corner can be varied. The parameter ξ = π
2 cor-

responds to the original Fichera domain, which is the prototype of a domain where edge
and corner singularities interact. It is named after G. Fichera (1922–1996) who was the
first to give an approximation of its first corner singular exponent. In 1973 he provided
the bounds 0.4335 and 0.4645 (Laplace problem, Dirichlet boundary, ξ = 90◦). Later,
in 1993, the value 0.45418 was obtained by a boundary element method approximation
(source: http://perso.univ-rennes1.fr/monique.dauge/3eJS.html).

This domain is a benchmark example proposed by Th. Apel and A. Dimitrov.

ξ

x

y

z

ξ

ϕ

θ

0 π−ξ/2 π+ξ/2π 2π

0

π/2

π

The spherical domain is described by

G = S2 \ {(ϕ, θ) | ϕ ∈ [0, ξ], θ ∈ [0, 1

2
π]}.

The following tables show some numerical results.

Dirichlet Neumann
ξ α1 α2 α3

45◦ 0.375 1.092 1.190
90◦ 0.454 1.231 1.231
135◦ 0.549 1.273 1.423
180◦ 0.667 1.333 1.667
225◦ 0.802 1.453 1.890
270◦ 0.920 1.705 1.982
315◦ 0.983 1.943 1.999

ξ α2 α3 α4

45◦ 0.799 0.936 1.102
90◦ 0.840 0.840 1.206
135◦ 0.743 0.912 1.291
180◦ 0.667 1.000 1.333
225◦ 0.615 1.056 1.332
270◦ 0.594 1.045 1.289
315◦ 0.623 1.014 1.206

Eigenvalues: Fichera corner, Laplace problem

Dirichlet Neumann
ξ α1 α2 α3

45◦ 0.328 0.343 0.461
90◦ 0.405 0.405 0.574
135◦ 0.492 0.506 0.675
180◦ 0.595 0.667 0.759
225◦ 0.716 0.846 0.856
270◦ 0.852 0.933 0.964
315◦ 0.964 0.985 0.995

ξ α4 α5 α6

45◦ 0.752 0.773 0.858
90◦ 0.762 0.762 0.773
135◦ 0.642 0.724 0.833
180◦ 0.545 0.667 0.908
225◦ 0.475 0.652 0.891
270◦ 0.431 0.765 0.868
315◦ 0.422 0.875 0.989

Eigenvalues: Fichera corner, Lamé problem

In the limit ξ → 0, the Fichera corner (the polyhedral cone) corresponds to the wedge-
shaped crack with ξ = π

2 and to the out-of-plane crack with ξ → 0.
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For ξ = π, the Fichera corner (the polyhedral cone) corresponds to the notch with angle
ξ = 3

2π.

In the limit ξ → 2π, the Fichera corner (the polyhedral cone) corresponds to the notch
with angle ξ = π and to the circular cone with opening angle ξ = π

2 .

The limit values ξ = 0 and ξ = 2π are not properly meshed with our algorithm.

Notch with variable angle A body with a straight-lined notch is considered. The planes
which are adjacent to the notch span an angle ξ ∈ (0, 2π). For the analysis of corner
singularities, the domains with ξ > 180, i.e. with a concave corner, are of particular
interest. The intersection with the sphere corresponds to a zone which is bounded by
two geodesic lines that span the angle ξ.

This domain is a benchmark example proposed by A. Dimitrov. The singular exponents
are those of the two-dimensional case plus all these values increased by an arbitrary
natural number: For the Laplace problem with Dirichlet or Neumann boundary, the
singular exponents can be expressed by k π

ξ
+ j with k, j ≥ 0 and for mixed boundary

conditions by (k + 1
2)π

ξ
+ j.

For the Lamé system, the exponents can be calculated for isotropic material to almost
arbitrary precision by solving a transcendental equation. Some of these results are sum-
marized in the following table for the Lamé problem with mixed boundary conditions.
Note that these are not necessarily the smallest eigenvalues, because a Newton iteration
was used for their computation.

