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1 Introduction

The present paper is concerned with the study of the behaviour of three-dimensional elastic
fields satisfying Dirichlet boundary conditions near the vertex of a polyhedral cone. It is
well known, that stress singularities can arise in the neighborhood of the vertex [9, 33, 39].
The detailed knowledge of the singular terms of the elastic fields is of interest, e. g., in
crack mechanics where the intersection of crack fronts or notches with the surface of the
body generates vertices. Moreover, in computational mechanics, the lack of regularity near
edges or corners demands modified discretization procedures. Our goals are to describe a
mathematical method which leads to an efficient computation of the vertex singularities in
very general situations, to derive error estimates for finite element solutions and to present
numerical results.

Writing the boundary value problems in spherical coordinates (r, ϕ, θ) centered in the
vertex of the cone and using the Mellin-transformation (r∂r → α) we get a parameter-
depending boundary value problem Ac(α)u = F in a curved polygon Ω̃ ⊂ S2 on the unit
sphere S2 ⊂

� 3 . The eigenvalues αi and the eigensolutions u(αi; ·) of the operator pencil
Ac(·) generate the singular terms of the elastic fields near the vertex. They have the form
(here written without logarithmic terms)

∑

i

cir
αiu(αi; ϕ, θ).

In order to solve this generalized eigenvalue problem efficiently we formulate a modified
quadratic eigenvalue problem by introducing the parameter λ = α + 1/2 leading to an
eigenvalue problem with a symmetric distribution of the eigenvalues. It reads in the weak
formulation: Find λ ∈ � and u ∈ V \ {0} such that

k(u, v) = λ g(u, v) + λ2 m(u, v) ∀v ∈ V (1)

with self-adjoint, positive definite forms k(·, ·) and m(·, ·) and a skew-Hermitean form
g(·, ·). By V we denote a complex Hilbert space of vector functions defined on Ω̃. For the
numerical solution we construct a finite element subspace Vh ⊂ V and look for the finite
element solution of problem (1): Find λh ∈ � and uh ∈ Vh \ {0} such that

k(uh, vh) = λh g(uh, vh) + λ2
h m(uh, vh) ∀vh ∈ Vh. (2)

This approach is widely used in the engineering literature [27, 45]. Modern methods to
solve the algebraic eigenvalue problem (2) by exploiting the structure can be found, for
example, in [3, 7, 37].

The main interest of the current paper is to investigate the finite element errors |λ−λh|
and ‖u−uh‖V . The particular difficulty is that the domain Ω̃ has, in general, corners such
that the eigenfunctions are not smooth. In Section 2, we formulate the quadratic boundary-
eigenvalue problems at the sphere. They are related to the three-dimensional boundary
value problems for the elasticity operator. Furthermore, we define Hilbert spaces on the
spherical domain Ω̃, sesquilinear forms and formulate the modified variational quadratic
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eigenvalue problem with the parameter λ. We also describe basic properties of the sesquilin-
ear forms. In Section 3, we introduce more notation and derive regularity results for eigen-
solutions of two related operator pencils. These results are in principle well known but
here we need modified statements which are necessary for the proof of the approximation
results.

Section 4 is devoted to error estimates for the approximate eigenvalue problem. We
start with some general approximation results in Subsection 4.1. Then we introduce graded
meshes which are appropriate for the approximation of the eigenfunctions with piecewise
linear finite elements. In order to get approximation error estimates some non-standard
local interpolation error estimates are proved in Subsection 4.3. The main challenge lay in
the use of appropriate weighted Sobolev spaces due to the transformation of the eigenvalue
problem from the sphere into the plane parameter domain and due to the reduced regularity
of the eigenfunctions. Together with the abstract results of Subsection 4.1 we conclude
approximation error estimates for the eigenvalues and eigenfunctions. The estimates are
optimal only due to the use of the graded meshes. The main result is that an appropriately
calculated approximate eigenvalue λ̂h is second order accurate, |λ − λ̂h| � h2, where h is
the global mesh size which relates to the number N of degrees of freedom by N ∼ h−2.
Numerical results are discussed in Section 5. They confirm the theoretically predicted
convergence orders.

For simplicity we consider Dirichlet boundary conditions; other boundary conditions as
Neumann or mixed boundary conditions can be treated similarly [23].

We use the notation a � b and a ∼ b which means the existence of positive constants
C1 and C2 (which are independent of the discretization parameter h and of the function
under consideration) such that a ≤ C2b and C1b ≤ a ≤ C2b, respectively.

2 Formulation of the eigenvalue problem and review

of known results

2.1 Description of corner singularities by an operator eigenvalue

problem

The equilibrium equations for linear anisotropic fields in a polyhedral domain G read

−
3

∑

j=1

∂jσij = Fi in G, i = 1, 2, 3, (3)

where Fi are given body forces, σ = (σij)
3
i,j=1 is the stress tensor, x = (x1, x2, x3) are

Cartesian coordinates, and ∂j := ∂/∂xj . Denote by U = (U1, U2, U3)
> the displacement

field and by ε(U) = (εln(U))3
l,n=1 the associated linearized strain tensor where εln(U) =
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1
2
(∂lUn + ∂nUl). For small strains, Hooke’s law yields

σij(U) =

3
∑

l,n=1

aijmnεln(U), i, j, l, n = 1, 2, 3. (4)

The elastic moduli aijmn are real valued constants and satisfy the symmetry relations

aijln = alnij = ajiln = aijnl. (5)

The energy conservation law yields a strong ellipticity and boundedness condition for the
corresponding quadratic form

M1

3
∑

i,j=1

|ξij|
2 ≤

3
∑

i,j,l,n=1

aijlnξijξln ≤ M2

3
∑

i,j=1

|ξij|
2 ∀ξij ∈

�
, i, j = 1, 2, 3. (6)

It follows that the elastic matrix A is symmetric and positive definite,

A =

















a1111 a1122 a1133 a1123 a1131 a1112

· a2222 a2233 a2223 a2231 a2212

· · a3333 a3323 a3331 a3312

· · · a2323 a2331 a2312

· · · · a3131 a3112

· · · · · a1212

















. (7)

Inserting (4) into (3), we get the linear elasticity equations −LU = F in G, with
L = D>AD and

D> =





∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0



 . (8)

In the following we will study the homogeneous Dirichlet problem

−LU = F in G, U = 0 on ∂G.

The variational formulation of the problem is to find U ∈
o

W 1, 2(G)3 for given F ∈ L2(G)3

such that
∫

G

ADU · DV dx =

∫

G

F · V dx ∀v ∈
o

W 1, 2(G)3, (9)

with A and D from (7) and (8), respectively.
The behaviour of elastic fields near vertices of the polyhedron G can be locally inves-

tigated by means of a partition of unity. Therefore we can consider the problem in an
infinite cone K ⊂ R3 with vertex O at the origin, i. e.

K = {x ∈
� 3 : 0 < |x| < ∞, x/|x| ∈ Ω̃}, (10)
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where Ω̃ is a subdomain of the unit sphere S2 ⊂
� 3 with Lipschitz boundary ∂Ω̃. We

introduce spherical coordinates (r, ϕ, θ) centered in O. Vertex singularities are searched in
the form

rαu(α; ϕ, θ). (11)

The functions (11) have to be a solution of the homogeneous system

LU = 0 in K, U = 0 on ∂K.

In other words, u(α; ·) is solution of

Ac(α)u(α; ·) = 0 in Ω̃ × ∂Ω̃, (12)

where Ac(α) is the operator pencil which is obtained by inserting (11) into our homogeneous
problem in the cone K and using the Mellin transform

u(α; ϕ, θ) :=

∫ ∞

0

r−αU(r, ϕ, θ)
dr

r
,

which maps r∂r into the complex parameter α, ∂r := ∂/∂r. We will discuss this in more
detail in Subsection 3.2. The problem (12) is a quadratic eigenvalue problem which has a
finite number of eigenvalues in any strip c1 ≤ Re α ≤ c2. The set of these eigenvalues is
discrete, see also Subsection 3.3 below.

2.2 Function spaces and weak formulation of the problem

For the weak formulation of the quadratic eigenvalue problem (12) we introduce now appro-
priate function spaces. We consider Ω̃ ⊂ S2 in spherical coordinates (ϕ, θ) and Cartesian
coordinates x = (x1, x2, x3) = (cos ϕ sin θ, sin ϕ sin θ, cos θ), and denote by Ω ⊂

� 2 the
corresponding domain in the parameter plane,

Ω̃ = {(cos ϕ sin θ, sin ϕ sin θ, cos θ) ∈
� 3 : (ϕ, θ) ∈ Ω}.

