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Abstract A linear-quadratic optimal control problem governed by the Poisson equa-
tion with homogenous Dirichlet- or Neumann boundary conditions is investigated. The
optimal control has to fulfill box constraints. The domain 2 is assumed to be prismatic
with an reentrant edge. The impact of singularities is counteracted by anisotropic mesh
grading near the edge. For the piecewise constant approximation of the control followed
by a post-processing step a convergence order of two in L?({) is shown.
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1 Introduction

In this paper, we consider the control-constrained optimal control problem

P 1.1
(@ = mip, 0 -
J _1 S _ 2 K 2 1.2

(u) := 5184 = yallf20) + 5 lulliz) (1:2)

where the operator S associates the state y = Su to the control u as the weak solution

of
Ly=u in Q, By=0 onI =09. (1.3)
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We analyse two different cases, namely pure Dirichlet boundary conditions in the state
equation, i.e.

L=-A, B=1Id, (1.4)

and pure Neumann boundary conditions, i.e.

0
L=-A+1d, B= o (1.5)
Robin or mixed boundary conditions are not discussed explicitly here since no further
difficulties occur. Here, Q = G x Z C R3 is a domain with boundary 99, where G C R?
is a bounded polygonal domain and Z := (0,29) C R is an interval. It is assumed that
the cross-section G has only one corner with interior angle w > 7 at the origin; thus €2
has only one “singular edge” which is part of the xs-axis. This is no restriction since
the introduced singularity is only of local nature. We set U = L*°(Q2) and denote by
UM =y € U: ug <u(z) <uy ae in € Q} the set of admissible controls. The function
yq € C%7(Q), o € (0,1), is the desired state and the parameter v a positive real number.

Further, we introduce the adjoint problem
L'p=y—yq inQ, Bp=0 onT (1.6)

and denote by S* the solution operator of this problem, thus p = S*(y — yq). Since one
can also write

p=S"(Su—yy4) = Pu

with an affine operator P we call the solution p = Pu the associated adjoint state to w.
The problem (|1.1)-(1.2) admits a unique solution @ which fulfills the optimality system
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u,
p =5y — ya), (1.7)
(vl + p,u— W) 2y >0 Vu€ U™,

The last inequality is equivalent to

_ 1_
U =1y, ) (—VP> (1.8)

where IIjjaqa is the pointwise projection into the interval [ug, up].

We discretize the optimal control problem based on a finite element approximation
of the state variable leading to the discrete solution operator Sp. Results on the dis-
cretization of optimal control problems by piecewise constant functions were already
given by Falk [12] and Geveci [13]. Malanowski discussed in [I7] piecewise constant
and piecewise linear discretizations in space for a parabolic problem. In the last years
researchers started to investigate numerical schemes for such problems again. Arada,
Casas, Troltzsch, Meyer and Rosch considered piecewise linear approximations of the



control, see [9] 10, 1T}, 20, 21}, 22]. In all that papers the authors proved a convergence
order of k=1or k = % in the discretization parameter h,

lla — ah”LQ(Q) < ch®

on quasi-uniform meshes provided the solution is sufficiently smooth. In the variational
discretization concept proposed by Hinze [I5] the space of admissible controls is not
discretized. Instead, the first order optimality condition and the discretization of the
state and the adjoint state are utilized to derive an approximate control @} . It is proved
that the discretization error of the control is bounded by finite element errors,

@ — upll2) < 105" = Sp)yallLz) + (™S = SpSh)ull2(0)- (1.9)

This gives an approximation order of k = 2 for piecewise linear approximations of state
and adjoint state as long as the solution is sufficiently smooth. The same result was
proved in [§] under reduced regularity assumptions for appropriately graded, isotropic
meshes. Another discretization concept was introduced by Meyer and Rosch [19]. The
space of admissible controls is discretized by piecewise constant functions, and a post-
processing step yields the final approximation,

_ 1_
up = H[ua,ub] (_Vph> .

They proved a convergence order of k = 2 for plane, convex domains under the assump-
tion of full regularity in state and adjoint state. Apel, Résch and Winkler proved in [6]
the same result for non-convex plane domains and used local mesh grading. Roésch and
Vexler achieved in [23] the same result for the Stokes equation in Q C R3 provided that
no singularities occur such that y € H?(Q2) N W1H°(Q). The article of Apel and Winkler
[8] extends the results for the Poisson equation to general three-dimensional domains,
where state and adjoint state may not admit the full regularity. They counteract the
impact of singularites, which are caused by reentrant corners and edges, by isotropic,
graded meshes and admit a convergence rate of k = 2. But already for the state equa-
tion itself one can observe, that isotropic mesh refinement along an edge leads to an
overrefinement. In order to circumvent this problem anisotropic finite elements were
used in [2, 4]. Winkler considered in [25] an anisotropic discretization for the optimal
control problem f with a special type of mixed boundary conditions in the state
equation, namely

L=1d inQ, Bzg onT'y, B=Id onTp.
on
Here, Ty = 00N {zx € R3 : 23 = 0V 23 = 2} and I'p = OQ\I'y. The restriction on
these boundary conditions was made since the Scott-Zhang type interpolation operator
developed in [I] preserves the Dirichlet conditions only on I'p and allows an L?(Q)-
estimate for the finite element error in the state equation only in this situation. In [25]
this estimate is a main ingredient of the proof of the convergence order 2 for the L?()-
error between the approximated control 4 and the optimal control w. This result was



proven under the mesh grading condition p < min{)\,g + %}, where p is the grading
parameter and A the singular exponent. For a detailed definition of these quantities
we refer to Sections [2] and This is a stronger condition as actually necessary to get
optimal convergence for the state equation itself, where p < A is enough.

In this paper here, we extend the results of [25] to the case of pure Dirichlet and pure
Neumann boundary conditions as defined in and . The necessary estimates for
the finite element error in the state equation are given in a very recent paper by the first
two authors, [7]. A challenge in case of Neumann boundary conditions is the fact that the
state and the adjoint state do not vanish along the edge. The zero boundary conditions
were used in a very explicit manner in the proofs of [25], in particular regularity results
were used that are not valid in the Neumann case. Therefore some proofs have to be
modified. We further weaken the mesh grading condition given in [25] to p < A, what
is the same as one has to demand to get optimal convergence in the state and adjoint
state equation. We have to pay with sligthly more regularity in y4. So y4 has to be
contained in C%7(Q) and not only in L>(Q2). As a byproduct we can also weaken the
grading condition for isotropic refinement given in [8] (comp. Remark .