ξ α1

45◦ 1.224288
90◦ 1.711173
135◦ 0.613445
180◦ 0.500000±0.093549

225◦ 0.407127
270◦ 0.869819
315◦ 0.288252±0.046444

360◦ 0.250000±0.046775

ξ

x

y

z

ξ

ϕ

θ

0 ξ

0

π

The spherical domain is described by

G = {(ϕ, θ) | ϕ ∈ (0, ξ), θ = (0, π)}.

The following tables show some numerical results.
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Dirichlet Neumann Mixed
ξ α1 α2 α3

30◦ 6.001 7.001 8.002
60◦ 3.000 4.000 5.000
90◦ 2.000 3.000 4.000
135◦ 1.333 2.333 2.667
180◦ 1.000 2.000 2.000
225◦ 0.800 1.600 1.800
270◦ 0.667 1.333 1.667
315◦ 0.572 1.143 1.573
359◦ 0.502 1.003 1.503

ξ α2 α3 α4

30◦ 1.000 2.000 3.000
60◦ 1.000 2.000 3.000
90◦ 1.000 2.000 2.000
135◦ 1.000 1.333 2.000
180◦ 1.000 1.000 2.000
225◦ 0.800 1.000 1.600
270◦ 0.667 1.000 1.333
315◦ 0.572 1.000 1.143
359◦ 0.502 1.000 1.003

ξ α1 α2 α3

30◦ 3.000 4.000 5.000
60◦ 1.500 2.500 3.500
90◦ 1.000 2.000 3.000
135◦ 0.667 1.667 2.000
180◦ 0.501 1.500 1.502
225◦ 0.403 1.200 1.405
270◦ 0.339 1.000 1.343
315◦ 0.295 0.857 1.301
359◦ 0.264 0.752 1.254

Eigenvalues: Notch, Laplace problem

Dirichlet Neumann
ξ α1 α2 α3

45◦ 2.413 3.413 4.001
90◦ 1.421 2.000 2.421
135◦ 1.137 1.333 1.628
180◦ 1.000 1.000 1.000
225◦ 0.727 0.800 0.891
270◦ 0.596 0.668 0.759
315◦ 0.534 0.573 0.617
359◦ 0.503 0.506 0.506

ξ α4 α5 α6

45◦ 0.998 1.000 1.000
90◦ 1.000 1.000 1.000
135◦ 1.000 1.000 1.000
180◦ 1.000 1.000 1.000
225◦ 0.674 0.800 1.000
270◦ 0.546 0.668 0.909
315◦ 0.507 0.573 0.661
359◦ 0.502 0.505 0.505

Eigenvalues: Notch, Lamé problem

Mixed
ξ α1 α2 α3

45◦ 1.224 2.000 2.225
90◦ 0.711 1.000 1.712
135◦ 0.615 0.668 0.793
180◦ 0.502+0.094 i 0.502−0.094 i 0.503
225◦ 0.407 0.412+0.055 i 0.412−0.055 i
270◦ 0.345 0.351+0.039 i 0.351−0.039 i
315◦ 0.303+0.048 i 0.303−0.048 i 0.304
359◦ 0.271+0.046 i 0.271−0.046 i 0.275

Eigenvalues: Notch, Lamé problem

In the limit ξ = π, the notch corresponds to the Fichera corner with ξ → 2π and to the
circular cone with opening angle ξ = π

2 .

For ξ = 3
2π, the notch corresponds to the Fichera corner with opening angle ξ = π.

In the limit ξ → 2π, the notch corresponds to the wedge-shaped crack with ξ = π and
to the out-of-plane crack with ξ = π.

Wedge-shaped crack The wedge-shaped crack is a planar crack which ends in an angle
ξ ∈ (0, 2π) towards the crack tip.
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ξ

x

y

z

ξ

ϕ

θ

0 π−ξ/2 π+ξ/2 2π

0

π/2

π

The spherical domain is described by

G = S2 \ {(ϕ, θ) | ϕ ∈ [π − 1

2
ξ, π + 1

2
ξ], θ = 1

2
π}.

The following tables show some numerical results.

