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2Anisotropic �nite element meshes have di�erent mesh sizes in di�erent direc-tions. Such meshes have a great potential for the approximation of functionswith anisotropic behaviour, as for example near edges or in boundary layers.The aim of this monograph is to present a mathematical theory of the approxi-mation properties of �nite element spaces over anisotropic meshes. Local errorestimates are derived for the Lagrange interpolation and for modi�ed Scott-Zhang interpolation operators. Families of anisotropic �nite element meshesare constructed for the numerical solution of model problems with boundarylayers or edge and corner singularities, and the global discretization error isestimated. Numerical tests show that the asymptotic results are valid for amoderate number of unknowns already.The strengths of this investigation are the consideration of two- and three-dimensional problems in general polygonal/polyhedral domains, and the treat-ment of lower and higher order �nite elements.
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Preface
The solution of elliptic boundary value problems may have anisotropic be-haviour in parts of the domain. That means that the solution varies signi�-cantly only in certain directions. Examples include di�usion problems in do-mains with edges and singularly perturbed convection-di�usion-reaction prob-lems where boundary or interior layers appear. This anisotropy in the solutioncan be reected in the discretization by using anisotropic meshes with a smallmesh size in the direction of the rapid variation of the solution and a largermesh size in the perpendicular direction. Anisotropic meshes can also be ad-vantageous if surfaces with strongly anisotropic curvature (for example thefront of an airplane wing) or thin layers of di�erent material are to be dis-cretized.The aim of this monograph is to establish interpolation and approximationproperties of �nite element spaces on anisotropic meshes. Emphasis is placedon topics to whose development the author himself has contributed: aniso-tropic local interpolation error estimates for several types of two- and three-dimensional �nite elements and a-priori estimates of the discretization errorfor model problems with edge singularities or boundary layers. Several of theresults have not been presented before.We are restricted here to model problems since detailed knowledge of propertiesof the solution is necessary. However, much e�ort is spent on the treatment ofarbitrary polygonal/polyhedral domains and �nite elements of any approxima-tion order. Future tasks are to apply these results to more complex problemsand to complement them with mathematically founded adaptive strategies andoptimal preconditioning techniques for solving the resulting systems of linearequations.The monograph is organized into six chapters:1. Preliminaries,2. Lagrange interpolation,3. Scott-Zhang interpolation,4. Anisotropic �nite element approximations near edges,



6 Preface5. Anisotropic �nite element approximations in boundary layers,6. Open problems.A detailed outline is given in Section 1.2.
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1 Preliminaries
1.1 Introduction to anisotropic �nite elements
Many physical phenomena and engineering problems can be formulated math-ematically by boundary value problems for linear, elliptic partial di�erentialequations. Examples include di�usion and heat conduction problems (some-times involving convection), the calculation of electrostatic potential distribu-tions, and the calculation of displacement �elds in linear elasticity. The taskof solving linear elliptic boundary value problems can also be encountered asa repeated ingredient in the solution of nonlinear (after linearization), time-dependent (after semi-discretization), or inverse problems. The investigationof particular aspects of the numerical solution of such problems has motivatedthe research which is documented in this report.To develop the main ideas we introduce some basic notation. Assume that theboundary value problem is given in weak form:Find u 2 V0 : a(u; v) = hf; vi 8v 2 V0: (1.1)Here we denote by V0 a subspace of V := W 1;2(
) where 
 � R d (d = 2; 3) isa bounded polygonal/polyhedral domain. The duality pair h:; :i : V 0� V ! Rcharacterizes a linear functional hf; :i on V0. Without going into too muchdetail here, we demand that the bilinear form a(:; :) : V �V ! R has propertiessuch that (1.1) has a unique solution u 2 V0. This framework is general enoughto cover symmetric and non-symmetric bilinear forms, as well as scalar andvector-valued functions u. In the latter case the de�nition of V has to bemodi�ed to V := [W 1;2(
)]n.The basic principle of the numerical solution of problem (1.1) via the Galerkin�nite element method is to replace V0 by a family of �nite-dimensional spacesV0h. The �nite element solution is then de�ned by:Find uh 2 V0h : a(uh; vh) = hf; vhi 8vh 2 V0h: (1.2)We remark that also the bilinear and linear forms could be modi�ed to dependupon the parameter h, but we will keep the explanation as simple as possible



12 1 Preliminarieshere. In the h-version of the �nite element method, the spaces Vh � V andV0h � V0 are de�ned relative to a family F = fThg of meshes Th := feg,Vh := fvh 2 V : vhje 2 Pk;e 8e 2 Thg; V0h := V0 \ Vh: (1.3)The element type determines the space Pk;e of shape functions. The meshesare assumed to satisfy the usual admissibility conditions [63, pages 38, 51]:1. The domain is covered by the closure of the �nite elements e, 
 = Se2Th e.2. The �nite elements are disjoint, e \ e0 = ; 8e; e0 2 Th, e 6= e0.3. Any edge (d = 2) or face (d = 3) of any element e 2 Th is either a subset ofthe boundary @
 or edge/face of another element e0 2 Th.Denote by diam (e) the diameter of the �nite element e, and by %e the supre-mum of the diameters of all balls contained in e. Then it is assumed in theclassical �nite element theory thatdiam (e) . %e: (1.4)(The notation . means smaller than up to a constant.) The ratio of diam (e)and %e is called aspect ratio of the element e. In this sense, (1.4) is equivalentto the assumption of a bounded aspect ratio. Elements which satisfy (1.4)are called isotropic elements, see, for example, [175]. Triangular elements areisotropic if they satisfy Zl�amal's minimal angle condition [208].
Consider now boundary value problems with a solution which has anisotropicbehaviour near certain manifoldsM � 
. That means that the solution variessigni�cantly only perpendicularly to M . Examples include di�usion problemsin domains with edgesM , see Chapter 4, and singularly perturbed convection-di�usion-reaction problems where M is part of the boundary or an interiormanifold, see Chapter 5. In such cases it is an obvious idea to reect thisanisotropy in the discretization by using meshes with anisotropic elements[9, 175] (sometimes also called elongated elements [205]). These elements havea small mesh size in the direction of the rapid variation of the solution and alarger mesh size in the perpendicular direction. Examples are given in Figure1.1. Anisotropic meshes can also be advantageous if surfaces with stronglyanisotropic curvature (the front side of a wing of an airplane, for example[175, Figure 6]) or thin layers of di�erent material are to be discretized.Anisotropic elements do not satisfy condition (1.4). Conversely, they are char-acterized bydiam (e)%e !1 (1.5)



1.1 Introduction to anisotropic �nite elements 13

h1=�Fig. 1.1 Examples of anisotropic meshes. Left: in a boundary layer. Right: near an edge.
where the limit can be considered as h ! 0 (near edges) or " ! 0 (in layers)where " is some (small perturbation) parameter of the problem. We note thatthe investigation of anisotropic elements also forms a basis for using highlydistorted elements in the meshing of thin slots or layers of di�erent materials,for example in an electronic motor. Here, the elements are not anisotropic inthe sense of (1.5) but the constant in (1.4) is very large.First mathematical considerations of anisotropic elements go back to the �fties[187] and seventies [27, 84, 108] Nevertheless, the majority of papers and bookson the �nite element method excludes such elements. Some commercial �niteelement codes even prohibit elements with large aspect ratio, for example anaspect ratio greater than 5.Since the end of the eighties anisotropic elements are considered more inten-sively, for example for interpolation tasks [9, 12, 21, 35, 69, 119, 120, 160, 171,202], in singular perturbation and ow problems [2, 13, 41, 73, 114, 152, 173,186, 204, 205], for the treatment of edge singularities [9, 19, 21, 153], and inadaptive procedures [58, 62, 117, 152, 155, 174, 205]. This list is certainly in-complete, but from the papers we can draw two conclusions. First, anisotropicmesh re�nement o�ers a great potential for the construction of e�cient nu-merical procedures (interpolation; h-, r-, and hp-version of the �nite elementmethod; boundary element method, �nite volume method), more e�cient thanit is possible with the restriction to a bounded aspect ratio. So one can expecta broad utilization of such meshes. Second, there are still challenges to setall the ingredients of such methods (including a-priori and a-posteriori errorestimates and the solution of the arising system of algebraic equations) on asolid mathematical basis.



14 1 Preliminaries1.2 Outline
This monograph is an attempt to present a survey of interpolation resultsand applications in connection with anisotropic �nite element meshes. Theaim is to understand the approximation properties of �nite element spaces onanisotropic meshes. In particular, such topics are chosen where the authorhimself contributed to the development:� anisotropic local interpolation error estimates for several types of two- andthree-dimensional �nite elements and� a-priori estimates of the discretization error for model problems with edgesingularities or boundary layers.So the reader will �nd several new results as well.Thirty sections form six chapters: Preliminaries, Lagrangian interpolation,Scott-Zhang interpolation, Anisotropic discretizations near edges, Anisotropicdiscretizations in boundary layers, and Open problems. We will now motivateand describe the contents.A primary task is to investigate the interpolation error since local interpo-lation error estimates are basic ingredients for deriving a-priori estimates ofthe �nite element error, for proving the equivalence of error estimators andthe exact error, and for investigating multi-level algorithms. For Lagrangian�nite elements, the Lagrangian interpolant, also called nodal interpolant, is thesimplest one. It is de�ned byIhu :=Xi2I u(X(i))'i(x); (1.6)
where X(i) are the nodes and 'i(x) are the nodal basis functions:'i(X(j)) = �i;j; i; j 2 I: (1.7)Since Ih is de�ned locally on every element the interpolation error u� Ihu canbe estimated elementwise.Let us start with a result of the classical interpolation theory, see, for example,[63]. For functions u 2W `;p(e) the interpolation error can be estimated in theform ju� Ihu;Wm;q(e)j . (measde)1=q�1=p(diam e)`%�me ju;W `;p(e)j; (1.8)where measde is the area/volume of the element e and j : ;W `;p(e)j means aseminorm in the Sobolev space W `;p(e). The admissible ranges of the parame-ters `, m, p, and q depend on the space dimension d and the polynomial degreek of the shape functions.



1.2 Outline 15For isotropic elements we can rewrite estimate (1.8) and getju� Ihu;Wm;q(e)j . (measde)1=q�1=p(diam e)`�mju;W `;p(e)j: (1.9)For several special cases it was proved that this estimates holds true for certainclasses of anisotropic elements as well. Triangular and tetrahedral elementswere investigated in [27, 108, 119, 120] and, as the oldest reference, [187, pages209{213]. In all of these papers it is shown that anisotropic elements can beapplied when a maximal angle condition is satis�ed. Quadrilateral elementswere investigated similarly in [108, 202]. We summarize these contributions inmore detail in Section 2.7.These results were rarely exploited for �nite element error estimates becausethe possible advantage of using elements with independent length scales indi�erent directions was not extracted; only the diameter appeared in the lo-cal interpolation error estimates. If we use anisotropic elements in order tocompensate a large directional derivative of the solution by a small elementsize in this direction, then we need a sharper interpolation error estimate. Weinvestigate in this monograph estimates of the typeju� Ihu;Wm;q(e)j. (measde)1=q�1=p X�1+���+�d=`�m�1;::: ;�d�0h�11;e � � � h�dd;e
���� @`�mu@x�11 � � � @x�dd ;Wm;p(e)���� ; (1.10)

where h1;e; : : : ; hd;e are suitably de�ned element sizes. We will call estimatesof this type anisotropic, in contrary to the isotropic estimate in (1.9) wherethe di�erent element scales h1;e; : : : ; hd;e are not exploited.Special cases of estimate (1.10) were proved for triangular and rectangular ele-ments in [37, 84, 153, 155] and [150, pages 82{84 and page 90], see Section 2.7for the individual contributions. An intensive study for all types of elements in-cluding tetrahedra and bricks and also for higher order shape functions startedwith the paper [9] and continued in various directions in [5, 12, 14, 19, 20, 21].Based on [9], some of the results were obtained independently also in [35].In Chapter 2 we present the whole interpolation theory for anisotropic ele-ments in a systematic way. The main strategy is fairly standard, namely, toderive �rst the estimate on a reference element ê and to apply a coordinatetransformation x = Fe(x̂) with e = Fe(ê). Nevertheless, there are mainly twoobstructions which prevent an obvious solution. We have �rst to recognizethat sharper estimates on the reference element have to be shown for provingestimates of type (1.9) or (1.10) for anisotropic elements, sharper than it isnecessary for isotropic elements, see Subsection 2.1.2. We will see in Chapter2 that these estimates can be derived for all element types on the basis of anabstract result given in Subsection 2.1.3.



16 1 PreliminariesA second peculiarity of the proof of anisotropic interpolation error estimatesis that the transformation Fe has to be investigated very carefully. We obtainessential assumptions on the geometry of the elements (like the maximal anglecondition) and on the location of the elements in the coordinate system (acoordinate system condition). These conditions are formulated in Sections2.2{2.6 for each element type separately.Triangular elements are considered in Section 2.2. We prove the estimate onthe reference element (Lemma 2.4), formulate the maximal angle condition andthe coordinate system condition, prove estimate (1.10) under the assumptions1 � ` � k + 1; p 2 [1;1]; 0 � m � `� 1;q 2 [1;1] such that W `�m;p ,! Lq(e);p > 2 if ` = 1(Theorem 2.1, k is the polynomial degree), and derive the corresponding es-timate of type (1.9) (Corollary 2.1). In the discussion, we give examples thatthe assumptions m � ` � 1 (up to exceptional cases like m = ` = 0, p = 1),and p > 2 if ` = 1, as well as the maximal angle condition are necessary.Tetrahedral elements can be considered in the same way but they need specialcare, as investigated in Section 2.3. First, we need at least two reference ele-ments, one for elements with three long edges, the other for elements with fourlong edges. Second, Lemma 2.6 (the counterpart of Lemma 2.4, the estimateon the reference element) does not hold for p � 2 if m = `� 1 (Example 2.6).This includes in particular the case m = k, p = 2, which is often used whenk = 1. Third, the proof of the properties of the transformation x = Fe(x̂) ismore challenging due to the greater variability (Lemma 2.7). Additionally tothe estimates which are analogous to Section 2.2, we prove two more types ofanisotropic interpolation error estimates. At the end of Subsection 2.3.1, weconsider functions with additional smoothness, u 2W k+2;p(e), as a remedy totreat the case m = k, p � 2 (Theorem 2.3). Furthermore, we derive in Sub-section 2.3.2 local interpolation error estimates for functions from weightedSobolev spaces (Theorems 2.4 and 2.5). Special cases of these theorems wereproved in [19, 21] to be able to treat edge singularities.The estimates for triangles extend to a�ne quadrilateral elements, that areparallelograms. There is only one small di�erence in the proof of Lemma 2.10(estimate on the reference element) where attention is needed. But there aretwo more reasons why a whole section is devoted to quadrilateral elements.First, for rectangular elements we can prove for k � 2 a slightly sharperestimate, with less terms on the right hand side (Theorem 2.7 and Remark 2.9).Second, for more general elements than parallelograms, for example trapezes,the transformation x = Fe(x̂) is non-linear. This leads not only to a technically



1.2 Outline 17more complex transformation of the estimate, but also to a non-optimal resultwith lower order terms on the right hand side (Lemma 2.17) [5]. Nevertheless,we were �nally able to reproduce the estimates of the a�ne elements (Theorem2.8, Corollary 2.4). The section ends with an example showing the necessityof an assumption on the geometry of the non-a�ne elements.In Section 2.5 we formulate all statements for (�rst a�ne, then non-a�ne)hexahedral elements. It turns out that all ideas for the proofs are alreadycontained in Sections 2.2{2.4. For the same reason we shortened also thediscussion of pentahedral elements (triangular prisms) in Section 2.6.The last section of Chapter 2 is devoted to historical remarks and alternativeapproaches. We discuss related interpolation results of other authors and ideasof their proof. These are sometimes really fascinating though they were notsu�cient for our purposes.For several investigations, the Lagrangian interpolant turns out to be not ap-propriate. One drawback is that nodal values of u have to be well de�nedfor the de�nition of Ihu. Even more, it is not su�cient for the proof of localinterpolation error estimates to consider functions u 2 W `;p(e)\C(e). We needassumptions on ` and p which imply the Sobolev embedding W `;p(e) ,! C(e)(though this embedding is explicitly used only in the case m = 0). Conse-quently, the Lagrange interpolation is not suited for functions u 2 W `;p(
)when p` � d (besides the exceptional case p = 1, ` = d), for example foru 2W 1;2(
).A second drawback is that the anisotropic elements imply further restrictionson the range of the parameters. In particular, the estimate
ju� Ihu;W 1;p(e)j . 3Xi=1 hi;e

���� @u@xi ;W 1;p(e)����
and even the simpli�ed versionju� Ihu;W 1;p(e)j . diam e ju;W 2;p(e)jhold only for p > 2 in three dimensions. This restriction leads to a non-optimalapproximation result in our investigation of the anisotropically re�ned meshesnear edges [19, 20], see Remark 4.2 on page 146.A remedy (at least for the �rst drawback) is to mollify u in some neighbourhood�i of X(i) and to use values of the molli�ed function for the de�nition of theinterpolant. Such approaches have been investigated for isotropic meshes byseveral authors, see, for example, [64, 170], [150, pages 92{102], [151, pages 15{19]. In Chapter 3 we investigate �rst the Scott-Zhang operator [170]. It turns



18 1 Preliminariesout that estimates of type (1.10) can be proved in the Lq(e)-norm (m = 0,Theorem 3.1). But Example 3.1 shows that this approach cannot be appliedfor m > 0.Therefore we suggest in Sections 3.3{3.5 three alternative operators. Theycan be viewed as modi�cations/adaptions of the Scott-Zhang operator. Theseoperators allow to prove local stability and approximation estimates with dif-ferent generality, see Theorems 3.2, 3.3, and 3.4 for functions from classicalSobolev spaces, and Lemmata 3.4 and 3.6 for functions from weighted Sobolevspaces. But for all three operators the ranges of the parameters `, m, p, andq contain those of the Lagrange interpolation. We compare the operators indetail in Section 3.7.The stability and approximation properties are investigated for �ve types oftwo- and three-dimensional �nite elements with shape functions of arbitraryorder. However, we restrict ourselves to elements of tensor product type. Suchelements contain certain orthogonal edges/faces, see Section 1.3 for the exactde�nition.As it was the case with the Lagrange interpolation, the proof of the propertiesof the Scott-Zhang operator for isotropic elements cannot be applied directlyfor anisotropic elements. Some new ideas were necessary. Unfortunately, theseideas depend on the geometrical conditions on the mesh mentioned above.That means that the generalization to a broader class of elements will containnot only a more general coordinate transformation. It is a task for the futureto develop some new ideas.
Chapters 4 and 5 contain anisotropic discretization strategies and global errorestimates for model problems, for example the Poisson problem and the convec-tion-di�usion-reaction problem. The di�erential operators in these problemsare simple, the solution is always only a scalar function. Our main interestis to treat typical peculiarities (typical also for more complex problems) likeboundary layers or edge and corner singularities. We focus on the applicabilityof the techniques to general polygonal/polyhedral domains and to piecewisepolynomial trial functions of arbitrary (but �xed) degree k.For about ten years the author has been interested in elliptic problems, posedover domains with corners and edges. The latest results are contained inChapter 4.The solution of such problems has both singular and anisotropic behaviour.The singularity leads to a reduced convergence order of the �nite elementmethod on quasi-uniform meshes. A remedy is local mesh re�nement, and itturns out that the adequate re�nement is anisotropic [9, 19, 21]. Note thatisotropic re�nement can be applied as well [11, 23], but only for a moderate



1.2 Outline 19singularity exponent � > 1=3, and computations show that the additionalre�nement along the edge is not necessary. Section 4.2 may serve as a moredetailed introduction.In Section 4.3, we consider the Poisson problem,
��u = f in 
; u = 0 on �1; @u@n = 0 on �2 := @
 n �1;for simplicity over a three-dimensional tensor product domain 
 = G� (0; z0).We prove for model cases and piecewise linear trial functions the approximationestimate ku� uh;Wm;2(
)k . h2�mkf ;L2(
)k; m = 0; 1;by using the Scott-Zhang interpolation results (Theorem 4.1 and Corollary4.1). Using the Lagrange interpolant we needed in former papers more smooth-ness of the data (f 2W 4;2(
) in [9]) or a stronger re�nement condition [19].By using trial functions of higher degree k and a corresponding stronger an-isotropic mesh grading one can prove for model cases (Examples 4.2 and 4.3)that edge singularities can be approximated according toku� uh;W 1;2(
)k . hk:The basis for this estimate is set by the global interpolation error estimates inTheorems 4.2 and 4.3. Of course, the right hand side f has to be su�cientlysmooth.Note that we present asymptotic estimates always in terms of h,h := maxe2Th diam e:

Since we advocate only strategies where the number of elements is Nel � h�d,the error can easily be expressed in terms of Nel or the number N of unknowns(degrees of freedom).For general polyhedral domains or more general di�erential operators one hasto combine the anisotropic re�nement near singular edges with an isotropic re-�nement for treating the additional corner singularities. One of the challengeshas been to describe a family of meshes which is both suited for proving approx-imation error estimates and for a simple realization in a computer program.With our proposal [21], see also the summary in Section 4.4, the constructionof such meshes is principally known. The analysis is done, however only inthe case of piecewise linear trial functions, k = 1 (Theorem 4.5 and Corollary4.2). The di�culty for k � 2 consists in a su�ciently �ne description of the



20 1 Preliminariesproperties of the solution u. The section is completed with a computation ofthe Poisson equation in the Fichera domain.One of the surprising results is that the anisotropic mesh grading does notdisturb the asymptotics of the condition number � of the sti�ness matrix. Weshow in Subsection 4.3.3 that � . h�2 as in the case of a family of quasi-uniform meshes and a smooth solution.In Chapter 5 we consider singularly perturbed problems. The solution of themodel problem�"2�u+ cu = f in 
 � R d (d = 2; 3); u = 0 auf @
;is characterized for 0 < " � 1 by a boundary layer of width O("j ln "j).The derivatives normal to the boundary layer include negative powers of "and are therefore large in comparison with derivatives in tangential direction.Therefore, as in the case of edge singularities, the natural way to resolve theboundary layer is to use anisotropic �nite elements. As shown in Section 5.2,isotropic local mesh re�nement leads only to an approximation result which isnot uniformly valid with respect to the perturbation parameter ".Error estimates for the anisotropic discretizations were derived in the energynorm jjj : jjj
 � "j : ;W 1;2(
)j+ k : ;L2(
)kin [6, 14] for a class of simplicial meshes (d = 2; 3) and in [5] for meshes withquadrilateral elements. In all these papers the width a of the re�nement zoneis O("j ln "j) and corner/edge singularities were excluded by demanding certaincompatibility conditions on the data.In Section 5.3 we summarize and extend this analysis (Lemmata 5.3{5.5, The-orems 5.1 and 5.2). On the one hand we incorporate an additional mesh re-�nement to treat also corner singularities. This is restricted to two dimensionsbut the techniques should work also in three dimensions. The critical point isto obtain a detailed description of the properties of the solution. On the otherhand, results in related literature led to the assumption that for h � " (whichis the interesting case in practice) a numerical layer of width a = O("j lnhj) ismore appropriate. Therefore we investigate also this case in Section 5.3. The�nal result isjjju� uh jjj
 . hk"1=2minfj lnhjk+1=2; j ln "jk+1g+ hk+1;if a = a�"minfj lnhj; j ln "jg with a suitable constant a� is chosen (Corollary5.1). The section ends with a discussion of insu�cient re�nement near thecorners (Lemmata 5.6 and 5.7).



1.2 Outline 21A more di�cult singularly perturbed problem is obtained by including a con-vection term,
�"�u+ b � ru+ cu = f in 
 � R d (d = 2; 3); u = 0 auf @
:

In Section 5.4 we present in a uniform notation some approximation resultsfor a pure (Theorem 5.3) and a stabilized Galerkin �nite element methodon anisotropic meshes (Theorem 5.4). These results were mainly derived in[13, 73, 186]. An approximation error estimate with optimal convergence or-der which is also uniformly valid with respect to the perturbation parameter" is derived for the stabilized method only in the case of rather small stabi-lization parameters (Remark 5.11). It needs further investigation whether themethod is stable enough or whether the proof can be extended to a strongerstabilization.
Chapter 6 (Sections 6.1{6.3) is devoted to some topics which are treated un-satisfactorily up to now. Section 6.1 serves as an introduction. We commenton some problems which were left open in Chapters 3{5, and also on a morecomplex application.A-priori estimates of the �nite element error form only one of the two legsof the �nite element analysis. The other leg consists in a-posteriori errorestimates. They are the basis for assessing the quality of a particular �niteelement solution and for the creation of automatic mesh adapting �nite elementstrategies. However, the majority of papers on this topic assume a family ofisotropic meshes. In Section 6.2 we review results for anisotropic meshes.The calculation of a �nite element solution uh includes the solution of analgebraic system of equations for the coe�cients of the representation of uhin a certain basis. Most often the nodal basis, see (1.7), is used but thenthe system matrix is ill-conditioned. Therefore a preconditioned system ofequations is solved. Modern preconditioners are optimal in the sense that thecondition number of the preconditioned matrix is independent of the numberof unknowns. But, as with the case of error estimators, most of the theory isrestricted to families of isotropic meshes. In Section 6.3, we summarize somepreliminary results of our ongoing research into preconditioning techniques foranisotropic �nite element discretizations.Finally, with Section 6.4, a short description of software is appended. Thethree software packages were used for the numerical examples throughout thewhole monograph.



22 1 Preliminaries1.3 Notation and analytical background
The main intention of this section is to introduce and to collect notation whichis used uniformly throughout the report. Other notation may have di�erentmeaning in di�erent sections.
General notationLet us de�ne the following:d the space dimension, d = 2; 3,j:j the Euclidean norm in R d ,(x1; : : : ; xd) a global Cartesian coordinate system,dist (G1; G2) the distance of two points or domains G1; G2 � R d ,dist (G1; G2) := infx2G1;y2G2 jx� yj.We identify a point x 2 R d with its vector of coordinates (x1; : : : ; xd)T .We denote by N the set of non-negative integers and use a multi-index notationwith � := (�1; : : : ; �d), �i 2 N , and de�ne �! := �1! � � ��d!,

j�j := dXi=1 �i; x� := x�11 � � � x�dd ; and D� := @�1@x�11 � � � @�d@x�dd :
The notation a . b and a � b means the existence of positive constants C1and C2 (which are independent of Th and of the function under consideration)such that a � C2b and C1b � a � C2b, respectively. When problems with aperturbation parameter " are considered then C1 and C2 are also independentof ".
Reference elementsFinite elements e � R d are de�ned via a (�nite number of) reference element(s)ê � R d ,ê := f(x̂1; x̂2)T 2 R 2 : 0 < x̂1 < 1; 0 < x̂2 < 1� x̂1g for triangles,ê := f(x̂1; x̂2)T 2 R 2 : 0 < x̂1; x̂2 < 1g for rectangles,ê := f(x̂1; x̂2; x̂3)T 2 R 3 :0 < x̂1; x̂3 < 1; 0 < x̂2 < 1� x̂1g for pentahedra,ê := f(x̂1; x̂2; x̂3)T 2 R 3 : 0 < x̂1; x̂2; x̂3 < 1g for hexahedra.