The outline of the paper is as follows. In Section [2] we first recall some regularity
results for solutions y of the state equation in domains with edges. We further
prove that 7%y is bounded for 8 > 1 — X as long as the right-hand side is from C%7((Q).
Here, r denotes the distance to the edge. This result is the key to weaken the grading
condition from [25]. In Section [3| we discuss the discretization of the optimal control
problem and state the main results, namely

1@ = apll @) < eh® (1all 2 () + lvallz2@) (1.10)
and
I = @nllaqy < b (Iall ey + lyallcone ) - (1.11)

The estimate follows easily by using results of [15] and [7]. Notice, that in the case
of variational discretization yq € L?(f2) is enough. The details of the proof of estimate
are given in the Sections |4 and [5, We finish this article by some numerical tests,
that illustrate our theoretical findings.

2 Regularity results
First we give regularity results concerning the state equation

Ly=f inQ, By =0 in 0Q. (2.1)

with L and B from (1.4) and (1.5)) respectively. According to [14] the weak solution y
of (2.1) can be written for f € LP(Q2), 2 < p < oo as a sum of a singular part ys and a
regular part v,

Y =Ys + Ur, (2.2)



where y, € WP(Q) and
ys = E(r)y(r, z3)r*O(p) WﬁhA::g_

Here r and ¢ are polar coordinates in the plane perpendicular to the edge, £(r) is a
smooth cut-off function and ©(yp) = sin A\p for the Dirichlet boundary conditions and
O(¢) = cos Ay for the Neumann boudary conditions. The coefficent function + can be
written as a convolution integral,

1 T
ray)=— | ——=q(x3—s)ds
’Y(a 3) 7T/R7”2+82q(3 )
where the smoothness of ¢ can be characterized in Besov spaces depending on A.

Lemma 2.1. Let y be the weak solution of (2.1 for a right-hand side f € LP(Q),
2 < p < oo. For the singular part ys the inequalities

17205yl o) + 1103:s | Lo () + 1033ysl| Loy < cllfllimy, 45 =1,2 (2.3)
[ 0yl + I Oyl oy < ellf oy, i=1,2 (24)
17 2ysll o) < el fllzeoy (2.5)

are valid for

2 2 2
B>2--X fl1-"<x<2-°% and
p p p

2
B=0 if A\>2-2.
p

For the reqular part y, the estimate

yrllw2r@) < cllfllr @) (2.6)
holds.
Proof. In [3 Section 2.1] the assertions ([2.3)—(2.5)) are proved for the Dirichlet problem.

In order to get the estimates for the Neumann problem one just has to replace sin (%)

by cos (%) in that proof. Expression (2.6 follows from [14, Theorem 6.6]. O

Remark 2.2. For the Dirichlet problem the inequalities (2.3))—(2.5) are also valid for
the regular part y, (see [16]). This is not the case for the Neumann problem since the
reqular part needs not to vanish at the edge.

It is well known that the weak solution y of the boundary value problem is not
contained in the space W1*°(Q). Instead, one has r’Vy € L>°(Q) with a suitable weight
8. A reasonable attempt to determine an appropriate value for the weight § is the use
of Sobolev embedding theorems and Lemma This yields the condition § > % - A
For details on this we refer to [25]. But since y ~ r and consequently Vy ~ r*~1 one
can expect, that a weight § > 1 — X is large enough. In the following lemma we show,
that this is actually true.



Lemma 2.3. Let y be the weak solution of (2.1) with a right-hand side f € C%7(Q),
o € (0,1). Then the estimates

177yl Loy < el fllcoo@)y, B>1—A (2.7)
103yl (@) < cllfllco.o ) (2.8)
hold true.

Proof. In order to prove the assertion (2.7), we use the results from [I8, Subsection 5.3].
From Theorem 5.1 and its proof in that paper, one has the a priori estimate

Iollcz oy < el fllons oy (29)

In the case of our prismatic domain the norm in Ci‘g(ﬂ) that is given in [I8] reduces to

H(6—l—0o+|al)
—l—o+lal { T\T reY
Wt ey = 3 suplor(edm(a)y o1l (14) ()
’ |

<1 7€ p()

2
_5|0%(x1) — O%y(x
>, >, sw p(an) : IaJE —1)y|k‘1+a—(6 2 (2.10)

k=1 |a|=i—k, T172E

5190 (1) — 9% (x
DSl 2(“)7(;%) ’ y(yxll)—azyg( o

o=l |x1—z2|<r(z1)/2

The second term only appears in case of Neumann boundary conditions. Here, p;(x) and
p2(x) denote the distance of x to the corners, r(z) is the distance of x to the edge and
p(x) = min(p1(z), p2(x)). Further, k1 = [0 — o] + 1, where [§ — o] denotes the greatest
integer less or equal to § — 0. The function H is defined as H(t) = t for Dirichlet
boundary conditions and as H(t) = max(t,0) for Neumann boundary conditions. For
the prismatic domain we can choose v = § with the conditions

2-A+to<y<2+0 (2.11)

and v — o # 1. Now we can reduce our considerations concerning the norm in C?/g(Q)
on the first term and |a| = 1. Taking v = d into account, the relevant part is

= su T )V @ o Yy(x
M= 3 gl (Z5) el

Using inequality (2.11)) it follows

Y=1l-0>2-A-1=1-A>0 (2.12)



since A € (%, 1). Therefore H(y—1—0) = y—1—o0 in both cases, Dirichlet and Neumann
boundary condition. Now we introduce the domains Q; = {z € Q, p(x) = p1(z)} and
Qg = {x € Q,p(x) = pa(z)}. For every a with |a| = 1, one can write

—1-0
sup (1 (@) pale)) 17 (“”)) %y )

€ p($)