Laplace Lamé

ξ α2 α3 α4

1◦ 1.000 1.000 1.000
30◦ 0.994 1.000 1.000
45◦ 0.956 1.000 1.000
60◦ 0.919 1.000 1.000
90◦ 0.815 1.000 1.000
135◦ 0.642 1.000 1.000
180◦ 0.500 1.000 1.000
225◦ 0.389 1.000 1.000
270◦ 0.297 1.000 1.000
315◦ 0.212 1.000 1.000
358◦ 0.087 1.000 1.000

ξ α4 α5 α6

1◦ 1.000 1.000 1.000
30◦ 0.989 0.994 0.998
45◦ 0.920 0.957 0.982
60◦ 0.860 0.919 0.963
90◦ 0.734 0.815 0.891
135◦ 0.593 0.643 0.696
180◦ 0.500 0.500 0.500
225◦ 0.358 0.389 0.422
270◦ 0.259 0.297 0.336
315◦ 0.183 0.212 0.239
358◦ 0.093 0.099 0.103

Eigenvalues: Wedge-shaped crack, Neumann boundary conditions

In the limit ξ → 0, the wedge-shaped crack corresponds to the circular cone with opening
angle ξ = π.

For ξ = π
2 , the wedge-shaped crack corresponds to the Fichera corner with ξ → 0 and

to the out-of-plane crack with ξ → 0.

For ξ = π, the wedge-shaped crack corresponds to the notch with angle ξ → 2π and to
the out-of-plane crack with ξ = π.

Out-of-plane crack A notch-shaped crack is considered, where the notch has the angle
ξ ∈ (0, π].
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ξ

x

y

z

ξ

ϕ

θ

0 ξ/2 2π−ξ/2 2π

0

π/2

π

The spherical domain is described by

G = S2 \ {(ϕ, θ) | ϕ ∈ { 1

2
ξ, 2π − 1

2
ξ}, θ ∈ [0, 1

2
π]}.

The following tables show some numerical results.

Laplace Lamé

ξ α2 α3 α4

2◦ 0.814 0.956 1.000
45◦ 0.647 0.817 1.000
90◦ 0.553 0.873 1.000
135◦ 0.512 0.951 1.000
180◦ 0.500 1.000 1.000

ξ α4 α5 α6

2◦ 0.581 0.733 0.815
45◦ 0.441 0.763 0.789
90◦ 0.421 0.680 0.685
135◦ 0.446 0.542 0.578
180◦ 0.500 0.500 0.500

Eigenvalues: Out-of-plane crack, Neumann boundary conditions

In the limit ξ → 0, the out-of-plane crack corresponds to the Fichera corner with ξ → 0
and to the wedge-shaped crack with ξ = π

2 .

For ξ = π, the out-of-plane crack corresponds to the notch with angle ξ = 2π and to
the wedge-shaped crack with ξ = π.

Circular cone The circular cone with apex in the origin is described by its opening angle
ξ, that is the deflection of the curved surface to the z-axis. For the analysis of corner
singularities, only angles ξ > π

2 are of interest.

This domain is a benchmark example proposed by Th. Apel. The singular exponents
can be calculated for isotropic materials to almost arbitrary precision by a semi-analytic
approach. Those with smallest real part are summarized in the following table for the
Laplace problem with Dirichlet boundary conditions, where 7–9 digits each should be
correct at least.

ξ α1

30◦ 4.083687067219
45◦ 2.547899192793
60◦ 1.777288270251
90◦ 1.000000000058
135◦ 0.463098561812
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ξ

O
x

y

z

ξ

ϕ

θ

0 2π

0

ξ

The spherical domain is described by

G = {(ϕ, θ) | ϕ ∈ [0, 2π), θ ∈ [0, ξ)}.

The following tables show some numerical results.

