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L∞-error estimates on graded meshes with
application to optimal control

Thomas Apel∗ Arnd Rösch† Dieter Sirch‡

Abstract An L∞-error estimate of the finite element approximation of an elliptic
boundary value problem with Dirichlet boundary conditions in domains with corners is
given. To achieve an approximation rate of h2| lnh| the mesh has to be appropriately
graded near corners with an interior angle larger than ω0, with ω0 = π

2 for the Poisson
problem. In contrast to previous publications the norm of the function, that has to be
approximated, is separated from the constants in this estimate.

This result is applied to a linear-quadratic optimal control problem with constraints
on the control. Two approaches are considered, one where the control is approximated
by piecewise constant functions and improved by a post-processing step, the other where
the control is not discretized. For both approaches a convergence rate of h2| lnh| in the
maximum norm is shown.

Key Words Linear-quadratic optimal control problems, control constraints, corner
singularities, finite element method, error estimates, superconvergence.

AMS subject classification 49M25, 65N30

1 Introduction

Many results concerning L∞-estimates of the finite element error of linear elliptic bound-
ary value problems were published in the 1970’s (see e.g. [5, 14, 20, 21, 23]). Such an
estimate is a main ingredient of an L∞-error estimate for a finite element discretization
of an optimal control problem. But all of the results have in common that they are not
suitable for our setting due to a restriction on quasi-uniform meshes, strong regularity
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assumption on the solution or the domain or missing exact regularity assumptions on
the right-hand side. Therefore we need to extend these results.

Let us first introduce the optimal control problem. We consider

J(ū) = min
u∈Uad

J(u), (1.1)

J(u) := F (Su, u), (1.2)

F (y, u) :=
1
2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω), (1.3)

where the associated state y = Su to the control u is the weak solution of the state
equation

Ly = u in Ω, y = 0 on Γ = ∂Ω. (1.4)

The operator L is defined as

Ly := −∇ ·A(x)∇y + b(x) · ∇y + c(x)y (1.5)

where A ∈ C∞(Ω̄,R2×2), b ∈ C∞(Ω̄,R2) and c ∈ C∞(Ω̄). Further the coefficients are
assumed to satisfy the conditions

m0|ξ|2 ≤ ξTA(x)ξ ∀(ξ, x) ∈ R2 × Ω̄, m0 > 0

and
c(x)− 1

2
∇ · b(x) ≥ 0 ∀x ∈ Ω

ensuring ellipticity and coercivity, respectively. The control variable is constrained by

ua ≤ u(x) ≤ ub for a.a. x ∈ Ω. (1.6)

In this setting yd ∈ C0,σ(Ω̄) with σ ∈ (0, 1] is the desired state, ua and ub are real num-
bers, and the regularization parameter ν > 0 is a fixed positive number. Furthermore,
Ω ⊂ R2 is a bounded polygonal domain and the set of admissible controls is

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. in Ω}.
We further introduce the adjoint problem

L∗p = y − yd in Ω, p = 0 on Γ

where
L∗p := −∇ ·A(x)∇p− b(x) · ∇p+ c(x)p.

We denote by S∗ the solution operator of this problem, that means we have

p = S∗(y − yd).

Since one can also write
p = S∗(Su− yd) = Pu
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with an affine operator P the solution p = Pu is called the associated adjoint state to u.

We discretize the optimal control problem by a finite element method. The state y
and the adjoint state p are approximated by piecewise linear functions. For discretizing
the control mainly two different approaches exist. One method is to use a piecewise
constant approximation for the control with an additional post-processing step. Meyer
and Rösch originally used this in [12]. They derived optimal L2-error estimates on
quasi-uniform meshes in convex domains. They also proved the suboptimal convergence
rate 1 for the error in the L∞-norm. This is the same result they got in [13] for a
piecewise linear approximation. Apel, Rösch and Winkler gave in [1] an L2-estimate
for problems in non-convex domains, where they used the postprocessing technique on
appropriately graded meshes. The other discretization concept was introduced by Hinze
in [6]. In this approach of variational discretization the space of admissible controls
is not discretized. Instead, the first order optimality condition and the discretization
of the state and the adjoint state are used to derive the approximate control. An L2-
error estimate was shown on convex domains with quasi-uniform meshes. Further, the
L∞-error was estimated subject to the finite element error.

In this paper here, we will prove that for problem (1.1)–(1.6) the approximation error
in the L∞-Norm behaves in both approaches like O(h2| lnh|). Notice, that this optimal
estimate is new for the discrete approach even in the case of convex domains.

Let us mention, that independent of the choice of the discretization the finite element
error in the state and the adjoint state plays an important role in the error analysis of
the optimal control problem. Therefore we recall some results concerning pointwise error
estimates for elliptic boundary value problems from the literature. Scott proved in [23]
a convergence rate of h2| lnh| for L = −∆ + 1 and Neumann boundary conditions. This
result is valid if y ∈ W 2,∞(Ω) and if the mesh is quasi-uniform. Frehse and Rannacher
considered in [5] the Dirichlet problem for the operator L = −∇ · A∇ in domains Ω
with ∂Ω ∈ C2,α and for a discretization with quasi-uniform meshes. For y ∈ W 2,∞(Ω)
they got the convergence rate h2| lnh|, for a right-hand side f ∈ L∞ they proved the
approximation order h2| lnh|2. Since we consider a domain with corners, the boundary
is not in C2,α and the state y is in general not in W 2,∞(Ω). So these results are not
applicable. In [20] Schatz and Wahlbin derived pointwise estimates for the Poisson
equation in domains with corners. In [21] they specified a refinement rule for the mesh
in order to get the estimate

‖y − yh‖L∞(Ω) ≤ ch2−ε,

where yh is the finite element solution using piecewise linear ansatz functions. The
drawback of this result is the fact, that the error constant is not separated from a
norm of the right-hand side of the boundary value problem. Especially it is not clear,
what regularity has to be assumed for the right-hand side, since Schatz and Wahlbin
only demand a “smooth” right-hand side. We would like to emphasize that in our case
the right-hand side is the unknown control and therefore one cannot assume arbitrary
smoothness. To circumvent this problem, we extend these results and show that the
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weak solution of
Ly = f in Ω, y = 0 on Γ = ∂Ω,

for f ∈ C0,σ(Ω̄), σ ∈ (0, 1] fulfills the inequality

‖y − yh‖L∞(Ω) ≤ ch2| lnh|‖f‖C0,σ(Ω̄). (1.7)

provided the mesh is appropriately graded. Notice, that the mesh grading is necessary
for angles larger than a critical angle ω0 < π. For the Laplace operator one has ω0 = π

2 .
For mixed boundary conditions, that we have not considered here, ω0 is even smaller
than π

2 . In order to extend the results of this paper to the case of mixed boundary
conditions, one needs a regularity result analogous to Theorem 2.2. Further one has to
ensure, that local estimates of the H1-error given in Lemma 2.12 hold.

The outline of the paper is as follows. In Section 2 we start with giving some results
concerning the regularity of the state equation. However, the main part of this section
is the proof of the error estimate (1.7). In Section 3 we apply this result to the opti-
mal control problem (1.1)–(1.6) and show that the approximation error in the control
behaves for both discretization concepts mentioned above like O(h2| lnh|). The paper is
completed by numerical examples in Section 4.

2 The state equation

In this section, we derive an L∞-error estimate for the finite element discretization of
the state equation

Ly = f in Ω, y = 0 on ∂Ω. (2.1)

with right-hand side f ∈ C0,σ(Ω̄). First, we give some regularity results.

2.1 Regularity

It is well known, that the regularity of the solution of (2.1) is in general limited due
to the corners of the domain Ω. Since this behavior is of local nature, we reduce our
considerations for simplicity to one corner with interior angle ω > ω0 located at the
origin. The critical angle ω0 is introduced below. We denote by

r :=
√
x2

1 + x2
2

the distance to this corner. In order to describe the regularity of y we define for k ∈ N0

and β ∈ R the weighted Sobolev spaces

V k,p
β (Ω) =

{
v ∈ D′(Ω) : ‖v‖

V k,p
β (Ω)

<∞
}
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where

‖v‖
V k,p

β (Ω)
:=

 ∑
|α|≤k

∫
Ω
|rβ−k+|α|Dαv|p

1/p

for p <∞ and
‖v‖

V k,∞
β (Ω)

:= ess sup|α|≤k, x∈Ω |rβ−k+|α|Dαv(x)|.
Notice, that the regularity of the solution y of the boundary value problem (2.1) is
characterized by one particular eigenvalue λ ≥ 1

2 of an operator pencil, which is the
result of an integral transformation, see [18]. For the Laplace operator the eigenvalue λ
is explicitly known, λ = π

ω . For the more general operator L defined in (1.5) one can
compute λ by a linear coordinate transformation. We denote by ω0 the angle for which
λ = 2. This means that λ < 2 for ω > ω0. For the Laplace operator one has ω0 = π

2 .
For more details we refer to [15, Chap. 5].