—1—-0o
> sup (o1 (z)pa(a)) 17 (()> )

e p(x)
= sup pa(2) "7 (@)1 0%y ()]
e
> c- sup r(x)7 710 (2)| (2.13)
zEM

since po(x) > 1 for z € Q. Analogously one has

sup (p1(z)pa()) 1~ (”)) 0%y(2)| > - sup r(z)y oy (x)|.  (2.14)
z€Q p(x) T zeQ

The estimates (2.13)) and (2.14) yield

M > |17 Vy| L () -
This entails for §:=v—0 —1
M99yl o) < cllloze oy < el flosy B> 1= A (2.15)
where we have used (2.9)) and (2.12). In the following lines, we show
C%7(9) — CY7(Q) for v — o > 0. (2.16)
The first term in the norm definition (2.10)) yields for [ = 0

r(z)\ 1O~
sup 1 (2) )0 (pgi) @) <o sup (0}~ lu(a)

with the same argumentation as above. Analogously, the third term results in

oo (;g;)v y(z1) — y(22)|

<c- sup mmw

sup <
|21 — x2|7 w1 —a| <r(21)/2 |21 — x2|7

|1 —x2|<r(z1)/2

With v > v — 0 > 0 these two estimates yield (2.16). Therefore the assertion ({2.7)
follows from (2.15)). According to Lemma one has d3y € WP(Q). For p > 3 the
Sobolev embedding W1P(€) < L% () is valid. Therefore we can conclude

103yl (@) < cllOsyllwrr) < cllfllr@) < cll fllcor (o)

what is exactly assertion ([2.8)). O



The last lemma yields directly a regularity result for the adjoint state p.

Corollary 2.4. Consider the optimality system (1.7) with a desired state yq € C*7(Q),
€ (0,1). If 8 > 1 — X then there holds fori=1,2

PP 0ipl| ooy < € (HEHLOO(Q) + Hdecova(Q)) : (2.17)
1057l 202 < € (all o) + luallcnray ) - (2.18)

Proof. From inequality (2.7) one has for o € (0,1) the estimate

17208l < el — wallooo < ¢ (17 con(@y + Iyallcnn@) ) (2.19)

where we have used the triangle inequality in the last step. For the proof of assertion
(2.17) it remains to show that the estimate

19llco.0 @) < cllallz=(o) (2.20)

is valid for some o € (0,1). In the following we assume o < \. For 0 < v < 2 — % -0
with p specified below the inclusion

V2P(Q) < Vi TP (Q) e WEIP(Q) — 0% (Q) (2.21)

is valid. For the first embedding we have used [24] Lemma 1.2]. The other inclusions
follow by the Sobolev embedding theorems and the fact that 2 — v — % > ¢. Taking the
decomposition § = ¥, + ¥s into account one can conclude from Lemma U € W2P(Q)
and ys € Vf’p(Q) for v > 2 — % — A. In order to be able to find vy such that

2 3
2—-—-A<y<2—--—o0, (2.22)
p p

we have to choose p such that % < A—o. Since o < A, the condition p > )\%U guarantees

the existence of a weight A\ satisfying (2.22)). With such a weight v we can write for

p>max<ﬁ,%> and o < A

9llcor @) < e (I llcory + 17lcon )

IN

¢ (I5slly22) + e lwrie )
< cl|ul|Lriq) < clltl| Lo (q),

where we have used the embeddings (2.21]) and W2P(Q) — C%7(Q) for p > % as well
as Lemma This proves inequality (2.20). The assertion (2.17)) follows then from

estimate (2.19)). If we use estimate (2.8) and inequality (2.19]), one can conclude
103D Lo () < ellF — vdll ooy < ¢ <||§Hcovfr(s‘z) + ||yd||CU,U(Q)> :

where we have used the triangle inequality in the last step. Inequality (2.20)) yields then
the assertion (2.18)). O



3 Discretization

In this section we introduce a discretization concept for the optimal control problem
f. Based on a supercloseness result we prove the main result of this paper,
namely the superconvergence of the postprocessed approximated control to the optimal
solution. This is stated in Theorem [3.8

To this end we define a family of meshes 7, = {T'} of tensor product type (comp. [1],
[7]). First, we introduce a graded, isotropic triangulation {7} in the two-dimensional
domain G. The elements are triangles. With h being the global mesh parameter, p €
(0,1] being the grading parameter and r, being the distance to the corner,

rri= inf (22 +22)"/?,
(z1,z2)ET

the element size h, = diam 7 is assumed to satisfy

hi/k for r, =0,
hy ~ < hri ™ for 0 < rr < R,

h for rr > R.
Here, R is some constant. From this graded two-dimensional mesh we build a three-
dimensional mesh of pentahedra by extruding the triangles 7 in x3-direction with uniform
mesh size h. In order to generate an anisotropic graded tetrahedral mesh, we divide each
of these pentrahedra into tetrahedra. We can characterize the elements T" of such a mesh
by the three mesh sizes hr 1, hr2 and hr 3, where hr; is the length of the projection of

T on the x;-axis, ¢ = 1,2,3. In detail, with rp being the distance of the element T to

the edge,

1/2
9

rp = inf (23 4 23)

f
€T
the element sizes satisfy

hri~hYE for rp =0,

hri~ hrp * for rp > 0, (3.1)

fori=1,2.
In the }ollowing we will frequently use the multi-index notation. For oo = (a1, e, a3) €
N} we denote
la] = a1 + ag + as,
0" f = O 05O .
hy = h%,ll h%?zh%?a'
Based on the above triangulation we define spaces of piecewise polynomials
Up=A{ueU:ulp € PyVT € Tj,},
Ut = U N Uy,
Vi={velQ):vjreP VT €T andv,=00onTp}.



Now we are able to formulate a discrete version of the state equation ([1.3[). The approx-
imated state y, = Spu is the unique solution of

a(Yn, vn) = (U, vp) 12(0) Y, € Vy,

where a : H'(Q) x H*(Q)) — R is the bilinear form

a(y,v) = (Vy, Vo) 2y + k- (4,v) 12(0)-

One sets £k = 0 in case of Dirichlet boundary conditions (1.4)) and £ = 1 in case of
Neumann boundary conditions ([1.5)). Similiary we define the approximated adjoint state
prn = S;(y — yq) as the unique solution of

a(vn,pr) = (Y = Yas vn)r2@)  Y0n € V.

We further denote by Pyu = S;(Syu — y4) the affine operator that maps a given control
u to the corresponding approximate adjoint state py,.
Finally, the discretized optimal control problem reads as

Jh(ﬂh) = min Jh(uh) (32)
'u,hEU;:”d
1 v
Tn(un) = Sl1Swun = yall 2@ + 5 llunll2()- (3-3)

This strictly convex optimization problem admits a unique solution @y, that satisfies the
first order optimality conditions

Un = Spp,
Pr = Sh, (Yn — Ya) , (3.4)
(vay, + pp, up — Eh)Lz(Q) >0 Yuy, € U]?d.