Dirichlet Neumann
ξ α1 α2 α3

30◦ 4.084 6.840 6.840
45◦ 2.548 4.407 4.407
60◦ 1.777 3.196 3.196
90◦ 1.000 2.000 2.000
135◦ 0.463 1.245 1.245
179◦ 0.105 1.000 1.000

ξ α2 α3 α4

30◦ 3.121 3.121 5.494
45◦ 2.000 2.000 3.634
60◦ 1.468 1.468 2.753
90◦ 1.000 1.000 2.000
135◦ 0.857 0.857 1.245
179◦ 1.000 1.000 1.000

Eigenvalues: Circular cone, Laplace problem

Dirichlet Neumann
ξ α1 α2 α3

30◦ 2.453 4.826+1.357 i 4.826−1.357 i
45◦ 1.678 3.123+0.727 i 3.123−0.727 i
60◦ 1.327 2.292+0.264 i 2.292−0.264 i
90◦ 1.000 1.000 1.000
135◦ 0.407 0.407 0.594
179◦ 0.101 0.101 0.115

ξ α4 α5 α6

30◦ 1.002 1.002 1.004
45◦ 1.001 1.001 1.001
60◦ 1.000 1.000 1.000
90◦ 1.000 1.000 1.000

135◦ 0.802 0.802 0.997
179◦ 1.000 1.000 1.000

Eigenvalues: Circular cone, Lamé problem

For ξ = π
2 , the circular cone corresponds to the Fichera corner with ξ → 2π and to the

notch with angle ξ = π.

In the limit ξ → π, the circular cone corresponds to the wedge-shaped crack with ξ → 0.

Bazant-Estenssoro crack A body with a straight crack in the front face is considered. The
parameter ξ describes the angle between the continuation of the crack into the material
and the front face. In practical applications, this angle is usually not known. It can be
considered as a solution of the inverse problem: Find ξ ∈ (0, π) so that α = 0.5, where
α is an eigenvalue of (3) for the Lamé problem.

The intersection of the described domain with the unit (half) sphere gives a crack in
the y-z-plane (x = 0) with deflection ξ to the z-axis.

12



ξ

x

y

z

ξ

ϕ

θ

0 π/2 π

0

ξ

π

The spherical domain is described by

G = {(ϕ, θ) | ϕ ∈ (0, π), θ ∈ (0, π)} \ {(ϕ, θ) | ϕ = 1

2
π, θ ∈ [0, ξ]}.

The following tables show some numerical results.

Laplace Lamé

ξ α2 α3 α4

1◦ 1.000 1.000 2.000
30◦ 0.919 1.000 1.757
45◦ 0.815 1.000 1.597
60◦ 0.698 1.000 1.525
90◦ 0.500 1.000 1.500
135◦ 0.297 1.000 1.427
179◦ 0.099 1.000 1.119

ξ α4 α5 α6

1◦ 1.000 1.000 1.000
30◦ 0.841 0.893 1.000
45◦ 0.684 0.795 1.000
60◦ 0.557 0.701 1.000
90◦ 0.393 0.548 0.978
135◦ 0.252 0.362 0.400
179◦ 0.101+0.012 i 0.101−0.012 i 0.113

Eigenvalues: Bazant-Estenssoro crack, Neumann boundary conditions

For ξ = π
2 , the Bazant-Estenssoro crack equals the crack problem proposed by A.-

M. Sändig with ξ = π
2 .

Crack problem A brick with a plane crack is considered. The parameter ξ ∈ (0, π] describes
the angle between the crack and the front face. The point of interest is the intersection
of the crack front with the front face.

This domain is a benchmark example proposed by A.-M. Sändig.

ξ

x

y

z

ξ

ϕ

θ

0 ξ π

0

π/2

π

The spherical domain is described by

G = {(ϕ, θ) | ϕ ∈ (0, π), θ ∈ (0, π)} \ {(ϕ, θ) | ϕ = ξ, θ ∈ [0, 1

2
π]}.

The following tables show some numerical results.
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Laplace Lamé

ξ α2 α3 α4

30◦ 0.607 1.000 1.245
45◦ 0.553 1.000 1.337
60◦ 0.522 1.000 1.421
90◦ 0.500 1.000 1.500

ξ α4 α5 α6

30◦ 0.405 0.771 1.000
45◦ 0.388 0.676 1.000
60◦ 0.385 0.608 1.000
90◦ 0.393 0.548 0.978

Eigenvalues: Crack problem, Neumann boundary conditions

For ξ = π
2 , the crack problem equals the Bazant-Estenssoro crack with ξ = π

2 .