In this sense we write v(ϕ, θ) = ṽ(cos ϕ sin θ, sin ϕ sin θ, cos θ). We also use two different
norm symbols to define the complex Lebesgue space L2,

‖ṽ‖2
0,Ω̃

:=

∫

Ω̃

|ṽ|2 dS, |[v]|20,Ω :=

∫

Ω

|v|2 dω, dω := sin θ dθ dϕ.

Moreover, let W 1,2 and W 2,2 be the complex Sobolev spaces endowed with the norms
(expressed in the parameter domain Ω)

|[v]|2k,Ω := |[v]|20,Ω +
k

∑

j=1

[v]2j,Ω, k = 1, 2,

[v]21,Ω :=

∫

Ω

(

∣

∣sin−1θ ∂ϕv
∣

∣

2
+ |∂θv|

2
)

dω,

[v]22,Ω :=

∫

Ω

(

∣

∣sin−2θ ∂ϕϕv
∣

∣

2
+

∣

∣sin−1θ ∂ϕθv
∣

∣

2
+ |∂θθv|

2
)

dω,
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where ∂θ := ∂/∂θ, ∂ϕ := ∂/∂ϕ, ∂θθ = ∂θ∂θ etc. Note that in this setting ‖ṽ‖0,Ω̃ = |[v]|0,Ω,
|ṽ|1,Ω̃ = [v]1,Ω, but |ṽ|2,Ω̃ 6= [v]2,Ω, only |ṽ|2,Ω̃ � [v]2,Ω. This is, however, sufficient for our
purposes.

The usual norm symbols are used in connection with the parameter domain Ω in Sub-
section 4.3

‖v‖2
k,Ω :=

k
∑

j=0

|v|2j,Ω, |v|2k,Ω :=
∑

i+j=k

∫

Ω

∣

∣∂i
ϕ∂j

θv
∣

∣

2
dθ dϕ.

The same symbols, ‖ · ‖ and |[ · ]|, are used for the norms/seminorms of vector functions
v = (v1, v2, v3)

>. The square of the (semi-)norm of a vector function is defined as the sum
of the squares of the (semi-)norms of its components.

By
o

W 1, 2(Ω̃) we denote the space of W 1,2(Ω̃) functions vanishing on Γ̃ = ∂Ω̃. Further-

more, we define the spaces H := L2(Ω̃)3 and V :=
o

W 1, 2(Ω̃)3 of complex vector functions

and identify them with the corresponding spaces L2(Ω)3 and
o

W 1, 2(Ω)3, respectively. These
spaces are equipped with the norms

‖v‖H := |[v]|0,Ω, ‖v‖V :=
(

|[v]|20,Ω + 1
4
[v]21,Ω

)1/2
.

The factor 1
4

is used in order to underline that the constants M1 and M2 in Lemma 1 below
are just the constants in relation (6).

The weak formulation of problem (12) is derived, e. g., in [26] by inserting the ansatz
(11) into (9). For presenting the result, we introduce some abbreviating notation. We

define for u ∈
o

W 1, 2(Ω)

ej(u) := −1
2
Aju + Bj∂θu + Cj∂ϕu, sj(u) := Aju, j = 1, 2, 3,

where
A1 := cos ϕ sin θ, B1 := cos ϕ cos θ, C1 := − sin ϕ/ sin θ,
A2 := sin ϕ sin θ, B2 := sin ϕ cos θ, C2 := cos ϕ/ sin θ,
A3 := cos θ, B3 := − sin θ, C3 := 0.

The corresponding vector functions A, B, and C arise in the representation of the nabla
operator (∂1, ∂2, ∂3)

> in spherical coordinates after setting r = 1. Now we introduce the
mappings k : V × V → � , m : H × H → � , d : H × V → � , and g : V × V → � ,

k(u, v) :=
3

∑

i,j,l,n=1

∫

Ω

aijlnej(ui)en(vl) dω,

m(u, v) :=
3

∑

i,j,l,n=1

∫

Ω

aijlnsj(ui)sn(vl) dω,

d(u, v) :=
3

∑

i,j,l,n=1

∫

Ω

aijlnsj(ui)en(vl) dω,

g(u, v) := d(v, u) − d(u, v).



6 3 Two related eigenvalue problems in infinite dimensional spaces

The eigenvalue problem reads: Find α ∈ � and u ∈ V \ {0} such that

0 = α(α + 1) m(u, v) − (α + 1) d(u, v) + α d(v, u) +

+1
4

m(u, v) + 1
2

d(u, v) + 1
2

d(v, u) ∀v ∈ V.

Since the eigenvalues α of the generalized eigenvalue problem (12) are distributed symmet-
rically with respect to the line Reα = −1/2 (we will see this in Theorem 10, page 13), we
introduce the new parameter

λ = α + 1/2. (13)

Then the weak formulation of the transformed eigenvalue problem is much simpler and
reads: Find λ ∈ � and u ∈ V \ {0} such that

k(u, v) = λ g(u, v) + λ2 m(u, v) ∀v ∈ V. (14)

The number λ is called eigenvalue of problem (14), and the vector function u is called
eigenelement corresponding to λ.

Lemma 1 The sesquilinear forms k and m are Hermitean, the form g is skew-Hermitean,

k(u, v) = k(v, u) ∀u, v ∈ V,

g(u, v) = −g(v, u) ∀u, v ∈ V,

m(u, v) = m(v, u) ∀u, v ∈ H.

Moreover, the ellipticity and boundedness properties

M1‖u‖
2
V ≤ k(u, u) ≤ M2‖u‖

2
V ∀u ∈ V,

M1‖u‖
2
H ≤ m(u, u) ≤ M2‖u‖

2
H ∀u ∈ H,

|g(u, u)| ≤ 2
√

k(u, u)
√

m(u, u) ∀u ∈ V,

|d(u, v)| ≤
√

m(u, u)
√

k(v, v) ∀u ∈ H, v ∈ V,

hold.

Proof The properties follow from the definitions of the sesquilinear forms, the symmetry
assumptions (5) and the ellipticity and boundedness assumptions (6) on the coefficients
aijln, i, j, l, n = 1, 2, 3. 2

3 Two related eigenvalue problems in infinite dimen-

sional spaces

3.1 Notation for operator eigenvalue problems

In this section we recall notation for general eigenvalue problems which will be used in two
different cases in Subsections 3.2 and 3.3.
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Let A(α) : X → Y be an operator pencil (operator function) mapping, for fixed α ∈ � ,
the Banach space X into the Banach space Y. Thus we have A : � → L(X, Y ). In this
paper we specifically assume that A is quadratic in α. A set

σ(A) ⊂ �

is called the spectrum of A(·) if for α ∈ σ(A) there is no bounded inverse operator
(A(α))−1 : Y → X. The number α0 is called eigenvalue of A(·), if there exists an el-
ement u(α0; ·) ∈ X \ {0} such that A(α0)u(α0; ·) = 0. This element u(α0; ·) is called
eigenelement of the operator pencil A(·) corresponding to α0. Shortly, we say (α0, u(α0; ·))
is an eigenpair. The set

U(A, α0) := {u(α0; ·) : A(α0)u(α0; ·) = 0} ∪ {0}

is a closed subspace in X, which is called the eigensubspace of the operator pencil A(·)
corresponding to α0. The dimension

n(A, α0) := dim U(A, α0)

of this subspace is called the geometric multiplicity of the eigenvalue α0.
A set of elements u0, u1, . . ., uk−1, is called Jordan chain of the length k of A(·) at α0

if the following relations hold:

A(α0) u0 = 0,

A(α0) u1 + A′(α0) u0 = 0, (15)

A(α0) ui + A′(α0) ui−1 + 1
2
A′′(α0) ui−2 = 0, i = 2, 3, . . . , k − 1.

The elements u0 = u0(α0; ·), u1 = u1(α0; ·), . . ., uk−1 = uk−1(α0; ·), of any Jordan chain of
the operator pencil A(·) at α0 are called generalized eigenelements corresponding to α0.
The closed linear hull of all the generalized eigenelements of A(·) at α0 is called generalized
eigensubspace

W (A, α0) (16)

of A(·) at α0. The maximal length of Jordan chains beginning with u0 ∈ U(A, α0) is called
order

ν(A, u0)

of the eigenelement u0. Different eigenelements to the same eigenvalue α0 may have differ-
ent orders, therefore we introduce by

� (A, α0) = max
u∈U(A,α0)\{0}

ν(A, u)

the maximal order of generalized eigenelements corresponding to α0.
A system of eigenelements u0

1, u0
2, . . ., u0

l , from U(A, α0) is a canonical basis of eigenele-
ments of A(·) at α0 if

ν(A, u0
1) = � (A, α0)
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and u0
i , 2 ≤ i ≤ l, is an eigenelement of the maximal possible order belonging to some

direct complement Mi in U(A, α0) to the linear hull L(u0
1, . . . , u

0
i−1) of the eigenelements

u0
1, . . . , u

0
i−1, i. e.