1.3 Notation and analytical background 23For tetrahedra we consider two reference elements. The �rst isê := f(x̂1; x̂2; x̂3)T 2 R 3 :0 < x̂1 < 1; 0 < x̂2 < 1� x̂1; 0 < x̂3 < 1� x̂1 � x̂2g (1.11)for tetrahedra that have three edges E with meas1E � diam (e). The secondis ê := f(x̂1; x̂2; x̂3)T 2 R 3 :0 < x̂1 < 1; 0 < x̂2 < 1� x̂1; 0 < x̂3 < x̂1g (1.12)or ê := f(x̂1; x̂2; x̂3)T 2 R 3 :0 < x̂1 < 1; 0 < x̂2 < 1� x̂1; x̂1 < x̂3 < 1� x̂2g (1.13)for tetrahedra with four edges E with meas1E � diam (e). The reason forhaving two choices for the second reference element is that the �rst one isconsidered if h3 = o(h1) and the second one if h1 = o(h3). Depending on theapplication it may be more natural to use h1 & h2 & h3 or h1 . h2 . h3. Theuse of these two variants for a second reference element prevents us from usinga permutation of the axes of the coordinate system. (In the case of �ve edgesE with meas1E � diam (e) we can use either of the reference elements.)
Polynomial spacesWith respect to the type of the reference element ê we de�ne polynomial spacesPk;ê,

Pk;ê � Pdk := 8<:Xj�j�k a�x�; a� 2 R ; � = (�1; : : : ; �d)9=; ; (1.14)
namely Pk;ê := Pdk for triangular/tetrahedral elements,

Pk;ê := Qdk := ( X0��1;�2;�3�k a�x�; a� 2 R)
for quadrilateral/hexahedral elements, and

Pk;ê := 8><>: X0��1+�2�k0��3�k a�x�; a� 2 R9>=>;for pentahedral elements. For simplicity of notation later on, we de�nePd�1 := f0g:



24 1 PreliminariesThe mapping to the element eLet ne be the number of vertices of ê. The nodal shape functions f ̂ignei=1in the case k = 1 are also used for the mapping x = Fe(x̂) of ê onto e.Let the vertices of e be locally enumerated as i = 1; : : : ; ne and denoted byX(i)e := (X(i)1;e; X(i)2;e)T . Then the subparametric mapping
x = Fe(x̂) := neXi=1 X(i)e  ̂i(x̂) 2 (P1;ê)d (1.15)

de�nes e via e = Fe(ê). If this transformation is a�ne then the element iscalled a�ne. According to [182, Section 3.3] the element is isoparametricwhen the shape functions are used for the polynomial transformation F fromthe reference element ê to the element e. The term subparametric indicatesthat only a subset of the shape functions is used.Note that only the vertices of e enter into the transformation (1.15), hence theshape of e is de�ned by its vertices. In particular, all edges of e are straight.More general elements are not considered here. Therefore all triangular andtetrahedral elements are a�ne. Other a�ne elements are parallelograms, par-allelepipeds, and prismatic pentahedra.As an alternative to (1.15), an a�ne mapping can be written asx = Bex̂+ be; Be := (bi;j;e)di;j=1 2 R d�d; be := (bi;e)di=1 2 R d :(1.16)In particular, we say that e is a tensor product element if Be is a diagonalmatrix, bi;j;e = 0 for i 6= j: (1.17)In three dimensions, we also de�ne elements of tensor product type by demand-ing
b1;3;e = b2;3;e = b3;1;e = b3;2;e = 0; ���� b1;1;e b1;2;eb2;1;e b2;2;e ���� � b21;1;e � b22;2;e:(1.18)In three dimensions, tensor product elements are of tensor product type ifb1;1;e � b2;2;e. Since we do not need this distinction in the two-dimensionalcase we will say that tensor product elements are also of tensor product typethere. We introduce these special types of elements here in order to simplifythe mapping for the use in Chapter 3.



1.3 Notation and analytical background 25The elements eLet us consider Lagrangian �nite elements and de�ne the following:Ne the number of nodes of e,fX̂(i)gNei=1 the set of nodes of ê, fX̂(i)gNei=1 := f0; 1k ; 2k ; : : : ; 1gd \ ê,f'̂i(x̂)gNei=1 the shape functions on the reference element,span f'̂i(x̂)gNei=1 = Pk;ê, '̂i(X̂(j)) = �i;j (i; j = 1; : : : ; Ne),f'i;e(x)gNei=1 the shape functions on the element e in local enumeration,'i;e(x) := '̂i(F�1e (x)) (i = 1; : : : ; Ne),Pk;e the linear space of shape functions on the element e,Pk;e := span f'i;e(x)gNei=1,diam (e) the diameter of e, diam (e) := supx;y2e jx� yj,%e the supremum of the diameters of all balls contained in e,h1;e; : : : ; hd;e element sizes, see Sections 2.2{2.6 and 3.1,Se the patch of elements around e,Se := intSfe0 : e0 2 Th; e0 \ e 6= ;g,Ie the index set for the nodes X(i) 2 e in global enumeration.Note that the functions 'i;e(x) are polynomial only in the case of a�ne ele-ments e. Since the considerations in Chapters 2 and 3 are local we will oftenomit the subscript e in the notation.We point out that the term �nite element means, according to [63, page 78], thetriple (e;Pk;e;�k;e). Here, e is a non-empty subdomain of 
 with a Lipschitzboundary, Pk;e is the space of shape functions, and �k;e is a basis in P 0k;e.However, sometimes we simply call e a �nite element. In Lagrangian �niteelements the functionals of �k;e result in the values at the nodes.
The family of meshesFor a mesh Th, we assume the usual admissibility conditions, see Section 1.1,and de�ne the following:h the maximal element diameter, h := maxe2Th diam (e),I the index set for the nodes,fX(i)gi2I the set of nodes of the mesh,f'igi2I the set of trial functions in global enumeration,Vh, V0h the spaces of trial functions, see (1.3), Vh := span f'igi2I ,Nel the number of elements.A mesh Th is called isotropic i� all elements are isotropic, see (1.4). A familyF = fThg of isotropic meshes is called quasi-uniform i� h � diam (e) for all



26 1 Preliminariese 2 Th, that means that the length scales of the elements are translation-invariant.
Approximation operatorsWe employ the following approximation operators:��i the projection operator L2(�i)! Pk;�i , see Sections 3.2, 3.6,Ih the nodal interpolation operator, see Sections 1.2, 2.1, and 3.7,I the nodal interpolation operator when applied on the referenceelement,Ch the Cl�ement operator, see Sections 3.6 and 3.7,Oh the quasi-interpolation operator introduced by Oswald, seeSections 3.6, 3.7,Zh the original Scott-Zhang operator, see Sections 3.2 and 3.7,Sh the modi�ed Scott-Zhang operator using small edges(2D)/faces(3D), see Section 3.3 and 3.7,Lh the modi�ed Scott-Zhang operator using large edges(2D)/faces(3D), see Section 3.4 and 3.7,Eh the modi�ed Scott-Zhang operator using long edges (3D), seeSection 3.5 and 3.7.
Function spacesFor a bounded domain G � R d with Lipschitz boundary (the results mayhold true for more general classes of domains such as domains satisfying astrong cone condition but we will not discuss this here) we denote by C(G)the space of functions which are continuous on G. C1(G) means the space offunctions that have continuous derivatives of any order and D0(G) the space ofdistributions. Moreover, we introduce C10 (G) := fv 2 C1(G) : supp v � Gg.Let W `;p(G), ` 2 N , p 2 [1;1], be the Sobolev spaces with the norm

kv;W `;p(G)kp := Xj�j�`
ZG jD�vjp

and the seminorms
jv;W `;p(G)jp := Xj�j=`

ZG jD�vjp; [v;W `;p(G)]p := Xj�j=1
ZG jD`�vjp



1.3 Notation and analytical background 27for p < 1 and the usual modi�cation for p = 1. Note that the seminormjv;W `;p(G)j contains all derivatives of order ` but [v;W `;p(G)] only the pure(\non-mixed") ones. The special case W 0;p(G) is denoted by Lp(G).By introducing polar/cylindrical coordinates x1 = r cos�, x2 = r sin�, wede�ne for ` 2 N , p 2 [1;1], � 2 R , the weighted Sobolev spacesV `;p� (G) := fv 2 D0(G) : kv;V `;p� (G)k <1g; (1.19)W `;p� (G) := fv 2 D0(G) : kv;W `;p� (G)k <1g; (1.20)where kv;V `;p� (G)kp := Xj�j�`
ZG jr��`+j�jD�vjp; (1.21)

jv;V `;p� (G)jp := Xj�j=`
ZG jr�D�vjp; (1.22)

kv;W `;p� (G)kp := Xj�j�`
ZG jr�D�vjp; (1.23)

jv;W `;p� (G)jp := Xj�j=`
ZG jr�D�vjp: (1.24)

Moreover, let R = R(x) := (x21 + x22 + x23)1=2 and � := r=R be the distance tothe origin and the \angular distance" to the x3-axis, respectively. We de�nefor ` 2 N , p 2 [1;1], �; � 2 R , weighted Sobolev spaces with two weights byV `;p�;� (G) := fv 2 D0(G) : kv;V `;p�;� (G)k <1gwhere kv;V `;p�;� (G)kp := Xj�j�`
ZG jR��`+j�j���`+j�jD�vjp; (1.25)

jv;V `;p�;� (G)jp := Xj�j=`
ZG jR���D�vjp: (1.26)

Note that by this de�nitionV `;p� (G) = V `;p�;�(G): (1.27)
Embedding and trace theoremsFor two Banach spaces X and Y we denote by X ,! Y the continuous embed-ding of X into Y ; this means X � Y and9C = C(G) : ku;Y k � Cku;Xk 8u 2 X:



28 1 PreliminariesIf the spaces are de�ned on a �nite element e one has to separate out thedependence of C on h by making a transformation to a reference element.Well known embedding theorems areW `;p(G) ,! C(G) if � `p > d; p > 1;` � d; p = 1; (1.28)W `;p(G) ,! Wm;p(G) if ` � m; (1.29)W `;p(G) ,! W `;q(G) if p � q; (1.30)W `;p(G) ,! Lq(G) if � `p < d; 1q = 1p � d̀ ;`p = d; 1 � q <1: (1.31)
Let M � G be a manifold of dimension dim(M). If there exists a unique,continuous, linear trace operator X(G)! Y (M) then we will also write X ,!Y . By analogy with the above, this means that9C = C(G;M) : ku;Y (M)k � Cku;X(G)k 8u 2 X(G):Here we have identi�ed u 2 X(G) with its trace on M to keep the notationsuccinct. An important trace theorem is

W `;p(G) ,! Lp(M) if � `p > d� dim(M); p > 1;` � d� dim(M); p = 1: (1.32)
For an introduction and overview about the theory of function spaces see,for example, [1, 87, 115, 116, 128, 146] or the summaries in �nite elementmonographes as [57, 63].



2 Lagrange interpolation on anisotropicelements
This chapter is devoted to anisotropic local interpolation error estimates foranisotropic Lagrangian �nite elements. In Section 2.1, two basic tasks areelaborated for proving such estimates. Moreover, an abstract error estimateis established which is used in Sections 2.2{2.6 to derive the estimates for allelement types. Section 2.7 contains results and approaches of other authorswhich are related to the topic of this chapter.Triangles, tetrahedra and quadrilateral elements are considered in separatesections in order to focus on special di�culties of these element classes.
2.1 General considerations
2.1.1 The aim of this chapterThe aim of this chapter is to prove anisotropic interpolation error estimatesfor anisotropic Lagrangian �nite elements. The Lagrangian interpolant, alsocalled nodal interpolant, is de�ned byIhu :=Xi2I u(X(i))'i(x); (2.1)
where X(i) are the nodes and 'i(x) are the nodal basis functions. Since Ih isde�ned locally on every element the interpolation error u�Ihu can be estimatedelementwise. In Section 1.1, we motivated already that we are interested inerror estimates of the formju� Ihu;Wm;q(e)j . (measde)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j: (2.2)
The main result of this chapter is that this estimate holds for u 2 W `;p(e),1 � ` � k + 1, p 2 [1;1], if m 2 f0; : : : ; ` � 1g, q 2 [1;1] are such that



30 2 Lagrange interpolation on anisotropic elementsW `�m;p(e) ,! Lq(e) and if the conditionsp > d=` if m = 0 and ` = 1; : : : ; d� 1; (2.3)p > 2 if d = 3 and m = `� 1 > 0; (2.4)are ful�lled. Additionally the element e has to satisfy assumptions on thegeometry (like the maximal angle condition) and on the location in the co-ordinate system (coordinate system condition). We show also that all theseconditions are necessary.
In this chapter we discuss also restrictions of the Lagrange interpolation. Theseinclude the following.1. The operator Ih cannot be applied to discontinuous functions. Even more,it is not su�cient for the proof of local interpolation error estimates to considerfunctions u 2 W `;p(e) \ C(e). We need assumptions on ` and p which implythe embeddingW `;p(e) ,! C(e)(We remark that this Sobolev embedding theorem is explicitly used only inthe case m = 0, therefore (2.3) is formulated only for m = 0. But for ` � d theembedding theorem is valid for all p 2 [1;1] and in the remaining case d = 3,m = 1, ` = 2 condition (2.4) implies this embedding.) Consequently, theLagrange interpolation is not suited for some classes of functions, for examplefor u 2W 1;2(
).2. The condition (2.4) implies that the estimateju� Ihu;W 1;p(e)j . Xj�j=1h� ��D�u;W 1;p(e)��
is valid only for p > 2 in three dimensions. This restriction leads to a non-optimal approximation result in our investigation of the anisotropically re�nedmeshes near edges [19, 20], see Remark 4.2 on page 146.3. The case m = ` is not allowed. This means for example that the estimateju� Ihu;W 1;p(e)j . ju;W 1;p(e)jis not valid even when the Sobolev embedding theorem is ful�lled (p > d). Suchestimates are of interest when �nite element functions are to be interpolatedon a coarser mesh.We note however that the points 1 and 3 are general properties of the La-grangian interpolation operator and not introduced by the anisotropic meshes.



2.1 General considerations 31One remedy is to consider alternative interpolation operators. We will treatthis in Chapter 3.For the investigation of the approximation error near edges we have used in[19, 21] another approach to cope with functions which are not containedin W 2;p(e), p > 2. It turns out that the solution of the Poisson problemin domains with edges and corners can be described favourably in weightedSobolev spaces V `;p� (
) or V `;p�;� (
), see Section 1.3 for the de�nition of thesespaces. Therefore we derive in Subsection 2.3.2 estimates of ju� Ihu;Wm;p(e)jfor functions u from such spaces.
The outline of the chapter is as follows. In the next subsection we elaboratetwo basic tasks to be solved in order to prove anisotropic interpolation errorestimates. Then we prove in Subsection 2.1.3 an abstract error estimate foran approximation operator (Lemma 2.2). By verifying the assumptions ofthis lemma we derive in the following sections the estimates on the referenceelements for all the element types. Moreover, we investigate in these sectionswhich elements are admissible for the validity of anisotropic interpolation errorestimates. For such elements we prove properties of the transformation x =F (x̂) and conclude the error estimates.We separate triangles, tetrahedra and quadrilateral elements in order to focuson special di�culties. We motivate this also in Subsection 2.1.2 and at thebeginning of each section. The �nal section of this chapter, Section 2.7, con-tains results and approaches of other authors which are related to anisotropicelements.
2.1.2 Basic tasks for proving anisotropic interpolation errorestimatesThe main strategy to prove anisotropic interpolation error estimates is old,namely, to derive �rst the estimate on a reference element ê and to apply acoordinate transformation x = Fe(x̂) with e = Fe(ê). This procedure ensuresthat the constant in the transformed estimate depends only on ê, and not on(the size of) e.For proving estimates of type (2.2) for anisotropic elements we have to recog-nize �rst that sharper estimates on the reference element have to be shown,sharper than it is necessary for isotropic elements. We give an example toelucidate this.Example 2.1 Consider a triangular element e with linear interpolation. Anestimate on the reference element ê := f(x̂1; x̂2)T 2 R 2 : 0 < x̂1 < 1; 0 < x̂2 <



32 2 Lagrange interpolation on anisotropic elements1� x̂1g is in this casejv̂ � Iv̂;W 1;p(ê)j . jv̂;W 2;p(ê)j; p 2 [1;1]: (2.5)This means in particularkD̂(0;1)(v̂ � Iv̂);Lp(ê)k . jv̂;W 2;p(ê)j; p 2 [1;1]: (2.6)Note that we omit the index h when the operator is applied on the referenceelement.For the special element e := fx = (x1; x2)T 2 R 2 : 0 < x1 < h1; 0 < x2 <h2(1� x1=h1)g we can directly calculate D̂�v̂ = h�D�v andjv̂;W `;p(ê)jp = h1h2 Xj�j=`h�pkD�v;Lp(e)kp:
In this way we conclude the estimatekD(0;1)(v � Ihv);Lp(e)kp. h2p1 h�p2 kD(2;0)v;Lp(e)kp + Xj�j=1h�pkD�+(0;1)v;Lp(e)kp:
If h2 = o(h1) we have a term with the bad asymptotics h21h�12 � [diam (e)]2%�1e .By tracing back the origin of this term we see that we have to provekD̂(0;1)(v̂ � Iv̂);Lp(ê)k . jD̂(0;1)v̂;W 1;p(ê)j (2.7)when we want to show an estimate of the quality (2.2). �In conclusion of this example we can formulate a �rst basic task.Basic task 1: Consider elements ê with the polynomial space Pk;ê (see Sec-tion 1.3 for the de�nition). Let û 2 W `;p(ê) with some ` � k + 1. Derive anestimate analogous to (2.7) for the interpolation error û � Iû in the norm ofWm;q: kD̂(v̂ � Iv̂);Lq(ê)k . jD̂ v̂;W `�m;p(ê)j 8 : jj = m: (2.8)In particular, derive the ranges of k, `, p, m, and q for which (2.8) is true.We will see in this chapter that such estimates can be derived for all elementtypes on the basis of the general Lemma 2.2 in Subsection 2.1.3. But theconditions for (2.8) must be elaborated with care. For example, (2.7) holds forp 2 [1;1] in the two-dimensional case, but only for p 2 (2;1] in three dimen-sions, see Sections 2.2 and 2.3. (Note that estimate (2.5) holds for p 2 (3=2;1]
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Fig. 2.1 Illustration of the maximal angle condition and the coordinate system condition(triangle).
for d = 3.) This is one reason why we treat two- and three-dimensional ele-ments in separate sections.A second peculiarity of the proof of anisotropic interpolation error estimatesis that the transformation Fe has to be investigated very carefully. For ex-ample, for the proof of estimate (2.2) in the case of triangular elements it isnecessary to formulate conditions on the maximal interior angle  (maximalangle condition:  � � < �) and the angle # between the longest side and thex1-axis (coordinate system condition: j sin#j . h2=h1), see Figure 2.1 for anillustration. These conditions become more complicated in three dimensions.So one can formulate a second basic task.Basic task 2: Describe classes of �nite elements e for which (2.8) can betransformed (and summed up) to the desired estimate (2.2). In particular,de�ne the element sizes h1; : : : ; hd for such elements.At this point we mention that this task involves more than the discussion ofthe transformation x = Fe(ê) when the element e is non-a�ne (for instanceisoparametric). Consider the following example.Example 2.2 Let us study the simplest isoparametric element, namely aquadrilateral element e with what are usually called bilinear basis functions.The reference element is de�ned by ê := fx̂ = (x̂1; x̂2)T 2 R 2 : 0 < x̂1; x̂2 < 1g:Furthermore, denote by  ̂i(x̂1; x̂2), i = 1; : : : ; 4, the bilinear nodal shape func-tions. The transformation F : ê! e is given by

x = 4Xi=1 X(i)e  ̂i(x̂) (2.9)



34 2 Lagrange interpolation on anisotropic elementswhich is a�ne only in the case where e is a parallelogram. (Recall from Section1.3 that X(i)e = (X(i)1;e; X(i)2;e)T , i = 1; : : : ; 4, are the coordinates of the verticesof e.) The consequence is thatD̂(1;1)xj 6= 0; j = 1; 2;in the non-a�ne case, which yieldsD̂(1;1)û = Xj�j=1 Xj�j=1D�+�u D̂(1;0)x�D̂(0;1)x� + Xj�j=1D�u D̂(1;1)x�:
Even in the case of isotropic elements, this is de�cient because the second sumis only of order h due to jD̂(1;1)x�j . h (usually), while the �rst term is of thedesired order, h2, due to jD̂(1;0)x�j . h and jD̂(0;1)x�j . h.This peculiarity can be circumvented in the case of isotropic elements by show-ing an estimate without mixed derivatives,jv̂ � Iv̂;Wm;p(ê)j . kD̂(2;0)v̂;Lp(ê)k+ kD̂(0;2)v̂;Lp(ê)k;m = 0; 1, p 2 [1;1). But, for estimating kD̂(0;1)(v̂ � Iv̂);Lp(ê)k in the an-isotropic case, we have seen in Example 2.1 that the term kD̂(2;0)v̂;Lp(ê)kmust also be avoided on the right hand side. The consequence of the dilemma,that there cannot be avoided both kD̂(1;1)v̂;Lp(ê)k and kD̂(2;0)v̂;Lp(ê)k, is thatthe transformation from ê to e leads to a non-optimal estimate for non-a�neelements. For example for the trapezee = f(x1; x2) 2 R 2 : 0 < x1 < h1; 0 < x2 < h2(2� x1=h1)gwe obtain by transforming (2.8) with p = q = 2, ` = 2, m = 1,  = (0; 1) theestimate kD(0;1)(v � Ihv);L2(e)k. Xj�j=1h�kD�+(0;1)v;L2(e)k+ kD(0;1)v;L2(e)k (2.10)
which has no convergence order. If this estimate were sharp then anisotropictriangles would be preferable to anisotropic quadrilateral elements.Fortunately, it turns out that this estimate is not sharp. In Theorem 2.8 weshow that an estimate of type (2.1) can be proved for certain classes of non-a�ne elements. This is also a reason why we treat simplicial and non-simplicialelements in separate sections. �



2.1 General considerations 352.1.3 Basic lemmataOne of the key ideas for deriving convergence orders in local interpolation errorestimates is the observation that the seminorm j : ;W `;p(ê)j is a norm in thequotient space W `;p(ê)=P d̀�1,infŵ2P d̀�1 kû� ŵ;W `;p(ê)k � jû;W `;p(ê)j:
This is already elaborated in the classical theory, see, for example, [63, Section3.1]. For anisotropic error estimates we need a generalization of this relation.Since we use the lemma in the next chapter as well we must formulate it withquite general assumptions on the domain.Lemma 2.1 Let G = SJj=1Gj � R d be a connected open set that is the unionof a �nite collection of domains Gj � R d that are star-shaped with respect toballs Bj. Let  be a multi-index with m := jj and u 2 L1(G) be a functionwith Du 2 W `�m;p(G), where `;m 2 N , 0 � m � `, p 2 [1;1]. Then thereexists a polynomial w 2 P d̀�1 such thatkD(u� w);W `�m;p(G)k . jDu;W `�m;p(G)j: (2.11)The constant depends only on d, `, diamGj and diamBj (j = 1; : : : ; J). Thepolynomial w depends only on `, u, Bj (j = 1; : : : ; J), but not on .Proof The lemma was proved in more general form by Dupont and Scott[76]. By setting A = f� : j�j = `g in [76, Theorem 4.2] we obtain the assertionfor domains that are star-shaped with respect to a balls. The generalizationof the class of domains is discussed in Remark 7.3 of that paper.Since this short citation of the proof may not be satisfactory let us explainthe main ideas for the proof. Let G � R d be a bounded domain that is star-shaped with respect to a ball B. Let a function � 2 C10 (B) be given withRB � = 1, and a function (in the distribution sense) u 2 D0(G). Then theSobolev representation of u is de�ned by [76]u = Q(`)u+R(`)u; ` � 1;(Q(`)u)(x) := Xj�j�`�1

ZB �(y) (D�u)(y) (x� y)��! dy 2 P d̀�1;
(R(`)u)(x) := `Xj�j=`

ZG k(x; y) (D�u)(y) (x� y)��! dy;
k(x; y) := Z 10 s�d�1�(x+ s�1(y � x)) ds:



36 2 Lagrange interpolation on anisotropic elementsQ(`)u is an approximation of u with some nice properties including [76, Theo-rem 3.1, Remark 3.2, Theorem 3.2]D�Q(`)u = Q(`�j�j)D�u; j�j � `; (2.12)kQ(`)u;W `�1;1(G)k � C ku;L1(B)k; (2.13)ku�Q(`)u;W `�1;p(G)k � C ju;W `;p(G)j; (2.14)where the constant C depends only on d, `, diamG and �. Further results in-clude more general classes of polynomials, estimates in fractional order Sobolevspaces, and the relaxation of domain constraints.With (2.12) and (2.14) we can prove Lemma 2.1: If Du 2W `�m;p(G) thenkD(u�Q(`)u);W `�m;p(G)k = kDu�Q(`�m)Du;W `�m;p(G)k. jDu;W `�m;p(G)j:
Remark 2.1 We remark that an assertion similar to (2.11) was proved in [9,Lemmata 1 and 2] by a generalization of the Bramble-Hilbert theory [53]. Inthis paper we considered more general Sobolev spaces H(P)p which are de�nedvia a set of multi-indices P � N d , a parameter p 2 [1;1], and the seminorm

kv;H(P)pkp :=X�2P kD�v;Lp(
)kp:
(Note that H(P d̀)p = W `;p(
), d = dim
.) However, the class of domains isin that paper not as general as in Lemma 2.1 and the polynomial w dependson .Second, the reader who is interested in the dependence of the constant inestimates like (2.11) on the diameters of Gj and Bj is referred to [104].
We give now a general error estimate for any �nite element (ê;Pk;ê;�k;ê) con-sidered in Sections 2.2{2.6. The following lemma and its proof can be foundin a more general setting (non-standard Sobolev spaces, see Remark 2.1), butrestricted to q = p, in [9, Lemma 3].
Lemma 2.2 Let I : C(ê) ! Pk;ê be a linear operator. Fix m; ` 2 N andp; q 2 [1;1] such that 0 � m � ` � k + 1 andW `�m;p(ê) ,! Lq(ê): (2.15)
Consider a multi-index  with jj = m and de�ne j := dim D̂Pk;ê. Assume



2.1 General considerations 37that there are linear functionals Fi, i = 1; : : : ; j, such thatFi 2 �W `�m;p(ê)�0 8i = 1; : : : ; j; (2.16)Fi(D̂(û� Iû)) = 08i = 1; : : : ; j; 8û 2 C(ê) : D̂û 2W `�m;p(ê); (2.17)ŵ 2 Pk;ê and Fi(D̂ŵ) = 0 8i = 1; : : : ; j; ) D̂ŵ = 0: (2.18)Then the error can be estimated for all û 2 C(ê) with D̂û 2W `�m;p(ê) bykD̂(û� Iû);Lq(ê)k . jD̂ û;W `�m;p(ê)j: (2.19)Proof For all v̂ 2 P d̀�1 we have by the triangle inequalitykD̂(û� Iû);Lq(ê)k � kD̂(û� v̂);Lq(ê)k+ kD̂(v̂ � Iû);Lq(ê)k:(2.20)We note that v̂ � Iû 2 Pk;ê because ` � k + 1 and Pk;ê � Pdk . That meansD(v̂ � Iû) 2 DPk;ê. Since the polynomial spaces are �nite-dimensional allnorms are equivalent. Together with (2.18), (2.17), and (2.16) we derive forany v̂ 2 P d̀�1kD̂(v̂ � Iû);Lq(ê)k � jXi=1 jFi(D̂(v̂ � Iû))j
= jXi=1 jFi(D̂(v̂ � û))j
. kD̂(v̂ � û);W `�m;p(ê)k:Using (2.20) and (2.15) we obtain for any v̂ 2 P d̀�1kD̂(û� Iû);Lq(ê)k . kD̂(û� v̂);W `�m;p(ê)k:By Lemma 2.1 we get the desired result.It remains to �nd for any  and for any element (ê;Pk;ê;�k;ê) the functionalsFi, i = 1; : : : ; j, that satisfy (2.16){(2.18). This is done in Sections 2.2{2.6separately for each element type. It turns out that for the Lagrangian �niteelements considered in this monograph, functionals can be de�ned for all with jj � k, such that (2.17) and (2.18) are satis�ed. The critical point isthat they are not necessarily continuous for all combinations of k, `, p, m, q,and d.For other �nite elements it is not clear whether such functionals exist. Thefollowing lemma provides a criterion for the existence of linear functionals