Lemma 2.1. The embeddings

V 2,2
β (Ω) ↪→ V 2,2

γ (Ω) for β < γ, (2.2)

V 2,∞
γ (Ω) ↪→ L∞(Ω) for γ ≤ 2 (2.3)

hold.

Proof. Since β < γ the embedding (2.2) follows directly from the definition of the spaces.
For u ∈ V 2,∞

γ (Ω) one has rγ−2u ∈ L∞(Ω). From the fact that γ ≤ 2 one obtains
u ∈ L∞(Ω) what proves (2.3).

Theorem 2.2. Let γ > 2 − λ ≥ 0 and σ ∈ (0, 1). Then the weak solution u of (2.1)
belongs to the space V 2,∞

γ (Ω), and the inequality

‖y‖
V 2,∞

γ (Ω)
≤ c‖f‖C0,σ(Ω̄)

is valid.

Proof. In [10], the weighted Hölder spaces N l,σ
β (Ω) are introduced with the norm

‖y‖
N l,σ

β (Ω)
= sup

x∈Ω

∑
|α|≤l

rβ−l−σ+|α||Dαy|+
∑
|α|=l

sup
x,x′∈Ω

|(rβDαy)(x)− (rβDαy)(x′)|
|x− x′|σ .

In Section 8.7.1 of [10] it is shown, that for −λ ≤ l + σ − β ≤ λ the regularity result

‖y‖
N l,σ

β (Ω)
≤ c‖f‖

N l−2,σ
β (Ω)

for the weak solution y of (2.1) holds. This means that in the case of l = 2 one can
conclude for γ := β − σ > 2− λ

rγ−2+|α||Dαy| ≤ c‖f‖
N0,σ

γ+σ(Ω)
∀α : |α| ≤ 2.
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and therefore
‖y‖

V 2,∞
γ (Ω)

≤ c‖f‖
N0,σ

β (Ω)
.

According to [11, §5] the N l,σ
β (Ω)-norm is equivalent to

sup
x,x′∈Ω

2|x−x′|≤min{|x|,|x′|}

r(x)β
∑
|α|=l

|Dαy(x)−Dαy(x′)|
|x− x′|σ + sup

x∈Ω
r(x)β−l−σ|y(x)|.

If one sets l = 0 this implies withγ = β − σ ≥ 0 the embedding C0,σ(Ω̄) ↪→ N0,σ
β (Ω) and

the assertion is shown.

2.2 Finite element error estimates

We will now discretize the boundary value problem (2.1). To this aim we introduce a
family of graded triangulations (Th)h>0 of Ω̄. With a global mesh parameter h, a grading
parameter µ ∈ (0, 1] and the distance rT of a triangle T to the corner,

rT := inf
(x1,x2)∈T

√
x2

1 + x2
2,

we assume that the element size hT := diamT satisfies

c1h
1/µ ≤ hT ≤ c2h

1/µ for rT = 0

c1hr
1−µ ≤ hT ≤ c2hr

1−µ for rT > 0. (2.4)

Notice, that the number of elements of such a triangulation is of order h−2, see e.g. [2].
Finally, set Vh as the space of all piecewise linear and globally continuous functions in Ω,

Vh = {vh ∈ C(Ω̄) : vh|T ∈ P1 for all T ∈ Th and vh = 0 on ∂Ω}.

The variational solution of (2.1) is given by the unique element y = Sf ∈ V that satisfies

a(y, v) = (f, v)L2(Ω) ∀v ∈ V := H1
0 (Ω)

where a : H1(Ω)×H1(Ω) → R is the bilinear form defined by

a(y, v) :=
∫

Ω
A∇y · ∇v + b · ∇yv + cyv. (2.5)

The finite element solution yh = Shf is given by the unique element of Vh that satisfies

a(yh, vh) = (f, vh)L2(Ω) ∀vh ∈ Vh. (2.6)

We recall the well-known result for the finite element error in the L2-norm (see [3], [16],
[17]).
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Theorem 2.3. Let y and yh be the solution of (2.5) and (2.6), respectively. On a mesh
of type (2.4) with grading parameter µ < λ the estimate

‖y − yh‖L2(Ω) + h‖y − yh‖H1(Ω) ≤ ch2|y|
V 2,2

β (Ω)
≤ ch2‖f‖L2(Ω) (2.7)

is valid for β > 1− λ.

The main result of this section is given in the following theorem.

Theorem 2.4. Let y be the solution of the boundary value problem (2.1) with a right-
hand side f ∈ C0,σ(Ω̄) . The finite element error can be estimated by

‖y − yh‖L∞(Ω) ≤ ch2| lnh|‖f‖C0,σ(Ω̄) (2.8)

on finite element meshes with grading parameter µ < λ/2.

Remark 2.5. In order to achieve the L∞-error estimate (2.8) a stronger mesh grading
is necessary than in case of the L2-error (comp. Theorem 2.3). A mesh is graded if
µ < 1. This means that the condition µ < λ

2 yields a graded mesh not only in the case
of a reentrant corner but also for corners with interior angle ω ≥ ω0.

The remainder of this section concerns the proof of Theorem 2.4. During the error
analysis we split Ω in different subsets. Therefore we write

Ω =
I⋃

j=0

Ωj

where ΩI = {x : |x| ≤ dI} , Ωj = {x : dj+1 ≤ |x| ≤ dj} for j = 1, . . . , I − 1 and Ω0 =
Ω\ ∪I

j=1 Ωj (see also Fig. 1). We set the radii dj to dj = 2−j (j = 1, . . . , I). The largest
index I is chosen such that

dI = cIh
1/µ, (2.9)

what means I ∼ log 1
h . For an appropriate choice of cI we refer to Lemma 2.7. Further,

we introduce the extended domains

Ω′
j = Ωj−1 ∪ Ωj ∪ Ωj+1.

with the obvious modification for j = 0 and j = I and the subdomain meshsizes

hj = max
T∈Ωj

hT .

Lemma 2.6. For the mesh introduced in (2.4) one has in Ωj a family of quasi-uniform
meshes with local mesh parameter

c1h
1/µ ≤ hI ≤ c2c

1−µ
I h1/µ (2.10)

2µ−1c1hd
1−µ
j ≤ hj ≤ c2hd

1−µ
j j = 0 . . . I − 1. (2.11)

with constants c1 and c2 from (2.4) and cI from (2.9).
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Ωj Ω1

Figure 1: Ω is splitted in subsets Ωj

Proof. For an element T ⊂ ΩI one has 0 ≤ rT ≤ dI and therefore according to (2.4)
the inequality c1h

1/µ ≤ hT ≤ c2hd
1−µ
I is valid. With (2.9) this yields (2.10). For

T ⊂ Ωj (j 6= I) one has dj+1 ≤ rT ≤ dj and therefore c1hd
1−µ
j+1 ≤ hT ≤ c2hd

1−µ
j . Since

dj+1 = 1
2dj assertion (2.11) follows.

Lemma 2.7. For every fixed c0 < 1 the constant cI in (2.9) can be chosen, such that

hjd
−1
j ≤ c0

for every j = 0, . . . , I.

Proof. It follows for cI ≥
(

c2
c0

)1/µ

hId
−1
I ≤ c2c

1−µ
I h1/µ

cIh1/µ
= c2c

−µ
I ≤ c0,

and for j = 0, . . . , I − 1

hjd
−1
j ≤ c2hd

1−µ
j d−1

j = c2hd
−µ
j ≤ c2hd

−µ
I = c2h(cIh1/µ)−µ = c2c

−µ
I ≤ c0,

what proves the assertion.

In the following we always have to distinguish between the domains near the corner
and the domains away from the corner. In Lemma 2.10 we prove an estimate for the
local error ‖y− yh‖L∞(ΩJ ) subject to the L2− and H1-error in the extended domain Ω′

J .
The results in Lemma 2.12 show, that this H1-error can be estimated with respect to
the L2-error in Ω′

J . Finally Lemma 2.13 gives an upper bound for ‖y − yh‖L2(Ω′J ), so
that we can complete the proof of Theorem 2.4. Before we continue our considerations
with an auxiliary result, we recall a lemma from Il’in [7].
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Lemma 2.8. Let G be a domain and ∂G satisfy a cone condition with radius d > 0.
Then there exists a constant c, such that

‖g‖C(Ḡ) ≤ c · ‖g‖H1(G) ·
{

1 + | ln q|1/2 for q ≤ d

1 for q > d

holds for all g ∈ H1(G) with ∇g ∈ L∞(G), where

q = ‖g‖H1(G)‖∇g‖−1
L∞(G).