ν(A, u0
i ) = max

u∈Mi\{0}
ν(A, u), i = 2, 3, . . . , l.

The vector (ν1, ν2, . . . , νl) with νi = ν(A, u0
i ), i = 1, 2, . . . , l, is the same for every canonical

basis of eigenelements. The number

µ(A, α0) = ν1 + ν2 + . . . + νl

is called algebraic multiplicity of the eigenvalue α0. If the algebraic multiplicity of an
eigenvalue α0 exceeds it geometric multiplicity, the eigenvalue α0 is called defective. In the
other case, where no generalized eigenelements exist, it is called non-defective.

Remark 2 Consider generalized eigenelements u0 = u0(α0; ·), u1 = u1(α0; ·), . . . , uk−1 =
uk−1(α0; ·) of Ac(.) at α0. They are also generalized eigenelements of the weakly formulated
eigenvalue problem (14) to some eigenvalue λ0 = α0+

1
2

and satisfy the following variational
equations,

k(u0, v) − λ0 g(u0, v) − λ2
0 m(u0, v) = 0 ∀v ∈ V,

k(u1, v) − λ0 g(u1, v) − λ2
0 m(u1, v) = g(u0, v) + 2λ0 m(u0, v) ∀v ∈ V,

k(ui, v) − λ0 g(ui, v) − λ2
0 m(ui, v) = g(ui−1, v) + 2λ0 m(ui−1, v) + m(ui−2, v) ∀v ∈ V,

i = 2, 3, . . . , k − 1.

3.2 Regularity of the eigenfunctions of the operator pencil Ac(α)

First, we consider the operator pencil

Ac(α) :
o

W 1, 2(Ω̃)3 → W−1,2(Ω̃)3 (17)

defined by (12). Let us assume that Ω̃ ⊂ S2 is a smooth domain. The function ũ(α; ·) is
solution of the eigenvalue problem (12),

Ac(α)ũ(α; ·) = 0 in Ω̃ × ∂Ω̃.

For every fixed α this equation describes an elliptic boundary value problem [22, page 98].
Therefore one can conclude: if a nontrivial eigensolution ũ0(α; ·) = ũ0(λ − 1

2
; ·) ∈ X =

o
W 1, 2(Ω̃)3 of Ac(·) exists, then it belongs to W 2,2(Ω̃)3 and

[u(α; ·)]2,Ω � |ũ(α; ·)|2,Ω̃ < ∞.

The regularity of generalized eigenfunctions, given by the relation (15) can be derived
successively: Since ũ0 = ũ(α; ·) ∈ W 2,2(Ω̃)3 it follows from the second equation Ac(α)ũ1 =

−A′
c(α)ũ0 ∈ L2(Ω̃)3 and therefore ũ1 = ũ1(α, ·) ∈

o
W 1, 2(Ω̃)3 belongs to W 2,2(Ω̃)3. The

third equation implies ũ2(α, ·) ∈ W 2,2(Ω̃)3. Continuing this procedure we get:
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(0, 0, 0)

x1

x2

x3

Pe

VPe

Ve

e

Figure 1: Vertex with one edge

Lemma 3 If Ω̃ ⊂ S2 is a smooth domain then the generalized eigenelements ũi(α, ·) ∈
o

W 1, 2(Ω̃)3, i = 0, 1, . . . , k − 1, are contained in W 2,2(Ω̃)3.

In the case of a polyhedral vertex, the above operator pencil Ac(α) is also defined on
o

W 1, 2(Ω̃)3, see (17). Since Ω̃ has corner points (generated by the edges of the domain G),
we cannot conclude in general that the generalized eigenelements ui(α; ·) ∈ W 2,2(Ω̃)3 and
we have to analyze the influence of the corners on the asymptotic behaviour carefully. We
follow here a paper of Dauge [11], where the corner-edge asymptotics is studied. The main
idea is to introduce special fitted spherical coordinates which allow to couple the edge
and corner singularities easily. We underline, that these special coordinates have auxiliary
character and that the final results are independent of them.

Since singularities are of local nature we can assume, without loss of generality, that
∂Ω̃ is smooth, except in one angular point Pe = (0, 0, 1), Thus, the infinite cone K, see
(10), with the vertex c = (0, 0, 0) has one edge e only which coincides with the half-line
{(0, 0, z), z > 0}. Besides the Cartesian coordinates x = (x1, x2, x3) we introduce cylindri-
cal coordinates (%, ϕ, z) with % = (x2

1 + x2
2)

1/2. We assume that in a conical neighborhood
Ve of the edge e the cone K coincides with a wedge W (see Figure 1),

W = {(%, ϕ, z) : % > 0, 0 < ϕ < ω0, z ∈
�
}.
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Now, we introduce special spherical coordinates (r, X), where r = (x2
1 + x2

2 + x2
3)

1/2 and X
denotes a coordinate system at the sphere S2 such that X = (X1, X2) with X1 = x1/r =
cos ϕ sin θ and X2 = x2/r = sin ϕ sin θ locally in VPe

= Ve ∩ S2. Note that in VPe

dist(Pe, (X1, X2)) = (X2
1 + X2

2 )1/2 =
%

r
= sin θ =: Re. (18)

We adapt the definition of the vertex-operator pencil (12) to the new spherical coor-
dinates and introduce an edge-operator correspondingly. To this aim we write the linear
elasticity operator L, introduced in Section 2, as

L = L(∂1, ∂2, ∂3) = r−2Lc(X1, X2, r∂r, ∂X1 , ∂X2)

Applying the Mellin transformation with respect to r we get the vertex-operator pencil

Ac(αc) :
o

W 1, 2(Ω̃)3 → W−1,2(Ω̃)3,

Ac(αc) := Lc(X1, X2, αc, ∂X1 , ∂X2).

We denote by C[− 1
2
, 1
2
) the set of eigenvalues of Ac(·) in the strip −1

2
≤ Re αc < 1

2
and by

uc(αc; ·) the corresponding eigensolutions.
The edge singularities are generated by the non-tangential (non-tangential to the edge)

part of the operator L. Thus we remove the derivatives ∂3 in L and define

Le(∂1, ∂2) := L(∂1, ∂2, 0).

Writing this operator in polar coordinates (%, ϕ) we have

Le(∂1, ∂2) = %−2Le(ϕ, %∂%, ∂ϕ)

and after the Mellin transform with respect to %

Ae(αe) := Le(ϕ, αe, ∂ϕ).

Let be E[0,1) the set of eigenvalues of Ae(·) in the strip 0 ≤ Re αe < 1 and Φe(αe; ·) the
corresponding eigensolutions.

Now we are in position to formulate the regularity results for the eigenfunctions uc(αc; ·).

Theorem 4 [10, 35, 39, 40] Assume for simplicity that the eigenvalues in C[− 1
2
, 1
2
) and

E[0,1) are non-defective. Then the weak solution U ∈
o

W 1, 2(G)3 of (9) admits the following
decomposition in the vicinity of the vertex c:

U =
∑

αc∈C[− 1
2 , 12 )

Cαc
rαcuc(αc; X1, X2) + urem,c, (19)

where Cαc
are constants,

uc(αc; X1, X2) =
∑

αe∈E[0,1)

Cαe
(αc)R

αe

e Φe(αe; ϕ) + urem,e(αc), (20)
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and urem,c is a remainder depending on the edge singularities,

urem,c =
∑

αe∈E[0,1)

dαe
(x3, r)%

αeΦe(αe; ϕ) + urem,c,e(αc). (21)

Here, Re := sin θ, Cαc
and Cαe

(αc) are constants, dαe
are functions, and urem,e(αc),

urem,c,e(αc) are regular remainders.

Remark 5 If we admitted defective eigenvalues in C[− 1
2
, 1
2
) and E[0,1), then there would

occur Jordan chains of Ac and Ae together with logarithmic terms of r, Re, and % in the
expansions (19), (20), and (21) [8, 34, 36, 39].

Consider now a polyhedral cone K, see (10). We denote by E the set of edges for which
the set of eigenvalues E[1,0) is not empty. Since corner and edge singularities are of local

nature we see from (20) that the eigenfunctions uc behave like Rαe
e in the neighborhood Ñe

of a corner Pe of Ω̃ for e ∈ E . Here, αe is the minimal element in the corresponding set E[0,1).
In the parameter domain we introduce the weighted Sobolev space V 2

β (Ω), β = (βe)e∈E , via

the norm ||| · |||2,β,Ω which locally in Ne (Ne ⊂ Ω corresponds to Ñe ⊂ Ω̃) is given by

||| v |||2,βe,Ne
∼ [Rβe

e v]2,Ne
, for all e ∈ E ,

||| v |||2,βe,Ω\ � e∈E
Ne

∼ |[v]|2,Ω\ � e∈E
Ne

,
(22)

where βe ∈ (1 − Re αe, 1) is arbitrary.