38 2 Lagrange interpolation on anisotropic elementssatisfying the conditions (2.17) and (2.18). It was proved in [9], see [108] forsimilar considerations.Lemma 2.3 Let P be an arbitrary polynomial space, and  be a multi-index.De�ne j := dimDP. Assume that I : C�(ê) ! P is a linear operator withIŵ = ŵ 8ŵ 2 P. Then there exist linear functionals Fi : C1(ê) ! R , i =1; : : : ; j, such thatFi(D̂(û� Iû)) = 0 8i = 1; : : : ; j; 8û 2 C1(ê); (2.21)ŵ 2 P and Fi(D̂ŵ) = 0 8i = 1; : : : ; j; ) D̂ŵ = 0 (2.22)if and only if the conditionû 2 C1(ê) and D̂û = 0 ) D̂Iû = 0 (2.23)holds.The application of this lemma is twofold. First, if condition (2.23) is violated,then an anisotropic interpolation error estimate of type (2.19) does not hold.This is the case, for example, for elements containing bubble functions [9, Table2] or certain triangular serendipity elements [108, page 59f.]. (Nevertheless,such elements may be useful for other types of anisotropic approximation.)Second, if condition (2.23) is satis�ed, one can �nd functionals Fi : C1(ê)! Rsatisfying (2.21), (2.22). For the application of Lemma 2.2 it remains to showthat the Fi are also continuous with respect to W `�m;p(ê).Remark 2.2 It has been shown in [19, 20, 21] that Lemma 2.1 remainstrue when W `�m;p(G) is replaced by weighted Sobolev spaces V `�m;p� (ê) orV `�m;p�;� (ê), for the de�nition of these spaces see Section 1.3. The domain isrestricted to ê there; the generality as for G in Lemma 2.1 is not elaborated.Also, the polynomial w depends on  there. But on this basis one can prove aversion of Lemma 2.2 with W `�m;p(ê) replaced by V `�m;p� (ê) or V `�m;p�;� (ê). Wewill use this in Subsection 2.3.2.
2.2 Triangular elements
In Subsection 2.1.2 we formulated two basic tasks in order to derive anisotropicinterpolation error estimates. The �rst task, namely to derive a sharpenedinterpolation error estimate on the reference element was partially solved byLemma 2.2. It remains to �nd functionals with certain properties. We willdiscuss this comprehensively in the �rst part of this section. In Lemma 2.4



2.2 Triangular elements 39we formulate the assertion. Prior the proof we show that the assumptionsare sharp (Examples 2.3 and 2.4) and we give examples of the functionals inseveral cases of . Then the proof for the general  should be understandable.We will see in the next sections that other element types can be treated withsimilar ideas.In the second part of the section we discuss the a�ne transformation x = F (x̂)and prove the anisotropic interpolation error estimate for the general elemente (Theorem 2.1) and conclude the corresponding isotropic estimate (Corollary2.1). In the remaining part of the section, we discuss the maximal anglecondition and the coordinate system condition.Let us consider the simplest Lagrangian �nite elements, namely triangles.They are formally described by (ê;Pk;ê;�k;ê) withê := f(x̂1; x̂2) 2 R 2 : 0 < x̂1 < 1; 0 < x̂2 < 1� x̂1g;Pk;ê := P2k ;�k;ê := ffi : C(ê)! R such that fi(û) := û(X̂(i))gNei=1;where Ne = �k+22 � is the number of nodes andX := fX̂(i)gNei=1 := f( ik ; jk )T 2 R 2g0�i+j�k = f 1k� 2 R 2gj�j�kis the set of nodes. Here, we identi�ed a multi-index with a vector.Lemma 2.4 Let  be a multi-index with m := jj and û 2 C(ê) be a functionwith D̂û 2W `�m;p(ê), where `;m 2 N , p 2 [1;1] shall be such that 0 � m �` � k + 1 andp =1 if m = 0 and ` = 0;p > 2 if m = 0 and ` = 1;m < ` if 1 = 0 or 2 = 0; and m > 0: (2.24)
Fix q 2 [1;1] such that W `�m;p(ê) ,! Lq(ê). Then the estimatekD̂(û� Iû);Lq(ê)k . jD̂ û;W `�m;p(ê)j (2.25)holds.Prior to the proof of the lemma we want to discuss the assumptions in (2.24).Let us mention three points.First, Example 2.3 shows for p <1 that the case m = ` must be excluded forpure derivatives (1 = 0 or 2 = 0). (Note, however, that kD̂(û�Iû);Lq(ê)k .jû;W `;p(ê)j can be shown for m = ` > 2=p.) Observe that this example works



40 2 Lagrange interpolation on anisotropic elementsboth for m > 0 and m = 0. The instance p = 1 is not covered by thisexample. For m = ` = 0 one can even show that estimate (2.25) holds for allq 2 [1;1] because kIû;L1(ê)k � kû;L1(ê)k. The case m = ` > 0, p =1, isnot elaborated.Second, Example 2.4 shows that p > 2 is necessary in the case m = 0, ` = 1.Third, if ` > k + 1 then (2.25) has to be modi�ed to become
kD̂(û� Iû);Lq(ê)k . X̀i=k+1 jD̂û;W i�m;p(ê)j:

This is useful only, when u 2 W k+1;p(e) is not su�cient. For tetrahedralelements we use such arguments, see Theorem 2.3 on page 57. One can �ndestimates of this type also in [108], see Comments 2.4 and 2.10.Example 2.3 Let  = (0;m), m � 0, k � 1 arbitrary,û" := x̂m2 ŵ"; ŵ"(x̂) := minf1; "j ln x̂1jg:Then one can calculate thatû0 := lim"!0 û" = � x̂m2 if x̂1 = 0;0 if x̂1 > 0; lim"!0 D̂û" = � m! if x̂1 = 0;0 if x̂1 > 0;and [1, page 17]lim"!0 kD̂û";Lp(ê)k = k lim"!0 D̂û";Lp(ê)k = 0 for p <1; (2.26)but lim"!0 kD̂û" � D̂Iû";Lq(ê)k = kD̂Iû0;Lq(ê)k = C(k;m) 6= 0: (2.27)(The function u0 is not continuous but it is de�ned pointwise. So the inter-polation operator can be applied formally. In particular there holds Iû0 =lim"!0 Iû".) The last conclusion can be proved indirectly. Assume thatkD̂Iû0;Lq(ê)k = 0then D̂Iû0 � 0. Consequently, we haveIû0 = m�1Xj=0 x̂j2v̂k�j(x̂1) with v̂k�j 2 P1k�j;
(û0 � Iû0)(0; x2) = xm2 � m�1Xj=0 x̂j2v̂k�j(0)=: V̂m(x̂2) 6� 0; V̂m 2 P1m:



2.2 Triangular elements 41However, V̂m(i=k) = 0 for i = 0; : : : ; k (interpolation property) leads to V̂m � 0which is a contradiction. In view of (2.26) and (2.27), the estimate (2.25) doesnot hold for  = (0;m), m = `, p <1. �Example 2.4 Let be k � 1 arbitrary, ` = 1, p � 2,û" := minf1; " ln j ln(r̂=e)jg; r̂ := (x̂21 + x̂22)1=2:We can calculate that
û0 := lim"!0 û" = � 1 if r̂ = 0;0 if r̂ > 0;and lim"!0 jû";W 1;p(ê)j . lim"!0 jû";W 1;2(ê)j = 0

(in detail in [3, page 61]) butlim"!0 kû" � Iû";Lq(ê)k = kIû0;Lq(ê)k 6= 0:
The last conclusion can be proved with similar arguments as in Example 2.3.Consequently, the estimate (2.25) does not hold for  = (0; 0), ` = 1, p � 2.Note that the example does not work for p > 2 because lim"!0 jû";W 1;p(ê)j =1 then. �Let us now turn to the proof of Lemma 2.4. In view of Lemma 2.2 we haveto show that linear functionals with the desired properties exist. Before wedo that in the general case we will illustrate the ideas by discussing someparticular cases.� For k = 1,  = (0; 0), we have j = dimP1;ê = 3. We can useFi(ŵ) = ŵ(X̂(i)):Property (2.16) is shown via the Sobolev embedding theorem W `;p(ê) ,! C(ê)(see Section 1.3),jFi(ŵ)j � kŵ; C(ê)k . kŵ;W `;p(ê)k;which is valid if ` � 2 or p > 2, ` = 1. The proof of the properties (2.17) and(2.18) is trivial.



42 2 Lagrange interpolation on anisotropic elements� For k = 1,  = (1; 0), we have D̂P1;ê = P20 and thus j = 1. As thefunctional we considerF1(ŵ) = Z 10 ŵ(x̂1; 0) dx̂1:
Denote by E := fx̂ 2 ê : x̂2 = 0g the edge of ê which is integrated over. Thenthe continuity can be proved by a trace theorem (see Section 1.3):jF1(ŵ)j � kŵ;L1(E)k . kŵ;W `�1;p(ê)k; (2.28)where we need the condition 1 = m < `. Property (2.17) is valid due toF1(D̂(1;0)(û� Iû)) = (û� Iû)��(1;0)(0;0) = 0:For showing (2.18) let ŵ = a0 + a1x̂1 + a2x̂2, then F1(D̂ŵ) = D̂ŵ = a1.The case  = (0; 1) is treated by analogy.� For k = 2,  = (0; 0), we have j = 6. Since also Ne = 6 we can proceed asin the case k = 1,  = (0; 0).� In the case k = 2,  = (1; 0), we need three functionals. ForF1(ŵ) = Z 1=20 ŵ(x̂1; 0) dx̂1;

F2(ŵ) = Z 11=2 ŵ(x̂1; 0) dx̂1;F3(ŵ) = Z 1=20 ŵ(x̂1; 12) dx̂1;we can show (2.16) and (2.17) as above. To illustrate the general proof belowlet us prove (2.18) in this special case in the same way: Let ŵ 2 P22 be suchthat Fi(D̂ŵ) = 0; i = 1; 2; 3: (2.29)Consider now the polynomialŴ := ŵ � ŵ(1; 0) � 2(x̂2 � 12)(x̂2 � 1)�ŵ(12 ; 12) � [�4x̂2(x̂2 � 1)]� ŵ(0; 1) � 2x̂2(x̂2 � 12) 2 P22 (2.30)which has the propertiesD̂ŵ = D̂Ŵ and Ŵ (1; 0) = Ŵ (12 ; 12) = Ŵ (0; 1) = 0: (2.31)Consequently, we obtain from (2.29) and (2.31)0 = F3(Dŵ) = F3(DŴ ) =W (12 ; 12)�W (0; 12);



2.2 Triangular elements 43thus W (0; 12) = 0,0 = F2(Dŵ) = F2(DŴ ) =W (1; 0)�W (12 ; 0);thus W (12 ; 0) = 0,0 = F1(Dŵ) = F1(DŴ ) =W (12 ; 0)�W (0; 0);thus W (0; 0) = 0. Therefore Ŵ � 0 and with (2.30) we get ŵ = ŵ(x̂2),D̂ŵ = 0.� For k = 2,  = (1; 1), we have D̂Pk;ê = P20 and thus j = 1. Let
F1(ŵ) = Z 1=20 Z 1=20 ŵ(x̂1; x̂2) dx̂1dx̂2;

which satis�es conditions (2.16){(2.18). In particular, F1 is continuous for all` = 2; 3 and p 2 [1;1].� For k = 2,  = (2; 0), we let
F1(ŵ) = Z 1=20 Z 1=2+�� ŵ(x̂1; 0) dx̂1d�;

which also satis�es all conditions. Note that we need the condition m < ` toprove the continuity of F1.Proof (Lemma 2.4) De�ne X := fX̂(i) 2 X : X̂(i) + 1k 2 Xg. Byconsideration of the Pascal triangle one realizes that the number of elementsin X is jXj = �k�m+22 � = j with j from Lemma 2.2. Let  =: Pmi=1 (i),j(i)j = 1, and de�ne the operator �� for j�j = 1 by
(��ŵ)(x̂) := Z x̂+ 1k�x̂ ŵ(�) d�;

where the integral is to be understood as a line integral on the straight lineconnecting the points x̂; x̂+ 1k� 2 R 2 . We can now set functionals Fi byFi(ŵ) := (�(1) � : : : � �(m)ŵ)(X̂(i)); for X̂(i) 2 X:
We see that Fi(D̂ŵ) is a linear combination of the values of ŵ at the nodesX̂ 2 X \Gi, where Gi � ê is the domain of integration in the de�nition of Fi.Since û� Iû = 0 in these nodes, (2.17) is shown.



44 2 Lagrange interpolation on anisotropic elementsAssume there is a polynomial ŵ 2 Pk;ê with Fi(D̂ŵ) = 0 for all i = 1; : : : ; j.Then there exists a polynomial Ŵ 2 Pk;ê with the properties D̂Ŵ = D̂ŵand Ŵ (X̂) = 0 for all X̂ 2 X n X. We show now recursively that Ŵ (X̂) = 0for all X̂ 2 X . Indeed, start with an X̂(n) 2 X for which Gn \ X = X̂(n),then 0 = Fn(D̂Ŵ ) = (�1)mŴ (X̂(n)), Ŵ (X̂(n)) = 0. Set X := X n X̂(n) andcontinue with the next node. Finally we get Ŵ (X̂) = 0 for all X̂ 2 X , Ŵ � 0.Thus Dŵ = 0 and (2.18) is proved.The boundedness of the functionals is shown for ` > m viaW `�m;p(ê) ,! W 1;p(ê) ,! L1(Gi);jFi(ŵ)j � kŵ;L1(Gi)k . kŵ;W 1;p(ê)k:This embedding holds both for one- and two-dimensional Gi. For ` = m weneed for W `�m;p(ê) = Lp(ê) ,! L1(Gi) that Gi is two-dimensional, that means1 6= 0 and 2 6= 0.We note that partial cases of this lemma were proved in a slightly di�erentway in [35], see Comment 2.8 on page 89.
The transformation of estimate (2.25) from the reference element ê to theelement e = F (ê) can be carried out byx = F (x̂) = Bx̂+ b; B = (bi;j)2i;j=1 2 R 2�2; b = (bi)2i=1 2 R 2 ; (2.32)see also (1.16). Since all considerations are local in one element e we omit theindex e here and further on. We will now investigate the sizes of the entriesbi;j and b(�1)i;j , i; j = 1; 2, of B and B�1, respectively.Let E be the longest edge of e. Then we denote by h1 = h1;e := meas1E itslength and by h2 = h2;e := 2meas2e=h1;e the thickness of e perpendicularlyto E, see Figure 2.2. We assume that the element satis�es a maximal anglecondition and a coordinate system condition.Maximal angle condition: There is a constant � < � (independent of hand e 2 Th) such that the maximal interior angle  of any element e is boundedby �,  � �:Coordinate system condition: The angle # between the longest side E andthe x1-axis is bounded by j sin#j . h2=h1:Other formulations of the maximal angle condition are discussed in Comment2.1 on page 85.
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Fig. 2.2 Illustration of the de�nition of the mesh sizes h1; h2 (triangle).

x1;e

x2;e

X(2)ePX(1)e
X(3)e

e� �


x1;e

x2;e

X(2)eP X(1)e
X(3)e

e� �


Fig. 2.3 Notation and illustration of e in the coordinate system xe.
Lemma 2.5 Assume that a triangular element e satis�es the maximal anglecondition and the coordinate system condition. Then the entries of the matrixB of (2.32) and of its inverse B�1 satisfy the following conditions:jbi;jj . minfhi;hjg, i; j = 1; 2; (2.33)jb(�1)i;j j . minfh�1i ;h�1j g, i; j = 1; 2: (2.34)
Proof Enumerate the vertices of e counterclockwise such that X(1)e and X(3)eare the vertices of the shortest edge of e. Introduce an element related Carte-sian coordinate system xe = (x1;e; x2;e) such that X(1)e lies at the origin andX(2)e is also located at the x1;e-axis. Furthermore, denote by P the foot of theperpendicular from X(3)e to the x1;e-axis. Note that P may lay outside of e, seeFigure 2.3 for an illustration. Split the transformation (2.32) into two parts,x = B(1)xe + b; xe = B(2)x̂;such that the columns of B(2) are the xe-coordinates of X(2)e and X(3)e , respec-tively. B(1) describes a rotation, and b contains the x-coordinates of X(1)e .Note that B = B(1)B(2).One of the edges X(1)e X(2)e and X(2)e X(3)e has length h1 per de�nition. The otheredge has a length of order h1 by using the triangle inequality. Consequently,



46 2 Lagrange interpolation on anisotropic elementsjb(2)1;1j � h1, b(2)2;1 = 0. Moreover, we can conclude that jX(3)e � P j � h2 becausemeas2e = 12h1h2. The interior angle � at X(1)e is not the smallest interior angleof e. Therefore, j sin�j � 1 by the maximal angle condition, and jX(3)e �X(1)e j =jX(3)e � P j=j sin�j � h2. That means jb(2)1;2j . h2, jb(2)2;2j . h2.Since jX(1)e �X(2)e j � jX(3)e �X(2)e j � h1 we have
B(1) = � cos ~# sin ~#� sin ~# cos ~# �with ~# 2 f�#; �# � �; � � #; � � # � �g, where � is the interior angle atX(2)e . From sin � � h2=h1 we conclude j sin ~#j . h2=h1 by using the coordinatesystem condition, that means (for h2 = o(h1), otherwise there is nothing toprove) jb(1)1;1j � jb(1)2;2j � 1 and jb(1)1;2j � jb(1)2;1j . h2=h1.The matrix multiplication results in jb1;1j � h1, jb2;1j . h22=h1 � h2, jb1;2j . h2,jb2;2j . h2. The entries of the inverse matrix can be estimated by using theexplicit formula of B�1 and j detBj = 2meas2e = h1h2.We note that Lemma 2.5 is implicitly contained in the proofs of Theorem 2 in[9] and Theorem 6 and Corollary 7 in [35]. We chose this kind of proof for abetter understanding of the proof of the related Lemma 2.7.Theorem 2.1 Assume that the element e satis�es the maximal angle condi-tion and the coordinate system condition. Let be u 2 W `;p(e) \ C(e) where` 2 N , 1 � ` � k + 1, p 2 [1;1]. Fix m 2 f0; : : : ; `� 1g and q 2 [1;1] suchthat W `�m;p(e) ,! Lq(e). Then the anisotropic interpolation error estimateju� Ihu;Wm;q(e)j . (meas2e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j

holds provided that p > 2 if ` = 1. The result is also valid for m = ` = 0,p =1, q 2 [1;1].Note that W `;p(e) ,! C(e) for all admissible parameter sets except for ` = 0,p =1.Proof From Lemma 2.5 we obtain the relations���� @v̂@x̂i ���� . 2Xj=1 minfhi; hjg
���� @v@xj ���� ;���� @v@xi ���� . 2Xj=1 minfh�1i ; h�1j g ���� @v̂@x̂j ���� ;



2.2 Triangular elements 47and conclude (in multi-index notation)jD̂�v̂j . Xjsj=j�j hsjDsvj;
jD̂� v̂j . h� Xjtj=j�j jDtvj; (2.35)
jDvj . Xj�j=jj h��jD̂� v̂j:

These estimates and Lemma 2.4 imply for any  with jj = mkD(u� Ihu);Lq(e)k. (meas2e)1=q Xj�j=mh��kD̂�(û� Iû);Lq(ê)k
. (meas2e)1=q Xj�j=`�m Xj�j=m h��kD̂�+�û;Lp(ê)k
. (meas2e)1=q�1=p Xj�j=`�m Xj�j=mh�� Xjtj=m Xjsj=`�mh�hskDs+tu;Lp(e)k
� (meas2e)1=q�1=p Xjsj=`�mhsjDsu;Wm;p(e)j;

and the theorem can be concluded by a summation over all  with jj = m.This form of the proof was used �rst in [12] where the case ` = k + 1, q = p,was treated. Special cases were proved with other geometrical arguments in[9, 35, 84, 150], see also Comments 2.6{2.8 on pages 88{89.Corollary 2.1 Assume that the element e satis�es the maximal angle condi-tion. Let be u 2 W `;p(e) \ C(e) where ` 2 N , 1 � ` � k + 1, p 2 [1;1]. Fixm 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W `�m;p(e) ,! Lq(e). Then theisotropic interpolation error estimate (sometimes called estimate of Jamet typeor of Synge type)ju� Ihu;Wm;q(e)j . (meas2e)1=q�1=p(diam e)`�mju;W `;p(e)jholds provided that p > 2 if ` = 1. The result is also valid for m = ` = 0,p =1, q 2 [1;1].Proof If we assume the coordinate system condition the assertion followsimmediately from Theorem 2.1. Since the seminorms remain equivalent duringa rotation of the coordinate system, the coordinate system condition can beomitted.
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Fig. 2.4 Example meshes containing elements with large angles. Left: Babu�ska's and Aziz'example. Right: Dobrowolski's example.
We remark that partial cases of this corollary were derived in [27, 108, 119, 187]without knowing anisotropic estimates, see Comments 2.2{2.5 on pages 85{87.We point out in particular that the assumptions made here are weaker thanthose in [108].
Let us now discuss the maximal angle condition and the coordinate systemcondition. We start with an example that shows the necessity of the maximalangle condition for the validity of the anisotropic error estimate of Theorem2.1. We note, however, that the maximal angle condition is not necessary inthe case m = 0.Example 2.5 Consider m = 1, ` = 2, the triangle e with the vertices (0; 0),(h1; 0), (12h1; h2), and the function u = x21. One can directly calculate thatIhu = h1x1 � 14h21h�12 x2 andD(0;1)(u� Ihu);Lq(e)(meas2e)1=q�1=p Pj�j=1h�jD�u;W 1;p(e)j

� h21h�12 (meas2e)1=q(meas2e)1=q�1=ph1(meas2e)1=p = h1h2which is divergent for h2 = o(h1). Thus the maximal angle condition is neces-sary. �Remark 2.3 An uncontrollable growth of the interpolation error for elementswith large angles gives no information about the approximation error of thecorresponding �nite element method. In the literature we can �nd two ex-amples where triangles with large angles are considered and the interpolationerror in the W 1;2-norm grows to in�nity. But while in the paper of Babu�skaand Aziz [27] (see Figure 2.4, left-hand side) the �nite element error growsto in�nity as well, there is an example given by Dobrowolski in [9] where amodi�ed interpolant and thus the �nite element solution converges.



2.2 Triangular elements 49Remark 2.4 Anisotropic triangular elements were also extensively investi-gated in [68, 69, 160]. In these papers, even a maximal angle condition wasnot demanded. This is possible only due to assumptions on the function to beinterpolated, for examplekD(2;0)u;L2(e)k � C0kD(1;1)u;L2(e)k � C20kD(0;2)u;L2(e)k; C0 < 1:The results are applied in an a-posteriori context for pure interpolation tasks[68, 69, 160] and in the �nite element method/�nite volume method [58, 62].Example 2.5 shows a dilemma with the maximal angle condition: The elementis strongly re�ned in a direction where no large derivatives appear. One might�nd the example not convincing. But, �rst, for proving a-priori �nite elementerror estimates for a class of problems, this situation should be covered bythe theory. Second, the components of vector functions can have di�erentbehaviour, for example a layer in one component while another componenthas uniformly bounded derivatives. So it must be possible to approximate afunction on a mesh which was adapted for another function. Therefore weconsider the maximal angle condition as necessary.Remark 2.5 The coordinate system condition means a suitable alignment ofthe mesh with respect to a coordinate system (x1; x2) where the function u canbe described favourably. Though we have seen in Remark 2.3 that a conditionwhich is necessary for a successful interpolation may not be necessary for agood �nite element approximation, we �nd in computations that the Galerkin/Least-squares method looses stability if the mesh is not aligned su�ciently well.For an illustration consider a convection-di�usion problem in the unit square,
�"�u+� 10:5 � � ru = 0 in 
;u = 1 on fx 2 @
 : x1 = 0; 0:25 � x2 � 1g;u = 0 elsewhere on @
:An interior layer emanates from the discontinuity at (0; 0:25) along the man-ifold M1 = fx 2 
 : x2 = 0:5x1 + 0:25g and intersects at (1; 0:75) with aboundary layer along M2 = �(0; 1)� f1g� [ �f1g � (0:75; 1)�. An anisotropicmesh is constructed in the neighbourhood of M1 and M2 similarly to the onein Section 5.2. The maximal aspect ratio is about h1=h2 = 240. The layersare well resolved for " = 10�4 if the coordinate system condition is satis�edwith respect to an orthogonal coordinate system with the x1-axis at M1, seeFigure 2.5, left hand side. On the other hand, wiggles occur atM1 if the anglebetween M1 and the x1-axis is 2�, see Figure 2.5, right hand side. Thus thecoordinate system condition should be treated carefully.
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Fig. 2.5 Dependence of the resolution of an internal layer on the satisfaction of the coordi-nate system condition. Left: Optimal alignment. Right: Insu�cient alignment.
Remark 2.6 We note that the maximal angle condition and the coordinatesystem condition give us some freedom in the de�nition of the element pa-rameters h1 and h2, and in the de�nition of the \stretching direction of theelement". If h2 = o(h1) then there are two edges of e which have a length oforder h1. For example, for triangles with a right angle it can be considered asmore natural to use the lengths of the two perpendicular sides as h1 and h2,rather than the third (longest) one and the length of the height, see Figure 3.2on page 100.The maximal angle condition ensures that the diameter of the circle whichcontains all vertices of e, is also of order h1. Moreover, we can consider thedirections of both long sides as a stretching direction. The angle # betweenany of those sides and the x1-axis is bounded by j sin#j . h2=h1.
2.3 Tetrahedral elements
2.3.1 Error estimates in classical Sobolev spacesIn this section we investigate tetrahedral elements. We use the same approachas for triangular elements but we have to be carefully at several places. First,the embedding theorems depend on the space dimension which leads to arestriction on the range of the parameter p, see Lemma 2.6 and Example 2.6.Second, if the transformation x = Bx̂ + b from the reference element ê to theelement e shall satisfy conditions as in Lemma 2.5 then two reference elements
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x̂1 x̂1
x̂2 x̂2

x̂3 x̂3
ê ê

Fig. 2.6 Reference elements for tetrahedral elements and h1 & h2 & h3.
have to be considered, one for elements with three long edges, the other forelements with four long edges, see (2.36) and (2.37).Additionally to the estimates which are analogous to Section 2.2, we provetwo more types of anisotropic interpolation error estimates. In Theorem 2.3,we consider functions with additional smoothness, u 2W k+2;p(e), as a remedyto treat the case m = k, p � 2, which had to be excluded in Theorem 2.2.Furthermore, we derive in Subsection 2.3.2 local interpolation error estimatesfor functions from weighted Sobolev spaces (Theorems 2.4 and 2.5).
Consider two reference elements ê, compare Figure 2.6. We useê := f(x̂1; x̂2; x̂3)T 2 R 3 :0 < x̂1 < 1; 0 < x̂2 < 1� x̂1; 0 < x̂3 < 1� x̂1 � x̂2g (2.36)when the tetrahedron has three edges E with meas1E � diam (e), andê := f(x̂1; x̂2; x̂3)T 2 R 3 :0 < x̂1 < 1; 0 < x̂2 < 1� x̂1; 0 < x̂3 < x̂1g (2.37)when the tetrahedron has four edges E with meas1E � diam (e). In the caseof �ve edges E with meas1E � diam (e) we can use either of the referenceelements. Both reference elements satisfy the following Property (P) whichis su�cient in the proof of Lemma 2.6. Later on, we will occasionally utilizefurther reference elements which all satisfy Property (P).Property (P) For each axis of the coordinate system (x̂1; x̂2; x̂3) there is oneedge of ê which has length one and is parallel to this axis.The �nite elements (ê;Pk;ê;�k;ê) are completed by settingPk;ê := P3k�k;ê := ffi : C(ê)! R such that fi(û) := û(X̂(i))gNei=1