Some computational results for the wedge-shaped crack, the out-of-plane crack and the
Bazant-Estenssoro crack were already given in [20]. The crack problem was studied, for
example, in [14].

For the Lamé problem, COCOS provides the possibility of a three-dimensional graphical
output of the solutions (in combination with the program fem ogl [31]), where the displace-
ments are added to the coordinates of the spherical domain. Figure 3 shows the corresponding
solutions for the Bazant-Estenssoro crack and the crack problem ξ = 45◦ each.

5 Assembly of the matrices

After the generation of the mesh, the system matrices M , G, K are assembled. To this end,
the element matrices Mel, Gel and Kel are computed for each element.

The original eigenvalue problem reads

α(α + 1)m(u, v) + (α + 1)d(u, v) − αd(v, u) = k̃(u, v) (3)

with the singular exponent α and the sesquilinear forms

m(u, v) =
∫

u v̄ dω
d(u, v) = 0

k̃(u, v) =
∫

∇Su · ∇S v̄ dω







if ndof = 1
(Laplace problem)

(4)

or

m(u, v) =
∫

aijkhAjAhuiv̄k dω
d(u, v) =

∫

aijkh(Bj∂θui + Cj∂ϕui)(Ahv̄k) dω

k̃(u, v) =
∫

aijkh(Bj∂θui + Cj∂ϕui)(Bh∂θv̄
k + Ch∂ϕv̄k) dω







if ndof = 3
(Lamé problem)

(5)

where Einstein’s summation convention is used, i, j, k, h ∈ {1, 2, 3}, and where Ai, Bi, Ci, ui,
vi denote the i-th component of A, B, C, u, v, respectively, with

A =





cos ϕ sin θ
sin ϕ sin θ

cos θ



 , B =





cos ϕ cos θ
sin ϕ cos θ
− sin θ



 , C =
1

sin θ





− sin ϕ
cos ϕ

0



 ,

see [26] for details. The symbols ∇S and dω denote the spherical gradient and the spherical
surface element, respectively, i.e.

∇Su · ∇S v̄ =
1

sin2 θ
∂ϕu∂ϕv̄ + ∂θu∂θv̄ and dω = sin θ dϕ dθ

14



Figure 3: 3D illustration of the eigenfunctions (left: Bazant-Estenssoro crack, ξ = 45◦,
α = 0.684; right: Crack problem ξ = 45◦, α = 0.388) shown from different viewpoints
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for spherical coordinates.
For the definition of the element matrices, the functions u and v are replaced by nodal

basis functions. In the h-version, linear basis functions are used. For triangles, they are given
by

φx1,T
= 1 − ℘−1[(ϕ − ϕ1,T )(θ3,T − θ2,T ) − (ϕ3,T − ϕ2,T )(θ − θ1,T )],

φx2,T
= ℘−1[(ϕ − ϕ1,T )(θ3,T − θ1,T ) − (ϕ3,T − ϕ1,T )(θ − θ1,T )],

φx3,T
= ℘−1[(ϕ2,T − ϕ1,T )(θ − θ1,T ) − (ϕ − ϕ1,T )(θ2,T − θ1,T )],

where ℘ = (ϕ2,T −ϕ1,T )(θ3,T − θ1,T )− (ϕ3,T −ϕ1,T )(θ2,T − θ1,T ). In an isotropic triangulation
of the sphere, the pole elements appear as rectangles in the parameter domain, see Figure 2.
The corresponding (bilinear) basis functions are given by

φx1,T
= ℘−1(ϕ2,T − ϕ)(θ3,T − θ),

φx2,T
= ℘−1(ϕ − ϕ1,T )(θ3,T − θ),

φx3,T
= ℘−1(ϕ2,T − ϕ1,T )(θ − θ1,T )

with the scaling factor ℘ = (ϕ2,T − ϕ1,T )(θ3,T − θ1,T ).
For the p-version, integrated Legendre polynomials are used. If

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

is the n-th Legendre polynomial (n = 0, 1, 2, . . .), then the integrated Legendre polynomial is
defined by

Ln(x) = γn

∫ x

−1
Pn−1(ξ) dξ for n ≥ 2,

where

γn =

√

(2n − 3)(2n − 1)(2n + 1)

4
.