Corollary 6 The eigenfunction uc(αc; ·) with respect to some eigenvalue αc ∈ C[− 1
2
, 1
2
) of

Ac(·) belongs to V 2
β (Ω)3, with entries βe ∈ (1−Re αe, 1) of β. That means, the correspond-

ing norm is bounded, ||| uc |||2,β,Ω < ∞.

Proof Let Pe be a corner which is described in the parameter plane by (ϕ0, θ0). Assume
first that θ0 6∈ {0, π}. From (20) we find that the exponent of Re of the expansion of Rβe

e uc

is βe + Re αe > 1, therefore

[Rβe

e uc]2,Ne
� |Rβe

e ũc|2,Ñe
< ∞.

If θ0 = 0 then Re = sin θ ∼ θ and we obtain

[θβeuc]2,Ne
< ∞

by direct calculation. The case θ0 = π can be treated analogously by using Re = sin(π−θ).
2

We end this section by citing some results about the distribution of the eigenvalues
which are of interest in the context of our work.
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Lemma 7 Let be K = {(x1, x2, x3) : x3 > f(x1, x2)} where f is a continuous and positively
homogeneous function of degree 1, i. e., f(ax1, ax2) = af(x1, x2) for all a > 0.

(i) Then the strip
∣

∣Re αc + 1
2

∣

∣ < 1
2

does not contain eigenvalues of the pencil Ac(αc) [23,
Theorem 11.2.2, page 353].

(ii) If the restriction of f to the sphere S1 = {(x1, x2) : x2
1+x2

2 = 1} belongs to the Sobolev
space W 1,2(S1), then the strip

∣

∣Re αc + 1
2

∣

∣ ≤ 1
2

has no eigenvalues of the pencil Ac(αc)
[23, Theorem 11.3.3, page 364].

(iii) If N edges with the opening angles ϕj, j = 1 . . . N , meet in the vertex c, ϕj ∈ (0, π)
for j = 2, . . . , N and ϕ1 ∈ (0, 2π], then the strip

∣

∣Re αc + 1
2

∣

∣ ≤ 1 is free of eigenvalues
of the pencil Ac(αc) [23, Theorem 11.4.1, page 367].

There are also results on the distribution of the eigenvalues of the pencil Ae(αe).

Lemma 8 [23, Theorem 8.6.2, page 286, and Theorem 11.2.2, page 353] Let be

K = {(x1, x2) : 0 < (x2
1 + x2

2)
1/2 < ∞, 0 < arctan

x2

x1

< ω0}.

(i) If ω0 ∈ (0, π), then the strip |Reαe| ≤ 1 does not contain eigenvalues of the pencil
Ae(αe) [23, Theorem 8.6.2, page 286].

(ii) If ω0 ∈ (π, 2π), then the strip 0 < Re αe ≤ 1 contains exactly 2 eigenvalues (counting
multiplicity) of the pencil Ae(αe) [23, Theorem 8.6.2, page 286].

(iii) If ω0 = π or ω0 = 2π, then in the half plane Reαe > 0 the only eigenvalues αe,k = k
or αe,k = k

2
, respectively, occur with two linearly independent eigensolutions (no

associated eigenfunctions exist) [23, Section 8.6.2, pages 284f.].

(iv) The strip |Reαe| < 1
2

is free of eigenvalues of the pencil Ae(αe) [23, Theorem 11.2.2,
page 353].

3.3 Regularity of the eigenfunctions of the operator pencil B(λ)

In the previous section we reviewed regularity results for the eigenfunctions of the operator

Ac(α) : V → V ′, V =
o

W 1, 2(Ω)3 which is the typical setting in the corresponding literature.
For the investigation of our discretization, however, we will use the operator pencil

B(λ) = J−1Ac(λ − 1/2),

where J is the isometry from V onto V ′ defined by

k(u, v) = (Ju, v)H ∀u, v ∈ V,
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H := L2(Ω)3 as above. In this section we describe properties of the operator pencil B(λ)
and its adjoint which we will apply to formulate general spectral approximation results in
the next section.

We come back to the weak eigenvalue problem (14) which is basic for the discretization.
We introduce the operators M : V → V and D : V → V by the relations

Mu ∈ V, k(Mu, v) = m(u, v) ∀v ∈ V,
Du ∈ V, k(Du, v) = d(u, v) ∀v ∈ V.

The adjoint operator D∗ : V → V is defined by the equality

k(Du, v) = k(u,D∗v) ∀u, v ∈ V.

We set G = D∗ −D and introduce the operator pencil B(·) : � → L(V, V ) by

B(λ) = I − λG − λ2 M, λ ∈ � .

The variational eigenvalue problem (14) is then equivalent to the eigenvalue problem for
the operator pencil B(·): Find λ ∈ � , u ∈ V \ {0}, such that

B(λ)u = 0.

Moreover, we define the operators G∗ and M∗ analogously to D∗ and introduce the
operator pencil B∗(·) by the equality

B∗(λ) = [B(λ)]∗, λ ∈ � .

Now, we investigate the spectral properties of the operator pencil B(·) on the basis of
classical results from the spectral theory of operator pencils, see, for example, [24, 25, 30,

46]. First, from Lemma 1 and the compact embedding V
c

↪→ H, where H = L2(Ω)3, see
Subsection 2.2, we obtain the following lemma which then implies Theorem 10.

Lemma 9 The operators G : V → V , M : V → V , D : V → V , D∗ : V → V , are compact
and M∗ = M, G∗ = −G.

Theorem 10 The spectrum σ(B) of problem (14) consists of isolated eigenvalues with
finite algebraic multiplicities and with the only one possible accumulation point at infinity.
If λ0 is an eigenvalue of problem (14) then so are −λ0, λ0 and −λ0.

Proof Since λ = 0 is a regular value of the operator pencil B(λ) = I −λG−λ2 M, λ ∈ � ,
with compact operators G and M, the assertions follow from [26, 30]. 2

Lemma 11 B∗ and B are also related by B∗(λ) = B(−λ) for λ ∈ � .
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Proof The assertion follows from the definition and the properties of B, G and M:

k(B(λ)u, v) = k((I − λG − λ2M)u, v) = k(u, (I − λG∗ − λ
2
M∗)v)

= k(u, (I − (−λ)G − (−λ)2 M)v) = k(u,B(−λ)v) = k(u,B∗(λ)v)

for u, v ∈ V , λ ∈ � . 2

Now, we consider the adjoint eigenvalue problem: Find λ ∈ � , u ∈ V \ {0}, such that
B∗(λ)u = 0. By using Lemma 11, its variational form reads: Find λ ∈ � , u ∈ V \ {0},
such that

k(u, v) = −λ g(u, v) + λ
2
m(u, v) ∀v ∈ V.

Theorem 12 The spectra of B and B∗ coincide,

σ(B) = σ(B∗),

and for any eigenvalue λ0 ∈ σ(B) the maximal order of generalized eigenelements, � ,
the geometric multiplicity, n, and the algebraic multiplicity, µ, are finite and equal for B
and B∗:

� (B, λ0) = � (B∗, λ0) < ∞,

n(B, λ0) = n(B∗, λ0) < ∞,

µ(B, λ0) = µ(B∗, λ0) < ∞.

Proof These results follow, for example, from [16, 24, 25, 29, 31, 46]. 2

We use now the regularity results for the Jordan chains of the operator Ac in order to
clarify the smoothness of the generalized eigenfunctions of the operators B and B∗. The
definition of these generalized eigenfunctions was already given in Remark 2 on page 8.
Note that the operator pencils Ac(α) : V → V ′ and B(λ) : V → V are closely connected
via λ = α + 1

2
and the Riesz representation theorem.

Lemma 13 The generalized eigenelements of the operator pencil B(·) at λ and of the
operator pencil B∗(·) at −λ, respectively, belong to V 2

β (Ω)3, with entries βe ∈ (1−Re αe, 1)
of β. Moreover, for an eigenpair (λ, u(λ; ·)) of B(·) or B∗(·) the estimate

||| u(λ; ·) |||2,β,Ω ≤ C
(

|λ|2|[u(λ; ·)]|0,Ω + |λ||[u(λ; ·)]|1,Ω

)

(23)

holds with a constant C independent of λ and u(λ; ·).