52 2 Lagrange interpolation on anisotropic elementswhere Ne = �k+33 � is the number of nodes andX := fX̂(i)gNei=1 := ê \ f( ik ; jk ; nk )T 2 R 3g0�i;j;n�kis the set of nodes.Lemma 2.6 Let ê be a reference element satisfying Property (P). Consider amulti-index  with m := jj and a function û 2 C(ê) with Du 2 W `�m;p(ê),where ` 2 N , p 2 [1;1], shall be such that 0 � m � ` � k + 1 andp =1 if m = 0 and ` = 0;p > 3=` if m = 0 and ` = 1; 2;` > m if 1 = 0 or 2 = 0 or 3 = 0;p > 2 if  2 f(`� 1; 0; 0); (0; `� 1; 0); (0; 0; `� 1)g: (2.38)
Fix q 2 [1;1] such that W `�m;p(ê) ,! Lq(ê). Then the estimatekD̂(û� Iû);Lq(ê)k . jD̂ û;W `�m;p(ê)j (2.39)holds.Proof The proof follows the lines of the proof of Lemma 2.4. Due to Property(P) the functionals can be chosen in the analogous way. The di�erence isthat for a pure derivative the domains Gj are one-dimensional, that means,two dimensions less than the dimension of ê. In that case the embeddingW `�m;p(ê) ,! L1(Gi) holds only if `�m � 2 or `�m = 1, p > 2.Note that the case m = ` is only admitted if 1 6= 0, 2 6= 0, and 3 6=0. Example 2.3, page 40, can easily be modi�ed to show the necessity ofthe condition m < `, at least for p < 1: consider û" := x̂22 x̂33 ŵ"(x̂1) andproceed as on page 40. Example 2.4, page 41, can be used by de�ning r̂ :=(x̂21 + x̂22 + x̂23)1=2 to show that p > 3 is necessary for m = 0, ` = 1. Letus �nally present an example to show that p > 2 is necessary when  2f(`� 1; 0; 0); (0; `� 1; 0); (0; 0; `� 1)g. Such an example was given in [9, page283] for m = k = 1, ` = 2, and is now modi�ed for general m = `� 1 � k.Example 2.6 Without loss of generality consider  = (0; 0; `� 1) and denoteby E that edge of ê which is parallel to the x̂3-axis. Let p � 2 andû" = x̂`�13 ŵ"; ŵ"(x̂) := minf1; " ln j ln(r̂=e)jg;r̂ = r̂(x̂1; x̂2) := dist (x̂; E): We can calculate that

û0 := lim"!0 û" = � x̂`�13 if r̂ = 0;0 if r̂ > 0; lim"!0 D̂û" = � 1 if r̂ = 0;0 if r̂ > 0;
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Fig. 2.7Illustration of the de�nition of the meshsizes h1, h2, h3 (tetrahedron).

h3
h1 Eh2

and lim"!0 jD̂û";W 1;p(ê)j . lim"!0 jD̂ û";W 1;2(ê)j = 0;(in detail in [3, page 61]) butlim"!0 kD̂û" � D̂Iû";Lq(ê)k = kD̂Iû0;Lq(ê)k = C(k; `) 6= 0:The last conclusion can be proved indirectly as in Example 2.3, page 40. Con-sequently, the estimate (2.39) does not hold for  = (0; 0; ` � 1), p � 2. Theexample does not work for p > 2 because lim"!0 jD̂ û";W 1;p(ê)j =1 then. �
Our next aim is to investigate the transformationx = F (x̂) = Bx̂+ b; B = (bi;j)3i;j=1 2 R 3�3; b = (bi)3i=1 2 R 3 ; (2.40)compare (1.16). Again, we omit the index e here because the considerationsapply to one (arbitrary) element e only.Let E be the longest edge of e, and let �E be the larger of the two faces of ewith E � �E. Then we denote the element sizes h1, h2, h3, according toh1 := meas1E; h2 := 2meas2�E=h1; h3 := 6meas3ê=(h1h2);compare Figure 2.7. Note that we have h1 � h2 � h3 and meas3e = 16h1h2h3by this de�nition.Enumerate the vertices of e such that X(1)e , X(2)e , and X(3)e are the verticesof �E, and X(1)e and X(3)e are the vertices of the shortest edge of �E. To beunique we demand that the shortest of the three edges X(1)e X(4)e , X(2)e X(4)e , andX(3)e X(4)e is either X(1)e X(4)e (Case 1, Figure 2.8) or X(2)e X(4)e (Case 2, Figure2.9).
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Fig. 2.8 Notation and illustration of Case 1: tetrahedron with 3 long edges.
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X(4)e
P (1)

P (2)
Fig. 2.9 Notation and illustration of Case 2: tetrahedron with 4 long edges.
Introduce an element related Cartesian coordinate system xe = (x1;e; x2;e; x3;e)such that X(1)e lies at the origin, X(2)e is located at the x1;e-axis, and X(3)e iscontained in the x1;e; x2;e-plane. Note that the remaining vertex X(4)e needsnot to lay in the half space with x3;e > 0 as in the �gures, but it may also layin the half space with x3;e < 0.The three-dimensional counterparts of the maximal angle condition and thecoordinate system condition formulated in Section 2.2 read as follows:Maximal angle condition: There is a constant � < � (independent of hand e 2 Th) such that the maximal interior angle F of the four faces as wellas the maximal angle E between two faces of any element e are bounded by�, F � �, E � �:Coordinate system condition: The transformation of the element relatedcoordinate system (x1;e; x2;e; x3;e) to the discretization independent system(x1; x2; x3) can be determined as a translation and three rotations around thexj;e-axes by angles #j (j = 1; 2; 3), wherej sin#1j . h3=h2; j sin#2j . h3=h1; j sin#3j . h2=h1: (2.41)We remark �rst that alternative formulations of the maximal angle conditioncan be found in the literature, see Comment 2.9 on page 90. Moreover, if



2.3 Tetrahedral elements 55mesh re�nement near edges (parallel to the x3-axis) is considered it may bereasonable to demand h1 � h2 . h3 and that one edge of e shall be parallelto the x3-axis. In that case the coordinate system condition is satis�ed, thatmeans that it needs not to be postulated [21].The two conditions yield properties of the transformation matrix B from (2.40)which are su�cient for our anisotropic interpolation error estimates.Lemma 2.7 Assume that the tetrahedron e satis�es the maximal angle con-dition and the coordinate system condition. Then the entries of the matrix Bof (2.40) and of its inverse B�1 satisfy the following conditions:jbi;jj . minfhi; hjg; i; j = 1; 2; 3; (2.42)jb(�1)i;j j . minfh�1i ; h�1j g; i; j = 1; 2; 3: (2.43)Proof As in the proof of Lemma 2.5 we split the transformation (2.40) intotwo partsx = B(1)xe + b; xe = B(2)x̂;with B = B(1)B(2). The intermediate coordinate system was introduced above.The matrix B(1) can be written as a product of three matrices B(1;1), B(1;2),and B(1;3), describing rotations:
B(1;1) = 0@ 1 0 00 cos#1 sin#10 � sin#1 cos#1

1A ;
B(1;2) = 0@ cos#2 0 sin#20 1 0� sin#2 0 cos#2

1A ;
B(1;3) = 0@ cos#3 sin#3 0� sin#3 cos#3 00 0 1

1A :
Using (2.41) and j cos#ij � 1, i = 1; 2; 3, one can computejb(1)i;j j . minfhi; hjgmaxfhi; hjg ; i; j = 1; 2; 3: (2.44)
The �rst two columns of B(2) are the xe-coordinates of X(2)e and X(3)e , respec-tively. In the same way as in the proof of Lemma 2.5 we obtainjb(2)1;1j � h1; b(2)2;1 = b(2)3;1 = 0; (2.45)jb(2)1;2j . h2; jb(2)2;2j . h2; b(2)3;2 = 0: (2.46)



56 2 Lagrange interpolation on anisotropic elementsThe third column of B(2) is either X(4)e � X(1)e (Case 1, see Figure 2.8) orX(4)e �X(2)e (Case 2, see Figure 2.9) if the reference elements (2.36) or (2.37)are used, respectively. We show now for Case 1 (Case 2 can be treated byanalogy) that jX(4)e �X(1)e j � h3, which is the desired result, namelyjb(2)1;3j . h3; jb(2)2;3j . h3; jb(2)3;3j . h3: (2.47)Consider the angles 1;2, 1;3, and 1;4 between the faces intersecting at theedges X(1)e X(2)e , X(1)e X(3)e , X(1)e X(4)e , respectively. From spherical (Riemannian)geometry we know that 1;2+1;3+1;4 > �. Using the maximal angle conditionwe conclude that for at least one of the two angles 1;n, n = 2 or n = 3, therelation j sin 1;nj � 1 holds. (This idea was obtained from [120, Lemma 6].)Denote by P (1) the foot of the perpendicular from X(4)e to the x1;e; x2;e-plane,by P (2) the foot of the perpendicular from P (1) to the edge X(1)e X(n)e , and by� the angle between X(1)e X(4)e and X(1)e X(n)e . We obtain (2.47) viajX(4)e �X(1)e j = jX(4)e � P (2)jj sin�j= jX(4)e � P (1)jj sin� sin 1;nj= h3j sin� sin 1;nj � h3 (2.48)by using the maximal angle condition. (In Case 1, � is not the smallest angleof the triangle X(1)e X(n)e X(4)e since jX(1)e �X(4)e j � jX(n)e �X(4)e j by de�nition.)From (2.44){(2.47) we conclude (2.42). Using j detBj = 6meas3e = h1h2h3and the explicit formula of B�1 we obtain (2.43).
Theorem 2.2 Assume that the element e satis�es the maximal angle condi-tion and the coordinate system condition. Let be u 2 W `;p(e) \ C(e) where` 2 N , 1 � ` � k + 1, p 2 [1;1]. Fix m 2 f0; : : : ; `� 1g and q 2 [1;1] suchthat W `�m;p(e) ,! Lq(e). Then the anisotropic interpolation error estimateju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j
holds provided thatp > 3=` if m = 0 and ` = 1; 2;p > 2 if m = `� 1 > 0:The result is also valid for m = ` = 0, p =1, q 2 [1;1].



2.3 Tetrahedral elements 57The proof is the same as for Theorem 2.1. Special cases were proved also in[35], see Comment 2.12 on page 91.Theorem 2.3 Assume that the element e satis�es the maximal angle con-dition and the coordinate system condition. Let be u 2 W k+2;p(e) \ C(e),p 2 [1;1], m 2 f0; : : : ; kg, and q 2 [1;1]. Then the anisotropic interpolationerror estimateju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p Xk+1�m�j�j�k+2�mh�jD�u;Wm;p(e)j
holds provided that W k+2�m;p(e) ,! Lq(e).Proof The theorem can be proved as Theorem 2.2 by using Lemma 2.7 andanaloga to Lemmata 2.2 and 2.36. Let us discuss the di�erences.� Since u 2 W k+2;p(e) the assumption W k+2�m;p(e) ,! Lq(e) replaces nowW `�m;p(e) ,! Lq(e) from Theorem 2.2.� The assumption p > 2=` if ` = 1; 2 is now reduced to p > 2=(k + 2) whichcan be neglected since k + 2 � 3.� The assumption p > 2 if m = `� 1 was necessary to ensure the embeddingW `�m;p(ê) ,! L1(Gi) in the proof of Lemma 2.6. Because of the additionalsmoothness u 2 W k+2;p(e) this embedding is now W k+2�m;p(ê) ,! L1(Gi)which is satis�ed for all p 2 [1;1] and all m 2 f0; : : : ; kg.� The sum at the right hand side extends over all multi-indices with lengthk + 1 �m and k + 2 �m because the arguments in the proof of Lemma 2.2are not valid for v̂ 2 P3k+1 but only for v̂ 2 P3k . Therefore the application ofLemma 2.1 gives for jj = m onlyinfv̂2P3k kD̂(û� v̂);W k+2�m;p(ê)k. jD̂û;W k+1�m;p(ê)j+ jD̂ û;W k+2�m;p(ê)j:
The idea of using additional smoothness of u (u 2W `;p(e) with ` > k+1) wasalready used by Jamet [108].Corollary 2.2 Assume that the element e satis�es the maximal angle condi-tion. Let be u 2 W `;p(e) \ C(e) where ` 2 N , 1 � ` � k + 1, p 2 [1;1]. Fixm 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W `�m;p(e) ,! Lq(e). Then theisotropic interpolation error estimate (sometimes called estimate of Jamet typeor of Synge type)ju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p(diam e)`�mju;W `;p(e)j



58 2 Lagrange interpolation on anisotropic elementsholds provided thatp > 3=` if m = 0 and ` = 1; 2p > 2 if m = `� 1 > 0:If u 2 W k+2;p(e) \ C(e), p 2 [1;1], m 2 f0; : : : ; kg, and q 2 [1;1], then theisotropic interpolation error estimate
ju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p k+2X`=k+1(diam e)`�mju;W `;p(e)j

holds provided that W k+2�m;p(e) ,! Lq(e).Proof If we assumed the coordinate system condition the assertion follows im-mediately from Theorems 2.2 and 2.3. Since the seminorms remain equivalentduring a rotation of the coordinate system, the coordinate system conditioncan be omitted.We remark that partial cases of this corollary were derived in [108, 120] withoutknowing anisotropic estimates, see Comments 2.10 and 2.11. We point out inparticular that the assumptions made here are weaker than those in [108].The discussion of the maximal angle condition and the coordinate systemcondition in Section 2.2 applies in an analogous way. In particular, Example2.5 proves that the maximal angle condition for the faces, F � �, is necessary.We show now by Example 2.7 that also the condition on the angles betweenthe faces, E � �, is necessary. Moreover, Example 2.7 proves that thereare elements with F � � but E ! �. Also the converse is valid, see [120,Example 8]. That means, both conditions are independent.Example 2.7 Consider the tetrahedron with the vertices (0; 0; 0), (h1; 0; 0),(0; h1; 0), and (h1=3; h1=3; h3), and the function u = x21. One can directlycalculate that Ihu = h1x1 � (2=9)h21h�13 x3 andkD(0;0;1)(u� Ihu);Lp(e)k(meas3e)1=q�1=p Pj�j=1h�jD�u;W 1;p(e)j
� h21h�13 (meas3e)1=q(meas3e)1=q�1=ph1(meas3e)1=p = h1h3 ;which is divergent for h3 = o(h1). We remark that the case p = q = 1 wasalready considered in [120, Examples 8, 9]. �



2.3 Tetrahedral elements 592.3.2 Error estimates in weighted Sobolev spacesFor the treatment of edge and corner singularities it is convenient to describethe solution in weighted Sobolev spaces. So we want to derive in this subsectionanisotropic interpolation error estimates for functions of such weighted spaces.Let us start with the spaces V `;p� (e), the norm was introduced by (1.21) onpage 27. The special case ` = 2, k = 1, was already treated in [19, 20].Lemma 2.8 Let ê be a reference element satisfying Property (P). Considera multi-index  with m := jj 2 f0; 1g and a function û 2 C(ê) with D̂û 2V `�m;p� (ê), where ` 2 N , p 2 (1;1), � 2 R shall be such that 0 � m < ` � k+1and `� 3=p > 0 if m = 0;� < `� 3=p if 3 = 0;� < `� 1� 2=p if m = 1; 3 = 1;p > 2 if m = 1; ` = 2: (2.49)
Fix q 2 [1;1] such that V `�m;p� (ê) ,! Lq(ê). Then the estimatekD̂(û� Iû);Lq(ê)k . jD̂ û;V `�m;p� (ê)j (2.50)holds.Note that we concentrate here on main cases. We did not try to cover allpossible cases as in Lemma 2.6. (The cases p = 1, p = 1, m � 2 wereexcluded.)Proof We want to apply Lemma 2.2, see also Remark 2.2. The functionals Fi(i = 1; : : : ; j) are chosen as in the proof of Lemma 2.6 (Lemma 2.4). It remainsto show that the functionals Fi are continuous on V `�m;p� (ê). For proving thiswe will need intermediately non-integer (weighted) Sobolev spaces W s;p(ê)and V s;p� (ê), s � 0, p 2 (1;1) which are for s 2 N identical with the spacesintroduced in Section 1.3. Without going into detail we state that such spacesexist (see for example [115, Section 8.3] and [163, 164]) and that the followingembeddings hold:W s;p(ê) ,! Lp(ê) if s � 0 (2.51)follows from de�nition,W s;p(ê) ,! W s�2=p;p(E) if s� 2=p 62 N ; (2.52)



60 2 Lagrange interpolation on anisotropic elementswhere E is an edge of ê, is proved in [115, Section 8.3],V s;p0 (ê) ,! W s;p(ê) if s � 0 (2.53)follows from de�nition,V s;p� (ê) ,! V s��;p0 (ê) if s � � � 0 (2.54)is proved in [164],V s;p� (ê) ,! V s;p� (ê) if � � � (2.55)follows from de�nition,v̂ 2 V s;p� (ê)) r̂�v̂ 2 V s;p���(ê) (2.56)was proved in [163, Section 1.1]. Embedding (2.54) was proved in [164] onlyfor in�nite domains (dihedral angles) but the proof holds true also for boundedconvex domains.Let us start with the case m = 0. De�ne � := maxf�; 0g. By (2.49) wehave (` � �)p > 3 and by (2.53), (2.54), and (2.55), the boundedness of Fi(i = 1; : : : ; j) can be proved:jFi(v̂)j � kv̂; C(ê)k . kv̂;W `��;p(ê)k. kv̂;V `��;p0 (ê)k . kv̂;V `;p� (ê)k . kv̂;V `;p� (ê)k:Form = 1 consider �rst the case � < `�1�2=p. De�ne again � := maxf�; 0g,that means with (2.49) that ` � 1 � � � 2=p > 0. (If � � 0 then � = � <`� 1� 2=p. If � < 0, then � = 0 and we have to show `� 1� 2=p > 0. Thisfollows for ` = 2 from p > 2 and for ` � 3 from p > 1.) Using the de�nitionof the Fi (i = 1; : : : ; j) as in the proof of Lemma 2.6 (Lemma 2.4) and theembeddings above we concludejFi(v̂)j � kv̂;L1(Gi)k . kv̂;Lp(Gi)k. kv̂;W `�1���2=p;p(Gi)k . kv̂;W `�1��;p(ê)k. kv̂;V `�1��;p0 (ê)k . kv̂;V `�1;p� (ê)k . kv̂;V `�1;p� (ê)k;with Gi being the domain of integration, see the proof of Lemma 2.4.For 3 = 0 the weight � can be larger. Then we have to estimate sharper.Take any �1,�1 2 (1� 1=p� "; 1� 1=p); " := `� 3=p� � > 0; (2.57)and set �2 := maxf�; �1g: (2.58)



2.3 Tetrahedral elements 61We obtain from (2.57) that p0 (de�ned by 1=p+ 1=p0 = 1) satis�es 1=p0 > �1.Consequently, we getkr̂��1;Lp0(Gi)k � 1because Gi is orthogonal to the x̂3-axis. Similarly to above, and by using theH�older inequality and the embeddings (2.51){(2.56), we conclude thatjFi(v̂)j := ���RGi v̂��� � kr̂��1;Lp0(Gi)k kr̂�1 v̂;Lp(Gi)k� kr̂�1 v̂;Lp(Gi)k . kr̂�1 v̂;W `�1�(�2��1)�2=p;p(Gi)k. kr̂�1 v̂;W `�1�(�2��1);p(ê)k . kr̂�1 v̂;V `�1�(�2��1);p0 (ê)k. kr̂�1 v̂;V `�1;p�2��1(ê)k . kv̂;V `�1;p�2 (ê)k . kv̂;V `�1;p� (ê)k:Note that `� 1� (�2 � �1)� 2=p > 0: Indeed, if �2 = �1 this follows directlyfrom (2.49), and if �2 = � this follows from (2.57) and (2.49), �1 > 1�1=p�" =�(`� 1� 2=p) + �.We will transform now estimate (2.50) from ê to e. The only novelty in com-parison to Subsection 2.3.1 is the term r̂� in the norm. Consider the followingpoints.� Usually weighted spaces are used if the function under consideration is notcontained in the corresponding space without weight. Therefore we will assume� � 0.� The weight r� makes no sense if the domain has a positive distance to thex3-axis. So we will investigate only elements e with at least one vertex at thex3-axis.� Since we want to transform r̂ := (x̂21 + x̂22)1=2 to r := (x21 + x22)1=2 we willassume that h1 and h2 are of the same order, in particularh1 � h2 . h3 (2.59)because h1 � h2 & h3 is not useful. Therefore we will chooseê := f(x̂1; x̂2; x̂3)T 2 R 3 :0 < x̂1 < 1; 0 < x̂2 < 1� x̂1; x̂1 < x̂3 < 1� x̂2g (2.60)as the second reference element instead of the one in (2.37), see Figure 2.10.Note that h3 is now the largest element size, in contrast to Subsection 2.3.1.But the relations (2.42), (2.43), were formulated general enough to remaintrue.� For the transformation we need a relation between r̂ and r, namelyr̂ . h�11 r (2.61)
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Fig. 2.10 Reference elements for tetrahedral elements and h1 . h2 . h3.
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Fig. 2.11 Additional reference elements for error estimates in weighted Sobolev spaces.
which can be concluded if we assumeb1;3 = b2;3 = 0 and b1 = b2 = 0: (2.62)So we will require (2.62) from now on. That means that a point x is located atthe x3-axis if and only if x̂ is located at the x̂3-axis. In other words, elements ewith only one vertex at the x3-axis cannot be mapped to one of the referenceelements of Figure 2.10. So we introduce two more reference elements, seeFigure 2.11, which are obtained from the previous ones by a reection at theplane x1 = 1=2. Note that Property (P), page 51, is satis�ed by all fourelements ê.� By Property (P) any reference element ê must have one edge parallel to thex̂3-axis. Together with (2.62) this yields that e must have one edge parallel tothe x3-axis.We can summarize as follows: Choose the appropriate reference element bythe number of edges with length of order h3 (three or four) and the number ofvertices of e laying on in the x3-axis (one or two). De�ne the mapping ê! esuch that points x̂ 2 ê at the x̂3-axis are mapped to points x 2 e at the x3-axis,and that the edge of ê which is parallel to the x̂3-axis is mapped to the edge ofe which is parallel to the x3-axis. Then (2.42), (2.43) and (2.61) hold providedthat the element e satis�es the maximal angle condition.



2.3 Tetrahedral elements 63Theorem 2.4 Assume that the element e satis�es the maximal angle condi-tion, one edge is parallel to the x3-axis, and at least one vertex is containedin the x3-axis. Let h1 � h2 . h3, and introduce parameters m 2 f0; 1g,` 2 N with 1 � ` � k + 1, p 2 (1;1), q 2 [1;1], and weights �� � 0 for allmulti-indices � with j�j = `. De�ne for each multi-index  with jj = m thenumber
� = �(3) := � maxj�j=`�m ��+ if 3 = 1;maxj�j=` �� if 3 = 0:Assume that the numbers satisfy assumption (2.49) and V `�m;p�(3) (e) ,! Lq(e)for all  with jj = m. Consider a function u 2 C(e) with D�u 2 V 0;p�� (e) forall � with j�j = `, and Du 2 V `�m;p�(3) (e) for all  with jj = m. Then theanisotropic interpolation error estimateju� Ihu;Wm;q(e)j. (meas3e)1=q�1=p Xj�j=`�mh� Xjj=mh���+1 jD�+u;V 0;p��+ (e)jholds.The de�nition of �(3) and the assumptions on/with �(3) are necessary tobe able to apply Lemma 2.8. The distinction between �� and �(3) is madebecause the error estimate gives a better asymptotics when the weight can bechosen smaller for certain derivatives. We will exploit this in Sections 4.3 and4.4. Of course, the theorem can be written more compact if all weights areequal.Proof We can prove this theorem similarly to Theorems 2.1, 2.2, and 2.3.But we have to be careful with the assumptions on the weights.From (2.43) we getju� Ihu;Wm;q(e)j � Xjsj=m kDs(u� Ihu);Lq(e)k

. (meas3e)1=q Xjj=mh�kD̂(û� Iû);Lq(ê)k;
see also (2.35).For any  with jj = m we apply Lemma 2.8 and obtainkD̂(û� Iû);Lq(ê)k . jD̂ û;V `�m;p�(3) (ê)j � Xjsj=`�m kD̂s+û;V 0;p�(3)(ê)k:



64 2 Lagrange interpolation on anisotropic elementsFor  = (0; 0; 1) we notice that (2.62) yields D̂ û = b3;3Du � h3Du. There-fore kD̂(û� Iû);Lq(ê)k. (meas3e)�1=p Xjsj=`�m Xj�j=`�mh�+h��(1)1 kD�+u;V 0;p�(1)(e)k
. (meas3e)�1=p Xj�j=`�mh�+h���+1 kD�+u;V 0;p��+ (e)k

where we have used h��(1)1 kv;V 0;p�(1)(e)k . h���+1 kv;V 0;p��+ (e)k which holds since��+ � �(1). For 3 = 0 we obtain in a similar waykD̂(û� Iû);Lq(ê)k. (meas3e)�1=p Xjsj=`�m Xj�j=`�m Xjtj=m h�+h��(0)1 kD�+tu;V 0;p�(0)(e)k
. (meas3e)�1=p Xj�j=`�m Xjtj=mh�+h���+t1 kD�+tu;V 0;p��+t(e)k:All estimates together yieldju� Ihu;Wm;q(e)j. (meas3e)1=q�1=p Xjj=mh� Xj�j=`�m Xjtj=mh�+h���+t1 kD�+tu;V 0;p��+t(e)k� (meas3e)1=q�1=p Xj�j=`�m Xjtj=mh�h���+t1 kD�+tu;V 0;p��+t(e)kwhich is the desired result.

When problems with edge and corner singularities are investigated it is con-venient to describe the solution in Sobolev spaces with two weights, V `;p�;� (e),see page 27 in Section 1.3. The application of such spaces is reasonable only ifthe element e has one vertex at the origin and one edge at the x3-axis. So weneed only one reference element, namely the one described by (2.36). De�neby R = R(x) := (x21 + x22 + x23)1=2, r = r(x) := (x21 + x22)1=2, and � := r=R thedistance to the origin, the distance to the x3-axis, and the \angular distance"to the x3-axis, respectively. R̂, r̂, and �̂ are de�ned analogously. The followinglemma was proved in [21] for the special case ` = 2, k = m = 1, and with� = 0 if  = (0; 0; 1).Lemma 2.9 Let ê be the reference element described by (2.36). Consider amulti-index  with m := jj 2 f0; 1g and a function û 2 C(ê) with D̂û 2



2.3 Tetrahedral elements 65V `�m;p�;� (ê), where ` 2 N , p 2 (1;1), �; � 2 R shall be such that 0 � m < ` �k + 1 and � < `� 3=p;`� 3=p > 0 if m = 0� < `� 3=p if 3 = 0� < `� 1� 2=p if m = 1; 3 = 1p > 2 if m = 1; ` = 2:
(2.63)

Fix q 2 [1;1] such that V `�m;p�;� (ê) ,! Lq(ê). Then the estimatekD̂(û� Iû);Lq(ê)k . jD û;V `�m;p�;� (ê)j (2.64)holds.Proof The lemma can be proved similarly to Lemma 2.8. Let m = 0 andde�ne � := maxf�; �; 0g. By (2.63) we have (`� �)p > 3. Consequently,jFi(v̂)j � kv̂; C(ê)k . kv̂;W `��;p(ê)k. kv̂;V `��;p0;0 (ê)k . kv̂;V `;p�;�(ê)k . kv̂;V `;p�;� (ê)k:For m = 1 consider �rst the case that Gi is not contained in the x3-axis(� 6� 0 on Gi). As in the last case of the proof of Lemma 2.8, we take any �1 2(1�1=p�"; 1�1=p) with " := `�3=p�maxf�; �g > 0, set �2 := maxf�; �; �1gand obtain that p0 (de�ned by 1=p+1=p0 = 1) satis�es 1=p0 > �1. Consequently,we get kr̂��1;Lp0(Gi)k = kR̂��1 �̂��1 ;Lp0(Gi)k � 1 (2.65)because Gi is orthogonal to the x̂3-axis (3 = 0) or away from the x̂3-axis(3 = 1, k � 2). (For 3 = 0, k = 1 we have � � 1 on Gi and can admit evenany power of � in (2.65).) We concludejFi(v̂)j := ���RGi v̂��� � kr̂��1;Lp0(Gi)k kr̂�1 v̂;Lp(Gi)k� kr̂�1 v̂;Lp(Gi)k . kr̂�1 v̂;W `�1�(�2��1)�2=p;p(Gi)k. kr̂�1 v̂;W `�1�(�2��1);p(ê)k . kr̂�1 v̂;V `�1�(�2��1);p0;0 (ê)k. kr̂�1 v̂;V `�1;p�2��1;�2��1(ê)k . kv̂;V `�1;p�2;�2 (ê)k. kv̂;V `�1;p�;� (ê)k:Note that ` � 1 � (�2 � �1) � 2=p > 0: Indeed, if �2 = �1 this followsfrom (2.63), and if �2 = maxf�; �g this follows from �1 > 1 � 1=p � " =�(`� 1� 2=p) + maxf�; �g, see the de�nition of ".