As in the continuous case these conditions are necessary and sufficient.
Let us now collect some results from the finite element theory.

Lemma 3.1. Let u € L*(Q) be an arbitrary function and the mesh be graded according
to (3.1)) with parameter u < A. Then the estimate

1Su — Spul|p20) < ch?(|ul|2(q)
is valid.
Proof. This lemma is proved in [7]. O

Due to fact that we do not operate on quasi-uniform meshes the boundedness of the
operator Sy, is not obvious. The following lemma is proved in [25, Subsection 3.6] by
using Green function techniques.

10



Lemma 3.2. Let T}, be an anisotropic, graded mesh of a prismatic domain with param-
eter p < . The norms of the discrete solution operators Sy, and S; are bounded,

ISkl L2 ()=o) < ¢ ISkl 2 ()=o) < ¢
1Shll22(@)—12(0) < € 1S5l 22@)—12(0) < €
1Sl L2 )= Hi (@) < 6 1Shll L2 ()= Hi (@) <
ISkl Lo (@)=L (@) < 6 1Skl oo (@)=L (@) < 6

where c is independent of h.

We can use this result to prove an L?-error estimate for the finite element approxima-
tion of the adjoint state.

Lemma 3.3. Let u, yq € L*(Q) be arbitrary functions. Then the inequality
1Pu = Pyull 2y < eh® (lull L2y + 19allz20)
holds true.
Proof. One can write
Pu — Pyu = S*(Su —yq) — S;(Spu —yq) = (8™ — S7)(Su — yq) + S5, (S — Sp)u.

Then the assertion follows directly from Lemma and the boundedness of S and S}
as operators from L?(Q) to L?(2) (comp. Lemma [2.1|and Lemma . O

Remark 3.4. From Lemma([3.1) and Lemma it follows directly
155 = il ooy = (P = Pu)a+ (8" — Sl ey
< ch? (||l g2y + 1yl z2())

for u < \. This yields second order convergence for the method proposed by Hinze (comp.
(1.9) and [15, Theorem 2.4]).

From the projection formula one can see, that there may be elements where the
optimal control @ admits kinks. For such an element 7" one cannot assume that the
restriction @|7 is contained in V; ’Q(T). Consequently, a special treatment is necessary
during the error analysis. Therefore we split the domain €2 in two parts,

Ky = U T, Ko:= U T.

TeTy:a¢V;?(T) TeT,:ucV;?(T)

Clearly, the number of elements in K grows for decreasing h. Nevertheless, it is quite
reasonable to assume that the boundary of the active set has finite two-dimensional
measure, i.e.

|K1| < ch. (3.5)

Notice, that this is a weaker condition than #K; < ch™? as it is required in [25]. For a
detailed discussion on this, we refer to [25, Lemma 4.7].

11



Definition 3.5. Let Tj, be a conforming triangulation of Q2. The projection Ry of a
piecewise continuous function f is the piecewise constant function that fulfills

Rnf = f(Sr) (3.6)
on any element T € Ty. Here, ST denotes the centroid of T'.

In Section ] we will prove a couple of properties of Ry, that allows us to formulate
the following lemma.

Lemma 3.6. Let T}, be a graded mesh according to (3.1) that satisfies condition (3.5)).
Then the estimates
|15 — SuRall 2y < ch® (1@l (@) + lyallcon@ ) (3.7)
|Puia = PoRyll ey < eh? (11l ooy + Iallcon oy )

are valid if p < A.

The proof is postponed to Section [l These estimates are the basis of the following
supercloseness result. Originally, Meyer and Rosch discovered in [19] for isotropic and
quasi-uniform grids, that the distance of the computed approximate solution @y to the
interpolant Rju is much smaller than to the optimal solution u itself. Apel, Rosch and
Winkler [6] and Apel and Winkler [§] extended this result to the case of isotropic, graded
meshes in two and three dimensions. The next theorem shows, that this result transfers
to the case of three-dimensional, anisotropic, graded meshes.

Theorem 3.7. Let uy, be the solution of (3.2)—(3.3) on a family of meshes with grading
parameter p < \. Then the estimate

lin — Rt 2oy < h® (Il o) + lvallco )
holds true.

The proof is given in Section
The final approximation is constructed from p; by the pointwise projection into the
set of admissible controls,

. 1_
Up, = Ijaa <_1/ph> . (3.9)

Based on the supercloseness of Rpu to 4y, given in Theorem [3.7, we can prove the
following superconvergence result.

Theorem 3.8. Letu, y, p and up, g, pr be the solutions of (1.7)) and (3.4]), respectively,
where the family of meshes is graded with parameter i < \ and satisfies condition (3.5)).

12



Let iy, be the postprocessed control constructed by (3.9). Then the estimates

15— nllz2() < eh? (11l zoeo) + Iallooe @ ) (3.10)
15— Bullzaqey < eh? (1l ey + Iallcon o) (3.11)
I @l 2@y < ch? (o) + lyallnra) (3.12)

hold true.

Proof. The conclusion is similar to the one in [25, Subsection 4.8] except for the weaker
condition on u. For the sake of completeness we sketch it here. One has
19— UnllL2) = 15U — Sptin| 120
<[(S = Sh)all p2eq) + 1Sk(@ — Rat) || 2(q) + ISk (Bat — tn |l 12()-
The application of Lemma 3.1} Lemma[3.6|and Theorem [3.7] yields together with the fact
that Sy, is a bounded operator from L?(Q) to L?(£2) (see Lemma and the embedding
L>®(Q) — L3(€) the assertion (3.10). For the second estimate one can write
1P = PullL2) = 157U — ya) — S — va)ll 22(0)
< |[(S* =S — va)llz2) + 155U — In)ll L2 ()-

The application of Lemma[3.1] (3.10) and Lemma[3.2)results in inequality ([3.11). Finally
estimate (3.12]) follows directly from
——Ph
v L2(Q)

and estimate ([3.11]). O

1.
< Slp =Pl )