The first two integrated Legendre polynomials are defined by

L0(x) =
1 + x

2
, L1(x) =

1 − x

2
.

For other representations and properties of the Legendre polynomials and their recursive
definition, see for example [11, 1, 2, 32] and references therein. The nodal basis functions are
defined by

φn`(x, y) = Ln(x)L`(y), 0 ≤ n, ` ≤ p,

on the reference element (−1, 1)2, where p = pgrad is the maximum polynomial degree in
one variable.

This means that there are Nel := (p+1)2 basis functions for each element in the p-version
(1 for each node, p−1 for each edge and (p−1)2 for the inner element), whereas only Nel := 3
per element are used in the h-version (1 for each node). Hence, the element matrices have
ndof× ndof blocks each of the dimension Nel × Nel.

Let the nodal basis functions be numbered as φ1, . . . , φNel
, and let for a fixed value r ∈

{1, . . . , ndof} the vector function φr

n
be defined by φr

n
:= [φ1

n, . . . , φndof
n ]> with φi

n := δirφn

for i = 1, . . . , ndof. The integrals

(Mel)
rs
n` := m(φr

n
, φs

`
), (Del)

rs
n` := d(φr

n
, φs

`
) and (Kel)

rs
n` := k(φr

n
, φs

`
) (6)
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defined in (4) and (5) are computed numerically by Gauß quadrature for n, ` = 1, . . . , Nel and
for each pair (r, s) of degrees of freedom, r, s = 1, . . . , ndof.

The element matrices Mel = {M ij
el }

3
i,j=1, Del = {Dij

el}
3
i,j=1 and Kel = {Kij

el}
3
i,j=1 are

generated so that

(Mel)
rs
n` = M ij

el

(Del)
rs
n` = Dij

el

(Kel)
rs
n` = Kij

el















⇐⇒ i = Nel · (r − 1) + n, j = Nel · (s − 1) + `

Note that all element matrices are real and that

Mel = M>

el and Kel = K>

el

due to the classical symmetry properties of the elasticity coefficients aijkh. Moreover, when

d(u, v) corresponds to the element matrix Del, then d(v, u) corresponds to D>

el .
It was outlined in Section 1 that the spectrum of the quadratic eigenvalue problem (3)

can be shifted so that it is symmetric with respect to the origin. To this end, one substitutes
λ = α + 1

2 ; problem (3) is then transformed into

λ2m(u, v) + λ(d(u, v) − d(v, u)) = k̃(u, v) +
1

4
m(u, v) −

1

2
(d(u, v) + d(v, u)).

Defining

g(u, v) := d(u, v) − d(v, u) and k(u, v) := k̃(u, v) +
1

4
m(u, v) −

1

2
(d(u, v) + d(v, u)),

one obtains the eigenvalue problem (1),

λ2m(u, v) + λg(u, v) = k(u, v).

By analogy, we define the element matrices

Gel := Del − D>

el and Kel := Kel +
1

4
Mel −

1

2
(Del + D>

el).

Corresponding to the given basis (the nodal basis for the h-version or the basis spanned
by the Legendre polynomials for the p-version), the element matrices Mel, Gel and Kel are
then assembled into the system matrices M , G and K which define the quadratic eigenvalue
problem (2).

Parts of the code for the p-version were taken from the program package SPC-PM-Po2p

which was developed in the SFB 393 “Numerische Simulation auf massiv parallelen Rechnern”
at Chemnitz University of Technology in 1999–2003 by S. Beuchler, see [12].

6 Solving the quadratic eigenvalue problem

6.1 Eigenvalue computation

There are numerous methods to solve quadratic matrix eigenvalue problems of type (2),

λ2Mu + λGu = Ku.
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An overview of matrix and eigenvalue computations is given in the book by D. Watkins [33].
One method suggested by A. Meyer is the method of simultaneous iteration and com-

putation of gradients [24, 25]. It was the first to be implemented into COCOS and can be
started with mode = 1. Meanwhile, the simultaneous iteration has been defeated by much
more powerful eigenvalue algorithms which compute the eigenvalues of a Hamiltonian, a skew-
Hamiltonian or a symplectic matrix, see Table 3 for an overview of these matrix types.