66 2 Lagrange interpolation on anisotropic elementsIf Gi is contained in the x3-axis (3 = 1) then (2.65) does not hold. In this casewe proceed as follows: Take any �1 2 (1�1=p� "; 1�1=p), " := `�3=p�� >0, set �2 := maxf�; � + �1; �1g and observe that p0 satis�es 1=p0 > �1.Consequently, we get kR̂��1;Lp0(Gi)k � 1 andjFi(v̂)j := ���RGi v̂��� � kR̂��1;Lp0(Gi)k kR̂�1 v̂;Lp(Gi)k� kR̂�1 v̂;Lp(Gi)k . kR̂�1 v̂;W `�1�(�2��1)�2=p;p(Gi)k. kR̂�1 v̂;W `�1�(�2��1);p(ê)k . kR̂�1v̂;V `�1�(�2��1);p0;0 (ê)k. kR̂�1 v̂;V `�1;p�2��1;�2��1(ê)k . kv̂;V `�1;p�2;�2��1(ê)k. kv̂;V `�1;p�;� (ê)k:Note that ` � 1 � (�2 � �1) � 2=p > 0 can be concluded from (2.63) bydistinguishing the three cases for �2: The possibilities �2 = � and �2 = �1can be proved as above, the instance �2 = � + �1 is direct.The transformation of (2.64) from ê to e can be done in a similar way as aboveby using (2.59) and (2.62). We obtain h�13 R . R̂ . h�11 R and r̂ . h�11 r, andconsequently �̂ . h3h�11 �: This leads to the following theorem.
Theorem 2.5 Assume that the element e satis�es the maximal angle condi-tion, one vertex is located at the origin of the coordinate system x = (x1; x2; x3),and one edge is contained in the x3-axis. Let h1 � h2 . h3, and introduce pa-rameters m 2 f0; 1g, ` 2 N with 1 � ` � k + 1, p 2 (1;1), q 2 [1;1],and weights �� � 0, �� � 0 for all multi-indices � with j�j = `. De�ne thenumbers � = maxj�j=` �� and

� = �(3) := � maxj�j=`�m ��+ if 3 = 1;maxj�j=` �� if 3 = 0for each multi-index  with jj = m. Assume that the numbers satisfy assump-tion (2.63) and V `�m;p�;�(3)(e) ,! Lq(e) for all  with jj = m. Consider a functionu 2 C(e) with D�u 2 V 0;p��;��(e) for all � with j�j = `, and Du 2 V `�m;p�;�(3)(e) forall  with jj = m. Then the anisotropic interpolation error estimateju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p�Xj�j=`�mh� Xjj=mh���+���+1 h���+3 kD�+u;V 0;p��+ ;��+ (e)k
holds.
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#Fig. 2.12 Illustration of an a�ne quadrilateral element.
2.4 Quadrilateral elements
2.4.1 A�ne elementsIn this subsection we show �rst that the theory of Section 2.2 carries over toa�ne quadrilateral elements, that are parallelograms, see Figure 2.12. There isonly one small di�erence in the proof of Lemma 2.10 (estimate on the referenceelement) where attention is needed. But there are two more reasons whya whole section is devoted to quadrilateral elements. First, for rectangularelements we can prove for k � 2 a slightly sharper estimate, with less termson the right hand side (Theorem 2.7 and Remark 2.9). Second, formore generalelements than parallelograms, for example trapezes, the transformation x =Fe(x̂) is non-linear and we encounter the di�culties discussed in Example2.2, page 33. Nevertheless, we were �nally able to reproduce the estimatesof the a�ne elements (Theorem 2.8, Corollary 2.4). The section ends withan example showing the necessity of an assumption on the geometry of thenon-a�ne elements.
Consider the Lagrangian �nite element (ê;Pk;ê;�k;ê) withê := f(x̂1; x̂2) 2 R 2 : 0 < x̂1; x̂2 < 1g; (2.66)Pk;ê := Q2k; (2.67)�k;ê := ffi : C(ê)! R such that fi(û) := û(X̂(i))gNei=1; (2.68)where Ne = (k + 1)2 is the number of nodes andX := fX̂(i)gNei=1 := f( ik ; jk )T 2 R 2g0�i;j�k (2.69)is the set of nodes. Lemma 2.10 contains the estimates of the interpolationerror on the reference element. It is identical with Lemma 2.4.



68 2 Lagrange interpolation on anisotropic elementsLemma 2.10 Let  be a multi-index with m := jj and û 2 C(ê) be a functionwith D̂û 2W `�m;p(ê), where `;m 2 N , p 2 [1;1] shall be such that 0 � m �` � k + 1 andp =1 if m = 0 and ` = 0;p > 2 if m = 0 and ` = 1;m < ` if 1 = 0 or 2 = 0; and m > 0: (2.70)
Fix q 2 [1;1] such that W `�m;p(ê) ,! Lq(ê). Then the estimatekD̂(û� Iû);Lq(ê)k . jD̂ û;W `�m;p(ê)j (2.71)holds.The assumptions can be discussed as in Section 2.2 for Lemma 2.4. The proofis also the same. Note that jXj = j still holds but j = (k�1+1)(k�2+1).The lemma was proved for m = 1, ` = k + 1, q = p, in [9].The transformation from ê to e = F (ê) can be written asx = F (x̂) = Bx̂+ b; B = (bi;j)2i;j=1 2 R 2�2; b = (bi)2i=1 2 R 2 ; (2.72)compare (1.16). As in the case of triangles we can formulate a maximal anglecondition and a coordinate system condition, and we can prove anisotropicinterpolation error estimates on e.Maximal angle condition: There is a constant � < � (independent of hand e 2 Th) such that the maximal interior angle  of any element e is boundedby �,  � �:Coordinate system condition: The angle # between the longer sides andthe x1-axis is bounded by j sin#j . h2=h1:Here, h1 denotes the length of the longer edges of e and h2 := meas2(e)=h1 isthe corresponding height. Consequently,j detBj = meas2(e) = h1h2: (2.73)Lemma 2.11 Assume that an a�ne quadrilateral element e satis�es the max-imal angle condition and the coordinate system condition. Then the entries ofthe matrix B of (2.72) and of its inverse B�1 satisfy the following conditions:jbi;j j . minfhi; hjg, i; j = 1; 2; (2.74)jb(�1)i;j j . minfh�1i ; h�1j g, i; j = 1; 2: (2.75)



2.4 Quadrilateral elements 69Proof Enumerate the vertices of e counterclockwise such that X(1)e and X(4)eare the vertices of one of the shortest edges of e. Introduce an element relatedCartesian coordinate system xe = (x1;e; x2;e) such that X(1)e = (0; 0)T and X(2)eis also located at the x1;e-axis. Proceed as in the proof of Lemma 2.5.
Theorem 2.6 Assume that e is a parallelogram which satis�es the maximalangle condition and the coordinate system condition. Let be u 2 W `;p(e)\C(e)where ` 2 N , 1 � ` � k + 1, p 2 [1;1]. Fix m 2 f0; : : : ; ` � 1g andq 2 [1;1] such that W `�m;p(e) ,! Lq(e). Then the anisotropic interpolationerror estimateju� Ihu;Wm;q(e)j . (meas2e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j (2.76)
holds provided that p > 2 if ` = 1. The result is valid also for m = ` = 0,p =1, q 2 [1;1].Proof See the proof of Theorem 2.1.
Corollary 2.3 Assume that the parallelogram e satis�es the maximal anglecondition. Let be u 2 W `;p(e) \ C(e) where ` 2 N , 1 � ` � k + 1, p 2 [1;1].Fix m 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W `�m;p(e) ,! Lq(e). Thenthe isotropic interpolation error estimate (sometimes called estimate of Jamettype or of Synge type)ju� Ihu;Wm;q(e)j . (meas2e)1=q�1=p(diam e)`�mju;W `;p(e)jholds provided that p > 2 if ` = 1. The result is valid also for m = ` = 0,p =1, q 2 [1;1].Particular cases of this corollary were derived in [108], see Comment 2.13 onpage 91.
2.4.2 Rectangular elementsFor rectangular elements one can prove slightly sharper estimates than forgeneral a�ne elements. For the proof we have to replace in all statementsthe usual seminorm j : ;W `;pj by the the seminorm [ : ;W `;p] where only purederivatives are included. Since we use this improvement in the next subsectionas well, it makes sense to present the whole theory in detail. We follow theline of Subsections 2.1.3 and 2.4.1 and formulate with Lemmata 2.13, 2.14,



70 2 Lagrange interpolation on anisotropic elementsand 2.15 the counterparts of Lemmata 2.1, 2.2, and 2.10. Theorem 2.7 is thenstraightforward. But we start with citing Theorem 1 from from [53], comparealso [192].Lemma 2.12 Consider a bounded domain G � R d which satis�es the strongcone condition. Let u 2 W `;p(G), ` � 1, p 2 [1;1). Fix a set K of multi-indices such thatf(`; 0; : : : ; 0); : : : ; (0; : : : ; 0; `)g � K � f� : j�j = `g:Finally, let PK be the set of polynomials w such that D�w = 0 8� 2 K. Thenthe equivalenceinfw2PK ku� w;W `;p(G)k � Xj�j2K kD�u;Lp(G)k (2.77)
holds.Lemma 2.13 Consider a bounded domain G � R d which satis�es a strongcone condition. Let  be a multi-index with m := jj and u 2 L1(G) be afunction with Du 2 W `�m;p(G), where `;m 2 N , 0 � m � `, p 2 [1;1).Then there exists a polynomial w 2 Qd̀�1 such thatkD(u� w);W `�m;p(G)k . [Du;W `�m;p(G)]: (2.78)The constant depends on G and `�m. The polynomial w depends on G, `, ,and u.Proof For  = (0; : : : ; 0) we obtain the assertion by setting K = f� = `� :j�j = 1g in Lemma 2.12. Let now  be arbitrary. By using the lemma with = (0; : : : ; 0) we �nd a polynomial w1 2 Qd̀�m�1 such thatkDu� w1;W `�m;p(G)k . [Du;W `�m;p(G)]:Since there exists a w 2 Qd̀�1 with Dw = w1 the lemma is proved.
Remark 2.7 Let us compare Lemmata 2.1 and 2.13. First we mention thatthe strong cone condition is more restrictive than the assumption on the do-main in Lemma 2.1. Indeed, if a domain G satis�es the strong cone conditionthen G = SJj=1Gj where each of the Gj is star-shaped with respect to a ballBj [76, Remark 7.1]. The example of a slit domain shows that the converse isnot valid.



2.4 Quadrilateral elements 71Second, the constant in (2.11) depends only on diamGj and diamBj (not onG generally) and the function w is independent of G and . These advantagesof Lemma 2.1 are used in Theorem 2.8 and in Lemma 3.1.We were not able to derive (2.78) from the very general theory in [76] to keepthese advantages, but we obtained onlykD(u� w);W `�m�1;p(G)k . [Du;W `�m;p(G)]by setting A = f� : � = `�; j�j = 1g in [76, Theorem 4.2]. However, thisresult is not su�cient to derive the following Lemma 2.14.Lemma 2.14 Assume that ê is a square or a cube. Let I : C(ê) ! Pk;êbe a linear operator. Fix m; ` 2 N , p 2 [1;1), and q 2 [1;1] such that0 � m � ` � k + 1 and (2.15) hold. Consider a multi-index  with jj = mand de�ne j := dim D̂Pk;ê. Assume that there are linear functionals Fi,i = 1; : : : ; j, with properties (2.16){(2.18). Then the error can be estimatedfor all û 2 C(ê) with D̂û 2W `�m;p(ê) bykD̂(û� Iû);Lq(ê)k . [D̂û;W `�m;p(ê)]:
Proof The proof is the same as that for Lemma 2.2 by using v̂ 2 Qd̀�1 insteadof v̂ 2 P d̀�1 and Lemma 2.13 instead of Lemma 2.1.By using Lemma 2.14 instead of Lemma 2.2 we can prove the following lemmain the same way as Lemma 2.10.Lemma 2.15 Under the assumptions of Lemma 2.10 the estimatekD̂(û� Iû);Lq(ê)k . [D̂û;W `�m;p(ê)] (2.79)holds.Remark 2.8 It is not clear whether Lemma 2.13 holds for p =1 as well. Inthe original source [53, Theorem 1] this case is excluded. The critical point iswhether the Aronszajn-Smith-Il'in resultku;W `;p(ê)k . ku;Lp(ê)k+ Xj�j=1 kD`�u;Lp(ê)k
holds for p = 1. This estimate can be found in various sources without astatement about p = 1, see [82, Lemma A.8], [106], [115, Theorem 8.8.4],[178], for example. Consequently, we excluded this case in Lemma 2.14.



72 2 Lagrange interpolation on anisotropic elementsIn Lemma 2.15, however, we included p = 1 for the following reasons. Ifm � ` � 1, then Lemma 2.15 is identical with Lemma 2.10, and there isnothing to prove. If m � `� 2, that means in particular ` � 2, we can choosesome p0 < 1 such that the assumptions of Lemma 2.15 are satis�ed with p0instead of p and for arbitrary q 2 [1;1]. (Take for example p0 = 2.) Since thelemma holds for �nite p0 and with[D̂û;W `�m;p0(ê)] . [D̂û;W `�m;1(ê)]we get the desired result.Theorem 2.7 Assume that e is a rectangle with sides parallel to the coordinateaxes. Let  be a multi-index with m := jj and u 2 C(e) be a function withDu 2 W `�m;p(e), where `;m 2 N , p 2 [1;1] shall be such that 0 � m � ` �k + 1 and (2.70) hold. Fix q 2 [1;1] such that W `�m;p(e) ,! Lq(e). Then theanisotropic interpolation error estimatekD(u� Ihu);Lq(e)k. (meas2e)1=q�1=p Xj�j=1h(`�m)�kD+(`�m)�u;Lp(e)k (2.80)
holds.Proof From (2.79) by the transformation xi = hix̂i + bi, i = 1; 2.The theorem was proved for k = 1, ` = 2, p = 2, in [150, page 90] and forgeneral k, ` = k + 1, m = 1, p = 2, in [155], see Comments 2.14 and 2.15.Remark 2.9 One can also prove certain estimates for the case of additionalsmoothness of u, see Comment 2.15 on page 92.
2.4.3 Subparametric elementsIn this subsection we will consider a special class of non-a�ne quadrilaterals.Often isoparametric elements are treated, which means according to [182, Sec-tion 3.3] that the shape functions are used for the polynomial transformationF from the reference element ê to the element e. The term subparametric indi-cates that only a subset of the shape functions is used. We will use the shapefunctions of the bilinear case which leads to a considerable simpli�cation. Butall quadrilaterals with straight sides fall into this class.Denote the shape functions of the bilinear case by  ̂1 := (1 � x̂1)(1 � x̂2); ̂2 := x̂1(1 � x̂2);  ̂3 := x̂1x̂2;  ̂4 := (1 � x̂1)x̂2. Then we can de�ne the



2.4 Quadrilateral elements 73subparametric mapping F by
F (x̂) := 4Xi=1 X(i)e  ̂i(x̂) 2 Q21 �Q21:

We assume that the X(i)e form a convex quadrilateral e, then this mapping isinvertible [82, page 105]. In the case of e being a parallelogram the mappingF is a�ne (X(1)e �X(2)e +X(3)e �X(4)e = 0) and the shape functions 'i(x) :='̂i(F�1(x)), i = 1; : : : ; Ne, are polynomial. In the general case the 'i arerational functions.In view of the explanations in Example 2.2 at the end of Subsection 2.1.2 weconsider the subparametric mapping as a perturbation of an a�ne mapping.Let ~e be a rectangular element with edges being parallel to the axes of thecoordinate system. The coordinates of the vertices of ~e are denoted by ~X(i)e ; i =1; : : : ; 4. The subparametric element e is a perturbation of ~e, the coordinatesof its vertices are X(i)e = ~X(i)e + a(i); i = 1; : : : ; 4. Introduce by~F (x̂) := ~X(1)e +Bx̂; B := diag (h1; h2);F (x̂) := ~F (x̂) + 4Xi=1 a(i) ̂i(x̂);the transformation of ê to ~e and e, respectively, that means ~e = ~F (ê); e = F (ê).The Jacobi matrix of the transformation F is
D = D(x̂) := � d1;1 d1;2d2;1 d2;2 � = B + 4Xi=1

0B@ a(i)1 @ ̂i@x̂1 a(i)1 @ ̂i@x̂2a(i)2 @ ̂i@x̂1 a(i)2 @ ̂i@x̂2
1CA :

In order to keep properties like (2.73){(2.75) we demand the existence of con-stants a0 and a = (a1; a2) withja(j)i j � aih2; 0 � ai . 1; i = 1; 2; j = 1; : : : ; 4; (2.81)
12 � h2h1a1 � a2 � a0 > 0: (2.82)

Remark 2.10 Condition (2.82) is necessary to keep the mapping F invertible,in particular, to prove relation (2.83) below. To see this, consider ~e = (0; h1)�(0; h2), a(1) = a(3) = (a1h2;�a2h2)T , and a(2) = a(4) = (�a1h2; a2h2)T . Onecan directly calculate that detD��(1;0) = 2h1h2(1=2� a1h2=h1 � a2).



74 2 Lagrange interpolation on anisotropic elements

x1

x2

Fig. 2.13 Extreme example for the element e. (~e is bounded by dashed lines, e by solidlines.)
By taking a1 = a2 = 1=2 � ", h2 � h1, we can learn from this example thatthe shape of e can be quite di�erent from a rectangle, see Figure 2.13.Condition (2.82) restricts also the attening of e which is obtained by takinga(1) = a(2) = (0; a2h2)T , and a(3) = a(4) = (0;�a2h2)T . Note further thatthere is virtually no restriction on a1 if h2 � h1. The restriction on a2 is alsodiscussed in Remark 2.11 below.Remark 2.11 The condition on a2 can be weakened if the numbers a(i)2 ;i = 1; : : : ; 4; satisfy sign a(1)2 = sign a(4)2 and sign a(2)2 = sign a(3)2 . This isthe reason why the a�ne elements from Subsection 2.4.1 do satisfy (2.81) butwith constants not necessarily satisfying (2.82). As another alternative wecould consider perturbations of parallelograms ~e satisfying the conditions ofSubsection 2.4.1. The following results would remain true but the angle #from the coordinate system condition would have to be involved in (2.82). Wechose a rectangle to keep our explanations as clear as possible.Lemma 2.16 The conditions (2.81), (2.82), imply for all x̂ 2 ê the estimatesj detD(x̂)j � h1h2 (2.83)jdi;j(x̂)j . minfhi; hjg; i; j = 1; 2; (2.84)jd(�1)i;j (x̂)j . minfh�1i ; h�1j g; i; j = 1; 2; (2.85)where d(�1)i;j are the entries of the inverse of the Jacobi matrix D.
Proof By the calculation of @ ̂i@x̂j we obtain with (2.81) and (2.82)

jd1;1 � h1j = ���(1� x̂2)(a(2)1 � a(1)1 ) + x̂2(a(3)1 � a(4)1 )��� � 2a1h2and similarly jd1;2j � 2a1h2, jd2;1j � 2a2h2, and (1�2a2)h2 � d2;2 � (1+2a2)h2.



2.4 Quadrilateral elements 75Consequently,detD = d1;1d2;2 � d1;2d2;1 � (h1 � 2a1h2)(1� 2a2)h2 � 4a1a2h22= h1h2(1� 2a1h2=h1 � 2a2) � 2a0h1h2;detD � (1 + 2a1h2=h1)h1(1 + 2a2)h2 + 4a1a2h22 . h1h2;and (2.83) and (2.84) are proved. The estimate (2.85) is a direct consequenceusing the explicit representation of the inverse.For the second order derivatives of the transformation F the relations@2xi@x̂2j = 0; i; j = 1; 2; (2.86)
@2xi@x̂1@x̂2 = a(1)i � a(2)i + a(3)i � a(4)i ; ���� @2xi@x̂1@x̂2 ���� � 4aih2; i = 1; 2;(2.87)hold. This implies that the transformation of a mixed derivative D̂� leads alsoto derivatives D� of lower order. In order to avoid mixed derivatives on theleft hand side we restrict the error estimates to m = 0; 1.Lemma 2.17 Consider a rectangular element ~e with sides of length h1 andh2, h1 � h2, which are parallel to the axes of the x1; x2-coordinate system.The coordinates of the four vertices are perturbed by vectors a(i) = (a(i)1 ; a(i)2 )Tsatisfying (2.81), (2.82). The resulting element is denoted by e. Let be u 2W `;p(e) \ C(e) where ` 2 N , 2 � ` � k + 1, p 2 [1;1]. Fix q 2 [1;1] suchthat W `�1;p(e) ,! Lq(e). Then the anisotropic interpolation error estimateju� Ihu;W 1;q(e)j . (meas2e)1=q�1=p Xj�j�`�1h�jD�u;W 1;p(e)j (2.88)

holds.Proof We have to transform estimate (2.79) for m = 1. Due to (2.86) wehave for pure derivatives D̂�û with � = n� (n 2 N ; j�j = 1)D̂n�û = Xjsj=n c(n)s Dsu(D̂�x1)s1(D̂�x2)s2 (2.89)
with some constants c(n)s . With (2.84) we obtainjD̂n�ûj . Xjsj=n hsjDsuj: (2.90)



76 2 Lagrange interpolation on anisotropic elementsFurthermore, we get from (2.89)D̂(1;`�1)û= Xjsj=`�1Xjtj=1 c(`�1)s Ds+tu�@x1@x̂2�s1 �@x2@x̂2�s2 �@x1@x̂1�t1 �@x2@x̂1�t2 +
+ Xjsj=`�1 c(`�1)s Dsu s1�@x1@x̂2�s1�1 @2x1@x̂1@x̂2 �@x2@x̂2�s2 +

s2�@x1@x̂2�s1 �@x2@x̂2�s2�1 @2x2@x̂1@x̂2
! ;

jD̂(1;`�1)ûj � h1 Xjsj=`�1Xjtj=1hsjDs+tuj+ h2 Xjsj=`�2Xjtj=1hsjDs+tuj
. h1 Xjsj�`�1Xjtj=1hsjDs+tuj:

Similarly we can prove the corresponding estimate for D̂(`�1;1)û. Finally weget kD(u� Ihu);Lq(e)k. (meas2e)1=q Xj�j=1h��kD̂�(û� Iû);Lq(ê)k
. (meas2e)1=q Xj�j=1h��[D̂�û;W `�1;p(ê)]
. (meas2e)1=q�1=p Xj�j=1h��

0@h� Xjsj�`�1hsjDsu;W 1;p(e)j1A :
We conjecture that we obtain the same result (2.88) when estimate (2.71) istransformed. However, the transformation of derivatives becomes more in-volved, see [78] for a general formula for high derivatives of composite func-tions. We note also that the estimate (2.88) is insu�cient: considerm = k = 1,` = 2, then we get no convergence unless a1; a2 ! 0 for h1; h2 ! 0. This wasinvestigated in [5] since the following theorem was not seen at that time.Theorem 2.8 Consider a rectangular element ~e with sides of length h1 andh2, h1 � h2, which are parallel to the axes of the x1; x2-coordinate system.The coordinates of the four vertices are perturbed by vectors a(i) = (a(i)1 ; a(i)2 )Tsatisfying (2.81), (2.82). The resulting element is denoted by e. Let be u 2



2.4 Quadrilateral elements 77W `;p(e) \ C(e) where ` 2 N , 1 � ` � k + 1, p 2 [1;1]. Fix m 2 f0; 1g andq 2 [1;1] such that m < ` and W `�m;p(e) ,! Lq(e). Then the anisotropicinterpolation error estimateju� Ihu;Wm;q(e)j . (meas2e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j (2.91)
holds provided that p > 2 if ` = 1. The result is valid also for m = ` = 0,p =1, q 2 [1;1].Proof In the case m = 0 we transform (2.79). Since no mixed derivativesappear at the right hand side of (2.79) we can use (2.90) and obtain the desiredresult.For m = 1 we use Lemma 2.17. The main point is to observe that for ` � k+1Ihw = w 8w 2 P d̀�1:Indeed, since we investigate only a subparametric mapping F with Fi 2 Qd1 wehave ŵ 2 Qd̀�1 � Pk;ê, this means ŵ = Iŵ. Applying Lemma 2.17 to v = u�wfor arbitrary w 2 P d̀�1 we get u� Ihu = v � Ihv andju� Ihu;W 1;q(e)j . (meas2e)1=q�1=p Xj�j�`�1h�jD�v;W 1;p(e)j

= (meas2e)1=q�1=p Xj�j�`�1h�jD�(u� w);W 1;p(e)j: (2.92)
Via the change of variables xi = �xihi we map e to an quadrilateral �e. Accordingto (2.81), (2.82), we realize that �e satis�es the assumptions of Lemma 2.1 withJ = 1, diamG1 � diamB1 � 1. So we obtain the existence of �w 2 P d̀�1 suchthat for all  with jj = 1 the estimatek �D(�u� �w);W `�1;p(�e)k . j �D�u;W `�1;p(�e)jholds. By transforming this estimate to e and summing up over all  withjj = 1 we get9w 2 P d̀�1 : Xj�j�`�1h�jD�(u� w);W 1;p(e)j . Xj�j=`�1h�jD�u;W 1;p(e)j:
With (2.92) we have proved the assertion.Corollary 2.4 Of course one can set h2 � h1 =: h and deriveku� Ihu;Wm;q(e)k . (meas2e)1=q�1=ph`�mju;W `;p(e)j;which holds under the assumptions of Theorem 2.8.