Lemma 2.9. For every vh ∈ Vh and every J ∈ {1, . . . , I} the estimates

‖vh‖L∞(ΩJ ) ≤ c| lnhJ |1/2‖vh‖H1(Ω′J ) ∀J ∈ {1, . . . , I} (2.12)

‖vh‖L∞(Ω) ≤ c| lnh|1/2‖vh‖H1(Ω) (2.13)

are valid.

Proof. For quasi-uniform meshes a similar proof can be found in [24]. For an element T
with T̄ ∩ ΩJ 6= ∅ one has

‖∇vh‖L∞(T ) ≤ ch−1
J ‖∇vh‖L2(T )

and therefore

‖vh‖H1(T )‖∇vh‖−1
L∞(T ) ≥ c−1hJ‖vh‖H1(T )‖∇vh‖−1

L2(T )
≥ c−1hJ .

Now we can apply Lemma 2.8 and get

‖vh‖L∞(T ) ≤ c| lnhJ |1/2‖vh‖H1(T ).

Assume that vh admits its maximum in ΩJ in the element T̄∗ ⊂ Ω′
J . Then one can

estimate

‖vh‖L∞(ΩJ ) = ‖vh‖L∞(T∗) ≤ c| lnhJ |1/2‖vh‖H1(T∗) ≤ c| lnhJ |1/2‖vh‖H1(Ω′J )

and the assertion (2.12) is shown. If one assumes now that vh admits its maximum in
Ω in the element T̄∗ ⊂ Ω̄, inequality (2.13) follows similarly,

‖vh‖L∞(Ω) = ‖vh‖L∞(T∗) ≤ c| lnhT |1/2‖vh‖H1(T ) ≤ c| lnh|1/2‖vh‖H1(Ω).

In the last step we have used hT ≥ h1/µ and therefore | lnhT | ≤ c| lnh|.
Lemma 2.10. For y ∈ V 2,2

β (ΩJ)∩V 2,∞
γ (ΩJ) with β = 1−λ+δ, γ = 2−λ+δ, µ = λ

2 −δ′
and δ < 2δ′ the estimates

‖y − yh‖L∞(ΩJ ) ≤ c
(
h2| lnh||y|

V 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
for J = 0, 1, . . . , I − 3,

(2.14)

‖y − yh‖L∞(ΩJ ) ≤ c
(
| lnh|1/2h2‖y‖

V 2,∞
γ (Ω′J )

+ | lnh|1/2‖y − yh‖H1(Ω′J )

)
for J ≥ I − 2

(2.15)

are valid.
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Proof. Let us first consider the case J < I − 2, where one is away from the corner. We
use the estimate

‖y − yh‖L∞(ΩJ ) ≤ c

(
| lnh| min

χ∈Vh

‖y − χ‖L∞(Ω′J ) + d−1
J ‖y − yh‖L2(Ω′J )

)
. (2.16)

This result follows from Theorem 5.1 in [19] as shown in the proof of Corollary 5.1 of
that paper, where the authors have already inserted an interpolation error estimate. If
one chooses l = 0, N = 2, p = 0 and q = 2 in that corollary inequality (2.16) follows
from writing y− yh as y−χ− yh +χ. If one assumes that yh− Ihy admits its maximum
in Ω′

J in x0 ∈ T̄∗ ⊂ Ω′′
J , one can conclude

‖y − Ihy‖L∞(Ω′J ) = ‖y − Ihy‖L∞(T∗)

≤ ch2
T∗ |y|W 2,∞(T∗)

≤ ch2
J |y|W 2,∞(Ω′′J )

∼ h2d2−2µ
J |y|W 2,∞(Ω′′J )

∼ h2d2−2µ−γ
J |y|

V 2,∞
γ (Ω′′J )

.

Since 2− 2µ− γ = λ− δ − 2(λ
2 − δ′) = 2δ′ − δ > 0 this yields

‖y − Ihy‖L∞(Ω′J ) ≤ ch2|y|
V 2,∞

γ (Ω′′J )
.

Then the assertion (2.14) follows from inequality (2.16).

Let us now consider the case of J = I, I − 1, I − 2. With the triangle inequality it
follows

‖y − yh‖L∞(ΩJ ) ≤ ‖y‖L∞(ΩJ ) + ‖yh‖L∞(ΩJ ). (2.17)

We estimate the two terms separately. Assume that y admits its maximum in ΩJ in
x0 ∈ ΩJ and that x0 ∈ T̄∗ with T̄∗ ⊂ Ω′

J . Then one can conclude from the embedding
(2.3)

‖y‖L∞(ΩJ ) ≤ ‖y‖L∞(T∗) = ‖ŷ‖L∞(T̂ ) ≤ c‖ŷ‖
V 2,∞

γ (T̂ )
∼ h

2−γ
µ ‖y‖

V 2,∞
γ (T∗) ≤ ch2‖y‖

V 2,∞
γ (Ω′J )

.

(2.18)

since 2− γ = λ− δ = 2µ+ 2δ′ − δ > 2µ. In order to estimate the second term of (2.17)
we use Lemma 2.9 and get the inequality

‖yh‖L∞(ΩJ ) ≤ c| lnhJ |1/2‖yh‖H1(Ω′J ) ≤ c| lnh|1/2‖yh‖H1(Ω′J ). (2.19)

where we have used hJ ∼ h1/µ in the last step. We use again the triangle inequality to
estimate

‖yh‖H1(Ω′J ) ≤ ‖y‖H1(Ω′J ) + ‖y − yh‖H1(Ω′J ). (2.20)
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In order to estimate the first part of the right-hand side of this inequality we continue
with

‖y‖H1(Ω′J ) ∼ ‖r−βrβ∇y‖L2(Ω′J ) + ‖r1−βrβ−1y‖L2(Ω′J )

≤ ‖r−β‖L2(Ω′J )‖rβ∇y‖L∞(Ω′J ) + ‖r1−β‖L2(Ω′J )‖rβ−1y‖L∞(Ω′J )

≤ ch1−β
I ‖y‖

V 1,∞
β (Ω′J )

≤ ch
1−β

µ ‖y‖
V 2,∞

β+1 (Ω′J )

≤ ch2‖y‖
V 2,∞

γ (Ω′J )
,

since 1− β = λ− δ = 2µ+ 2δ′− δ > 2µ and γ = β− 1. With this estimate one has from
(2.19) and (2.20)

‖yh‖L∞(ΩJ ) ≤ c
(
| lnh|1/2h2‖y‖

V 2,∞
γ (Ω′J )

+ | lnh|1/2‖y − yh‖H1(Ω′J )

)
what yields together with (2.17) and (2.18) the desired result.

Lemma 2.11. The estimate

‖y − yh‖H1(ΩJ ) ≤ c
(
‖y − Ihy‖H1(Ω′J ) + d−1

J ‖y − Ihy‖L2(Ω′J ) + d−1
J ‖y − yh‖L2(Ω′J )

)
is valid for J = 0, 1, . . . , I.

Proof. The assertion follows from Lemma 7.2 of [20] by setting D1 = ΩJ , D = Ω′
J and

p = 0 in that lemma. It follows from Lemma 2.6 and the explanations in Example 4 of
Section 9 in [20], that the result is applicable with our finite element space. Notice, that
the proof is only given for L = −∆. For an extension to general elliptic operators the
proof has to be modified at two points, where the bilinear form explicitly steps in. After
equation (7.7) in that proof one has to substitute the estimate of ‖vh‖2

1,D1
by

‖vh‖2
1,D1

≤ ‖ωvh‖2
1,D

≤ ca(vh, ω
2vh) + c

∫
Ω
(∇ · (A∇w))ω)ωvh + vh (2A∇ω · ∇(ωvh)) +

∫
D\D1

v2
hωb · ∇ω.

Notice, that in [20] A is the bilinear form while in our setting a is the bilinear form and A
the coefficient matrix in the operator L. Since A ∈W 1,∞(Ω,R2,2) and ‖b·∇ω‖L∞(Ω) ≤ C
it follows

‖ωvh‖2
1,D1

≤ Ch‖vh‖2
1,D + C‖vh‖0,D\D1

‖ωvh‖2
1,D1

and therefore equation (7.8) in [20]. The second point is after expression (7.10), where
the equation for (ωvh, ϕ) has to be substituted by

(ωvh, ϕ) = a(ωvh, ψ) = a(vh, ωψ) +
∫

D
vh (ψ∇ · (A∇ω) + 2A∇ω · ∇ψ + ψb · ∇ω) .