Proof For simplicity, we consider again the case of non-defective eigenvalues αc ∈ C[− 1
2
, 1
2
)

and αe ∈ E[0,1). Setting αc = λc −
1
2
, formulae (19) and (20) describe the behaviour of the

eigensolutions u(λ; ·) of the operator pencil B. As in the proof of Corollary 6 we find that
||| u(λ; ·) |||2,β,Ω < ∞. Using the definition of the generalized eigenfunctions, see Remark 2,
recurrently, we get analogous results for the generalized eigenfunctions.
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Now we pass to the estimate (23). For a fixed eigenpair (λ, u(λ; ·)) we have

k(u(λ; ·), v(·)) = λg(u(λ; ·), v(·)) + λ2m(u(λ; ·), v(·)) ∀v ∈ V.

Since u(λ; ·) ∈ V 2
β (Ω)3 for βe ∈ (1 − Re αe, 1) this weakly formulated V -elliptic boundary

value problem is equivalent to a classical one,

K2u(λ; ·) = λ K1u(λ; ·) + λ2 K0u(λ; ·) in Ω̃, u(λ; ·) = 0 on ∂Ω̃,

where Ki are differential operators of the order i. Due to the well known a-priori estimates
for elliptic boundary value problems in weighted spaces [21] the estimate

||| u(λ; ·) |||2,β,Ω ≤ C |[λ K1u(λ; ·) + λ2 K0u(λ; ·)]|0,Ω

≤ C
(

|λ||[u(λ; ·)]|1,Ω + |λ|2|[u(λ; ·)]|0,Ω

)

follows.
We have seen that the regularity of the eigenfunctions u(λ; ·) of B(·) is dominated by

the geometry of the spherical cone, that means, by the eigenvalues αe ∈ E[0,1). Therefore,
the arguments for the derivation of the estimate (23) can be repeated for an arbitrary
eigenvalue λ.

Since B∗(−λ) = B(λ) : V → V , the regularity results are valid for the generalized
eigenelements of B∗, too. 2

4 The approximate eigenvalue problem

4.1 General spectral approximation results

In this subsection we review approximation results taken from the papers of Karma [18,
19, 20].

Let Vh ⊂ V be given finite-dimensional subspaces such that for any v ∈ V

εh(v) := inf
vh∈Vh

‖v − vh‖V → 0 for h → 0. (24)

Problem (14) is approximated by the following finite-dimensional problem: Find λh ∈ � ,
uh ∈ Vh \ {0}, such that

k(uh, vh) = λh g(uh, vh) + λ2
h m(uh, vh) ∀vh ∈ Vh. (25)

The number λh is called approximate eigenvalue and the vector function uh is called
eigenelement corresponding to λh.

We define the projection operator Ph : V → Vh by

Phu ∈ Vh, k(Phu, vh) = k(u, vh) ∀vh ∈ Vh, u ∈ V,
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set Gh = PhG, Mh = PhM, Dh = PhD and introduce in analogy to Subsection 3.3 the
operator pencil Bh(·) by the formula Bh(λ) = I−λGh−λ2 Mh, λ ∈ � . Then the variational
eigenvalue problem (25) is equivalent to: Find λh ∈ � , uh ∈ Vh \ {0}, such that

Bh(λh)uh = 0.

Lemma 14 The operator Ph : V → Vh is a self-adjoint projector with

‖u − Phu‖V ≤

√

M2

M1

εh(u) ∀u ∈ V,

where M1 and M2 are the constants from (6).

Proof These results follow from the projection property of Ph and the properties of the
sesquilinear form k(., .) given in Lemma 1. 2

Now, let us formulate properties of the operators Gh, Mh, Dh, Bh(·) analogously to the
properties described in Subsection 3.3 for the infinite-dimensional case.

Lemma 15 The operators Gh : Vh → Vh, Mh : Vh → Vh, Dh : Vh → Vh, D
∗
h : Vh → Vh are

compact and M∗
h = Mh, G

∗
h = −Gh.

Lemma 16 B∗
h and Bh are related by B∗

h(λ) = Bh(−λ) for λ ∈ � .

Theorem 17 The spectrum σ(Bh) of problem (25) consists of isolated eigenvalues with
finite algebraic multiplicities. If λh is an eigenvalue of problem (25) then so are −λh, λh

and −λh.

For λ0 ∈ σ(B) we define

εh = max
v∈W (B,λ0),‖v‖V =1

εh(v), ε∗h = max
v∈W (B∗,λ0),‖v‖V =1

εh(v), (26)

where W (B, λ0) is the generalized eigensubspace, see (16).

Theorem 18 Let λ0 be an eigenvalue of problem (14) with maximal order � = � (B, λ0)
of generalized eigenelements. Then there exists a sequence λh of eigenvalues of problem
(25), λh ∈ σ(Bh), such that λh → λ0 as h → 0 and for sufficiently small h the following
error estimate is valid:

|λh − λ0| � (εhε
∗
h)

1/ � .

Proof The error estimate follows from classical results [18] and Lemmata 9 and 14. 2

In the case � ≥ 2 the estimate can be improved when the arithmetic mean of the
approximate eigenvalues is considered.
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Figure 2: Illustration of different cases of triangles

Theorem 19 Let λ0 be an eigenvalue of problem (14) with algebraic multiplicity µ =
µ(B, λ0). Then there exist sequences λh

i ∈ σ(Bh), i = 1, 2, . . . , µ, of eigenvalues of problem
(25), counted according to the algebraic multiplicity, such that λh

i → λ0 as h → 0. For

λ̂h =
1

µ

µ
∑

i=1

λh
i

and sufficiently small h the following error estimate is valid:

|λ̂h − λ0| � εhε
∗
h.

Proof With Lemmata 9 and 14 we have proved the assumptions to apply the recent
results of Karma [19, 20]. 2

Theorem 20 Assume that λ0 is an eigenvalue of problem (14) and (λh, uh) are eigenpairs
of problem (25), such that λh → λ0 as h → 0. Then there exists an eigenelement u0 ∈
U(B, λ0) of problem (14) corresponding to λ0 such that for sufficiently small h the following
error estimate holds:

‖uh − u0‖V � εh + (εhε
∗
h)

1/ � .

Proof The error estimate follows from [17, 47], Lemmata 9 and 14 and Theorem 18. 2

4.2 Meshes

In order to describe the meshes we make the simplifying assumption that the domain
Ω̃ ⊂ S2 can be represented, by using a suitable choice of the north pole, by a polygonal
domain Ω in the (ϕ, θ)-plane. Then, we define a family of meshes Th = {T} with the
following properties. For later use we define

θ−,T := inf
(ϕ,θ)∈T

sin θ, θ+,T := sup
(ϕ,θ)∈T

sin θ. (27)

Admissibility We assume that Ω =
⋃

T∈Th
T where the elements T are open triangles.

Any side E of any triangle T is either part of the boundary ∂Ω or side of another
triangle T ′ ∈ Th.
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Aspect ratio For triangles T with θ−,T ≥ θ∗ = const. > 0 we assume that T has bounded
aspect ratio, without further constraints. The diameter of T is denoted by hT . For
an illustration see Figure 2, left hand side.

For θ−,T < θ∗ we assume that two edges of T are parallel to the coordinate axes. Their
lengths are denoted by hϕ,T and hθ,T which can be chosen independently, see also
Figure 2, middle and right. That means the aspect ratio of T may not be bounded
by a constant.

Refinement If Ω̃ is a smooth domain then hT ∼ h for all T ∈ Th, and the aspect ratio of
all elements is bounded.

If Ω̃ is not smooth the mesh is refined in the neighbourhoods of concave corners.
(Due to Lemma 8, part (i), the eigenfunction is regular near corners P̃ with interior
angle ω0 ∈ (0, π).) For each of those corners P = (ϕ0, θ0) the refined mesh is defined
as follows where the parameter β is the corresponding weight exponent as used in
Corollary 6, this means βe ∈ (1 − Re αe, 1).

Case 1, θ0 6∈ {0, π}: The aspect ratio of the elements is bounded and

hT ∼

{

h1/(1−β) if dist (P, T ) = 0,

h [dist (P, T )]β if dist (P, T ) > 0.
(28)

This means that hT ∼ h for dist (P, T ) > C∗ = const.

Case 2, θ0 ∈ {0, π}: The refinement zone is determined by sin θ < θ∗. The elements
might be anisotropic,

hϕ,T ∼ h, (29)

hθ,T ∼

{

h1/(1−β) if θ−,T = 0,

h θβ
−,T if θ−,T > 0.