78 2 Lagrange interpolation on anisotropic elementsWe note that ju� Ihu;W 1;2(e)j . h ju;W 2;2(e)j was derived for k = 1 in [202]with a fully di�erent proof, see Comment 2.16 on page 93.We end this section by giving an example showing that the assumption ja(i)1 j .a1h2 in (2.81) cannot be weakened.Example 2.8 Let e be the quadrilateral with the vertices (0; 0), (h1; 0), (h1�"; h2), (0; h2) where " 2 [0; h1=2]. One can directly calculate that x1 = x̂1(h1�"x̂2), x2 = h2x̂2, x̂2 = h�12 x2, x̂1 = x1(h1� "h�12 x2)�1. For the function u = x21we get û = x̂21(h2 � "x̂2)2, Iû = x̂1(h21 � 2h1"x̂2 + "2x̂2),Ihu = x1(h1 � "h�12 x2)�1(h21 � 2h1"h�12 x2 + "2h�12 x2);D(0;1)Ihu = �x1"h�12 (h1 � "h�12 x2)�2(h21 � "h1) � �x1"h�12 :Consequently, it isD(0;1)(u� Ihu);Lq(e)(meas2e)1=q�1=p Pj�j=1h�jD�u;W 1;p(e)j
� (meas2e)1=q"h1h�12(meas2e)1=q�1=p � (meas2e)1=ph1 = "h2 :Thus " . h2 is a necessary condition. �

2.5 Hexahedral elements
2.5.1 A�ne elementsIn this section we extend the results of Section 2.4 to the three-dimensionalcase, namely to hexahedral elements. There is mainly one point di�erentwhich, however, is already known from Section 2.3: the range of the parameterp in the estimates is smaller. But in order to help the reader who does not wantto read the whole monograph, the de�nitions and theorems are formulatedcompletely.Consider the Lagrangian �nite element (ê;Pk;ê;�k;ê) withê := f(x̂1; x̂2; x̂3) 2 R 3 : 0 < x̂1; x̂2; x̂3 < 1g; (2.93)Pk;ê := Q3k; (2.94)�k;ê := ffi : C(ê)! R such that fi(û) := û(X̂(i))gNei=1; (2.95)where Ne = (k + 1)3 is the number of nodes andX := fX̂(i)gNei=1 := f( ik ; jk ; nk )T 2 R 3g0�i;j;n�k (2.96)



2.5 Hexahedral elements 79is the set of nodes.Let I : C(ê)! Pk;ê be the Lagrangian interpolation operator on ê, de�ned by(Iv̂)(X̂(i)) = v̂(X̂(i)); i = 1; : : : ; Ne: (2.97)The counterpart of Lemma 2.10 is identical with Lemma 2.6 and reads asfollows.Lemma 2.18 Let  be a multi-index with m := jj and û 2 C(ê) be a functionwith D̂û 2W `�m;p(ê), where `;m 2 N , p 2 [1;1] shall be such that 0 � m �` � k + 1 andp =1 if m = 0 and ` = 0;p > 3=` if m = 0 and ` = 1; 2;m < ` if 1 = 0 or 2 = 0 or 3 = 0; and m > 0;p > 2 if  2 f(`� 1; 0; 0); (0; `� 1; 0); (0; 0; `� 1)g: (2.98)
Fix q 2 [1;1] such that W `�m;p(ê) ,! Lq(ê). Then the estimatekD̂(û� Iû);Lq(ê)k . jD̂ û;W `�m;p(ê)j (2.99)holds.The assumptions can be discussed as in Section 2.3 for Lemma 2.6. Note thatthe fourth assumption in (2.98) is necessary only in the three-dimensional case.Consider now a parallelepiped e. The transformation from ê to e can be writtenas x = F (x̂) = Bx̂+ b; B = (bi;j)3i;j=1 2 R 3�3; b = (bi)3i=1 2 R 3 ;(2.100)compare (1.16). For clarity, we formulate the de�nition of the mesh sizes andthe conditions: Let E be one of the longest edges of e, and let �E be the largerof the two faces of e with E � �E. Then we de�ne the element sizes by h1 :=meas1(E), h2 := meas2(�E)=h1, and h3 := meas3(e)=(h1h2). For intermediateuse we introduce another Cartesian coordinate system (x1;e; x2;e; x3;e) such that(0; 0; 0) is a vertex of ê, E is part of the x1;e-axis, and �E is part of the x1;e; x2;e-plane. Consequently, we have j detBj = meas3(e) = h1h2h3:Maximal angle condition: There is a constant � < � (independent of hand e 2 Th) such that the maximal interior angle F of the six faces as well asthe maximal angle E between two faces of any element e are bounded by � :0 < � � F � � � �; 0 < � � E � � � �.



80 2 Lagrange interpolation on anisotropic elementsCoordinate system condition: The transformation of the element relatedcoordinate system (x1;e; x2;e; x3;e) to the discretization independent system(x1; x2; x3) can be determined as a translation and three rotations around thexj;e-axes by angles #j (j = 1; 2; 3), wherej sin#1j � Ch3=h2; j sin#2j � Ch3=h1; j sin#3j � Ch2=h1:We formulate now the three-dimensional versions of Lemma 2.11, Theorem2.6, Corollary 2.3 and Remark 2.9 without proof.Lemma 2.19 Assume that a parallelepiped e satis�es the maximal angle con-dition and the coordinate system condition. Then the entries of the matrix Bof (2.100) and of its inverse B�1 satisfy the following conditions:jbi;j j . minfhi; hjg, i; j = 1; 2; 3; (2.101)jb(�1)i;j j . minfh�1i ; h�1j g, i; j = 1; 2; 3: (2.102)Theorem 2.9 Assume that e is a parallelepiped which satis�es the maximalangle condition and the coordinate system condition. Let be u 2W `;p(e)\C(e)where ` 2 N , 1 � ` � k + 1, p 2 [1;1]. Fix m 2 f0; : : : ; ` � 1g andq 2 [1;1] such that W `�m;p(e) ,! Lq(e). Then the anisotropic interpolationerror estimateju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j (2.103)holds provided thatp > 3=` if m = 0 and ` = 1; 2;p > 2 if m = `� 1: (2.104)
The result is also valid for m = ` = 0, p =1, q 2 [1;1].Corollary 2.5 Assume that the parallelepiped e satis�es the maximal anglecondition. Let be u 2 W `;p(e) \ C(e) where ` 2 N , 1 � ` � k + 1, p 2 [1;1].Fix m 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W `�m;p(e) ,! Lq(e). Thenthe isotropic interpolation error estimate (sometimes called estimate of Jamettype or of Synge type)ju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p(diam e)`�mju;W `;p(e)jholds provided that (2.104) holds. The result is also valid for m = ` = 0,p =1, q 2 [1;1].



2.5 Hexahedral elements 81As in Subsection 2.4.2 we can state that Lemma 2.18 holds even when (2.99)is replaced bykD̂(û� Iû);Lq(ê)k . [D̂û;W `�m;p(ê)]: (2.105)For brick elements with edges being parallel to the coordinate axes this leadsto the following improved estimate.Theorem 2.10 Assume that e is a brick element with edges parallel to thecoordinate axes. Let  be a multi-index with m := jj and u 2 C(e) be afunction with Du 2 W `�m;p(e), where `;m 2 N , p 2 [1;1] shall be such that0 � m � ` � k + 1 and (2.98) hold. Fix q 2 [1;1] such that W `�m;p(e) ,!Lq(e). Then the anisotropic interpolation error estimatekD(u� Ihu);Lq(e)k. (meas3e)1=q�1=p Xj�j=1h(`�m)�kD+(`�m)�u;Lp(e)k (2.106)
holds.Additional smoothness, û 2 W k+2;p(ê), is advantageous since the restriction(2.104) can be omitted. For example, it was proved in [9] that for jj = 1 theestimate kD(u� Ihu);Lp(e)k. hkkD(k+1)u;Lp(e)k+ Xj�j=k+1h�kD�+u;Lp(e)k:
holds for all p 2 [1;1], provided that e is a brick element. For general paral-lelepipeds we can prove the following theorem in analogy to Theorem 2.3.Theorem 2.11 Assume that e is a parallelepiped which satis�es the maximalangle condition and the coordinate system condition. Let be u 2 W k+2;p(e) \C(e), p 2 [1;1]. Fix m 2 f0; : : : ; kg and q 2 [1;1]. Then the anisotropicinterpolation error estimateju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p Xk+1�m�j�j�k+2�mh�jD�u;Wm;p(e)j
holds provided that W k+2�m;p(e) ,! Lq(e).
2.5.2 Subparametric elementsAs in Subsection 2.4.3 we consider the multilinear mapping F as a perturbationof an a�ne mapping. Let ~e be a brick element with edges parallel to the axes



82 2 Lagrange interpolation on anisotropic elementsof the coordinate system. The coordinates of the vertices of ~e are ~X(i)e ; i =1; : : : ; 8. The subparametric element e is a perturbation of ~e, the coordinatesof its vertices are ~X(i)e + a(i); i = 1; : : : ; 8. Denote by~F (x̂) = ~X(1)e +Bx̂; B = diag (h1; h2; h3);F (x̂) = ~F (x̂) + 8Xi=1 a(i) ̂i(x̂);the transformation of ê to ~e and e, respectively, that means ~e = ~F (ê); e = F (ê).Recall that  ̂i, i = 1; : : : ; 8, are the trilinear shape functions. The conditions(2.81), (2.82), read nowja(j)i j � aih2; 0 � ai . 1; i = 1; 2; 3; j = 1; : : : ; 8; (2.107)12 � h3h1a1 � h3h2a2 � a3 � a0 > 0: (2.108)and Lemma 2.16 is valid for i; j = 1; 2; 3.While �rst and second order derivatives of F behave as in the two dimensionalcase third order derivatives do not vanish here:���� @2xi@x̂j@x̂k ���� � 4aih3(1� �j;k); i; j; k = 1; 2; 3;���� @3xi@x̂1@x̂2@x̂3 ���� � 8aih3; @3xi@x̂2j@x̂k = 0; i; j; k = 1; 2; 3;where �i;j is the Kronecker delta. However, this does not a�ect our analysissince in (2.105) only derivatives D̂�u appear where �i = 0 for at least onei 2 f1; 2; 3g.Theorem 2.12 Consider a brick element ~e with sides of length h1; h2; andh3; h1 � h2 � h3, which are parallel to the axes of the x1; x2; x3-coordinatesystem. The coordinates of the eight vertices are perturbed by vectors a(i) =(a(i)1 ; a(i)2 ; a(i)3 )T , i = 1; : : : ; 8, satisfying (2.107), (2.108). The resulting elementis denoted by e. Let be u 2 W `;p(e) \ C(e) where ` 2 N , 1 � ` � k + 1,p 2 [1;1]. Fix m 2 f0; 1g and q 2 [1;1] such that W `�m;p(e) ,! Lq(e).Then the anisotropic interpolation error estimateju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j
holds provided thatp > 3=` if m = 0 and ` = 1; 2;p > 2 if m = `� 1:



2.6 Pentahedral elements 83The result is also valid for m = ` = 0, p =1, q 2 [1;1].The theorem can be proved with the same ideas as in the two-dimensionalcase.Corollary 2.6 Of course one can set h3 � h2 � h1 =: h and deriveku� Ihu;Wm;q(e)k . (meas3e)1=q�1=ph`�mju;W `;p(e)j;which holds under the assumptions of Theorem 2.12.
2.6 Pentahedral elements
Due to the limited interest in pentahedral elements we will discuss this elementtype only very briey. Some results have been derived in [20].By the term pentahedral element we denote the Lagrangian �nite element(ê;Pk;ê;�k;ê) withê := f(x̂1; x̂2; x̂3) 2 R 3 : 0 < x̂1; x̂3 < 1; 0 < x̂2 < 1� x̂1g;(2.109)

Pk;ê := 8><>: X0��1+�2�k0��3�k a�x�; a� 2 R9>=>; ; (2.110)
�k;ê := ffi : C(ê)! R such that fi(û) := û(X̂(i))gNei=1; (2.111)where Ne = �k+22 �(k + 1) is the number of nodes andX := fX̂(i)gNei=1 := f( ik ; jk ; nk )T 2 R 3g 0�i+j�k0�n�k (2.112)

is the set of nodes. Let I : C(ê) ! Pk;ê be the Lagrangian interpolationoperator on ê, de�ned by(Iv̂)(X̂(i)) = v̂(X̂(i)); i = 1; : : : ; Ne: (2.113)
In Section 2.3 we derived estimates on tetrahedral reference elements for func-tions from classical and weighted Sobolev spaces. These lemmata, namely 2.6,2.8, and 2.9, can be proven for pentahedral elements with the same arguments.Note, however, that the proof is not identical since the dimension of DPk;ê ishere �k�1�2+22 �(k � 3 + 1). Observe also that it is su�cient to consider onereference element only.



84 2 Lagrange interpolation on anisotropic elementsFor the transformation F from ê to e we have to distinguish di�erent cases.The reason is that, in contrast to tetrahedral and hexahedral elements, thex̂3-direction is distinguished from the other two.Assume �rst that (i) the element is a�ne, (ii) the triangular face is describedby mesh sizes h1 and h2 . h1, and (iii) the distance between the triangularfaces is h3 . h2. This situation corresponds completely to Subsection 2.3.1. Amaximal angle condition and a coordinate system condition can be formulatedaccordingly, and Theorems 2.2 and 2.3 can be proven.In a second case assume that (i) the element is a�ne, (ii) three edges areparallel to the x3-axis and have length h3, (iii) the quadrilateral faces satisfy amaximal angle condition, and (iv) the triangular faces are isotropic with sizeh1 � h2 . h3. Then Lemma 2.7 is also valid and, consequently, Theorems 2.2and 2.3 as well. If one edge is contained in the x3-axis, then Theorems 2.4 and2.5 hold, too.We can also consider the subparametric case as a perturbation of the a�necase. The notation can be adapted from Subsection 2.5.2. Lemma 2.13 can bemodi�ed by taking w 2 P`�1;e � Pk;ê such that (2.78) becomeskD(u� w);W `�m;p(G)k . Xj�j=`�m�3=0_�3=`�m kD�+u;Lp(G)k
=: dDu;W `�m;p(G)e:In analogy to Lemma 2.14 we getkD̂(û� Iû);Lq(ê)k . dD̂û;W `�m;p(ê)eunder the assumptions of Lemma 2.18. One can show that

dv̂;W n;p(ê)e . Xj�j=nh�kD�v;Lp(e)k
(note that this is not true when the left hand side is replaced by jv̂;W n;p(ê)j)and obtainsju� Ihu;Wm;q(e)j . (meas3e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(e)j (2.114)for m = 0. For m = 1 one can �rst show an intermediate result as in Lemma2.17 and conclude (2.114) with the same idea as in the proof of Theorem 2.8.



2.7 Comments on related work 852.7 Comments on related work
This �nal section of Chapter 2 is devoted to historical remarks and alternativeapproaches. We discuss related interpolation results of other authors and ideasof their proof. These are sometimes really fascinating though they were notsu�cient for our purposes.
Triangular elementsComment 2.1 Other formulations of the maximal angle condition fortriangles. The following conditions have been used in the literature insteadof the maximal angle condition:1. Let Re be the radius of the circumscribed ball Be of e (that means, allvertices of e belong to @Be). Then we demand diam (e) & Re [119].2. Let V3 be the set of the three unit vectors which are parallel to the sidesof e and de�ne <) (�; �) 2 [0; �2 ] to be the angle between the vectors � and ��.Then we demand [108]� := minv1;v22V3 max�2R2 mini=1;2 <) (�; vi) � �� < �2 : (2.115)The �rst condition is interesting due to its similarity to Zl�amal's minimalangle condition [208] which is equivalent to diam (e) . %e, for %e see Section1.1. In [119, Theorem 2.1 and Remark 2.2], it was shown that this conditionis equivalent to the maximal angle condition formulated on page 44.Jamet showed that � = 12 maxf�;���g where � is the maximal interior anglein e. Thus this condition is also equivalent to the maximal angle condition[108, page 55].Comment 2.2 Synge's results. Synge [187, pages 209{213] derives for k =1 and for triangular elements e satisfying the maximal angle condition theestimate ju� Ihu;Wm;1(e)j . (diam (e))2�mju;W 2;1(e)j; m = 0; 1: (2.116)The following points of the proof are remarkable:� He proves �rst the case m = 1 and derives the case m = 0 viaku� Ihu;L1(e)k . diam (e)ju� Ihu;W 1;1(e)j:Therefore he needs the maximal angle condition for m = 0 as well. (This isnot necessary.)



86 2 Lagrange interpolation on anisotropic elements� His proof is constructive. He already used (what we do as well) thatZE @(u� Ihu)@b = 0 (2.117)
where E is any edge of e and b is a unit vector parallel to E. In this way hederives for all edge directions b@(u� Ihu)@b ;L1(e) . diam (e)ju� Ihu;W 2;1(e)j= diam (e)ju;W 2;1(e)j; (2.118)where he also used that jIhu;W 2;1(e)j = 0. (That means that the proof is�xed to ` = k + 1 and simplicial elements.)� Estimate (2.116) is concluded from (2.118) via elegant geometrical consid-erations which show that the constant in (2.116) depends on (cos 12�)�1 where� is the largest interior angle of e.His method of proof is suited to produce (after slight modi�cation) the aniso-tropic estimateju� Ihu;Wm;1(e)j . Xj�j=2�mh�jD�u;Wm;1(e)j; m = 0; 1:
However, it is not clear how to generalize this approach to functions u 2W 2;p(e), p <1. A generalization to three dimensions is possible, see Comment2.11 on page 91.Comment 2.3 The results of Babu�ska and Aziz. Babu�ska and Aziz [27]essentially proved Corollary 2.1 for m = 1, p = q = 2, ` = k+1, and arbitraryk. Essentially means, it was shown for k = 1 that

infu2W 2;2(e) ku;W 2;2(e)kku� Ihu;W 1;2(e)k � (diam e)�1�(�)
(note the full norms) where �(�) (�=3 � � < �) is an increasing function and� is the maximal interior angle of e. The proof uses also that RE D̂(û � Iû)vanishes when E is an edge parallel to , jj = 1 ( identi�ed with a vector inR 2). Furthermore, Babu�ska and Aziz showed how this proof can be adapted forLagrangian elements of higher order and for Hermite elements. They gave alsoan example showing the necessity of the maximal angle condition, compareRemark 2.25 on page 39.Comment 2.4 Jamet's results for triangles. Jamet [108] considered sev-eral classes of �nite elements, see Comment 2.10 on page 91 and Comment



2.7 Comments on related work 872.13 on page 91 for the results for tetrahedra and quadrilaterals, respectively.He proved [108, Theorem 3.1] for triangles the estimateju� Ihu;Wm;p(e)j . (cos �)�m(diam e)k+1�mju;W k+1;p(e)j; (2.119)where � is de�ned in (2.115). The parameters m and p must satisfyk + 1�m > 2=p for p <1;k + 1�m � 0 for p =1: (2.120)
The proof utilizes an operator Q with D̂�Iû = QD̂�û for j�j = m. Roughlyspeaking, the operator Q is de�ned by Qv̂ = D̂�Iû with some û that satis�esD̂�û = v̂. To ensure that û 2 C(ê) (such that I is well-de�ned) it is demandedthat v̂ 2 C(ê). In this way the quite restrictive condition (2.120) is understand-able. (For example, for linear elements and m = 1, we obtain the conditionp > 2 which is not necessary, see Corollary 2.1 on page 47 for a larger set ofadmissible parameters m and p.)Estimate (2.119) was proved viakD̂(û� Iû);Lp(ê)k . jD̂ û;W k+1�m;p(ê)j:This means that anisotropic estimates could have been derived by a moredetailed look at the mapping F : ê! e.Jamet derived that � = 12 maxf�; � � �g � maxf12�; 13�g where � is themaximal interior angle of e. That means that (cos �)�m . 1 if and only if themaximal angle condition is satis�ed. He also formulated a condition like (2.23)as essential for interpolation on anisotropic elements.To circumvent the restrictions imposed by (2.120) the following estimate wasderived for u 2W `;p(e), ` � k + 1, namely

ju� Ihu;Wm;p(e)j . (cos �)�m X̀r=k+1(diam e)r�mju;W r;p(e)j
which holds when `�m > 2=p.Jamet type estimates are discussed for elements of Hermite type in [201].Comment 2.5 K�r���zek's results for triangles. K�r���zek [119] proved Lemma2.4 for m = 0; 1, ` = 2, k = 1, q = p 2 (1;1). The technique is similar to oursby using that RE D̂(û� Iû) = 0, jj = 1, where E is an edge of ê parallel to .Then he used only an \isotropic mapping" and derives Corollary 2.1 with the



88 2 Lagrange interpolation on anisotropic elementsparameters above. The progress in comparison to previous work [27, 108, 187]was that he covers the case 1 < p < 2.It is interesting to note that he related the maximum angle condition to theradius Re of the ball circumscribed to e, see Comment 2.1 on page 85. Thepaper contains also a numerical example where 
 = (0; 1) is covered by equiv-alent elements e with h2 � h21. (Two triangles are equivalent if their edgeshave pairwise the same length.)Comment 2.6 The results of Barnhill and Gregory. In a series of papersincluding [36, 37] Barnhill and Gregory investigated Sard kernel theorems andapply them to Lagrangian interpolation on triangles and rectangles. The proofsare constructive and have some similarities to the proof of interpolation resultsby Oganesyan and Rukhovets, see Comment 2.7 on page 89. This approachallowed them to give bounds for the constants in the Sobolev norm estimateswhich we will review next.Let e be a triangle with the vertices (0; 0)T , (h1; 0)T , and (0; h2)T , then fork = 1, u 2W 2;p(e), and q � p � 1 the estimate [37, estimate (2.22)]kD(1;0)(u� Ihu);Lq(e)k� (meas2e)1=q�1=p Xj�j=1C�h�kD�+(1;0)u;Lp(e)k
holds where the expressions for C1(p; q), C2(p; q), are quite complex (includingthe Beta function). For p = q = 2 the constants are [37, equations (2.23)]

C1 = 12 � 1p2 + 1p3� � 0:642 and C2 = 1 + 12p2 + 12p6 � 1:56:
In a further paper [84] Gregory obtained even C2 = 1:03 andku� Ihu;L2(ê)k � 0:17 kD(2;0)u;L2(ê)k+0:38 kD(1;1)u;L2(ê)k+ 0:17 kD(0;2)u;L2(ê)k:In the same paper he also considered the triangle ~e with the vertices (0; 0)T ,(1; 0)T , and (a; b)T with a and b being such that the angle  at (a; b)T is max-imal and the angle � at (1; 0)T is minimal, see Figure 2.14 for an illustration.The dependence of the constants in the interpolation error estimate on a andb is given in detail. Some further calculation leads toju� Ihu;W 1;2(~e)j � (C1 + C2 cot�) ju;W 2;2(~e)j:In this way the maximal angle condition is derived as well. (The maximal anglecondition is equivalent to a lower bound for the angle � when � � � � .)



2.7 Comments on related work 89

Fig. 2.14Notation and illustration of the triangle~e from Barnhill and Gregory. x1

x2

(1; 0)T(0; 0)T
(a; b)T
~e� �


Comment 2.7 The results of Oganesyan and Rukhovets for triangles.Oganesyan and Rukhovets [150, pages 82{84] considered the triangle e withthe vertices (0; 0)T , (h1; 0)T , and (0; h2)T , and proved for k = 1 and m = 0; 1ju� Ihu;Wm;2(e)j . Xj�j=2�mh�jD�u;Wm;2(e0)j:
Note that the seminorm on the right hand side is measured with respect tothe rectangle e0 = (0; h1)� (0; h2). Remarkable is:� The proof is constructive. Observation (2.117) was also used.� No attempt is made to exploit the di�erent h1, h2, further, and no maximalangle condition is derived.� The appearance of e0 instead of e on the right hand side is due to some crudeestimations. This can be avoided, see [3, pages 57{59].It is not obvious whether this approach can be generalized to higher dimen-sions.Comment 2.8 B�ansch's results for triangles. Lemma 2.4 and Theorem2.1 were also proved by B�ansch [35] for the case ` = k + 1, 1 � m � k, q = p(therefore without investigating condition (2.24)). His paper appeared abouttwo years after [9] but nearly at the same time as [12]. B�ansch used in hisproof of Lemma 2.4 the following interesting result.Lemma 2.20 Let  be a multi-index, m := jj > 0, and û 2 C(ê) be a functionwith D̂û 2W `�m;p(ê), where ` 2 N , p 2 [1;1] shall be such that `�m > 2=p.Then the estimatekD̂Iû;L1(ê)k . kD̂û;W `�m;p(ê)kholds.Proof See the proof of Lemma 4 in [35]. The slightly stronger assumptionu 2W `;p(ê) in this paper was used only in the sense D̂û 2W `�m;p(ê).