L 1_
@ — tn|[20) = HH[a,b] (-VP) — Mgy

Remark 3.9. The first and the third author proved in [8] the result of Theoremfor
domains with corner- and edge singularities and appropriately graded isotropic meshes.
In detail, the mesh was chosen such that the condition

hy ~ BY* for rp =0,
hp ~ hrilp_“ forrp >0
1s satisfied, where hp denotes the diameter of the element T' and rr its distance to the

set of singular points. The grading parameter u had to fulfill the three conditions

1 1 1 1
< 54‘5)\”, n < )\e, n < §+§)\e (313)

Here A\, and A\ denote particular eigenvalues of certain operator pencils that correpond to
the corner- and edge singularities, respectively. As in the case of anisotropic refinement,
a weaker condition, namely

1
u<min{2+)\v,)\e} (3.14)
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is sufficient to get an optimal convergence rate for the boundary value problem [5]. Let
us quickly describe where the additional conditions p < % + %)\e and p < % + %)\v come
from in [8]. In that paper the boundedness for rBVp was proved for

4
ﬂ>max{3—)\e,1—)\y} (3.15)
by the use of Sobolev embedding theorems. In the proof of Lemma 4.5 in [8] one needed
the boundedness of r>~2"Np. This resulted in the condition 2 —2p > max{% —Xes 1=y},
e < min{l + %/\e,% + %)\U}. With an analogous argumentation as in Lemma
and Corollary one can prove that r°Vp is already bounded for

B >max{l—A,1 — Ny}

as long as the desired state is in C%°(Q). This means a smaller weight than stated in
is sufficient to compensate a possible edge singularity. Consequently, the condition
in the proof of Lemma 4.5 in [8] reduces to 2—2u > max{l — A, 1 — A\, }, what is fulfilled
by values of p that satisfy pu < min{% + %Ae,% + %AU}. Since A\e < 1 the condition
n < % + %)\6 1s weaker than p < A.. Therefore one gets second order convergence on
isotropic graded meshes already for a grading parameter u satisfying

1 1
n < Hlln{2 + 2)\1);)\6}

what is of course a weaker condition than the original condition (3.13)). Notice, that this
condition is still slightly stronger than condition (3.14)).

The remainder of this paper contains the proofs of Lemma (Sect. , Theorem
(Sect. [f) and a numerical test (Sect. [6)).

4 Properties of the operator R},
First of all we introduce the sets

K,= |J T and K,=Q\K.. (4.1)
{TeTh:T‘TZO}

Notice, that according to the number n of elements in K is O(h™!) and therefore
| K| < enh?/mt1l = ch2/m,

We collect here a number of results from [25] and refer for proofs to this thesis. We
give proofs here only in those cases when changes are necessary due to the weaker mesh
condition p < A in comparison with p < min{\, % + 2} in [25], or when the proof in [27]
is restricted to an analogy argument to a further result.

First of all, we recall the approximation properties of the operator Ry,.

14



Lemma 4.1. [25, Lemma 3.24] Let Ty, be a conforming anisotropic triangulation satis-
fying equation (3.1)) and let Ry be the projection defined in (3.6). Then there holds

T2 ey BEID fll 2y for f € HX(T)
< ST 3 021 P ID fll Loe ) Jor f e Wheo(T)
| TN £l oo (1) for f e L(T).

/T(f_Rhf)dx

In the following we introduce the L2-projection in the space of piecewise constant
functions.

Definition 4.2. Let T}, be a conforming triangulation of Q. The L?-projection of a
function f € L*(Q) is the piecewise constant function that fulfills

o 1
= /T f(z) dx

on any element T € Ty,

Lemma 4.3. [25, Lemma 3.19] For any element T € Ty, and any function f € HY(T)
the inequality
1f = Qnfll2cry < chlfluer

holds.

Corollary 4.4. [25, Corollary 3.20] For any element T € T, and any two functions
f e HYT), ve HYT) the inequality

(f = Qufv)r2er) < ch?|flm vl
1s valid.

Lemma 4.5. [25, Lemma 4.13] The inequality

1Qnf = Rufllreery < ITIM27H2 > " b D Fl pory
la]=1

holds for all f € WYP(T) with p > 3.

Proof. By the definition of (), and R}, one has

B ) B i - 2 B . r - :|2
[ @t mugpan= [ | [ 1 riac| aw=prit| [ 7= Rasac

which leads to

1Qnf — Bufllpzery < 1T/

[ 1-Bafaal. (1.2)
T

15



For any 1 € Po(T) we can conclude
[ =rupyaa =101 [ (= Riyde =171 [ (7= 0) ~ RF - i) do

< AT|If = Bll ooy < AT = Do
(7)

where we have used the embedding L>(T) < W4P(T) for p > 3. Now we can apply the
Deny-Lions lemma and get

= Ruf)de < T lyaniay < T S 10 o
la|=1

which yields together with estimate (4.2]) the assertion. O
Corollary 4.6. [25, Corollary 4.16] Let the mesh be graded according to (3.1). Then

1Qnw — Rpwl|r2x,) < ch® (101wl 1o(i,) + 102wl Lo(ic,) + 1703wl Lo (k,))
holds for all w € WYP(K) with r#dsw € LP(Ks) and p > 3, p > ﬁ
Corollary 4.7. Let the mesh be graded according to (3.1). Then

1Qnw — Rywl 2,y < ch? (’w‘vffzu(&) + ’3371)’%2}”(&) + H833'U)HL2(KT))

holds for all w € H*(K,).
Proof. The proof is taken from [25] pages 48f. and 23] From the definition of @}, one has

2
1Qnw — Rnwlay = 3 Quw — RywlZary = S0 |71 /T (w — Ryw) da

TCK, TCK,
We apply Lemma [4.1] and get

1Qnw = Ryw|3acy < D7 T [ > hITI D] 2
TCKr |oe|=2

<c Z Z ho|[ D wl|p2(7)

TCKy ||al=2

Since rr > 0 for an element 7" C K, it follows with (3.1))

2 2
1Qnw — Ruwl|Fagcy < cb* > r5 Y "> 0yl 2+

TCK, i=1 j=1

2

2 2
T%‘” Z \\83¢y|!L2(T) + HagngL2(T)]

i=1
2
< ch? (‘w|V22;22“(Kr) + |83w‘V11;2u(K7») + HagngLz(KT)) .

Extracting the root yields the assertion. O
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The following lemma includes a stronger result in comparison with [25, Corollary 4.16].