Again it follows from the fact A ∈ W 1,∞(Ω,R2,2) and ‖b · ∇ω‖L∞(Ω) ≤ C that the
argumentation can be completed as for the Laplace operator.
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Lemma 2.12. For y ∈ V 2,2
β (ΩJ)∩V 2,∞

γ (ΩJ), β = 1−λ+δ, γ = 2−λ+δ and µ = λ
2 −δ′

(δ < 2δ′) the estimates

‖y − yh‖H1(ΩJ ) ≤ c
(
hd2−γ−µ

J |y|
V 2,∞

γ (Ω′′J )
+ d−1

J ‖y − yh‖L2(Ω′J )

)
for J = 0, 1, . . . , I − 3

(2.21)

‖y − yh‖H1(ΩJ ) ≤ c
(
h2‖y‖

V 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
for J = I, I − 1, I − 2

(2.22)

are valid.

Proof. From Lemma 2.11 we have

‖y − yh‖H1(ΩJ ) ≤ c
(
‖y − Ihy‖H1(Ω′J ) + d−1

J ‖y − Ihy‖L2(Ω′J ) + d−1
J ‖y − yh‖L2(Ω′J )

)
≤ c

(
‖y − Ihy‖H1(Ω′J ) + ‖y − Ihy‖L∞(Ω′J ) + d−1

J ‖y − yh‖L2(Ω′J )

)
. (2.23)

where we have used ‖y − Ihy‖L2(Ω′J ) ≤ c|Ω′
J |1/2‖y − Ihy‖L∞(Ω′J ) and |Ω′

J | ∼ d2
J . In the

case J = 0, . . . , I − 3 one has y ∈ W 1,∞(Ω′′
J). If one assumes that the maximum of

y − Ihy and its first derivatives in Ω′
J is admitted in x0 ∈ T∗ ⊂ Ω′′

J , one can conclude

‖y − Ihy‖H1(Ω′J ) ≤ c|Ω′
J |1/2‖y − Ihy‖W 1,∞(Ω′J )

≤ cdJ‖y − Ihy‖W 1,∞(T∗)

≤ cdJhT∗ |y|W 2,∞(T∗)

≤ cd1−γ
J hT∗ |y|V 2,∞

γ (T∗)

≤ cd1−γ
J hJ |y|V 2,∞

γ (Ω′′J )
.

With hJ = hd1−µ
J we arrive at

‖y − Ihy‖H1(Ω′J ) ∼ hd2−γ−µ
J |y|

V 2,∞
γ (Ω′′J )

. (2.24)

Like in the proof of Lemma 2.10 the second term on the right-hand side of inequality
(2.23) can be estimated by

‖y − Ihy‖L∞(Ω′J ) ∼ h2d2−2µ−γ
J |y|

V 2,∞
γ (Ω′′J )

≤ chd−µ
J · hd2−γ−µ

J |y|
V 2,∞

γ (Ω′′J )

≤ chd2−γ−µ
J |y|

V 2,∞
γ (Ω′′J )

since hd−µ
J = hJd

−1
J ≤ c0 by Lemma 2.7. This last estimate yields together with the

estimate (2.24) and the inequality (2.23) the assertion (2.21).

In the case of J = I, I − 1, I − 2 one can write

‖y − Ihy‖H1(ΩJ ) ≤ ‖y‖H1(ΩJ ) + ‖Ihy‖H1(ΩJ ) (2.25)
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For the first term one has like in the proof of Lemma 2.10

‖y‖H1(ΩJ ) ≤ ch2‖y‖
V 2,∞

γ (ΩJ )
.

For the second term we conclude with the inverse inequality, the estimate ‖Ihy‖L∞(ΩJ ) ≤
‖y‖L∞(ΩJ ) and the embedding (2.3)

‖Ihy‖H1(ΩJ ) ≤ ch−1
J ‖Ihy‖L2(ΩJ )

≤ ch−1
J dJ‖y‖L∞(ΩJ ) ≤ c‖y‖L∞(T∗)

≤ ch2−γ
J ‖y‖

V 2,∞
γ (T∗) ≤ ch2‖y‖

V 2,∞
γ (Ω′J )

(2.26)

since dJ ∼ hJ , hJ ∼ h1/µ and 2 − γ = λ − δ = 2µ + 2δ′ − δ > 2µ. The inequalities
(2.25)–(2.26) yield

‖y − Ihy‖H1(ΩJ ) ≤ ch2‖y‖
V 2,∞

γ (Ω′J )
. (2.27)

In order to estimate the second term in (2.23) in that case, we conclude similarly to
(2.26)

‖y − Ihy‖L∞(Ω′J ) ≤ ‖y − Ihy‖L∞(T∗) ≤ c‖y‖L∞(T∗) ≤ ch2‖y‖
V 2,∞

γ (Ω′′J )
.

This estimate yields together with (2.23) and (2.27) the desired inequality (2.22).

Lemma 2.13. Under the conditions of Lemma 2.12 the inequality

d−1
J ‖y − yh‖L2(Ω′J ) ≤ ch2| log h|1/2‖y‖

V 2,∞
γ (Ω)

. (2.28)

is valid for J = 0, . . . , I.

Proof. For this proof we introduce the abbreviation e := y − yh. One has the equality

‖e‖L2(Ω′J ) = sup
ϕ∈C∞0 (Ω′

J
)

‖ϕ‖L2(Ω′
J

)=1

(e, ϕ). (2.29)

For every such function ϕ we consider the boundary value problem

−∆v = d−1
J ϕ in Ω′

J

v = 0 on ∂Ω′
J

Then one can conclude

d−1
J (e, ϕ) = (e, d−1

J ϕ) = (∇e,∇v) = (∇e,∇(v − Ihv)) ≤ ‖e‖H1(Ω′J )|v − Ihv|H1(Ω′J ).

(2.30)

We introduce the domains
ΩJ,h = {T : T ∩ ΩJ 6= ∅}.
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Now we distinguish the two cases J ≤ I − 3 and J = I, I − 1, I − 2. We begin with
J ≤ I − 3. It follows from the standard interpolation theory

|v − Ihv|2H1(ΩJ ) ≤
∑

T∈ΩJ,h

|v − Ihv|2H1(T ) ≤ c
∑

T∈ΩJ,h

h2
J |v|2H2(T ) ≤ h2

J |v|2H2(Ω′J ) (2.31)

In order to use an a priori estimate where the constant does not depend on J we introduce
Ω̂ := {(r, ρ), 1/2 < r < 1, 0 < ρ < ω}. The coordinate transformation x → dJ x̂ yields
the boundary value problem

− 1
d2

J

∆v̂ = d−1
J ϕ̂ in Ω̂, v̂ = 0 in ∂Ω̂

This results in the a priori estimate

|v|H2(Ω′J ) =
1
d2

J

|ΩJ |
|Ω̂| |v̂|H2(Ω̂) ≤

c

d2
J

|ΩJ |
|Ω̂| ‖dJ ϕ̂‖L2(Ω̂) ≤

c

dJ
‖ϕ‖L2(Ω′J ) =

c

dJ

with c independent of J . With (2.31) one gets

|v − Ihv|H1(ΩJ ) ≤ chJd
−1
J .

Since hJ ∼ h′J and dJ ∼ d′J it follows

|v − Ihv|H1(Ω′J ) ≤ chJd
−1
J . (2.32)

With this inequality one can estimate together with (2.29) and (2.30)

‖d−1
J e‖L2(Ω′J ) ≤ chJd

−1
J ‖e‖H1(Ω′J ).

If we apply Lemma 2.12 to this inequality and take Lemma 2.6 into account, we can
continue

‖d−1
J e‖L2(Ω′J ) ≤ chJd

−1
J

(
hd2−γ−µ

J |u|
V 2,∞

γ (Ω′′′J )
+ ‖d−1

J e‖L2(Ω′′J )

)
≤ c

(
h2d2−γ−2µ

J |u|
V 2,∞

γ (Ω′′′J )
+ hJd

−1
J ‖d−1

J e‖L2(Ω′′J )

)
≤ c

(
h2|u|

V 2,∞
γ (Ω′′′J )

+ hJd
−1
J ‖d−1

J e‖L2(Ω′′J )

)
.