Let J =

[

O I
−I O

]

. A real 2 × 2-block matrix A is called

Hamiltonian skew-Hamiltonian symplectic
if

(JA)> = JA (JA)> = −JA A>JA = J

Properties:

A =

[

F G
H −F>

]

A =

[

F G
H F>

]

A is nonsingular,
det A = ±1

with G = G>,
H = H>

with G = −G>,
H = −H>

Structure of the spectrum of A:

Quadruplets: Pairs: Quadruplets:
(

λ, −λ, λ̄, −λ̄

) (

λ, λ̄

)

with even

algebraic multiplicity

(

λ,
1

λ
, λ̄, −

1

λ̄

)

Table 3: Hamiltonian, skew-Hamiltonian and symplectic matrices

The basic idea is to linearize the quadratic eigenvalue problem. For example, one can
define v := λu and obtains the equivalent generalized eigenvalue problem

[

O I
K −G

] [

u
v

]

= λ

[

I O
O M

] [

u
v

]

. (7)

Since M is positive definite, we can write (7) as a standard eigenvalue problem,
[

I O
O M−1

] [

O I
K −G

] [

u
v

]

= λ

[

u
v

]

,

which can be solved with the Arnoldi algorithm and is implemented under mode = −1 in
COCOS. The matrices in the generalized eigenvalue problem (7), however, have no special
structure. The Hamiltonian structure of the spectrum of (2) is not exploited and each quadru-
plet of eigenvalues is computed in four separate steps.

In order to exploit the Hamiltonian structure, another linearization is needed. In [23], it
was suggested to define v := λMu and to transform (2) into an eigenvalue problem for a skew-
Hamiltonian–Hamiltonian pencil and finally into an eigenvalue problem for a Hamiltonian
matrix, see also [3, 22]. Alternatively, the same result is obtained from the definition

v := λMu +
1

2
Gu,
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which yields a standard eigenvalue problem

H

[

v
u

]

= λ

[

v
u

]

for the Hamiltonian matrix H ∈ R
2N×2N ,

H =

[

I −1
2G

O I

] [

O K
M−1 O

] [

I −1
2G

O I

]

,

see [5].
Algorithms which are based on matrix vector multiplications (like the Arnoldi method,

see [33]) yield the largest eigenvalues of H. Since the eigenvalues with smallest real part are of
interest, the matrix H has to be inverted and the spectrum can simultaneously be shifted to a
certain desired point τ in the complex plane (the control parameter shift in COCOS). Since
the matrix (H − τI)−1 loses the Hamiltonian structure, it has to be manipulated further. In
Table 4, some modifications are summarized with the corresponding matrix types. For each of
these types, algorithms were developed, which exploit the specific structure of the spectrum
and produce each quadruplet of eigenvalues in one instead of four steps.

Matrix modification Structure

C2 := (H − τI)−1(H + τI)−1 real and skew-Hamiltonian
if τ is real or purely imaginary

C4 := (H − τI)−1(H + τ̄ I)−1(H + τ̄ I)−1(H + τI)−1 real and skew-Hamiltonian
if τ is complex

N0 := H−1, N2 := H−1C2, N4 := H−1C4 real and Hamiltonian

S2 := (H − τI)−1(H + τI) real and symplectic
if τ is real

Table 4: Matrix modifications for H

For the skew-Hamiltonian case, the Arnoldi algorithm has been adapted, see [3, 4, 22, 23].
It is called skew-Hamiltonian implicitly restarted Arnoldi (shira) process. For its implemen-
tation, the Fortran software package Arpack [21] for the Arnoldi algorithm is modified. The
shira process can be started in COCOS under mode = 2 or mode = 4 for real or complex shifts
τ , respectively.