(30)

The space Vh is introduced by

Vh = {v ∈ V : v|T ∈ (P1)
3 for all T ∈ Th},

where P1 is, as usual, the space of polynomials of maximal degree one. For estimates of the
approximation error of the eigenvalues and eigenfunctions via Theorems 18 – 20 we need
estimates of εh and ε∗h from (26). Since the regularity of the functions from W (B, λ0) and
W (B∗, λ0) is the same, see Lemma 13, we need to estimate εh(u) from (24) for functions
u ∈ V 2

β (Ω). Therefore our aim is to bound ‖u − Ihu‖V where Ih : C(Ω) → Vh is the
interpolation operator with respect to the vertices of the triangulation. We start with
local interpolation error estimates for scalar functions.
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4.3 Local interpolation error estimates

The aim of this subsection is to estimate the interpolation error u− Ihu for scalar u in the
three cases which are indicated in Figure 2. Let us start with the simplest estimate.

Lemma 21 Let T be an isotropic triangle, that means, T has bounded aspect ratio, and
assume that

θ−,T ≥ hT (31)

Then the error estimate

[u − Ihu]m,T � θ−m
−,T h2−m

T [u]2,T , m = 0, 1,

holds when |[u]|2,T < ∞.

Proof By using the results in standard norms we get for m = 0, 1

|[∂m
θ (u − Ihu)]|0,T = ‖ sin1/2θ ∂m

θ (u − Ihu)‖0,T

≤ θ
1/2
+,T‖∂

m
θ (u − Ihu)‖0,T

� θ
1/2
+,T h2−m

T |u|2,T

≤ θ
1/2
+,T θ

−1/2
−,T h2−m

T

(

|[sin−2θ ∂ϕϕu]|20,T + |[sin−1θ ∂ϕθu]|20,T + |[∂θθu]|20,T

)1/2

≤ θ
1/2
+,T θ

−1/2
−,T h2−m

T [u]2,T (32)

We show now that θ+,T /θ−,T ≤ 2. Indeed, by the definition of θ−,T and θ+,T there exist
angles ϑ− and ϑ+ with θ−,T = sin ϑ−, θ+,T = sin ϑ+, and |ϑ+ − ϑ−| ≤ hT . Consequently,
by using (31), we get

θ+,T = sin ϑ+ = sin ϑ− cos(ϑ+ − ϑ−) + cos ϑ− sin(ϑ+ − ϑ−)

= θ−,T

(

cos(ϑ+ − ϑ−) + θ−1
−,T cos ϑ− sin(ϑ+ − ϑ−)

)

≤ 2θ−,T . (33)

Analogously to (32) we show

|[sin−1θ ∂ϕ(u − Ihu)]|0,T = ‖ sin−1/2θ ∂ϕ(u − Ihu)‖0,T

≤ θ
−1/2
−,T ‖∂ϕ(u − Ihu)‖0,T

� θ
−1/2
−,T hT |u|2,T

≤ θ−1
−,T hT [u]2,T . (34)

With (32) – (34) we have proved the lemma. 2

We do not claim that this result is optimal with respect to the dependence of the right
hand side on θ−,T . But this estimate is sufficient for our purposes since we use general
isotropic triangles only in parts of the domain where θ−,T ≥ θ∗ = const. > 0.
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Lemma 22 Let T be an anisotropic triangle with two edges parallel to the coordinate axes,
compare Figure 2, middle. Assume that |[u]|2,T < ∞. Under the assumption θ−,T � hθ,T

the error estimates

|[u − Ihu]|0,T � h2
ϕ,T θ2

−,T |[sin
−2θ ∂ϕϕu]|0,T +

+hϕ,T hθ,T θ−,T |[sin
−1θ ∂ϕθu]|0,T + h2

θ,T |[∂θθu]|0,T ,

|[sin−1θ ∂ϕ(u − Ihu)]|0,T � hϕ,T θ−,T |[sin
−2θ ∂ϕϕu]|0,T + hθ,T |[sin

−1θ ∂ϕθu]|0,T ,

|[∂θ(u − Ihu)]|0,T � hϕ,T θ−,T |[sin
−1θ ∂ϕθu]|0,T + hθ,T |[∂θθu]|0,T

hold.

Proof The proof is analogous to that of Lemma 21. Only, we use the anisotropic error
estimates [2, 4]

‖u − Ihu‖0,T � h2
ϕ,T‖∂ϕϕu‖0,T + hϕ,T hθ,T‖∂ϕθu‖0,T + h2

θ,T‖∂θθu‖0,T ,

‖∂ϕ(u − Ihu)‖0,T � hϕ,T‖∂ϕϕu‖0,T + hθ,T‖∂ϕθu‖0,T ,

‖∂θ(u − Ihu)‖0,T � hϕ,T‖∂ϕθu‖0,T + hθ,T‖∂θθu‖0,T .

For example, the last of the three estimates is obtained as follows:

|[∂θ(u − Ihu)]|0,T = ‖ sin1/2θ ∂θ(u − Ihu)‖0,T

≤ θ
1/2
+,T‖∂θ(u − Ihu)‖0,T

� θ
1/2
+,T (hϕ,T‖∂ϕθu‖0,T + hθ,T‖∂θθu‖0,T )

� θ
1/2
+,T

(

hϕ,Tθ
1/2
+,T |[sin

−1θ ∂ϕθu]|0,T + hθ,T θ
−1/2
−,T |[∂θθu]|0,T

)

= θ
1/2
+,T θ

−1/2
−,T

(

hϕ,T (θ
1/2
+,T θ

−1/2
−,T )θ−,T |[sin

−1θ ∂ϕθu]|0,T + hθ,T |[∂θθu]|0,T

)

.

The arising factors θ
1/2
+,T θ

−1/2
−,T is bounded by a constant as shown in (33). 2

Let S be the union of all elements T with θ−,T = 0. If S is not connected we treat all
simply connected parts of S separately, such that we can assume that

S = (ϕ0, ϕ1) × (0, hθ,S). (35)

Lemma 23 Assume that |[u]|2,S < ∞. Then the interpolation operator Ih is well defined
in S and the estimates

[u − Ihu]m,S � h2−m
θ,S [u]2,S , m = 0, 1,

hold.
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Proof By the mapping ϕ = ϕ̂, θ = hθ,S θ̂ we transform S to Ŝ = (ϕ0, ϕ1) × (0, 1). On Ŝ
we define the weighted Sobolev spaces

Hk
1/2(Ŝ) := {v̂ ∈ D′(Ŝ) : ‖v̂‖k;1/2,Ŝ < ∞}, (36)

‖v̂‖2
k;1/2,Ŝ

:=

k
∑

j=0

|v̂|2
j;1/2,Ŝ

,

|v̂|2
k;1/2,Ŝ

:=
∑

i+j=k

‖θ̂1/2∂i
ϕ̂∂j

θ̂
v̂‖2

0,Ŝ
.

Such spaces were investigated by Mercier and Raugel [38] in the context of a transformation
to polar/cylindrical coordinates. In particular, Theorem 4.7 of that paper states that

H2
1/2(Ŝ) ↪→ C0(Ŝ), that means that

‖û‖
C0(Ŝ)

� ‖û‖2;1/2,Ŝ ≤ |[û]|2,Ŝ.

Consequently, Ih is well defined in S. Moreover,

‖∂m
θ̂

Îhû‖0;1/2,Ŝ � ‖û‖
C0(Ŝ)

‖1‖0;1/2,Ŝ � ‖û‖2;1/2,Ŝ m = 0, 1. (37)

Let us now prove the interpolation error estimate. From [38, Theorem 4.6] we have the
following Deny-Lions type argument,

inf
ŵ∈P1

‖v̂ − ŵ‖2;1/2,Ŝ � |v̂|2;1/2,Ŝ. (38)

Therefore we can use the standard proof for the θ-derivative of the interpolation error. By
transformation to Ŝ and using sin(hθ,S θ̂) ∼ hθ,S θ̂, (37), (38), we get for m = 0, 1,

|[∂m
θ (u − Ihu)]|0,S � h1−m

θ,S ‖∂m
θ̂

(û − Îhû)‖0;1/2,Ŝ

= h1−m
θ,S inf

ŵ∈P1

‖∂m
θ̂

(û − ŵ − Îh(û − ŵ))‖0;1/2,Ŝ

� h1−m
θ,S inf

ŵ∈P1

‖û − ŵ‖2;1/2,Ŝ

� h1−m
θ,S |û|2;1/2,Ŝ

� h2−m
θ,S [u]2,S. (39)

For the estimate of ∂ϕ(u − Ihu) we distinguish in a first step two cases. First, if T is a
triangle with one side E at the ϕ-axis then u is constant on E and ∂ϕIhu = 0 in T , that
means,

|[sin−1θ ∂ϕ(u − Ihu)]|0,T = |[sin−1θ ∂ϕu]|0,T .