In the last estimate we have used 2 − γ − 2µ = λ − δ − 2
(

λ
2 − δ′

)
= 2δ′ − δ > 0. With

Lemma 2.7 we can conclude for an arbitrary, but fixed c0 < 1 the inequality

‖d−1
J e‖L2(Ω′J ) ≤ ch2|u|

V 2,∞
γ (Ω′′′J )

+ c0‖d−1
J e‖L2(Ω′′J ) (J = 0, 1, . . . , I − 2). (2.33)

Let us now consider the case of J = I, I − 1. For T ∈ ΩJ,h one gets with β = γ − 1 from
[2, Proof of Theorem 3.2] the estimate

|v − Ihv|H1(T ) ≤ ch1−β
J |v|

V 2,2
β (T )

.
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Summing up over all elements yields with ΩJ,h = ∪T∩ΩJ 6=∅T̄

|v − Ihv|H1(ΩJ ) ≤ |v − Ihv|H1(ΩJ,h) ≤ ch1−β
J |v|

V 2,2
β (ΩJ,h)

≤ ch1−β
J |v|

V 2,2
β (Ω′J )

. (2.34)

With the same transformation as above and an a priori estimate for boundary value
problems in domains with conical points (see [9]) it follows

|v|
V 2,2

β (Ω′J )
∼ dβ−2

J

|ΩJ |
|Ω̂| ‖v̂‖V 2,2

β (Ω̂)
≤ cdβ−2

J

|ΩJ |
|Ω̂| ‖dJ ϕ̂‖L2(Ω̂) ≤ cdβ−1

J ‖ϕ‖L2(Ω′J ) ∼ dβ−1
J .

This yields together with (2.34) and the same argumentation as above

|v − Ihv|H1(Ω′J ) ≤ c(hJd
−1
J )1−β

and (2.29) and (2.30) result in

‖d−1
J e‖L2(Ω′J ) ≤ c(hJd

−1
J )1−β‖e‖H1(Ω′J ).

Now we apply Lemma 2.12 to this inequality and arrive at

‖d−1
J e‖L2(Ω′J ) ≤ c

(
(hJd

−1
J )1−βh2‖y‖

V 2,∞
γ (Ω′′′J )

+ (hJd
−1
J )1−β‖d−1

J e‖L2(Ω′′J )

)
According to Lemma 2.7 it follows for h small enough hJd

−1
J < 1

c c
1/(1−β)
0 and therefore

‖d−1
J e‖L2(Ω′J ) ≤ ch2‖y‖

V 2,∞
γ (Ω′′′J )

+ c0‖d−1
J e‖L2(Ω′′J ) (2.35)

Summing up over all ΩJ , J = 0, 1, . . . , I one has with (2.33) and (2.35)

‖d−1
J e‖2

L2(Ω) ≤ ch4‖y‖2
V 2,∞

γ (Ω)
·

I∑
i=0

1 + c1‖d−1
J e‖2

L2(Ω).

If one has chosen c0 small enough also c1 < 1 is valid. Since I ∼ | lnh| the inequality

‖d−1
J e‖2

L2(Ω) ≤ ch4| lnh|‖y‖2
V 2,∞

γ (Ω)

follows, what results in the desired estimate (2.28).

Remark 2.14. If one denotes by hJ ′ the element size in Ω′
J and by hJ ′′ the element size

in Ω′′
J = (Ω′

J)′ one has

hJ ∼ 1
2
hJ ′ ∼ 1

4
hJ ′′ .

Therefore in Lemmata 2.12 and 2.13 one can substitute ΩJ by Ω′
J and Ω′

J by Ω′′
J .

Now we are able to prove Theorem 2.4.

Proof. Let us first consider the error in ΩI ∪ΩI−1. From Lemma 2.10 we have together
with Lemmata 2.12 and 2.13 and Remark 2.14 for J = I, I − 1, I − 2 the estimate

‖y − yh‖L∞(ΩJ ) ≤ ch2| lnh|‖y‖
V 2,∞

γ (Ω)
. (2.36)

For ΩJ , J 6= I, I − 1, I − 2 we conclude from Lemma 2.10, 2.13 and Remark 2.14 the
same estimate. The assertion follows with the a priori estimate of Theorem 2.2.
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3 Error estimates for the optimal control problem

3.1 General considerations

With the estimates for the state equation from Section 2, we are now able to derive
L∞-error estimates for the optimal control problem (1.1) – (1.6). This problem admits
a unique solution ū, that satisfies the variational inequality

(p̄+ νū, u− ū)L2(Ω) ≥ 0 ∀u ∈ Uad

Here, p̄ = Pū denotes the corresponding adjoint state. This inequality is equivalent to
the expression

ū = Π[ua,ub]

(
−1
ν
p̄

)
(3.1)

where the projection Π[ua,ub] is given by

Π[ua,ub]f(x) := max(ua,min(ub, f(x))).

Remark 3.1. From [1, Remark 2] one has for p < 2/(2− λ) that y is contained in the
classical Sobolev space W 2,p(Ω). For a number σ ∈ (0, 1] small enough, this space, for
p > 1, is embedded in C0,σ(Ω). Therefore we can conclude for the solution of (2.1)

y ∈ C0,σ(Ω̄) if f ∈ Lp(Ω), p > 1.

Notice that this assertion also holds for p > 2/(2 − λ) because the data can, of course,
be smoother than necessary.

With an argumention analogous to the one after Remark 2 in [1] one can show, that
for the optimal control problem (1.1)–(1.6) the estimates

‖Su‖C0,σ(Ω̄) ≤ c‖u‖L∞(Ω) ≤ c‖u‖C0,σ(Ω̄),

‖Pu‖C0,σ(Ω̄) ≤ c‖Su+ yd‖L∞(Ω) ≤ c
(
‖u‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
are valid.

Remark 3.2. From p̄ = Pū ∈ C0,σ(Ω̄) and (3.1) we obtain that the optimal control ū
belongs to C0,σ(Ω̄), σ ∈ (0, 1].

In the following, we will investigate two different types of discretization of the optimal
control problem (1.1)–(1.6), namely the approach of variational discretization suggested
by Hinze in [6] and the fully discrete approach originally introduced by Meyer and Rösch
in [12].

We denote by Sh and S∗h the finite element solution operator corresponding to S and
S∗ respectively. In the case of µ > 1

2 the following lemma about the boundedness of Sh

and S∗h was already proven in [1]. Since in our setting here µ < λ/2 may be required
(comp. Section 1), we cannot fulfill this condition for λ ∈ [1/2, 1]. Therefore we give in
the following a more involved proof of [1, Lemma 3] without the condition µ > 1

2 .
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Lemma 3.3. Let Th be a graded mesh with parameter µ < λ. The norms of the discrete
solution operators Sh and S∗h are bounded,

‖Sh‖L2(Ω)→L∞(Ω) ≤ c, ‖S∗h‖L2(Ω)→L∞(Ω) ≤ c,

‖Sh‖L2(Ω)→L2(Ω) ≤ c, ‖S∗h‖L2(Ω)→L2(Ω) ≤ c,

‖Sh‖L2(Ω)→H1
0 (Ω) ≤ c, ‖S∗h‖L2(Ω)→H1

0 (Ω) ≤ c,

‖Sh‖L∞(Ω)→L∞(Ω) ≤ c, ‖S∗h‖L∞(Ω)→L∞(Ω) ≤ c,

where c is independent of h.

The remainder of this subsection is devoted to the proof of this lemma. For that, we
use estimates of norms of a regularized Green function. We introduce the regularized
Dirac function

δh :=
{ |T∗|−1sgn(e) in T∗,

0 elsewhere,
(3.2)

where we abbreviated the finite element error by e,

e := y − yh.

The regularized Green function gh is defined as solution of

a(ϕ, gh) = (δh, ϕ) ∀ϕ ∈ V, (3.3)

and its discrete counterpart gh
h by

a(ϕh, g
h
h) = (δh, ϕh) ∀ϕh ∈ Vh. (3.4)

Lemma 3.4. The norms of the regularized Green function can be estimated by

‖gh‖L∞(Ω) ≤ c| lnh| (3.5)

‖gh‖H1(Ω) ≤ c| lnh|1/2 (3.6)

‖gh‖
V 2,2

β (Ω)
≤ ch−1 (3.7)

where β := 1 − µ > 1 − λ is the weight corresponding to the regularity in V 2,2
β (Ω), and

the grading parameter satisfies µ < λ.