The Hamiltonian and symplectic cases are treated with special Lanczos algorithms, see
for instance [15, 9, 10]. A summary is given in the paper by D. Watkins [34] on which our
implementations are based. The Hamiltonian implicitly restarted Lanczos (hirl) process and
the Implicitly restarted symplectic Lanczos (irsl) process run in COCOS under mode = 5 and
mode = 6, respectively. COCOS provides only the unshifted version of the hirl process (i.e. for
N0 = H−1, see Table 3), since the shifted versions turned out to be less efficient in a matlab
implementation.

In each iteration of the algorithms, a linear system of equations has to be solved. The
corresponding system matrices are decomposed, either with a Cholesky factorization using the
package taucs [16] if the matrix is positive definite, or, otherwise, with an LU factorization
using the package SuperLU [13].
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The implemented algorithms are described more detailed in [30]. Numerical results are
published in [5].

6.2 Eigenvector computation

Once, the eigenvalues are computed, the corresponding eigenvectors can be obtained from a
few steps of inverse iteration. If λH is an approximation of an eigenvalue λ and u0 is any
non-zero vector in C

N , then the iteration

solve (λ2
HM + λHG − K)uk = uk−1, k = 1, 2, . . .

converges very fast to a good approximation of the exact eigenvector. In COCOS, this method
is implemented for the shira process, where already one step yields good results. The drawback
of this method is, that another linear systems of equations has to be solved which is rather
time-consuming.

In the Lanczos processes, however, the eigenvectors are obtained almost for free. The
left and right eigenvectors can be computed for a given eigenvalue λ by a few matrix-vector
multiplications, see for example [30].

7 Adaptive refinement

In [6] and [28], residual a posteriori error estimates were deduced for the mixed boundary
value problem and the eigenvalue problem for the Laplace-Beltrami operator for the h-version
on (isotropic) triangular meshes. Depending on the computed error estimator in each element,
the mesh can be refined adaptively in order to compute an improved solution.

For the adaptive refinement of the mesh, the standard red-green refinement procedure is
applied, see for example [8]. The algorithm used in COCOS is composed of the following three
steps:

Initialization

• Start with a coarse initial mesh, for example 5 divisions into the ϕ-direction and 4 divisions
into the θ-direction.

• For each element T : Compute the error estimator ηT .
• Compute the maximum element error ηmax = maxT ηT .
• Define a scaling factor α ≤ 1: all elements with ηT > αηmax will be refined.
• Define a percentage β: at least β ·Nelem elements will be refined, where Nelem is the current

number of elements.
• Define a scaling factor γ < 1: decrease α by the factor γ if more elements have to be refined.
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Marking of the elements

• Repeat
– nmarked := 0;
– For each element T :

∗ If ηT > α · ηmax: mark all edges of T ; nmarked := nmarked + 1;
– α := γ · α

until nmarked ≥ β · Nelem.
• Repeat

– nnew := 0; nred := 0.
– For each element T :

∗ If number of marked edges(T ) = 3:
· mark T red; nred := nred + 1;

∗ Else if number of marked edges(T ) = 2:
· mark all edges of T ; nnew := nnew + 1.

∗ Else if number of marked edges(T ) = 1:
· If T is a pole element:

mark all edges of T ; nnew := nnew + 1;

· Else: mark T green.

until nnew = 0.

Example:

R R R R R

R R R R R

G G G G G

G G G G G

Refinement of the elements

• For each element T :
– If T is marked red:

∗ If T was not marked green before: split T into four triangles.
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∗ If T is the result of a former green refinement of an element T ′:
resolve T ′ and refine T ′ like a red triangle;
perform a green refinement to the free edge.
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– If T is marked green:
∗ If T was not marked green before: split T into two triangles.
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∗ If T is the result of a former green refinement of an element T ′:
resolve T ′ and refine T ′ like a red triangle;
if necessary perform another green refinement.
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For technical reasons, pole elements (rectangles) are not marked green. In case they are
marked, always the red refinement is performed, where the rectangular structure at the pole is
preserved. Figure 4 shows a sequence of meshes that was created in the course of an adaptive
refinement for the mixed boundary value problem for the Laplace-Beltrami operator.

Figure 4: A series of meshes in an adaptive refinement process
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and calculated local density of states in a disordered two-dimensional electron system. Septem-
ber 2002.
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