90 2 Lagrange interpolation on anisotropic elementsFrom this lemma one can immediately concludekD̂(v̂ � Iû);Lq(ê)k . kD̂(v̂ � û);W `�m;p(ê)kwhich was derived in the proof of Lemma 2.2 via the functionals fi. However,B�ansch's proof of Lemma 2.20 is based on three further lemmata which es-sentially contain the same ideas as needed in our proof of Lemmata 2.2 and2.4.
Tetrahedral elementsComment 2.9 Alternative formulations of the maximal angle condi-tion for tetrahedra. The following conditions have been used in the litera-ture instead of the maximal angle condition on page 54.1. All angles of all triangular faces of e are bounded away from �. Moreover,for any face F of e there is at least one edge of e such that the angle betweenthis edge and the plane spanned by F is bounded away from 0 [35].2. Let V6 be the set of the 6 unit vectors which are parallel to the sides of eand let <) (�; �) 2 [0; �=2] be the angle between the vectors � and ��. Thenwe demand that [108]� := minv1;v2;v32V6max�2R3 mini=1;2;3 <) (�; vi) � �� < �2 : (2.121)
3. Let ei (i = 1; : : : ; 3) denote the i-th unit vector of the coordinate systemand vj (j = 1; : : : ; 6) are the directions of edges of the tetrahedron e. Thenwe assume [9]mini=1;::: ;3 maxj=1;::: ;6 j(vj ; ei)j � C0 > 0:
Formulation 1 is quite similar to our maximal angle condition. We see thatLemma 2.7 can be proved in the same way, relation (2.48) is even direct.Formulations 2 and 3 are similar to each other. It is not clear whether theyare equivalent to the maximal angle condition. At least they are su�cient forthe proof of anisotropic interpolation error estimates. They say that one canchoose a basis of R 3 by v1; v2; v3 2 V6 such that the transformation from thissystem to the element related coordinate system (x1;e; x2;e; x3;e) is uniformlybounded. On the other hand, the transformation from the reference coordi-nate system (x̂1;e; x̂2;e; x̂3;e) to the system (v1; v2; v3) is a�ne with a diagonaltransformation matrix when the following rule is applied: If the three edgeswhich are parallel to v1, v2, v3, form a polygonal line with the longest edge



2.7 Comments on related work 91in the middle then use ê from (2.37) as the reference element. In all othercases use ê from (2.36). We do not want to go into more detail here, since thisformulations seem to be more di�cult to understand and to check than ourmaximal angle condition or formulation 1 from above.Comment 2.10 Jamet's results for tetrahedra. Jamet [108] derived theresults extracted in Comment 2.4 for d = 2; 3. That means, we have foru 2W `;p(e), ` � k + 1,
ju� Ihu;Wm;p(e)j . (cos �)�m X̀r=k+1(diam e)r�mju;W r;p(e)j

when ` � m > 3=p. The angle � is de�ned in (2.121). All the discussion inComment 2.4 applies as well, except that the condition � � �� < �=2 is notreformulated in geometrical terms, for example as maximal angle condition,see also Comment 2.9.Comment 2.11 K�r���zek's results for tetrahedra. K�r���zek [120] provedCorollary 2.2 for k = 1, ` = 2, m = 0; 1, q = p = 1. The technique issimilar to Synge's proof of the same result in two dimensions, see Comment2.2 on page 85. The maximal angle condition was introduced as on page 54.This is remarkable because K�r���zek [119] had chosen a di�erent formulation intwo dimensions, see Comment 2.1 on page 85.Comment 2.12 B�ansch's results for tetrahedra. Lemma 2.6 and Theo-rem 2.2 were also proved by B�ansch [35] for the case ` = k + 1, 1 � m � k,q = p > 2=(k + 1�m) (and therefore without investigating condition (2.38)),see also Comment 2.8 on page 89. The transformation from ê to e was sketchedin an elegant way (similarly to [9]) without mentioning that two reference el-ements are necessary.
Quadrilateral elementsComment 2.13 Jamet's results for quadrilaterals. In [108, Example 2]Jamet stated that his general result, see Comment 2.4 on page 86 and Com-ment 2.10 on page 91 for simplicial elements, is true also for parallelepipeds.For a discussion of quadratic serendipity elements see [108, Example 4].Comment 2.14 The results of Oganesyan and Rukhovets for quadri-laterals. Oganesyan and Rukhovets [150, page 90] considered the rectangle



92 2 Lagrange interpolation on anisotropic elementse with sides parallel to the coordinate axes and of length h1 and h2. Theyproved for k = 1 and m = 0; 1ju� Ihu;Wm;2(e)j . Xj�j=2�mh�jD�u;Wm;2(e)j:
For further remarks see Comment 2.7 on page 89. The constants can be tracedback, for example it is shown, thatkD(1;0)(u� Ihu);L2(e)k2� 2h21kD(2;0)u;L2(e)k2 + 8h22kD(1;1)u;L2(e)k2:Comment 2.15 The results of von Petersdor� and Rachowicz. VonPetersdor� investigated bilinear interpolation (k = 1) and derived for rectan-gular elements e and for u 2W 3;2(e) the estimates [153, pages 71�.]kD(1;0)(u� Ihu);L2(e)k. h1kD(2;0)u;L2(e)k+ h22kD(1;2)u;L2(e)k; (2.122)kD(0;1)(u� Ihu);L2(e)k. h21kD(2;1)u;L2(e)k+ h2kD(0;2)u;L2(e)k: (2.123)The proof exploits the tensor product character of the bilinear interpolation.We elucidate this by the following sketch.Proof Let be(I1û)(x̂1; x̂2) := (1� x̂1)û(0; x̂2) + x̂1û(1; x̂2);(I2û)(x̂1; x̂2) := (1� x̂2)û(x̂1; 0) + x̂2û(x̂1; 1);then we observe thatIû = I1I2û = I2I1û;

I1D̂(0;1)û = D(0;1)I1û; I2D̂(1;0)û = D(1;0)I2û: (2.124)By using interpolation results from one space dimension we getkD̂(1;0)(û� I1û);L2(ê)k2 = Z 10 kD̂(1;0)(û(:; x̂2)� I1û(:; x̂2));L2(0; 1)k2 dx̂2
. Z 10 kD̂(2;0)û(:; x̂2);L2(0; 1)k2 dx̂2 = kD̂(2;0)û;L2(ê)k2; (2.125)k(D̂(1;0)I1û)� I2(D̂(1;0)I1û);L2(ê)k . kD̂(0;2)(D̂(1;0)I1û);L2(ê)k= kD̂(1;0)I1D̂(0;2)û;L2(ê)k . kD̂(1;2)û;L2(ê)k: (2.126)
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Fig. 2.15 Illustration of the quadrilaterals treated by �Zen���sek and Vanmaele.
The last equality follows from (2.124). The last estimate is a consequence of

D̂(1;0)I1v̂(x̂1; x̂2) = v̂(1; x̂2)� v̂(0; x̂2) = Z 10 D̂(1;0)v̂(x̂1; x̂2)dx̂1:
From (2.125) and (2.126) we obtain (2.122) by using the triangle inequalityand again (2.124).Rachowicz [155] extended this approach to arbitrary k. He obtains for u 2W `+1;2, ` = k; k + 1kD(1;0)(u� Ihu);L2(e)k. hk1kD(k+1;0)u;L2(e)k+ h2̀kD(1;`)u;L2(e)k;kD(0;1)(u� Ihu);L2(e)k. h1̀kD(`;1)u;L2(e)k+ hk2kD(0;k+1)u;L2(e)k:An extension to parallelograms is also made but in a non-orthogonal coordinatesystem determined by the directions of the sides of e.Comment 2.16 The results of �Zen���sek and Vanmaele. �Zen���sek and Van-maele [202] considered anisotropic, convex, quadrilateral, isoparametric �niteelements e with \bilinear" shape functions (k = 1). They derived isotropic in-terpolation error estimates (in the sense of Corollaries 2.3 and 2.4) and treatedthe constants in the estimates carefully. Therefore we present here the mainresults.Lemma 2.21 [202, Theorem 7.1] Consider �rst trapezoids as illustrated inFigure 2.15 (left hand side) withdiam e = jX(1)e �X(2)e j;jX(2)e �X(3)e j � jX(1)e �X(4)e j � 112 jX(1)e �X(2)e j: (2.127)



94 2 Lagrange interpolation on anisotropic elementsThen we have for u 2 W 2;2(e)ku� Ihu;L2(e)k �  C1 + C2 jX(1)e �X(4)e jdiam e � sin �! (diam e)2ju;W 2;2(e)j
ju� Ihu;W 1;2(e)j � �C3 + C4sin�� diam esin � ju;W 2;2(e)jwith C1 � 55:0, C2 � 21:7, C3 � 12:8, and C4 � 19:5.For the case that the factor 1=12 in (2.127) is substituted by 1=(2n), n � 6,expressions for the constants are given in dependence of n [202, Remark 7.4]The proof of Lemma 2.21 uses the following ideas.� The bilinear interpolation is considered as a perturbation of the linear inter-polation I(L)h with respect to the vertices X(1)e , X(2)e , and X(3)e . (Therefore theenumeration plays an important role, see (2.127).) By the triangle inequalitywe have [202, Estimate (8)]ku� Ihu; : k � ku� I(L)h u; : k+ kI(L)h u� Ihu; : k (2.128)and one can show that(I(L)h u� Ihu)(x) = (I(L)h u� u)(X(4)e ) � '(4)e (x) (2.129)where '(4)e (x) is the shape function with respect to X(4)e .� The �rst term in (2.128) is estimated using the results in [119] for linear(triangular) elements (Comment 2.5 on page 87). The modi�cation is thate is mapped by a linear transformation to a family of reference elements ~edepending on a parameter.� The second term in (2.128) is treated via (2.129) where both factors areestimated separately. In particular it is shown that [202, Section 6]ju(X(4)e )� I(L)h u(X(4)e )j� 21:7 jX(1)e �X(2)e j1=2jX(1)e �X(4)e j1=2sin � (sin�)1=2 ju;W 2;2(e)j;k'(4)e ;L2(e)k � jX(1)e �X(2)e j1=2jX(1)e �X(4)e j1=2(sin�)1=2;j'(4)e ;W 1;2(e)j � 0:90 jX(1)e �X(2)e j1=2jX(1)e �X(4)e j1=2(sin�)1=2 :Now let e be an arbitrary convex quadrilateral. Then there exists a paral-lelogram e0 � e which has three vertices in common with e, see Figure 2.15(right hand side). Denote these three vertices by X(1)e , X(2)e , and X(3)e such



2.7 Comments on related work 95that X(1)e X(2)e and X(2)e X(3)e are sides of e with jX(2)e � X(3)e j < jX(1)e � X(2)e j.Denote by G the straight line through X(1)e and X(2)e .Lemma 2.22 [202, Theorem 8.1] Assume that e is a quadrilateral with thenotation as described above. Let the inequalitiesjX(2)e �X(3)e j � 12n jX(1)e �X(2)e j;jX(1)e �X(4)e j � 12n jX(1)e �X(2)e j;12 � dist (X(4)e ; G)dist (X(3)e ; G) � 1be ful�lled with some n � 6. Then we have for u 2W 2;2(e)ku� Ihu;L2(e)k �  C1 + C2jX(1)e �X(4)e j1=2jX(2)e �X(3)e j1=2jX(1)e �X(2)e j(sin� sin �)1=2
!�jX(1)e �X(2)e j2 ju;W 2;2(e)j;ju� Ihu;W 1;2(e)j �  C3 + C4jX(1)e �X(4)e j1=2jX(2)e �X(3)e j1=2(sin� sin �)1=2

!�
jX(1)e �X(2)e jsin � ju;W 2;2(e)j;where the coe�cients Ci = Ci(n), i = 1; : : : ; 4, are decreasing when n isincreasing.Comment 2.17 Anisotropic local error estimates for the hp-versionof the �nite element method. The existence of derivatives of any desiredorder is one of the basic assumptions for the hp-version. The point is merelyto describe the size of the derivatives in terms of their order and to ensureintegrability, if necessary, by introducing appropriate weight functions. Thisleads to countably normed spaces. The corresponding local interpolation er-ror estimates are studied, for example, in [126] and, from a slightly di�erentpoint of view, in [135]. The proofs exploit the tensor product character of the(reference) element as already mentioned in Comment 2.15 on page 92. How-ever, there are also di�erences to the techniques developed in this monograph,starting with the point that the hp-version is not based on Lagrangian �niteelements in the sense of (2.66){(2.69). Therefore we will not discuss theseestimates further.
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3 Scott-Zhang interpolation on anisotropicelements
In this chapter, the Scott-Zhang interpolation operator and several modi�ca-tions of it are discussed. All these operators are de�ned under weaker regular-ity assumptions than the Lagrange interpolation operator. Anisotropic localstability and error estimates are proved. In the �nal section, Section 3.7, wecompare the operators. These results are originally published in [7].
3.1 General considerations
3.1.1 The aim of this chapterThe Lagrangian (nodal) interpolation operator Ih investigated in the previouschapter is the simplest approximation operator for Lagrangian �nite elements.However, it is not appropriate for several investigations. Drawbacks are thatit can be applied only to continuous functions and that there are restrictionsin the range of the parameters m, q, `, and p of the anisotropic interpolationerror estimate (2.2), see for example (2.3) and (2.4). We discussed this alreadyin Section 1.2 and Subsection 2.1.1.In this chapter we investigate the operator Zh which was introduced by Scottand Zhang. We also introduce and study certain modi�cations of Zh. All theseoperators are de�ned not only for continuous functions but also for certainclasses of discontinuous ones.Scott and Zhang investigated stability and approximation properties of Zh forisotropic meshes. In the next section we study whether these properties extendto anisotropic meshes. It turns out that anisotropic estimates of the error inthe Lq(e)-norm can be proved (Theorem 3.1) but there is a counterexamplefor derivatives of the interpolation error (Example 3.1).From the example we can learn, however, how to modify the operator Zh inorder to have a chance to get the desired estimates for derivatives. We de�ne
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Fig. 3.1 Meshes of tensor product type in two dimensions. Left: rectangular elements.Right: triangular elements.
three operators Sh, Lh, and Eh with di�erences in the applicability concerningthe types of elements and the ability to satisfy Dirichlet boundary conditions.� The operator Sh is applicable for two-dimensional elements and for three-dimensional elements with h1 � h2 . h3 (\needle elements"). Dirichlet bound-ary conditions are preserved on parts of the boundary which are parallel tothe x1-axis/x1; x2-plane.� The operator Lh is applicable for two-dimensional elements and for three-dimensional elements with h1 � h2 & h3 (\at elements"). Dirichlet boundaryconditions are preserved also on parts of the boundary which are parallel tothe x1-axis/x1; x2-plane.� The operator Eh is de�ned only for three-dimensional elements with thegeneral assumption h1 . h2 . h3. But we discuss also the case h1 � h2 . h3,where we can relax the condition on the mesh. Dirichlet boundary conditionsare preserved on parts of the boundary which are orthogonal to the x1; x2-plane.These operators allow stability and approximation estimates for di�erent rang-es of m and ` and for anisotropic meshes, see Theorems 3.2, 3.3, and 3.4 forfunctions from classical Sobolev spaces, and Lemmata 3.4 and 3.6 for functionsfrom weighted Sobolev spaces. We will summarize and compare the results inmore detail in Section 3.7.In this chapter, we restrict ourselves to a certain class of domains, namelydomains of tensor product type. In two dimensions this means that the domainis the union of rectangles with sides parallel to the coordinate axes. In threedimensions we treat domains which are a union of prismatic domains with abasis face parallel to the x1; x2-plane. In such domains it is possible to treatmeshes of tensor product type, see Subsection 3.1.2 for the de�nition. Examplesare given in Figure 3.1. Note that also the mesh in Figure 4.3 (right hand side)on page 145 is of tensor product type. The advantage of this class of meshes isnot only that the coordinate transformation is simpli�ed but also that certain



3.1 General considerations 99edges/faces of the elements are orthogonal/parallel to coordinate axes. Wewill exploit this in the proofs in Sections 3.3{3.5.Later, in Section 4.3, we shall apply the operators Sh and Eh and derive �niteelement error estimates for the Poisson problem in certain domains with edges.The result can not be obtained by using the nodal interpolation operator Ih orthe original Scott-Zhang operator Zh. This underlines the importance of thisstudy.Nevertheless, some questions need further research. First, the investigation inthis chapter is limited to domains of tensor product type. It is not straight-forward how to drop this assumption. Second, estimates with m = ` = 1 arederived only for Lh. This means, such an estimate is not available for three-dimensional \needle elements" (h1 � h2 � h2). Note that the case ` = 1 isof particular interest in the investigation of a-posteriori error estimators andmulti-level techniques.Finally, we remark that Cl�ement [64] and Oswald [151], for example, de�nedsimilar interpolation operators and investigated them for isotropic meshes. Wecomment on this in Section 3.6.
3.1.2 De�nition of the element sizes and two auxiliary resultsWe consider meshes which consist of a�ne elements of tensor product type.That means the transformation of a reference element ê to the element e shallhave (block) diagonal form,� x1x2 � = � �h1;e 00 �h2;e �� x̂1x̂2 �+ be for d = 2; (3.1)0@ x1x2x3

1A = 0@ Be ... 0. . . . . . . . . .0 ... �hd;e
1A0@ x̂1x̂2x̂3

1A+ be for d = 3; (3.2)
where be 2 R d and Be 2 R 2�2 withj detBej � h21;e; kBek � h1;e; kB�1e k � h�11;e: (3.3)In this way the element sizes h1;e; : : : ; hd;e are implicitly de�ned. This de�-nition is not identical with the de�nitions in Chapter 2 but the orders of theresulting mesh sizes hi;e (i = 1; : : : ; d) are the same in both chapters, see Figure3.2 for an illustration. Note that (3.3) yields h1;e � h2;e for three-dimensionalelements.In this de�nition we did not assume a relation between h1;e and hd;e. InSections 3.3 and 3.5 we will consider the case h1;e . hd;e (interesting is h1;e =
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Fig. 3.2 De�nitions of the mesh sizes for triangles in Chapters 2 (left) and 3 (right).
o(hd;e)) and in Section 3.4 we will examine hd;e . h1;e. Note further that underthese assumptions the triangles/tetrahedra can be grouped into pairs/tripleswhich form a rectangle/pentahedron of tensor product type. We will use thisproperty in Section 3.3.We demand further that there is no abrupt change in the element sizes, thatmeans, the relationhi;e � hi;e0 for all e0 with e \ e0 6= ; (3.4)holds for i = 1; : : : ; d. In view this relation and since all considerations in thischapter are local, we will omit the second subscript henceforth.We will see that the values of the Scott-Zhang interpolant in one single elemente, Zhuje, is de�ned in general not only by the values of u in e. Values at certaindomains �i, i 2 Ie, are used. So it is convenient to introduce the patch Se ofelements around e,Se := int[fe0 : e0 2 Th; e0 \ e 6= ;g; (3.5)see also the illustration in Figure 3.3, since we obtain then �i 2 Se for alli 2 Ie:We end this section with a lemma and a corollary which will be widely usedin this chapter. The isotropic version of Lemma 3.1 was proved in [170] usingresults from [76] (see Lemma 2.1) and can easily be generalized to our case.Lemma 3.1 For any u 2 W `;p(Se) there exists a polynomial w 2 P d̀�1 suchthat Xj�j�`�mh�jD�(u� w);Wm;p(Se)j . Xj�j=`�mh�jD�u;Wm;p(Se)j; (3.6)
for all m = 0; : : : ; `.
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Fig. 3.3Illustration of Se in a two-dimensional example.

e

Proof By the change of variables xi = ~xihi we transform Se to ~Se. Accordingto (3.4) and the tensor product character of our mesh we realize that ~Se satis�esthe assumptions of Lemma 2.1 with diamGj � diamBj � 1. So we obtain theexistence of ~w 2 P d̀�1 such that for all  with jj = m, 0 � m � `,k ~D(~u� ~w);W `�m;p( ~Se)k . j ~D~u;W `�m;p( ~Se)j:By transforming this estimate to Se and summing up over all  we conclude(3.6).Corollary 3.1 Let m1 +m2 = m � `. For any u 2 W `;p(Se) there exists apolynomial w 2 Pdm�1 such thatXj�j�m2 Xj�j�`�mh�+�jD�+�(u� w);Wm1;p(Se)j
. Xj�j=m2 Xj�j�`�mh�+�jD�+�u;Wm1;p(Se)j:

Proof We reformulate the left hand side and split it in two terms.Xj�j�m2 Xj�j�`�mh�+�jD�+�(u� w);Wm1;p(Se)j
� Xj�j�`�m1 h�jD�(u� w);Wm1;p(Se)j
= Xj�j�m2 h�jD�(u� w);Wm1;p(Se)j

+ Xm2<j�j�`�m1 h�jD�(u� w);Wm1;p(Se)j
In view of m2 = m�m1, the �rst term can be estimated via Lemma 3.1. Thesecond term contains only derivatives of order higher than m, that means that



102 3 Scott-Zhang interpolation on anisotropic elementsw plays no role. Consequently, w can be chosen such thatXj�j�m2 Xj�j�`�mh�+�jD�+�(u� w);Wm1;p(Se)j
. Xj�j=m2 h�jD�u;Wm1;p(Se)j+ Xm2<j�j�`�m1 h�jD�u;Wm1;p(Se)j
. Xj�j=m2 h�jD�u;Wm1;p(Se)j

+ Xj�j=m2 X1�j�j�`�mh�+�jD�+�u;Wm1;p(Se)j;
and the corollary is proved.
3.2 The original Scott-Zhang operator Zh
In this section we will recall the operator Zh de�ned by Scott and Zhang[170] and examine to what extent anisotropic error estimates can be derivedby simply carrying out the transformations more carefully. We will see thatanisotropic interpolation error estimates are valid form = 0, but modi�cationsof the operator are necessary for estimates of derivatives of the approximationerror.Denote by 'i 2 Vh, i 2 I, the nodal basis functions in the �nite element spaceVh and de�ne(Zhu)(x) :=Xi2I ai 'i(x) (3.7)
with real numbers ai still to be speci�ed. Note that the Lagrange interpolantwas de�ned by choosing ai = u(X(i)) for all i 2 I.In order to treat non-smooth functions the idea is to consider subdomains�i � 
 and to chooseai := (��iu)(X(i)) (3.8)where ��i : L2(�i) ! Pk;�i is the L2-projection operator. The subdomains �iare chosen by the following rules (see also Figure 3.4 for the case of triangles).
If the node X(i) is an interior point of an element e � Th then �i := e:Otherwise X(i) is a boundary point of one or more elements e � Th, and �i ischosen as some (d� 1)-dimensional edge/face & of one of these elements:
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(a) (b)

(c) (d)Fig. 3.4 Choice of �i in dependence on X(i) for the de�nition of Zh. (a) X(i) is an interiorpoint of an element. (b) X(i) is an interior point of an edge. (c) X(i) is a vertexwithin the domain (here: 6 possibilities for �i). (d) X(i) is a vertex at the boundary(2 possibilities for �i).
If there is an edge/face & so that X(i) is an interior point of &, then �i isuniquely determined by �i := &:If not, then �i is taken as one of the edges/faces with X(i) 2 &. However, werestrict this choice in the case X(i) 2 @
 by demanding �i � @
 then.
Let us derive now an equivalent de�nition of Zhu. The L2(�i)-projection��iu 2 Pk;�i = Vhj�i is de�ned byku� ��iu;L2(�i)k = minv2Pk;�i ku� v;L2(�i)k: (3.9)
An explicit representation of (��iu)(X(i)) can be given by introducing the(unique) function  i 2 Vhj�i withZ�i  i'j = �ij for all j 2 I: (3.10)
Then one �nds easily that

(��iu)(X(i)) = Z�i u i: (3.11)
To see this recall that a projection operator P : X ! Y � X can be de�ned viaPu =Pj(u;  j)X 'j where f'jg is a basis in Y and f jg is the corresponding



104 3 Scott-Zhang interpolation on anisotropic elementsbiorthogonal basis with respect to the scalar product (:; :)X in X. By inserting(3.11) into (3.7) and (3.8), we obtain the equivalent de�nition
Zhu =Xi2I (��iu)(X(i)) � 'i =Xi2I

�Z�i u i� � 'i: (3.12)
Though ��i is de�ned by (3.9) for u 2 L2(�i), this approach can be extendedto functions u 2 L1(�i) because the polynomial function  i is from L1(�i)such that the integral in (3.11) is �nite. This means that the approximationoperator Zh : W `;p(
)! Vh is de�ned for

` � 1 for p = 1; ` > 1p otherwise. (3.13)
The restrictions to ` and p in (3.13) follow from a trace theorem and guaranteethat uj�i 2 L1(�i) also for (d� 1)-dimensional �i. We consider only integer `,therefore (3.13) is equivalent to` � 1; p 2 [1;1]:
Note further that the approximation operator Zh does not only preserve ho-mogeneous Dirichlet boundary conditions but also inhomogeneous conditionsu = g on @
 (at least in the sense of L1(@
)) if g 2 Vhj@
.Recall the de�nition of Se in (3.5) and note that �i � Se for all i with X(i) 2 e.For isotropic simplicial elements e (h1 � : : : � hd) Scott and Zhang provedthe following stability and approximation result [170]: If 1 � ` � k + 1 andp 2 [1;1] then the estimates

jZhu;Wm;q(e)j . (measde)1=q�1=pX̀j=0 hj�m1 ju;W j;p(Se)j (3.14)
ju� Zhu;Wm;p(e)j . h`�m1 ju;W `;p(Se)j (3.15)hold for 0 � m � `. Recall that k corresponds to the degree of the polynomials,see (1.14) on page 23. The anisotropic estimate corresponding to (3.15) wouldbe ju� Zhu;Wm;p(e)j . Xj�j=`�mh�jD�u;Wm;p(Se)j: (3.16)

We prove now that this estimate is valid for m = 0. This result is restrictedhere to meshes of tensor product type but it is not restricted to simplicialelements.



3.2 The original Scott-Zhang operator Zh 105Theorem 3.1 On anisotropic meshes of tensor product type the Scott-Zhangapproximation operator Zh satis�es the stability and approximation error esti-mates kZhu;Lq(e)k . (measde)1=q�1=p Xj�j�`h�kD�u;Lp(Se)k; (3.17)
ku� Zhu;Lq(e)k . (measde)1=q�1=p Xj�j=`h�kD�u;Lp(Se)k; (3.18)

` = 1; : : : ; k + 1, provided that u 2 W `;p(Se). For (3.18) the numbers p; q 2[1;1] and ` 2 N must be such that W `;p(e) ,! Lq(e).Proof We start with an estimate for the maximum norm of  i, i 2 Ie. Let ̂�i be the corresponding dual basis function on the reference element �̂ of the(d� 1)-dimensional �nite element �i. So we have1 = Z�̂ '̂i ̂�i = Z�i 'i �i (measdim�i�i)�1 = Z�i 'i i;and, consequently, i =  �i (measdim�i�i)�1:With k ̂�i ;L1(�̂)k = k �i ;L1(�i)k � 1we obtaink i;L1(�i)k � (measdim�i�i)�1: (3.19)Using the de�nition of Zhu we �nd with (3.19) thatkZhu;Lq(e)k � Xi2Ie
'i Z�i u i;Lq(e)

� (measde)1=qXi2Ie
����Z�i u i����. (measde)1=qXi2Ie(measdim�i�i)�1ku;L1(�i)k;where Ie is the index set of the nodes contained in e. If �i has the samedimension as e (that means X(i) is an inner node of e and �i = e) then we usethe H�older inequality and �ndku;L1(�i)k � (measde)1�1=pku;Lp(�i)k. measd�i (measde)�1=pku;Lp(Se)k: (3.20)
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h1

h2�j�i X(i)X(j) e
Fig. 3.5 Illustration of Example 3.1.
If �i has lower dimension we use the trace theorem W `;p(Se) ,! W `;p(e0) ,!L1(�i) (e0 � Se is an element with �i � e0) in the formku;L1(�i)k . measd�1�i(measde)�1=p Xj�j�`h�kD�u;Lp(Se)k (3.21)
which holds for ` � 1. Combining the last three estimates we obtain thestability estimate (3.17). From this we derive for any w 2 P d̀�1 � Pdkku� Zhu;Lq(e)k � ku� w;Lq(e)k+ kZh(u� w);Lq(e)k. (measde)1=q�1=p Xj�j�`h�kD�(u� w);Lp(Se)k
where we used the embeddingW `;p(e) ,! Lq(e). With Lemma 3.1 we conclude(3.18).By the following example we show that Estimate (3.16) does not hold form � 1 in the general setting of �i as introduced above.Example 3.1 In this example we will show that (3.16) is in general not satis-�ed in the case m = k = 1 and the whole range of `, namely ` = 1; 2. Considerthe situation as illustrated in Figure 3.5, and let u = u(x1) be any functionwhich is independent of the variable x2. This leads in general to ai 6= aj , whereai and aj are independent of h2, that means@Zhu@x2 ����e = h�12 f(u; x1; h1)with a certain function f . In view of @u=@x2 = 0 we obtainju� Zhu;W 1;p(e)j � @Zhu@x2 ;Lp(e) = h�1+1=p2 F (u; h1);Xj�j=`�1h�jD�u;W 1;p(Se)j = h`�11 @`u@x1̀ ;Lp(Se) = h1=p2 G(u; h1):



3.3 The operator Sh: choosing small sides 107Consequently, for f(u; x1; h1) 6= 0 (which is the case in general) and h2 = hs1with su�ciently large s (depending on u) estimate (3.16) can not be satis�ed.�For this example the following points were essential:1. Long edges are chosen for �i.2. Xi and Xj have the same x1-coordinate but the projections of �i and �j onthe x1-axis are di�erent.Since we have some freedom in the choice of �i we will investigate in the nexttwo sections the operator in the cases where one of these points is avoided. InSection 3.3 we will use short edges (2D) or small faces (3D) as �i. Large sideswith identical projection are chosen in Section 3.4. The resulting operatorswill be denoted by Sh (small sides) and Lh (large sides).Having now an idea which choice of �i could work, we want to point outthat the desired error estimate cannot be obtained with the original proof of[170]. We encounter problems similar to those discussed in Subsection 2.1.2,in particular Example 2.1. By similar arguments we �nd for example for theoperator Sh that we must provekDShu;Lq(e)k . (mease)1=q�1=p Xj�j�`�jjh�jD�u;W jj;p(Se)j
if we want to derive the error estimate by using the stability estimate as inthe proof of Theorem 3.1. We will develop such re�ned proofs for general k,`, m, in the next sections. However, we need in all cases that all �i, i 2 I, areparallel. Therefore we are restricted to meshes of tensor product type. Theproof for more general meshes is still open.
3.3 The operator Sh: choosing small sides
3.3.1 Stability and approximation in classical Sobolev spacesIn this section we will investigate the operator Sh which was motivated at theend of the previous section. Since the de�nition of the �i is di�erent fromthat in Section 3.2 we will clarify this here: �i is (not necessarily uniquely)determined according to the following three properties, compare Figure 3.6.(P1) �i is parallel to the x1-axis/x1; x2-plane.(P2) X(i) 2 �i.