Proof. Let g(x) be the Green function with respect to an arbitrary point x+ ∈ Ω,

a(ϕ, g) = ϕ(x+) ∀ϕ ∈ V. (3.8)

The Green function satisfies the following inequality

|g(x)| ≤ c
(∣∣ ln |x− x+|

∣∣ + 1
) ∀x ∈ Ω. (3.9)
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In [4] it is proven that this estimate is valid on Lipschitz domains and that the constant
c is independent of x+. Using (3.8), (3.3), and (3.2) we get

|gh(x+)| = |a(gh, g)| = |(δh, g)| ≤ |T∗|−1

∫
T∗
|g|dx

In the case dist(x+, T∗) > hT∗ we have |x− x+| ≥ hT∗ and estimate (3.5) is obtained via

|T∗|−1

∫
T∗
|g|dx ≤ max

x∈T∗
|g(x)| ≤ cmax

x∈T∗

(∣∣ ln |x− x+|
∣∣ + 1

) ≤ c| lnhT∗ | ≤ c| lnh|,

since hT∗ ≥ ch1/µ. In the case dist(x+, T∗) ≤ hT∗ we calculate the integral by using polar
coordinates centered in x+,

|T∗|−1

∫
T∗
|g|dx ≤ c|T∗|−1

∫ 2hT∗

0
(− ln r)rdr = c|T∗|−1h2

T∗(c− lnhT∗) ≤ c| lnh|

as above.

For the proof of (3.6) we use the coercivity of the bilinear form and the definitions
(3.3) of gh and (3.2) of δh,

c‖gh‖2
H1(Ω) ≤ a(gh, gh) = (δh, gh) ≤ ‖gh‖L∞(Ω)‖δh‖L1(Ω) ≤ ‖gh‖L∞(Ω).

With (3.5) we conclude (3.6).

The a priori estimate for the solution of the elliptic partial differential equation, and
the definition (3.2) of δh give

‖gh‖
V 2,2

β (Ω)
≤ c‖rβδh‖L2(Ω) ≤ c|T∗|−1‖rβ‖L2(T∗).

With r ≤ dJ , we can continue by

|T∗|−1‖rβ‖L2(T∗) ≤ c|T∗|−1/2dβ
J = ch−1

since |T∗|1/2 = chT∗ = chd1−µ
J = chdβ

J . In the other case, J = I, we calculate the
L2-norm and obtain

|T∗|−1‖rβ‖L2(T∗) ≤ c|T∗|−1hβ+1
T∗ ≤ chβ−1

T∗ = ch−1

since hT∗ = ch1/µ = ch1/(1−β). Thus (3.7) is proved.

Corollary 3.5. On meshes with grading parameter µ = 1− β < λ the error estimates

‖gh − gh
h‖H1(Ω) ≤ c (3.10)

‖gh − gh
h‖L2(Ω) ≤ ch (3.11)

hold.
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Proof. Since the meshes are optimally graded, one has from Lemma 2.3

‖gh − gh
h‖H1(Ω) ≤ ch‖rβ∇2gh‖L2(Ω),

‖gh − gh
h‖L2(Ω) ≤ ch2‖rβ∇2gh‖L2(Ω),

With (3.7) we get the assertion.

Now we are able to prove Lemma 3.3.

Proof. First we prove the boundedness of ‖Sh‖L2(Ω)→L∞(Ω). To this end, we consider
a function f ∈ L2(Ω) and an arbitrary but fixed finite element T∗. Then the three
inequalities

‖yh‖L∞(T∗) ≤ c|T∗|−1‖yh‖L1(T∗),

‖yh‖L1(T∗) ≤ ‖y − yh‖L1(T∗) + ‖y‖L1(T∗),

‖y‖L1(T∗) ≤ |T∗|‖y‖L∞(T∗)

yield the estimate

‖yh‖L∞(T∗) ≤ c|T∗|−1‖y − yh‖L1(T∗) + c‖y‖L∞(T∗). (3.12)

By the definition of δh and gh we get for the first term on the right-hand side of this
inequality the equation

|T∗|−1‖e‖L1(T∗) = (δh, e) = a(e, gh).

Using the Galerkin orthogonality and the fact that e− Ihe = y − Ihy yields

|T∗|−1‖e‖L1(T∗) = a(e, gh − gh
h) = a(e− Ihe, g

h − gh
h) = a(y − Ihy, g

h − gh
h)

With the Cauchy-Schwartz inequality we can continue

|T∗|−1‖e‖L1(T∗) ≤ c‖y − Ihy‖H1(Ω)‖gh − gh
h‖H1(Ω) (3.13)

From finite element theory one knows that

‖y − Ihy‖H1(Ω) ≤ chκ‖f‖L2(Ω) (3.14)

with κ = min{λ
µ , 1}. Consequently, one can conclude from (3.13) together with (3.14)

and Corollary 3.5
|T∗|−1‖e‖L1(T∗) ≤ ch.

This shows together with (3.12)

‖Shf‖L∞(T∗) ≤ c‖f‖L2(Ω).

The boundedness of ‖Sh‖L2(Ω)→L2(Ω) and ‖Sh‖L∞(Ω)→L∞(Ω) follows then by the embed-
ding theorem L∞(Ω) ↪→ L2(Ω). The boundedness of ‖Sh‖L2(Ω)→H1

0 (Ω) comes from the
theory of weak solutions. The estimates for S∗h follow by analogy.
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3.2 Approach of variational discretization

We consider as discretization the optimal control problem

Js
h(ūs

h) = min
u∈Uad

F (Shu, u) (3.15)

Js
h(u) :=

1
2
‖Shu− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω).

Remark 3.6. The optimal control problem (3.15) admits a unique solution ūs
h. In the

following, we use the notation ȳs
h = Shū

s
h and p̄s

h = Phū
s
h for the optimal discrete state

and adjoint state. The corresponding necessary and sufficient optimality condition is
given by

(νūs
h + p̄s

h, v − ūs
h)L2(Ω) ≥ 0 ∀v ∈ Uad. (3.16)

In the case of convex domains and quasi-uniform triangulations, it is shown in [6] that a
finite element discretization of S with piecewise linear and globally continuous functions
yields an approximation rate h2 in the L2-norm. This results extends to non-convex
domains with graded meshes (see [1, Remark 5]). Therefore the following theorem is
valid.

Theorem 3.7. Let ū and ūs
h be the solutions of (1.1) and (3.15), respectively. If S is

discretized on a mesh, that is graded according to (2.4) with µ < λ, the estimate

‖ū− ūs
h‖L2(Ω) ≤ ch2

(‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
is valid.

With the L2-error estimate at hand, one is now able to prove an L∞-error estimate.

Theorem 3.8. Let ūs
h be the discrete control introduced in (3.15) and ȳs

h = Shū
s
h and

p̄s
h = Phū

s
h the associated state and adjoint state, respectively. On a family of meshes

with grading parameter µ < λ
2 the estimates

‖ū− ūs
h‖L∞(Ω) ≤ ch2| lnh|

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(3.17)

‖ȳ − ȳs
h‖L∞(Ω) ≤ ch2| lnh|

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(3.18)

‖p̄− p̄s
h‖L∞(Ω) ≤ ch2| lnh|

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(3.19)

are valid.

Proof. The proof is similar to that given in [6] for quasi-uniform meshes and W 2,∞(Ω)-
regular solutions of the underlying boundary value problem. First, we prove assertion
(3.19). One can conclude

‖p̄− p̄s
h‖L∞(Ω) = ‖S∗(Sū− yd)− S∗h(Shū

s
h − yd)‖L∞(Ω)

≤ ‖(S∗ − S∗h)Sū‖L∞(Ω) + ‖(S∗ − S∗h)yd‖L∞(Ω)

+ ‖S∗hSū− S∗hShū‖L∞(Ω) + ‖S∗hShū− S∗hShū
s
h‖L∞(Ω). (3.20)
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We estimate each of the four terms separately. By Theorem 2.4 it follows

‖(S∗ − S∗h)Sū‖L∞(Ω) ≤ ch2| lnh|‖Sū‖C0,σ(Ω̄) ≤ ch2| lnh|‖ū‖C0,σ(Ω̄) (3.21)

since ‖S‖C0,σ(Ω̄)→C0,σ(Ω̄) ≤ c. For the second term one can conclude from the same
theorem

‖(S∗ − S∗h)Syd‖L∞(Ω) ≤ ch2| lnh|‖yd‖C0,σ(Ω̄). (3.22)

With the discrete Sobolev inequality (2.13) one has

‖S∗hSū− S∗hShū‖L∞(Ω) ≤ c| lnh|1/2|S∗hSū− S∗hShū|H1(Ω)

≤ c| lnh|1/2‖S∗h‖L2(Ω)→H1(Ω)‖Sū− Shū‖L2(Ω)

≤ c| lnh|1/2h2‖ū‖L2(Ω) (3.23)

where we have used Theorem 2.3 in the last step. Utilizing again inequality (2.13),
Lemma 3.3 and Theorem 3.7 it follows for the fourth term

‖S∗hShū− S∗hShū
s
h‖L∞(Ω) ≤ c| lnh|1/2|S∗hShū− S∗hShū

s
h|H1(Ω)

≤ c| lnh|1/2‖Shū− Shū
s
h‖L2(Ω)

≤ c| lnh|1/2‖ū− ūs
h‖L2(Ω)

≤ c| lnh|1/2h2
(‖ū‖L2(Ω) + ‖yd‖L2(Ω)

)
. (3.24)

The estimate (3.20) yields together with (3.21) – (3.24) the assertion (3.19). Inequality
(3.17) follows directly from

‖ū− ūs
h‖L∞(Ω) ≤

1
α
‖p̄− p̄s

h‖L∞(Ω).