Corollary 4.8. Let the mesh be graded according to (3.1)). Then
1Qnw — Rywl|r2(x,) < ch?||Vwl| ook,
holds for all w € WL (Ky).

Proof. One can conclude from the Definition of )5, and Lemma [4.1

2
||Qhw_Rhw||%2(Ks): E /[|T|_1/w—Rhwd£] dx
T T

TCKs
2
= Z ||~ [/ thwdf}
TCK, T
2
<e 71| Y2 WD wl| ooy
TCK;s la|=1

If one takes into account that #K, < ch ! it follows
1Qnw — Rpwl|72 sy < ¥ HHK | Vw | oo gy < ch>T2H V][] .-
Since p < 1 this yields the assertion. O

Before we are able to show Lemma we state one more auxiliary result. The proof
of this result uses the boundedness of 7’ Pu for 3 > 1 — X stated in Corollary In
[25] this boundedness was only proven for 8 > % — A. Our improvement allows us to
weaken the grading condition from p < min{}, 3 + %} as it is given in [25] to p < A.
Notice, that the condition u < A was also necessary to get optimal convergence of the
finite element approximation of the state equation (comp. [1L [7]).

Lemma 4.9. Let Ty be an anisotropic, graded mesh satisfying (3.1). Let u be the
solution of the optimal control problem (L.1))-(1.2)). Then the estimate

(Qnlt — Ry, vp) 120y < ch?||vn oo (o) <|WHL0<>(Q) + H?JdHco,v(Q))
holds for all vy, € Vi, if p < A.

Proof. The proof follows the lines of that of Lemma 4.10 in [25]. Since the mesh grading
condition is weakened from p < min{\, % + %} to p < A, a detailed proof is given. We
split the domain ) into three parts, where @ has different regularity: K;, = K;\Kj,
Ky, = K5\K; and K;. One has

/th(Qhu—Rhu)de Z th||Loo(T)/(u—Rhu) dx.
T

TeTy,
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If we apply Lemma [4.1] on each sub-domain to the integral, we get

/th(Qhﬁ— Ryu)dz < > onllpeoery|T1Y? Y BEID* A r2(r)

TCK2,r || =2

+ > lvnllpe@|T] Y WD Lo ry (4.3)

TCKi,r |a|:1
+ > lonll ooy | Tl Lo (1)
TCKs

We estimate the three terms on the right-hand side separately using (3.1). For the first
term we have

S Nonllpoe|TIV? Y BGID 0 2 r) (4.4)
TCKa,, |a|=2

2 2
<cllvnllzoe gy ) | Kol 2 | R2r272Y 0 0550l 12050

i=1 j=1
2
+ hpl-n Z ||83iﬂ||L2(K2,r) + h2’833u”L2(K2,,~)> . (45)
i=1
The second term can be estimated by using (3.1)),
D Monlloe@)IT] Y hHIDYa Lo 1y
TCK1,r la|=1
2
< chl|vrllpoe () Z T (Z [ 05| poo 7y + HasﬁHLoo(T))
TCKLT =1

2
< chllvp|| poo ) [ K1,r | (Z 7 05| poo 1y ) + ||33ﬂ|Loo(K1,r)>

i=1

2
< ch?||vp| L= () (Z 7 105t poe (6, + H@SﬁHLw(KI,T)) . (4.6)
i=1
The last step is valid since |K;| < ch (comp. (3.5))). The third term yields
Z 0wl oo ()| TGN oo () < 1K sl onll poe (1l poo 76y < ch?|J0nll oo o 1l poo (124

TCKs
(4.7)

since |K,| < c¢h®" < ch®. We can further utilize the projection formula (I.8) and
substitute u by —%ﬁ in the above norms, because u is either constant or equal to —%p.
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Then the inequalities (4.5)), (4.6) and (4.7)) yield together with (4.3) the estimate

C
/th(Qhﬂ — Rpu)dz < ;hQHUhHLOO(Q)'

2 2 2
Z Z 172721055l 121y + Z 7! 035Dl 12 (1¢,.,) + 103311 22 (1c.,) (4.8)

i=1 j=1 i1
2

+ > N0l oo ) + 10301 Lo (i) + V|a||L°°(KS)> : (4.9)
i—1

In order to estimate the L?-norms in ([4.8)), we split p according to (2.2)) in a regular and
a singular part, p = p, + ps. Then we apply Lemma [2.1] for p = 2 with 3 = 2 — 2u. This
is possible since u < A < 1 and therefore 2 — 2y > 2 — A —1 =1 — \. Notice that one

has for the regular part |7, || g2(q) < c||pllg2(q) as long as a > 0. For the estimate of
the L>°-norms in (4.9)), we apply Corollary We end up with

/th(Qhu — Ryu) dz < ch?||vp| 1o (a) (||y —Yallz2) + 1y — Yallco.r @) + ||U||Loo(ﬂ)>
for a o € (0,1). If we use the triangle inequality, the embedding L*°(£2) — L?(Q2) and
estimate ([2.20]) the assertion is shown. O

Proof of Lemma 3.6. The proof is similiar to that of Lemma 4.19 in [25], where it is
given for y < min{\, g + %} We recall the proof here under the weaker condition p < A.
By the definiton of P, and S}, one has

| Shi — Sthﬂ,H%Q(Q) = (Sptt — Sp Ry, Sptt — SpRyT) 12 (o)
= a(Spu — SpRpu, Pyu — P, Rpu)
= (u — Rpt, Pyt — P Rpu) r2(q)
= (@ — Qni, Pyt — PyRpt) 2y + (Qntt — Ry, Pyt — PoRp) 200y (4.10)
where we have used
Pnu — PyRpu = Sy (Spu — yq) — S, (Sh Ryt — ygq) = Sy (Spu — SpRpa). (4.11)
We estimate the two terms seperately. For the first term we have with Corollary [4.4]

> (@ — Qnit, Pyt — PoaRp@)r2ery < ¢ > h2|lgaory| Puti — Po Rl
TETh TeTh

< ch?Jii| 1 () | Prtt — Ph Ryt (o)
because h% < ch?. With (4.11) and Lemma we can continue with

(it — Quil, Poit — PoRyt) 12y < ch?[t] g o 155 |l 2y — mr ) | Shtt — SpRpitl r2 (o)