In the other case, T is a triangle with one vertex at the ϕ-axis and one edge E parallel to
the ϕ-axis. The equivalence of norms in one-dimensional spaces, the interpolation property
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and the trace theorem yield that

|[sin−1θ ∂ϕIhu]|0,T ∼ |[θ̂−1∂ϕ̂Îhû)]|0;1/2,T̂

∼

∣

∣

∣

∣

∫

Ê

∂ϕ̂Îhû

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ê

∂ϕ̂û

∣

∣

∣

∣

� ‖∂ϕ̂û‖1,T̂

� ‖θ̂−1∂ϕ̂û‖0,T̂ + ‖θ̂−1∂ϕ̂θ̂û‖0,T̂ + ‖θ̂−2∂ϕ̂ϕ̂û‖0,T̂

� |[sin−1θ ∂ϕu]|0,T + hθ,S

(

|[sin−1θ ∂ϕθu]|0,T + |[sin−2θ ∂ϕϕu]|0,T

)

.

Combining the two cases we obtain

|[sin−1θ ∂ϕ(u − Ihu)]|0,S � |[sin−1θ ∂ϕu]|0,S +

+hθ,S

(

|[sin−1θ ∂ϕθu]|0,S + |[sin−2θ ∂ϕϕu]|0,S

)

. (40)

It remains to estimate the first term at the right hand side. Let H1
0 (Ŝ) := {v̂ ∈ H1(Ŝ) :

v̂(ϕ̂, 0) = 0} and note that ∂ϕ̂û ∈ H1
0 (Ŝ). Using [38, Corollary 4.1], namely

‖θ̂−1v̂‖0,Ŝ � |v̂|1,Ŝ ∀v̂ ∈ H1
0 (Ŝ),

we conclude

|[sin−1θ ∂ϕu]|0,S ∼ |[θ̂−1∂ϕ̂û]|0,Ŝ

� ‖θ̂−1∂ϕ̂û‖0,Ŝ

� ‖∂ϕ̂θ̂û‖0,Ŝ + ‖∂ϕ̂ϕ̂û‖0,Ŝ

� ‖θ̂−1∂ϕ̂θ̂û‖0,Ŝ + ‖θ̂−2∂ϕ̂ϕ̂û‖0,Ŝ

� hθ,S

(

|[sin−1θ ∂ϕθu]|0,S + |[sin−2θ ∂ϕϕu]|0,S

)

. (41)

The desired estimate is obtained by combining (39) – (41). 2

Until now we assumed that [u]2,T < ∞. In the case of polyhedral corners, however, the
eigensolutions do in general not possess this regularity near the corners P̃e of Ω̃. Let P̃e be
represented by Pe = (ϕ0, θ0) and consider first the case θ0 6∈ {0, π}. Then we can modify
the proof of Lemma 21 by using the following result of Raugel [42], see also [14, Section
8.4.1],

|u − Ihu|m,T � h2−m−β
T

∑

i+j=2

‖Rβ
e ∂i

ϕ∂j
θu‖0,T , m = 0, 1, (42)

Re := Re(ϕ, θ) = [(ϕ − ϕ0)
2 + (θ − θ0)

2]1/2, β ∈ [0, 1). This leads immediately to the
following lemma.

Lemma 24 Let T be an isotropic triangle and assume θ−,T � 1. Then the error estimate

[u − Ihu]m,T � h2−m−β
T

∑

i+j=2

|[Rβ
e ∂i

ϕ∂j
θu]|0,T , m = 0, 1,

holds for β ∈ [0, 1).
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Proof The error estimate follows from (42) and sin θ ∼ 1 in T . 2

In the case that θ0 = 0 we have to modify Lemma 23.

Lemma 25 Assume that ||| u |||2,β,S < ∞ and 1 − Re αe < βe < 1
2
. Then the interpolation

operator Ih is well defined in S, S from (35), and the estimates

[u − Ihu]m,S � h2−m−β
θ,S [θβu]2,S, m = 0, 1,

hold.

Proof We follow the lines of the proof of Lemma 23. It is shown in [32, Lemma 1.1] that
‖u‖C(S) � ‖u‖2,1/2+β,S if βe < 1

2
. Consequently, Ih is well defined for functions from V 2

1/2+β .

Estimate (38) holds also when 1
2

is replaced by 1
2
+β, β ∈ [0, 1). This can be proved in the

same way as in [38]; we have to ensure only that the embedding H2
1/2+β(Ŝ) ↪→ H1

1/2+β(Ŝ)

is compact. (The definition of these weighted spaces is analogous to (36).) This is indeed
true, see [21, Lemma 3.5].

For proving the estimate which is analogous to (39) we need another embedding the-
orem, namely H2

1/2+β(Ŝ) ↪→ H1
1/2(Ŝ), which holds for β ∈ [0, 1), see also [21, Lemma 3.5].

Consequently,

|[∂θ(u − Ihu)]|0,S � ‖∂m
θ̂

(û − Îhû)‖0;1/2,Ŝ

= inf
ŵ∈P1

‖∂θ̂(û − ŵ − Îh(û − ŵ))‖0;1/2,Ŝ

� inf
ŵ∈P1

‖û − ŵ‖2;1/2+β,Ŝ

� |v̂|2;1/2+β,Ŝ

� h1−β
θ,S [θβu]2,S .

The derivation of (40), (41), is easily modified since all conclusions hold true also when hθ,T

is substituted by h1−β
θ,T , ‖θ̂−1∂ϕ̂θ̂û‖0,T̂ by ‖θ̂−1+β∂ϕ̂θ̂û‖0,T̂ , ‖θ̂−2∂ϕ̂ϕ̂û‖0,T̂ by ‖θ̂−2+β∂ϕ̂ϕ̂û‖0,T̂

etc. 2

4.4 Approximation error estimates

The circular cone is the simplest case since Ω is a rectangle and the eigenfunctions are
regular, see Subsection 3.2. Let {Th}h be a sequence of quasi-uniform triangular meshes.
Each mesh is obtained from a rectangular mesh by dividing each rectangle into two triangles
of diameter h, see Figure 3.

Theorem 26 Assume that u ∈ V is a vector function with [u]2,Ω < ∞. Then the interpo-
lation error can be estimated on the mesh described above by

‖u − Ihu‖V � h[u]2,Ω.
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ϕ

θ

2π

ξ

Figure 3: Illustration of the mesh for the conical domain.

Proof We apply the interpolation error estimates of Lemmata 21 – 23 and obtain

‖u − Ihu‖
2
V ∼

∑

T∈Th

1
∑

m=0

[u − Ihu]2m,T �
1

∑

m=0

(h2 + h)[u]22,T ∼ h[u]22,Ω

which is the desired result. 2

In the case of polyhedral vertices, the eigenfunctions have singularities itself, see Sub-
section 3.2. On uniform meshes we do not achieve the optimal convergence order, see
Remark 28. Therefore, we use refined meshes as defined in Subsection 4.2.

Theorem 27 Assume that u ∈ V is a vector function with ||| u |||2,β,Ω, β ∈ [0, 1), where
||| · |||2,β,Ω was introduced in (22). On the graded meshes introduced in Subsection 4.2, the
interpolation error can be estimated by

‖u − Ihu‖V � h ||| u |||2,β,Ω.

Proof If a corner Pe is at position (ϕ0, θ0), θ0 6∈ {0, π}, then the refined mesh in the
neighbourhood of Pe consists of isotropic triangles only. For all elements T with (ϕ0, θ0) ∈ T
Lemma 24 is applied. By using 2 − m − β ≥ 1 − β and (28) we obtain for m = 0, 1,

[u − Ihu]m,T � h1−β
T

∑

i+j=2

|[Rβ
e ∂i

ϕ∂j
θu]|0,T

∼ h
∑

i+j=2

|[Rβ
e ∂i

ϕ∂j
θu]|0,T

� h ||| u |||2,β,T . (43)

For all other elements T in the refinement zone, T ∩ Ne 6= ∅, we use Lemma 21, (28), and
dist (T, Pe) < Re for all points of T , and obtain for m = 0, 1,

[u − Ihu]m,T � hT [u]2,T

∼ h [dist (P, T )]β [u]2,T

� h [Rβ
e u]2,T

� h ||| u |||2,β,T . (44)
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Let now Pe be the north pole. Then for all elements T in a strip S as defined between
Lemmata 22 and 23, Lemma 25 is applied. By using (29) and (30) we obtain, again for
m = 0, 1,

[u − Ihu]m,S � h1−β
θ,S [θβu]2,S

∼ h [θβu]2,S

� h ||| u |||2,β,S. (45)

For all other elements T with T ∩ Ne 6= ∅ we can use Lemma 22, (29), (30), θ−,T � 1, and
θ−,T ≤ θ for all points of T , and obtain for m = 0, 1,

[u − Ihu]m,T � hϕ,T θ−,T |[sin−2θ ∂2
ϕu]|0,T +

+ (hϕ,Tθ−,T + hθ,T ) |[sin−1θ ∂ϕ∂θu]|0,T + hθ,T |[∂2
θu]|0,T

� h θβ
−,T [u]2,T

� h [θβu]2,T

� h ||| u |||2,β,T . (46)

If the south pole is also a singular corner of Ω̃, then it is treated analogously. For elements
T outside a refinement region Ne we use Lemma 21, 22 or 23, respectively, and obtain also

[u − Ihu]m,T � h ||| u |||2,β,T .