To show inequality (3.18) we conclude

‖y − ȳs
h‖L∞(Ω) ≤ ‖Sū− Shū‖L∞(Ω) + ‖Shū− Shū

s
h‖L∞(Ω)

≤ ch2| lnh|
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

where we have used Theorem 2.4, Lemma 3.3 and inequality (3.17) in the last step.

3.3 Fully discrete approach

The state equation and its adjoint are discretized according to Section 2. The control u
is discretized by piecewise constant functions

Uh := {uh ∈ L∞(Ω) : uh|T ∈ P0 for all T ∈ Th},
Uad

h := Uh ∩ Uad.
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Now, we introduce the discretized optimal control problem

Jh(ūh) = min
uh∈Uad

h

Jh(uh), (3.25)

Jh(uh) :=
1
2
‖Shuh − yd‖2

L2(Ω) +
ν

2
‖uh‖2

L2(Ω).

Remark 3.9. The optimal control problem (3.25) admits a unique solution ūh. In the
following, we use the notation ȳh = Shūh and p̄h = Phūh for the optimal discrete state
and adjoint state. The variational inequality

(p̄h + νūh, uh − ūh)L2(Ω) ≥ 0 for all uh ∈ Uad
h (3.26)

is necessary and sufficient for the optimality of ūh.

The aim of this section is to prove error estimates of the same quality as in Theorem
3.8. For this result an assumption on the active set is needed. The optimal control ū is
obtained by the projection formula (3.1). This formula generates kinks in the optimal
control. However, we can classify the triangles T ∈ Th in two sets K1 and K2,

K1 :=
⋃

T∈Th: ū 6∈V 2,2
2−2µ(T )

T, K2 :=
⋃

T∈Th: ū∈V 2,2
2−2µ(T )

T. (3.27)

Clearly, the number of triangles in K1 grows for decreasing h. Nevertheless, the
assumption

measK1 ≤ ch (3.28)

is fulfilled in many practical cases.

For continuous functions f we define now the projection into the space Uh of piecewise
constant functions by

(Rhf)(x) := f(ST ) if x ∈ T,
where ST denotes the centroid of the triangle T . Notice, that Rhū ∈ Uad

h . Next, we
recall two results from [1].

Theorem 3.10. Assume that the assumption (3.28) holds. Let ūh be the solution of
(3.25) on a family of meshes with grading parameter µ < λ. Then the estimate

‖ūh −Rhū‖L2(Ω) ≤ ch2
(‖ū‖L∞(Ω) + ‖yd‖L∞(Ω)

)
(3.29)

holds true.

Proof. This theorem is proved in [1] under the assumption µ > 1
2 , which was used in the

proof of the boundedness of Sh only. The boundedness of Sh also in case of µ ≤ 1/2 is
guaranteed by Lemma 3.3.
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Lemma 3.11. On a mesh with grading parameter µ < λ the estimate

(vh, ū−Rhū)L2(Ω) ≤ ch2
(
‖vh‖L∞(Ω) + ‖vh‖H1

0 (Ω)

) (‖ū‖L∞(Ω) + ‖ȳd‖L∞(Ω)

)
(3.30)

holds for all vh ∈ Vh, provided that Assumption (3.28) is fulfilled.

Proof. This lemma is proved in [1]. Notice, that in that proof the condition µ ≥ 1/2
was not necessary.

Next, we will apply the error estimates of Section 2 to obtain L∞-error estimates for
the optimal control problem. Before, we will derive an auxiliary result. Let us define
another regularized Dirac function δh

ξ for a fixed point ξ ∈ T∗ with

(P1) (δh
ξ , vh) = vh(a) ∀vh ∈ Vh,

(P2) supp δh
ξ ⊂ T̄∗,

(P3) δh
ξ ∈ P1(T∗),

(P4) ‖δh
ξ ‖L2(T∗) = O(h−1

T∗ ).

(P5) ‖δh
ξ ‖L∞(Ω) ≤ c|T∗|−1

An example for a function with these properties is given in [22]. The regularized Green
function zh is defined as the solution of

a(v, zh) = (δh
ξ , v) ∀v ∈ V. (3.31)

Moreover, we denote by zh
h its discrete counterpart,

a(vh, z
h
h) = (δh

ξ , vh) ∀vh ∈ Vh.

Subsequently, we need estimates of norms of the regularized Green function.

Lemma 3.12. The norms of the regularized Green function can be estimated by

‖zh‖L∞(Ω) ≤ c| lnh| (3.32)

‖zh‖H1(Ω) ≤ c| lnh|1/2 (3.33)

‖zh‖
V 2,2

β (Ω)
≤ ch−1 (3.34)

where β := 1 − µ > 1 − λ is the weight corresponding to the regularity in V 2,2
β (Ω), and

the grading parameter satisfies µ < λ.
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Proof. The proof of this lemma is very similar to that of Lemma 3.4. For the sake
of completeness we sketch it here. Let g(x) be the Green function with respect to an
arbitrary point x+ ∈ Ω,

a(g, v) = v(x+) ∀v ∈ V (3.35)

According to [4] there is a constant c independent of x+, such that

|g(x)| ≤ c(| ln |x− x+||+ 1).

Using (3.35), (3.31), the Hölder inequality and property (P4) we get

|zh(x+)| = |a(g, zh)| = (δh
ξ , g) ≤ ‖δh

ξ ‖L2(T∗)‖g‖L2(T∗) ≤ ch−1
T∗ ‖g‖L2(T∗) (3.36)

We estimate the L2-norm of g using polar coordinates centered in x+,

h−1
T∗ ‖g‖L2(T∗) ≤ ch−1

T∗

(∫ hT∗

0
(ln r)2rdr

)1/2

≤ ch−1
T∗

(
hT∗ | lnhT∗ |+ hT∗ | lnhT∗ |1/2 + hT∗

)
≤ c| lnh|.

This yields from (3.36) the estimate (3.32).

For the proof of (3.33) we use the coercivity of the bilinear form, the definition (3.31)
and property (P4) of δh(a),

‖zh‖2
H1(Ω) ≤ a(zh, zh) = (δh, zh) ≤ ‖zh‖L∞(Ω)‖δh‖L1(Ω)

≤ |T∗|1/2‖δh‖L2(T∗)‖zh‖L∞(Ω) ≤ c‖zh‖L∞(Ω).

With (3.32) we conclude (3.33).

The a priori estimate for the solution of the elliptic partial differential equation and
the property (P5) of δh(a) give

‖zh‖
V 2,2

β (Ω)
≤ c‖rβδh‖L2(Ω) ≤ c|T∗|−1‖rβ‖L2(T∗).

Since r ≤ dJ , we can continue by

|T∗|−1‖rβ‖L2(T∗) ≤ c|T∗|−1/2dβ
J = ch−1

since |T∗|1/2 = chT∗ = chd1−µ
J = chdβ

J . In the other case, J = I, we calculate the
L2-norm and obtain

|T∗|−1‖rβ‖L2(T∗) ≤ c|T∗|−1hβ+1
T∗ ≤ chβ−1

T∗ = ch−1

since hT∗ = ch1/µ = ch1/(1−β). Thus (3.34) is proved.
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Lemma 3.13. The estimate

‖zh
h‖L∞(Ω) + ‖zh

h‖H1
0 (Ω) ≤ c| lnh| (3.37)

holds on a finite element mesh with µ = 1− β < λ.

Proof. By the triangle inequality one can conclude

‖zh
h‖L∞(Ω) + ‖zh

h‖H1
0 (Ω) ≤ ‖zh‖L∞(Ω) + ‖zh − zh

h‖L∞(Ω) + ‖zh‖H1
0 (Ω) + ‖zh − zh

h‖H1
0 (Ω)

(3.38)

Since the meshes are optimally graded, we have

‖zh − zh
h‖H1(Ω) ≤ ch|zh|

V 2,2
β (Ω)

and with (3.34)

‖zh − zh
h‖H1(Ω) ≤ c. (3.39)

Furthermore, we have
‖zh − zh

h‖L∞(Ω) ≤ ch|zh|
V 2,2

β (Ω)

and with (3.34)

‖zh − zh
h‖L∞(Ω) ≤ c. (3.40)

Now the assertion follows from (3.38) with (3.32),(3.33), (3.39) and (3.40).