< ch?| g1 (q) | Spit — ShRatl| r2(q)-
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According to the projection formula ([1.8) the optimal control @ is either constant or
equal to —%p. Therefore one can conclude from the boundedness of S* from L?(Q2) in
HY(Q)
U] i) < cllpllar@) = el S™ (U —ya)llar) < clly = Yall 2 < c (H?HL?(Q) + ”3/dHL2(Q)) :
This yields
(ﬂ — Qpu, Pyu — Pthﬂ>L2(Q) < ch? <HﬁHL°°(Q) + HdeCo,g(Q)) HShﬂ - Sthﬁ”L2(Q).
(4.12)
We continue with the second term of (4.10). The application of Lemma Equation
(4.11)) and again the boundedness of S} yields
(Qnit — Ryii, Pyt — Py Ry) 12y < ch? (HﬂHLoo(Q) + ||de00»6((2)) | Pt — P Ryl| pos (o)
< ch® (1]l Lo (o) + lvall oo o)) 1Sht — ShRuiil 20

This estimate gives together with (4.12)) and after division by [|Spt — SpRptil|r2(q) the
assertion (3.7)). The inequality (3.8)) follows from the estimate (3.7)), equation (4.11]) and
the boundedness of S; as operator from L?(Q2) to L?(f). O

5 Proof of the supercloseness of R,u;, and u,

Before we prove a supercloseness result we recall the following lemma from [6], where it
is proved for plane domains and isotropic graded meshes. The proof is valid also in the
three-dimensional situation with anisotropic meshes.

Lemma 5.1. [0, Lemma 7] The inequality
V|| Rptt — @n 72 () < (Rub — Phy U — Rit) 120
is valid.

Proof of Theorem 3.7. This theorem is proved in [25] for the stronger mesh grading
condition u < min{)\,g + %} and for a special type of mixed boundary conditions.
We give the proof here under the weaker condition u < A and for pure Dirichlet and
Neumann boundary conditions. From Lemma [5.1] we have
v||Rpu — ﬁhH%Q(Q) < (Bnp — Pn, un — Rptt) 120
= (Rpp — P, up — Bpt) r2(0) + (P — PuRptl, ip — Rpti)2(q)
+ (P Ryt — P, U — Ryt) 120 (5.1)
Now, we estimate the three terms separately. For the first one can conclude
(Rnp — p,un — Rpti) 20y = (Rap — Qup, un — Rptt) 12y + (Qrp — P, tn — Rptt) 12(q)
= (Rnp — QnD, up, — Rptt) 2(q)
< |[Rnp — Qnpll L2 ltn — Rptil| p2(q) (5.2)
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where we have used the projection property of @) and the Cauchy-Schwarz inequality.
In order to estimate the first term of the right-hand side of (5.2]) we write

I1Rnp — Qubll72(0) = 1RAD — Qubl|72(xc,) + 1 Bnb — Qubll 72k, (5.3)

with K and K, as defined in . In the following we choose p such that p > 3 and
p > 1iu' According to (2.2)) we split p in a singular part ps € V; P(Ks) and a regular
part p, € W2P(Kj) such that p = ps + p,. For the singular part we get from and
the Corollaries and [£.7 the estimate

||Rh]§8 - Qhﬁs”L%Q) < Ch2 <|ﬁs|v22;22H(Kr) + |83ﬁs|V11L2u(Kr) + ‘833]55|V00’2(KT)
+ 110105l Lo (xc,) + 11025 || Lo (k) + ||53153||V3ﬁ)(K5)>
< ch®|g - Yallr () (5.4)

where we have used the estimates (2.3)—(2.5) in the last step. Since W?2P?(Q2) — H2(Q)
and W2P(Q) — WL>(Q) it follows from (5.3) and the Corollaries [4.7 and

| Ripr—QnrllL2(02)
< ch® (|pr|v22_’22H(KT) + |3315r|V11_,2”(KT) + |833ﬁr|voo’2([(r) + ||V15r||Loo(Ks))
< ch?||§ — yall Lo (o) (5.5)
where we have used the estimate in the last step. Since
|[Bnp — Qnbllz2(0) < [BaPs — Qubsllr2() + | Bapr — Qubrll2 (o)
one can conclude from and
I1RaD — Qudll 20 < ch? 15 — yall Lo ()
Finally it follows from the triangle inequality and Lemma [2.1
|1 Rap — Qndll 20y < ch® (||tllzoo () + Iyl noe (o)) -
This yields together with the estimate
(Rpp — P, i — Rutt) 20y < ch®||ty, — Riti|l 2y (1@l o) + vallne) - (5.6)
For the second term of we get
(0 — PaRpu, up — Rpt)r2(0) < [P — PaRptl 2o lltn — Ratl|r2(q)-
The triangle inequality yields together with and Lemma
1P — PuRptullz2(0) < [|1PU — Putl|p2q) + [[Pat — PaRpiil| L2 (q)

< ch? (HﬂHLoo(g) + ”deCO*"(Q)>
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and therefore
(p — PRy, i, — Rutl) r2(0) < ch?||tin — Ryt 12(q) <||ﬂHLoo(Q) + Hdecma(Q)) - (5.7)
The third term of inequality (5.1)) can simply be omitted since

(PrRpt — pp, up — Rpt)p2(q) = (SpSpRpt — SpShtn, Un — Rpti) 2(q)
= (Sthﬁ — Spap, Spup — Sthﬁ)L2(Q)

= —||Spu — Sthﬂ||L2(Q) <0. (5.8)
Thus the inequalities (5.1)), (5.6, (5.7) and (5.8)) yield the assertion after dividing by
|tn — Rptil| 2()- O

6 Numerical test

In this section we illustrate our theoretical findings by a numerical example. We consider
the optimal control problem ((1.1)—(1.2)) with the state equation

—Ay=u+f in , y=0 on 0.
The domain €2 is chosen as
Q= {(rcosp,rsing,z) ER*:0<r < 1,0 <y <wy,0<z<1}.
The functions f and y, are defined such that
A

17(73%73) = Z(l - Z)(T - Ta) sin )‘(107

p(r, @, 2) = vz(l — 2)(1 — r%) sin A\

_ 1_
u(r, p,2) = _0.2,10.0] <—VP)

is the exact solutions of the optimal control problem. We set wy = %ﬂ', v =103 and
o= % Furthermore, we have A = 7 = %.

The approximation is computed using an implementation of the primal-dual active set
strategy by the third author. For a detailed description, we refer to [25, Sect. 5].