Combining all these estimates we obtain the desired result. 2

Remark 28 If the mesh is not refined, hT = h in (28) and hθ,T = h in (30), then one can
proceed analogously. However, we obtain in (43) – (46) only a local convergence order h1−β

(using h ≤ h1−β [dist (P, T )]β in (44) and (46)). That means that the global convergence
order is

1 − max
e

βe = min
e

Re αe − ε, ε > 0 arbitrary,

since βe > 1 − Reαe was assumed.

Corollary 29 For the discretization as described in Subsection 4.2 the following error
estimates for the eigenpairs (λ0, u(λ0; ·)) of (14) hold:

|λh − λ0| � h2/κ |λ0|
4/κ,

|λ̂h − λ0| � h2 |λ0|
4,

‖uh − u(λ0; ·)‖V � hα |λ0|
2α, α = min{1, 2/κ}.

Proof Using Theorems 26 and 27 and defining

σ(λ0) := max
v∈W (B,λ0),‖v‖V =1

||| v |||2,β,Ω, σ∗(λ0) := max
v∈W (B∗,λ0),‖v‖V =1

||| v |||2,β,Ω,



26 5 Numerical tests

we find that

εh := max
v∈W (B,λ0),‖v‖V =1

εh(v) � h σ(λ0),

ε∗h := max
v∈W (B∗,λ0),‖v‖V =1

εh(v) � h σ∗(λ0).

There exist generalised eigenelements w ∈ W (B, λ0) and w∗ ∈ W (B∗, λ0), ‖w‖V = ‖w∗‖V =
1, such that

σ(λ0) = |||w |||2,β,Ω, σ∗(λ0) = |||w∗ |||2,β,Ω.

Therefore we can conclude with Lemma 13 that

σ(λ0) � |λ0|
2, σ∗(λ0) � |λ0|

2

and, consequently,
εh � h |λ0|

2, ε∗h � h |λ0|
2.

Using Theorems 18 – 20, we derive the desired estimates. 2

Remark 30 The number λ0 does not depend on h and can thus be considered as a constant
factor. But a large eigenvalue λ0 diminishes the accuracy of its approximation.

5 Numerical tests

In order to confirm the theoretically predicted convergence order we test our method in a
case where the the eigenvalues can be obtained by a simpler method to arbitrary precision,
namely we consider the circular cone

K = {(cos ϕ sin θ, sin ϕ sin θ, cos θ) ∈
� 3 : 0 ≤ ϕ < 2π, 0 < θ < ξ}

and isotropic material. The values of λmin = λmin(ξ) are calculated for the Poisson ratio
ν = 0.3 in [5, 6] for rotationally symmetric forces and in [43] for the general case. The
eigenvalues satisfy a rather lengthy transcendental equation.

In the test we used a fifth order numerical integration rule with 7 points to generate the
matrices. The eigenvalue problem is solved with SHIRA, the Skew-Hamiltonian Implicitly
Restarted Arnoldi method [3, 37], with the shift value τ = 0.3 and the convergence criterion
ε = 10−12. The software was mainly written by Uwe Reichel and Cornelia Pester with the
help of David S. Watkins. It makes use of various packages like ARPACK [28], Super-LU
[12], LAPACK [1], as well as libraries of the Chemnitz SPC group for assembling matrices,
graphics, memory management and other basic tasks [15, 41].

In Table 1 we display the smallest approximate eigenvalue and the error for various
mesh sizes and angles ξ ∈ {90◦, 120◦, 150◦}. From the results of two successive levels of
refinement we compute the approximate convergence order.

We see that the relative error is nearly independent of the angle and the approximation
order is surprisingly close to the predicted order two.
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Angle (πh)−1 λh
min error approx. order

90 8 1.4917948929 8.20511 e−03
16 1.4978589231 2.14108 e−03

1.94

32 1.4994719803 5.28020 e−04
2.02

64 1.4998693746 1.30625 e−04
2.02

128 1.4999674776 3.25224 e−05
2.01

exact value 1.50000000

120 8 1.0425845623 ± 0.0054051649 i 5.44107 e−03
16 1.0419631338 ± 0.0014806910 i 1.48069 e−03

1.88

32 1.0419310513 ± 0.0003796528 i 3.80792 e−04
1.96

64 1.0419564998 ± 0.0001091573 i 1.09230 e−04
1.80

128 1.0419571416 ± 0.0000273475 i 2.75516 e−05
1.99

exact value 1.0419604892

150 8 0.8037192732 ± 0.0049080364 i 4.93810 e−03
16 0.8036384809 ± 0.0015122140 i 1.58161 e−03

1.64

32 0.8032978815 ± 0.0003872941 i 4.06278 e−04
1.96

64 0.8032079364 ± 0.0001010282 i 1.06218 e−04
1.94

128 0.8031821396 ± 0.0000252988 i 2.62490 e−05
2.02

exact value 0.80317514090

Table 1: Example 1: Approximate eigenvalues, error and convergence order for various
mesh sizes and angles.

As a second test we consider the Fichera corner. The domain can be described as the
unit sphere where one octant is missing. A representation in the parameter plane is shown
in Figure 4. This problem has been considered in the literature for isotropic material, for
example in [44] for a single material and Dirichlet boundary conditions and in [13] for a
bi-material joint and Neumann boundary conditions. We use also the bi-material joint but
calculate the eigenvalues for the Dirichlet problem. The material is defined by

ν = 0.3, E =

{

E1 = 1.0 for θ < 1
2
π,

E2 for θ > 1
2
π,

where E2 is varied in the interval [0.016, 64]. The three smallest eigenvalues are plotted
against E2 in Figure 5.

The exact eigenvalues are not known in this case. Therefore we estimate the convergence
order by calculating with three different meshes of mesh size h, 1

2
h, and 1

4
h. By assuming

λh − λ = C, λh/2 − λ = C 2−z and λh/4 − λ = C 2−2z we obtain the estimated convergence
order

z = log2

λh − λh/2

λh/2 − λh/4

.

Table 2 shows the results.
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Figure 4: Fichera corner in the parameter plane: uniform mesh (left) and graded mesh
(right)

We see that graded meshes deliver a more accurate eigenvalue approximation when the
same number of unknowns is used. We see also that the estimated convergence order is
significantly larger for graded meshes. The optimal convergence order is not yet reached.
However, we are not able to do calculations with a still smaller mesh size.

The dependence of the constants on material parameters was not studied. Hence we
cannot explain the deterioration when E2 is increased. In further tests we observed the
same behaviour for the second smallest eigenvalue but a slightly different dependence for
the third eigenvalue. There, the maximum error order is attained for the single material
case, E2 = 1.
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Figure 5: Three minimal eigenvalues for various material parameters
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E2 0.016 0.0625 0.025 1.0 4.0 16.0 64.0
h = π/16 0.5017 0.4920 0.4633 0.4123 0.3282 0.2880 0.2755
h = π/32 0.4957 0.4862 0.4581 0.4078 0.3223 0.2813 0.2685
h = π/64 0.4933 0.4839 0.4560 0.4059 0.3196 0.2781 0.2650
h = π/128 0.4924 0.4829 0.4551 0.4051 0.3184 0.2765 0.2633
est. order 1.3354 1.3274 1.2951 1.2396 1.1418 1.0420 1.0062
h = π/16 0.4974 0.4878 0.4598 0.4096 0.3262 0.2857 0.2729
h = π/32 0.4933 0.4838 0.4560 0.4060 0.3203 0.2788 0.2656
h = π/64 0.4922 0.4827 0.4549 0.4049 0.3183 0.2762 0.2629
h = π/128 0.4919 0.4824 0.4546 0.4046 0.3177 0.2754 0.2620
est. order 1.9343 1.9349 1.9062 1.8556 1.7092 1.6233 1.5828

Table 2: Approximate minimum eigenvalues for different mesh sizes and various material
parameters, for both uniform (above) and graded meshes (below).
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