Lemma 3.14. The inequality

‖Shū− ShRhū‖L∞(Ω) ≤ ch2| lnh| (‖ū‖L∞(Ω) + ‖ȳd‖L∞(Ω)

)
(3.41)

is satisfied provided that Assumption (3.28) is fulfilled.

Proof. Let ξ ∈ Ω be an arbitrary but fixed point. Using the definitions above, we find

|Shū(ξ)− ShRhū(ξ)| = |(δh
ξ , Shū− ShRhū)|

= |a(Shū− ShRhū, z
h
h)|

= |(zh
h , ū−Rhū)|.

Now, we can apply Lemma 3.11 and obtain

|Shū(ξ)− ShRhū(ξ)| ≤ ch2
(
‖zh

h‖L∞(Ω) + ‖zh
h‖H1

0 (Ω)

) (‖ū‖L∞(Ω) + ‖ȳd‖L∞(Ω)

)
(3.42)

The assertion follows from (3.42) and Lemma 3.13.
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We construct now the control ũh as a projection of the discrete adjoint state p̄h = Phūh

to the admissible set Uad,

ũh = Π[ua,ub]

(
− 1
µ
p̄h

)
. (3.43)

Note, that ũh is still piecewise linear, but in general neither in Uh nor in Vh.

The following L∞-error estimates are new even in the case without corner singularities
and uniform meshes, see [12].

Theorem 3.15. Assume that assumption (3.28) holds. Let ȳh be the associated state
and p̄h be the associated adjoint state to the solution ūh of (3.25) on a family of meshes
with grading parameter µ < λ/2. Further, let ũh be the discrete control constructed in
(3.43). Then the estimates

‖ȳh − ȳ‖L∞(Ω) ≤ ch2| lnh|
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(3.44)

‖p̄h − p̄‖L∞(Ω) ≤ ch2| lnh|
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(3.45)

‖ū− ũh‖L∞(Ω) ≤ ch2| lnh|
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
(3.46)

are valid.

Proof. We start with

‖ȳ − ȳh‖L∞(Ω) = ‖Sū− Shūh‖L∞(Ω)

≤ ‖Sū− Shū‖L∞(Ω) + ‖Shū− ShRhū‖L∞(Ω) + ‖ShRhū− Shūh‖L∞(Ω).

The first term was estimated in Theorem 2.4. Lemma 3.14 delivers an inequality for the
second term. Theorem 3.10 implies the estimate of the third term. Consequently, we
find with the embedding C0,σ(Ω̄) ↪→ L∞(Ω)

‖ȳ − ȳh‖L∞(Ω) ≤ ch2| lnh|
(
‖ū‖C0,σ(Ω̄) + ‖yd‖L∞(Ω)

)
≤ ch2| lnh|

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
,

i.e., (3.44). The second inequality can be obtained similarly,

‖p̄− p̄h‖L∞(Ω) = ‖S∗(ȳ − yd)− S∗h(ȳh − yd)‖L∞(Ω)

≤ ‖S∗(ȳ − yd)− S∗h(ȳ − yd)‖L∞(Ω) + ‖S∗h(ȳ − ȳh)‖L∞(Ω)

≤ ch2| lnh|‖ȳ − yd‖C0,σ(Ω̄) + ch2| lnh|
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
≤ ch2| lnh|

(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
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by means of (3.44) and Theorem 2.4. To prove the third inequality we use, that the
projection operator Π[a,b] is Lipschitz continuous with constant 1 from L∞(Ω) to L∞(Ω).
Therefore, we get

ν‖ū− ũh‖L∞(Ω) = ν

∥∥∥∥Π[a,b]

(
−1
ν
p̄

)
−Π[a,b]

(
−1
ν
p̄h

)∥∥∥∥
L∞(Ω)

≤ ‖p̄− p̄h‖L∞(Ω)

≤ ch2| lnh|
(
‖ū‖C0,σ(Ω̄) + ‖yd‖C0,σ(Ω̄)

)
.

where we used (3.46) in the last step. The superconvergence result is proved.

4 Numerical example

In this section we illustrate our theoretical findings for the fully discrete approach by
some numerical tests. Therefore we consider the optimal control problem (1.1)–(1.6)
with L = −∆ and the first-order optimality system

−∆y = u+ f in Ω, y = 0 on ∂Ω,
−∆p = y − yd in Ω, p = 0 on ∂Ω,

u = Π[a,b]

(
−1
ν
p

)
.

The data yd and f are chosen such that the exact solution is given as

ȳ(r, ϕ) = (rλ − rα) sinλϕ,

p̄(r, ϕ) = ν(rλ − rβ) sinλϕ.

We set α = β = 5
2 and µ = 10−3. To evaluate the maximum norm of the error we used

not only grid points but also the nodes of a high order quadrature formula of degree
19 implemented in the program package MooNMD [8]. In the following we study the
example in a convex and a non-convex domain.

4.1 Example in a convex domain

The domain Ω is defined as

Ω =
{

(r cosϕ, r sinϕ)T : 0 < r < 1, 0 < ϕ <
3
4
π

}
and therefore λ = 4

3 . Table 1 shows the computed errors ‖ū−ũh‖L∞(Ω) for quasi-uniform
meshes and for graded meshes with µ = 0.6 < λ

2 . While a convergence rate of about
λ can be observed for µ = 1, the approximation order is slightly smaller than 2 on the
graded meshes. So mesh grading improves the convergence rate for the L∞-error also in
the case of a corner with an interior angle between π

2 and π.
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Figure 2: Convex domain with a quasi-uniform mesh (µ = 1) and a graded mesh with
µ = 0.6.

µ = 0.6 µ = 1
ndof value rate value rate

51 3.02e−02 4.63e−02
176 1.19e−02 1.50 1.88e−02 1.45
651 4.12e−03 1.62 7.57e−03 1.39

2501 1.42e−03 1.58 3.02e−03 1.36
9801 4.22e−04 1.78 1.20e−03 1.35

38801 1.15e−04 1.89 4.79e−04 1.34
74482 6.11e−05 1.94 3.09e−04 1.34

154401 3.01e−05 1.95 1.90e−04 1.34

Table 1: L∞-error of the computed control ũh in a convex domain

4.2 Example in a non-convex domain

As second example we set Ω as

Ω =
{

(r cosϕ, r sinϕ)T : 0 < r < 1, 0 < ϕ <
3
2
π

}
.

This means λ = 2
3 . In Table 2 one can find the computed errors ‖ū−ũh‖L∞(Ω) on different

meshes with µ = 0.3 < λ
2 , µ = 0.6 < λ and µ = 1.0. For meshes with grading parameter

µ < λ
2 one can see the predicted convergence rate slightly smaller than 2. Further one can

observe, that a mesh grading parameter µ ∈ (
λ
2 , λ

)
yields only a suboptimal convergence

rate λ
µ = 10

9 for the L∞-error. Notice, that such a mesh grading was enough to get the
optimal convergence of second order for the L2-error (see [1]). If no mesh grading is
performed (µ = 1) one can observe a convergence rate of about λ.

In Figure 3 the distribution of the L∞-error on a uniform and on an appropriately
graded mesh is shown. The mesh grading significantly reduces the error near the edge.
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µ = 0.3 µ = 0.6 µ = 1
ndof value rate value rate value rate
125 1.63e−01 8.18e−02 2.19e−01
286 7.61e−01 1.20 3.77e−02 1.23 1.34e−01 0.78

1071 2.30e−02 1.81 1.73e−02 1.18 6.67e−02 1.06
4141 7.49e−03 1.66 7.99e−03 1.14 4.15e−02 0.70

16281 1.97e−03 1.95 3.70e−03 1.13 2.60e−02 0.68
25351 1.29e−03 1.92 2.88e−03 1.12 2.24e−02 0.68
39501 8.29e−04 1.98 2.25e−03 1.12 1.93e−02 0.68

100701 3.34e−04 1.95 1.33e−03 1.12 1.41e−02 0.67

Table 2: L∞-error of the computed control ũh in a non-convex domain
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Figure 3: Error distribution on a uniform (left) and a graded mesh with µ = 0.3.
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[3] I. Babuska, R. B. Kellogg, and J. Pitkäranta. Direct and inverse error estimates for
finite elements with mesh refinements. Numer. Math., 33:447–471, 1979.

[4] G. Dolzmann and S. Müller. Estimates for Green’s matrices of elliptic systems by
Lp theory. Manuscripta Math., 88:261–273, 1995.

[5] J. Frehse and R. Rannacher. Eine L1-Fehlerabschätzung für diskrete Grundlösungen
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