In Table 1{one can find the values for the error ||t — p||12(q) as well as the estimated
rate of convergence for different numbers of degrees of freedom. On the uniform mesh
(= 1) the convergence rate is significantly less than two, but larger than the rate of
2\ = 12/11 as expected from the theory. However this is an asymptotic result for a region
near the edge. In the case of an anisotropic graded mesh with = 0.54 < 6/11 = X, one
can observe the predicted convergence rate of two.
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Table 1: L?-error of the computed control @y, for interior angle wy = %77.

ndof

w=0.54

value rate

p=1

value rate

546
2310
6090

12654
22770
37206
26730
82110
114114
153510
201066
257550
323730
400374

1.48e—01

5.16e—02 2.20
2.62e—02 2.09
1.62e—02 1.98
1.09e—02 2.01
7.84e—03 2.03
5.86e—03 2.06
4.58e—03 2.01
3.68e—03 1.98
3.02e—03 1.99
2.51e—03 2.07
2.14e—03 1.95
1.85e—03 1.92
1.60e—03 1.98

1.29¢—01

4.66e—02 2.12
2.55e—02 1.87
1.70e—02 1.66
1.23e—02 1.65
9.39¢—03 1.63
7.50e—03 1.59
6.18e—03 1.56
5.23e—03 1.53
4.50e—03 1.51
3.94e—03 1.47
3.50e—03 1.45
3.13e—03 1.44
2.84e—03 1.41

References

[1] Th. Apel. Interpolation of non-smooth functions on anisotropic finite element
meshes. Math. Modeling Numer. Anal., 33:1149-1185, 1999.

[2] Th. Apel and M. Dobrowolski. Anisotropic interpolation with applications to the
finite element method. Computing, 47:277-293, 1992.

[3] Th. Apel and S. Nicaise. Elliptic problems in domains with edges: anisotropic
regularity and anisotropic finite element meshes. Preprint SPC94_16, TU Chemnitz-
Zwickau, 1994.

[4] Th. Apel and S. Nicaise. Elliptic problems in domains with edges: anisotropic reg-

ularity and anisotropic finite element meshes. In J. Cea, D. Chenais, G. Geymonat,
and J. L. Lions, editors, Partial Differential Equations and Functional Analysis (In
Memory of Pierre Grisvard), pages 18-34. Birkh&user, Boston, 1996. Shortened
version of Preprint SPC94_16, TU Chemnitz-Zwickau, 1994.

Th. Apel and S. Nicaise. The finite element method with anisotropic mesh grading
for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci.,
21:519-549, 1998.

Th. Apel, A. Rosch, and G. Winkler. Optimal control in non-convex domains: a
priori discretization error estimates. Calcolo, 44:137-158, 2007.

Th. Apel and D. Sirch. L?-error estimates for the Dirichlet- and Neumann problem
on anisotropic finite element meshes. SPP 1253, Preprint SPP1253-02-05, 2008.

23



8]

[9]

[10]

[13]

[14]

[15]

[16]

[17]

Th. Apel and G. Winkler. Optimal control under reduced regularity. Appl. Numer.
Math., 44(3):137-158, 2007.

E. Casas. Using piecewise linear functions in the numerical approximation of semi-
linear elliptic control problems. Adv. Comput. Math., 26:137-153, 2007.

E. Casas, M. Mateos, and F. Troltzsch. Error estimates for the numerical approx-
imation of boundary semilinear elliptic control problems. Comput. Optim. Appl.,
31:193-219, 2005.

E. Casas and F. Troltzsch. Error estimates for linear-quadratic elliptic control prob-
lems. In V. Barbu et al., editor, Analysis and optimization of differential systems.,
pages 89-100, Boston, MA, 2003. Kluwer Academic Publisher.

M. Falk. Approximation of a class of optimal control problems with order of con-
vergence estimates. J. Math. Anal. Appl., 44:28-47, 1973.

T. Geveci. On the approximation of the solution of an optimal control problem
governed by an elliptic equation. RAIRO, Anal. Numér., 13:313-328, 1979.

P. Grisvard. Singular behaviour of elliptic problems in non Hilbertian Sobolev
spaces. J. Math. Pures Appl., 74:3-33, 1995.

M. Hinze. A variational discretization concept in control constrained optimization:
The linear-quadratic case. Comput. Optim. Appl., 30:45-61, 2005.

A. Kufner and A.-M. Séndig. Some Applications of Weighted Sobolev Spaces. Teub-
ner, Leipzig, 1987.

K. Malanowski. Convergence of approximations vs. regularity of solutions for con-
vex, control-constrained optimal-control problems. Appl. Math. Optim., 8:69-95,
1982.

V. G. Maz’ya and J. Rossmann. Schauder estimates for solutions to boundary
value problems for second order elliptic systems in polyhedral domains. Applicable
Analysis, 83:271-308, 2004.

C. Meyer and A. Rosch. Superconvergence properties of optimal control problems.
SIAM J. Control Optim., 43:970-985, 2004.

C. Meyer and A. Rosch. L®-estimates for approximated optimal control problems.
SIAM J. Control and Optimization, 44:1636-1649, 2005.

A. Roésch. Error estimates for parabolic optimal control problems with control
constraints. Z. Anal. Anwend., 23:353-376, 2004.

A. Rosch. Error estimates for linear-quadratic control problems with control con-
straints. Optim. Methods Softw., 21(1):121-134, 2006.

24



[23]

[24]

A. Rosch and B. Vexler. Optimal control of the stokes equations: A priori error
analysis for finite element discretization with postprocessing. SIAM J. Numer.
Anal., 44(5):1903-1920, 2006.

J. RoBmann. Gewichtete Sobolev—Slobodetskii-Raume und Anwendungen auf ellip-
tische Randwertaufgaben in Gebieten mit Kanten. Habilitationsschrift, Universitat
Rostock, 1988.

G. Winkler. Control constrained optimal control problems in non-convex three di-
mensional polyhedral domains. PhD thesis, TU Chemnitz, 2008. http://archiv.
tu-chemnitz.de/pub/2008/0062.

25


http://archiv.tu-chemnitz.de/pub/2008/0062
http://archiv.tu-chemnitz.de/pub/2008/0062

	Introduction
	Regularity results
	Discretization
	Properties of the operator a
	Proof of the supercloseness of Rhu and u
	Numerical test