108 3 Scott-Zhang interpolation on anisotropic elements

x1

x2

x1

x2

Fig. 3.6 Choice of �i in dependence of X(i) in the case of operator Sh, k = 3. Left: Pointswhere �i is uniquely determined. Right: Points where �i can be chosen (here onechoice).
(P3) There exists an edge/face & of some element e such that the projectionof & on the x1-axis/x1; x2-plane is identical with the projection of �i.In connection with (P3) we have to note that �i is not necessary an edge/faceof one element, see also Figure 3.6. Nevertheless, �i together with Pd�1k orQd�1k is a Lagrangian �nite element of dimension d � 1, which follows fromthe tensor-product character of the elements e. For simplicity, we will use theterminology \�i is an edge/face". We remark in particular that in the case ofsimplicial elements and k � 2 there is no d-dimensional �nite element e0 � Sesuch that �i � e0. This implies that Pk;�i 6= Vhj�i and in general ��ivh 6= vhj�ifor vh 2 Vh. That means that Sh does not reproduce piecewise polynomials,but only global polynomials. However, we need in the proofs only ��iw = wfor w 2 Pk;�i which is of course satis�ed.Since �i is said to be a small edge/face this implieshj � hd in Se (j = 1; : : : ; d): (3.22)Note that in three dimensions and according to (3.2), (3.3), only elements withh1 � h2 . h3 can be treated. But this is su�cient to handle edge singularities,see Section 4.3.We will see that for the operator Sh anisotropic interpolation error estimatescan be derived whenm < ` � k+1. The main di�culty is to prove the stabilityestimate. The approximation property follows then easily using Lemma 3.1from page 100. To elucidate the di�erent techniques for derivatives in x1- andxd-direction we �rst formulate and prove two lemmata. Then we establish themain theorem of this section. Finally, we give an example which shows thatthe estimate is not valid for m = `, 1 � m � k + 1.



3.3 The operator Sh: choosing small sides 109Lemma 3.2 Consider an element e of a mesh of tensor product type andassume that (3.22) is valid. Then the derivative of Shu in xd-direction satis�esthe relation @@xdShu;Lq(e) . (measde)1=q�1=p ju;W 1;p(Se)jfor u 2W 1;p(Se) and all p; q 2 [1;1].Proof Using the de�nition of the operator Sh (in analogy to (3.12) on page104), the H�older inequality, estimate (3.19), and the trace theorem (3.21) for` = 1, we obtain for all w 2 Pd0 @@xdShu;Lq(e) =  @@xdSh(u� w);Lq(e)� Xi2Ie
@'i@xd ;Lq(e) ����Z�i(u� w) i����. h�1d (measde)1=qXi2Ie ku� w;L1(�i)k k i;L1(�i)k

. h�1d (measde)1=qXi2Ie(measd�1�i)(measde)�1=p �Xj�j�1h�kD�(u� w);Lp(Se)k(measd�1�i)�1

. h�1d (measde)1=q�1=p Xj�j�1h�kD�(u� w);Lp(Se)k:
Using Lemma 3.1 with m = 0, ` = 1, and relying on (3.22) we obtain theassertion.Lemma 3.3 Consider an element e of a mesh of tensor product type andassume that (3.22) is valid. Then the derivative of Shu in x1-direction satis�esthe relation @@x1Shu;Lq(e) . (measde)1=q�1=p Xj�j�1h�jD�u;W 1;p(Se)j
for u 2W 2;p(Se) and all p; q 2 [1;1].Proof Let w = w(xd) 2 P1k . Then we get in analogy to the proof of Lemma3.2  @@x1Shu;Lq(e) . h�11 (measde)1=qXi2Ie(measd�1�i)�1ku� w;L1(�i)k:



110 3 Scott-Zhang interpolation on anisotropic elementsDenote by � the smallest of the domains �i, i 2 Ie. Introduce now k + 1(simply connected, plane) (d � 1)-dimensional domains �j � Se such that forall �i (i 2 Ie) there exists a �j � �i. Note that, due to (3.4), �j (j = 0; : : : ; k)is isotropic with a diameter of order h1, and therefore measd�1�i � meas�j �measd�1� for all i and j. Consequently, we obtain @@x1Shu;Lq(e)
. h�11 (measde)1=q(measd�1�)�1 kXj=0 ku� w;L1(�j)k
� h�11 (measde)1=q(measd�1�)�1 kXj=0 Xj�j�1�d=0 h�kD�(u� w);L1(�j)k:

Observe now that w = wj = const. on �j . On the other hand, since the �j havedi�erent xd-coordinate, we can de�ne w from given wj (j = 0; : : : ; k). So wecan use Lemma 3.1 for dimension d� 1 to choose wj 2 Pd�10 such thatXj�j�1�d=0 h�kD�(u� wj);L1(�j)k . Xj�j=1�d=0 h�kD�u;L1(�j)k
� h1 Xj�j=1�d=0 kD�u;L1(�j)k

and to conclude with the trace theorem (3.21) (applied with ` = 1 for each �j) @@x1Shu;Lq(e)
. (measde)1=q(measd�1�)�1 kXj=0 Xj�j=1�d=0 kD�u;L1(�j)k (3.23)
. (measde)1=q�1=p Xj�j=1�d=0

Xj�j�1h�kD�+�u;Lp(Se)k: (3.24)
Thus the proposition is proved.By analogy we can treat the derivative with respect to x2 in the three-dime-sional case.
Theorem 3.2 Assume that (3.22) is valid. Then the modi�ed Scott-Zhangoperator Sh satis�es on anisotropic meshes of tensor-product type the following



3.3 The operator Sh: choosing small sides 111estimates:jShu;Wm;q(e)j. (measde)1=q�1=p Xj�j�`�mh�jD�u;Wm;p(Se)j; (3.25)
ju� Shu;Wm;q(e)j. (measde)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(Se)j; (3.26)

0 � m � ` � 1 � k, provided that u 2 W `;p(Se). For (3.26) the numbersp; q 2 [1;1] must be such that W `;p(e) ,! Wm;q(e). For m � 2 we excludetriangular and tetrahedral elements.Proof Consider �rst the stability estimate (3.25). For m = 0, (3.25) canbe proved as (3.17). For m = 1, (3.25) is proved in Lemmata 3.2 and 3.3.Let m � 2. Consider a multi-index  with jj = m and de�ne m2 := d,m1 = m � m2. For arbitrary !1 = !1;1(x1; : : : ; xd�1)!1;2(xd), !1;1 2 Pd�1m1�1,!1;2 2 P1k , (that is why we exclude simplicial elements) and !2 2 Pdm�1 weobtain in analogy to the proof of Lemma 3.3kDShu;Lq(e)k= kDSh((u� !2)� !1);Lq(e)k. h�(measde)1=q(measd�1�)�1Xi2Ie ku� !2 � !1;L1(�i)k. h�(measde)1=q(measd�1�)�1 �kXj=0 Xj�j�m1�d=0 h�kD�(u� !2 � !1);L1(�j)k:
Then we determine wj 2 Pd�1m1�1 (j = 0; : : : ; k) such thatXj�j�m1�d=0 h�kD�(u� !2 � wj);L1(�j)k . Xj�j=m1�d=0 h�kD�(u� !2);L1(�j)k:
Note that the wj depend on (u�!2) and !2 is still to be chosen. The polynomial!1 is now determined by the wj (j = 0; : : : ; k) such that the estimate can becontinued bykDShu;Lq(e)k . h�m2d (measde)1=q(measd�1�)�1 �kXj=0 Xj�j=m1�d=0 kD�(u� !2);L1(�j)k: (3.27)



112 3 Scott-Zhang interpolation on anisotropic elementsThus the factor h�m11 is eliminated. We proceed now as in the proof of Lemma3.2. Using the trace theorem (3.21) for all j; � and with ` �m1 � ` �m � 1instead of ` we concludekDShu;Lq(e)k. h�m2d (measde)1=q�1=p Xj�j=m1�d=0
Xj�j�`�m1h�kD�+�(u� !2);Lp(Se)k

. h�m2d (measde)1=q�1=p Xj�j�`�m Xj�j�m2h�+�jD�+�(u� !2);Wm1;p(Se)j:
Using Corollary 3.1 (page 101) we obtainkDShu;Lq(e)k. h�m2d (measde)1=q�1=p Xj�j�`�m Xj�j=m2 h�+�jD�+�u;Wm1;p(Se)j

. (measde)1=q�1=p Xj�j�`�mh�jD�u;Wm;p(Se)j:
Here we used h� � hm2d for j�j = m2 which follows from (3.22). Thus (3.25) isproved.For proving estimate (3.26) we need (3.25) and the assumptions on p and q.Since these parameters were chosen such that W `;p(e) ,! Wm;q(e), we havealso W `�m;p(e) ,! Lq(e), this meanskv;Lq(e)k . (measde)1=q�1=p Xj�j�`�mh�kD�v;Lp(e)k
for all v 2 W `�m;p(e). Applying this estimate for all derivatives D� withj�j = m and summing up the resulting inequalities, we obtain for v 2W `;p(e)jv;Wm;q(e)j . (measde)1=q�1=p Xj�j�`�mh�jD�v;Wm;p(e)j:
Together with (3.25) we conclude that for all w 2 P d̀�1 the following estimateholds, ju� Shu;Wm;q(e)j� ju� w;Wm;q(e)j+ jSh(u� w);Wm;q(e)j. (measde)1=q�1=p Xj�j�`�mh�jD�(u� w);Wm;p(Se)j:
With Lemma 3.1 the proposition is proved.



3.3 The operator Sh: choosing small sides 113

Fig. 3.7Illustration of Example 3.2. x1

x2

�h h0

1
e

Finally, we want to give an example which shows thatjShu;W 1;2(e)j . ku;W 1;2(Se)k (3.28)does not hold for any u 2W 1;2(Se).Example 3.2 Consider k = 1 and a triangle with the vertices X(1) = (0; 0)T ,X(2) = (h; 0)T , andX(3) = (0; 1)T , and let �1 = (�h; 0)�f0g, �2 = (0; h)�f0g,compare Figure 3.7. For u = r" sin �2 (r; � are here polar coordinates) we obtainuj�1 = jx1j" ) (��1u)(X(1)) = Z h0 x"��6xh2 + 4h� � h";uj�2 = 0 ) (��2u)(X(2)) = 0:Consequently,@Shu@x1 ����e � h"�1; jShu;W 1;2(e)j & h"�1(measde)1=2 = h"�1=2 !1
for h! 0, " < 12 . Butju;W 1;2(Se)j2 . Z 10 Z �0 [("r"�1 sin �2 )2 + (12r"�1 cos �2 )2] rd�dr� Z 10 r2("�1)+1 dr < 1for " > 0. Thus (3.28) does not hold. �
3.3.2 Stability in weighted Sobolev spacesWe have seen in Example 3.2 that Shu does not satisfy an estimate withm = ` = 1. However, Sh can be applied in some situations where u 62W 2;p(Se)for some p we are interested in. For this we consider weighted Sobolev spacesV `;p� (e), ` 2 N , p 2 [1;1], � 2 R , which were de�ned by (1.19), (1.21), on page



114 3 Scott-Zhang interpolation on anisotropic elements27. For our application in Section 4.3 we need the stability of the modi�edScott-Zhang operator in these weighted spaces.Lemma 3.4 Consider an element e of a mesh of tensor product type andassume that (3.22) is valid. Let m be an integer and �; p; q be real numberswith 0 � m � k, � < 2 � 2p , � � 1, p; q 2 [1;1], and assume that Se haszero distance to the x3-axis. Then for u 2Wm;p(Se)\ V m+1;p� (Se) the stabilityestimate jShu;Wm;q(e)j . (measde)1=q�1=ph��1 Xj�j=m�1Xjtj=1htkD�+tu;V 1;p� (Se)k(3.29)holds. For m � 2 we exclude tetrahedral elements.Proof We start with estimate (3.27) which was obtained in the proof ofTheorem 3.2. Let  be a multi-index with jj = m and !2 2 Pdm�1. Thenthere holdskDShu;Lq(e)k . h�33 (measde)1=q(measd�1�)�1 �kXj=0 Xj�j=m�3�3=0 kD�(u� !2);L1(�j)k: (3.30)
Let 3 > 0, then we can continue, similar to the proof of Theorem 3.2, withthe trace theorem because we assumed u 2Wm;p(Se).kDShu;Lq(e)k. h�33 (measde)1=q�1=p Xj�j=m�3�3=0

Xj�j�3 h�kD�+�(u� !2);Lp(Se)k:
Using Corollary 3.1 we obtainkDShu;Lq(e)k. h�33 (measde)1=q�1=p Xj�j=m�3�3=0

Xj�j=3 h�kD�+�u;Lp(Se)k
. (measde)1=q�1=p Xj�j=m kD�u;Lp(Se)k (3.31)

We estimate the right hand side via the trivial embeddingsV 1;p� (Se) ,! V 0;p��1(Se) ,! Lp(Se); � � 1;



3.3 The operator Sh: choosing small sides 115which leads with (3.22) toXj�j=m kD�u;Lp(Se)k � Xj�j=m�1Xjtj=1 kD�+tu;Lp(Se)k
. h��+11 Xj�j=m�1Xjtj=1 kr��1D�+tu;Lp(Se)k
. h��1 Xj�j=m�1Xjtj=1htkD�+tu;V 1;p� (Se)k; (3.32)

which is the desired result.For 3 = 0 we use (3.30) with !2 = 0 and estimate the L1(�j)-norms againstweighted norms via the H�older inequality:kv;L1(�j)k � kr��;Lp0(�j)k � kr�v;Lp(�j)k (3.33)with p0 from 1=p + 1=p0 = 1. The Lp0(�j)-norm of r�� is �nite if and only ifp0� < 2 which is equivalent to � < 2 � 2=p. Using measd�1� � meas�j � h21for all j, and r . h1 we getkr��;Lp0(�j)k . h(��p0+2)=p01 � (measd�1�)1�1=ph��1 : (3.34)The application of W 1;p(Se) ,! Lp(�j) to r�v implies the trace theoremV 1;p� (Se) ,! V 0;p� (�j)which leads tokr�v;Lp(�j)k. (measd�1�)1=p(measde)�1=pXjsj�1 h1�jsj1 hskr��1+jsjDsv;Lp(Se)k:
Combining these estimates we obtainkv;L1(�j)k� measd�1� (measde)�1=ph��1 Xjsj�1h1�jsj1 hskr��1+jsjDsv;Lp(Se)k
and thus with (3.30)

kDShu;Lq(e)k . (measde)1=q(measd�1�)�1 kXj=0 Xj�j=m kD�u;L1(�j)k
. (measde)1=q�1=ph��1 �Xj�j=mXjsj�1h1�jsj1 hskr��1+jsjD�+su;Lp(Se)k: (3.35)



116 3 Scott-Zhang interpolation on anisotropic elementsThe last step to derive (3.29) is done by a rearrangement of the terms at theright hand side, namelyXjtj=1Xjsj�1h1�jsj1 hskr��1+jsjDt+su;Lp(Se)k
= Xjtj=1Xjsj=1hskr�Dt+su;Lp(Se)k+Xjtj=1h1kr��1Dtu;Lp(Se)k
. Xjtj=1Xjsj=1hskr�Dt+su;Lp(Se)k+Xjsj=1hskr��1Dsu;Lp(Se)k
� Xjsj=1hskDsu;V 1;p� (Se)k:

Together with (3.35) we conclude (3.29) in the case 3 = 0.
3.4 The operator Lh: choosing large sides
In contrast to Section 3.3 we will now employ large edges/faces and denote theresulting operator by Lh. The notation is used as follows: We keep Properties(P1), (P2), and (P3) from page 107 and simply turn the relation (3.22):hj � hd in Se (j = 1; : : : ; d): (3.36)But in correspondence with Item 2 at the end of Section 3.2, we do not haveso much freedom for the choice of the �i as in the case of Sh. We must assumethe following projection property (P4), compare also Figure 3.8.(P4) If the projections of any two points X(i) and X(j) on the x1-axis/x1; x2-plane coincide then so do the projections of �i and �j.We can prove the results of Theorem 3.2 for this case as well. Moreover, theseresults extend to the case m = `. But in contrast to the needle elements ofSection 3.3 the three-dimensional elements are now at, h1 � h2 & h3. Theidea for this choice of �i was found in [41, Chapter 5] where the special case ofrectangular and brick elements was considered for k = 1, p = q = 2. We extendthis theory to further types of element and to general k 2 N , p; q 2 [1;1].Our proof di�ers from that in [41].We start as in Section 3.3 with the separate consideration of the stability of�rst derivatives of Lhu. This time the derivative in x1-direction is the simplerone.
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(b)Fig. 3.8 Choice of �i in dependence of X(i) in the case of operator Lh. (a) Points where �iis uniquely determined. (b) Two choices for �i for points on vertical mesh lines.
Lemma 3.5 Consider an element e of a mesh of tensor product type andassume that (3.36) is valid. Then the estimate @@xnLhu;Lq(e) . (measde)1=q�1=pju;W 1;p(Se)j; n = 1; : : : ; d;(3.37)holds for u 2W 1;p(Se) and all p; q 2 [1;1].Proof For n = 1; : : : ; d � 1 the proof can be carried out with the samearguments as the proof of Lemma 3.2. The only di�erence is that the role ofxd and hd is now played by xn and hn.For the case n = d we will reformulate Lhu. For this consider �rst a one-dimensional situation, that means a single �nite element formed by an interval(�; �). Let �i, i = 0; : : : ; k, be the nodal basis functions in (�; �). We changenow to a new basis�i = iXj=0 �j; i = 0; : : : ; k:
Consequently,kXi=0 ai�i = k�1Xi=0 (ai � ai+1)�i + ak;
where we also used that Pki=0 �i = 1. Note further thatk�i;L1(�; �)k . 1; k�0i;L1(�; �)k . j� � �j�1: (3.38)



118 3 Scott-Zhang interpolation on anisotropic elementsWe use this kind of a new basis in the case of a rectangular element e =(�1; �1) � (�2; �2). The nodal basis functions are (for simplicity with a doubleindex) 'i;j(x1; x2) = �i(x1)�j(x2); i; j = 0; : : : ; k; (3.39)where �i and �j are the nodal basis functions with respect to (�1; �1) and(�2; �2), respectively. Thus
Lhu = kXi=0 kXj=0 ai;j�i(x1)�j(x2)= kXi=0 �i(x1)

 k�1Xj=0(ai;j � ai;j+1)�j(x2) + ai;k! ;
@@x2Lhu = kXi=0 �i(x1) k�1Xj=0(ai;j � ai;j+1)�0j(x2): (3.40)

Because of Property (P4) the subdomains �i;j belonging to the node (i; j)depend only on i. We can writeai;j = Z�i;j  i(x1)u(x1; yj) dx1;ai;j � ai;j+1 = �Z�i;j  i(x1)Z yj+1yj @u@x2 (x1; y) dydx1; (3.41)k�1Xj=0 jai;j � ai;j+1j � ZSe ���� i @u@x2 ���� ;where yj is the value of the x2-coordinate of points X(i;j)e .The proof of (3.37) is now standard: @@xdLhu;Lq(e)
. kXi=0 k�1Xj=0 jai;j � ai;j+1j � k�i(x1)�0j(x2);Lq(e)k
. h�12 (measde)1=q kXi=0

ZSe ���� i @u@x2 ����. h�12 (measde)1=q+1�1=p kXi=0 (measd�1�i)�1
 @u@x2 ;Lp(Se) :
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Fig. 3.9Illustration of the case of a triangle with k = 3. x1

x2

�1 �1�2
�2

For pentahedral and hexahedral elements the proof is similar. We only replace(3.39) by'i;j(x1; x2; x3) = �i(x1; x2)�j(x3); i = 0; : : : ;K; j = 0; : : : ; k;with appropriate basis functions �i(x1; x2) andK = (k + 1)2 � 1 for hexahedra,K = �k+22 �� 1 for pentahedra. (3.42)
In the case of simplicial elements we have to modify these considerationsslightly. We will explain it in the two-dimensional case. Consider an elemente with nodes X(i;j)e ,e = �(x1; x2) : �1 � x1 � �1;

�2 � x2 � �2 � (x1 � �1)�2 � �2�1 � �1� ;X(i;j)e = ��1 + ik (�1 � �1); �2 + jk (�2 � �2)� ;and nodal basis functions 'i;j, i = 0; : : : ; k, j = 0; : : : ; k � i, as illustrated inFigure 3.9. The new basis functions are
�i;j = jXs=0 'i;s; i = 0; : : : ; k; j = 0; : : : ; k � i:

We get Lhu = kXi=0 k�iXj=0 ai;j'i;j= kXi=0
 k�i�1Xj=0 (ai;j � ai;j+1)�i;j + ai;k�i�i;k�i! ;



120 3 Scott-Zhang interpolation on anisotropic elements@Lhu@x2 ;Lq(e) . kXi=0
 k�i�1Xj=0 jai;j � ai;j+1j@�i;j@x2 ;Lq(e)

+jai;k�ij@�i;k�i@x2 ;Lq(e)� :To conclude (3.37) with the same arguments as above it remains to show that@�i;k�i@x2 = 0 for all i = 0; : : : ; k: (3.43)For this we observe that �i;k�i is uniquely determined by
�i;k�i(X(s;j)) = � 1 for s = i; j = 0; : : : ; k � i;0 else.Thus �i;k�i = �i(x1) with �i in the sense of (3.39), and (3.43) is proved.The proof for tetrahedral elements is analogous.

Theorem 3.3 Assume that (3.36) is valid. On anisotropic meshes of tensor-product type the modi�ed Scott-Zhang operator Lh satis�es the following esti-mates: jLhu;Wm;q(e)j. (measde)1=q�1=pju;Wm;p(Se)j; (3.44)ju� Lhu;Wm;q(e)j. (measde)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(Se)j; (3.45)
0 � m � `, 1 � ` � k+1, provided that u 2W `;p(Se). For (3.45) the numbersp; q 2 [1;1] must be such that W `;p(e) ,! Wm;q(e).Proof Estimate (3.45) follows from (3.44) via Lemma 3.1 as it was done forSh in the proof of Theorem 3.2. So the main point is to prove (3.44). Form = 0, this can be done as in the proof of (3.17). The case m = 1 is treatedin Lemma 3.5.Let m � 2. Consider a multi-index  with jj = m and de�ne m2 := d,m1 := m � m2. In the proof of Lemma 3.5, we made for the case m2 = 1a transformation of the nodal basis 'i;j to a basis �i;j in order to obtaindi�erences of �rst order:@@xd KXi=0 kXj=0 ai;j'i;j = @@xd KXi=0 k�1Xj=0(ai;j � ai;j+1)�i;j :



3.4 The operator Lh: choosing large sides 121This process is repeated until di�erences of orderm2 are created: For simplicityconsider again the one-dimensional situation. We de�ne recursively coe�cientsa(n)i and functions �(n)i , i = 0; : : : ; k � n, n = 0; : : : ;m2, bya0i := ai; a(n+1)i := a(n)i � a(n)i+1, i = 0; : : : ; k � n; (3.46)
�0i := 'i; �(n+1)i := iXs=0 �(n)s , i = 0; : : : ; k; (3.47)

and obtain
@m2@xm2 kXi=0 ai'i = @m2@xm2 k�m2Xi=0 a(m2)i �(m2)i : (3.48)

We get this by induction in analogy to the proof of Lemma 3.5. The only pointis to prove that
@n+1@xn+1�(n+1)k�n = 0 for n = 0; : : : ;m2 � 1: (3.49)

This can be shown for any �xed n via �(n+1)i = Pis=0 �i�s+nn ��(0)s (proof byinduction) which yields �(n+1)k =Pks=0 �k�s+nn �'s, �(n+1)k (X(r)e ) = �k�r+nn �, r =0; : : : ; k, �(n+1)k 2 P1n. From �(n+1)i = �(n+1)i+1 � �(n)i+1 we conclude by induction�(n+1)i 2 P1n for i = k; k � 1; : : : ; k � n. Thus @n+1@xn+1�(n+1)i = 0 for i = k �n; : : : ; k.Consider now rectangular elements (d = 2) and transfer this basis transforma-tion to the x2-direction. We derive (again by induction) from (3.48)
@m2@xm2d kXi=0 kXj=0 ai;j'i;j = @m2@xm2d kXi=0 k�m2Xj=0 a(m2)i;j �(m2)i;j : (3.50)

The so created di�erences a(n+1)i;j = a(n)i;j � a(n)i;j+1 are used now to establish anintegral representation; compare (3.41):
a(1)i;j = �Z�i;j  i(x1)Z �0 @u@xd (x1; yj + �1) d�1dx1;



122 3 Scott-Zhang interpolation on anisotropic elements� = yj+1 � yj is assumed to be independent of j. We continue recursively andobtain
a(2)i;j = �Z�i;j  i(x1)��Z �0 @u@xd (x1; yj + �1) d�1 � Z �0 @u@xd (x1; yj+1 + �1) d�1� dx1

= (�1)2 Z�i;j  i(x1)Z �0 Z �0 @2u@x2d (x1; yj + �1 + �2) d�1d�2dx1;
a(n)i;j = (�1)n Z�i;j  i(x1)�Z �0 � � � Z �0| {z }n times

@nu@xnd (x1; yj + �1 + � � � + �n) d�1 � � � d�ndx1:
Using (3.19) and � � h2 we get

ja(n)i;j j . (measd�1�i;j)�1hn�1d @nu@xnd ;L1(Se) :
Replace now measd�1�i;j by measd�1� := mini;j measd�1�i;j and u by u � w,w 2 P2m�1 arbitrary. Together with (3.50) we conclude thatkDLhu;Lq(e)k= kDLh(u� w);Lq(e)k. kXi=0 k�m2Xj=0 ja(m2)i;j jkD�(m2)i;j ;Lq(e)k

. h�(measde)1=q kXi=0 k�m2Xj=0 ja(m2)i;j j

. h�(measde)1=q(measd�1�)�1hm2�1d  @m2@xm2d (u� w);L1(Se). h�hm2d (measde)1=q�1=p  @m2@xm2d (u� w);Lp(Se) (3.51)

. h�m11 (measde)1=q�1=p Xj�j�m�m2 h�
D� @m2@xm2d (u� w);Lp(Se) :



3.5 The operator Eh: choosing long edges in the three-dimensional case 123In order to derive (3.51) we have used that hdmeasd�1� � measde. Via Corol-lary 3.1, (3.36), and m = m1 +m2 we obtainkDLhu;Lq(e)k. h�m11 (measde)1=q�1=p Xj�j=m�m2 h�
D�@m2u@xm2d ;Lp(Se)

� (measde)1=q�1=p Xj�j=m�m2
D�@m2u@xm2d ;Lp(Se)� (measde)1=q�1=pju;Wm;p(Se)jand (3.44) is proved for rectangular elements. The proof for all other types ofelements is similar using the ideas explained in the proof of Lemma 3.5.

3.5 The operator Eh: choosing long edges in the three-dimensional case
3.5.1 Stability and approximation in classical Sobolev spacesIn Sections 3.3 and 3.4 we assumed h1 � h2 in the three-dimensional case. Wewill now investigate the general three-dimensional situation of independentelement sizes h1, h2, and h3. In order to obtain in Subsection 3.5.2 a notationwhich is compatible with that in Subsection 3.3.2 we leth1 � h2 � h3: (3.52)Assume, for simplicity, tensor product meshes in the sense that transformation(3.2) is reduced toxi = �hix̂i + bi; i = 1; 2; 3: (3.53)
The investigation of the operators Sh and Lh was based on taking �i as isotropicfaces, that means that h2 is of the same order as h1 or h3. In [41] it wassuggested to overcome this restriction by taking one-dimensional �i but thiswas not elaborated thoroughly. We will now investigate which estimates can beobtained in this case. We assume the following properties which are analogousto those in Section 3.4.(P10) �i is parallel to the x3-axis.(P2) X(i) 2 �i.



124 3 Scott-Zhang interpolation on anisotropic elements(P30) There exists an edge & of some element e such that the projection of &on the x3-axis is identical with the projection of �i.(P40) If the projections of any two points X(i) and X(j) on the x3-axis coincidethen so do the projections of �i and �j.The corresponding operator is denoted by Eh : W `;p(
)! Vh. Note that it isde�ned only for u 2W `;p(
) with
` � 2 for p = 1; ` > 2p otherwise, (3.54)

to guarantee that uj�i 2 L1(�i). Condition (3.54) can be reformulated to` � 2; p 2 [1;1] or ` = 1; p 2 (2;1]: (3.55)We will prove now stability an approximation properties in classical Sobolevspaces. Then, we discuss in Remark 3.1 that the result is also valid for meshesof tensor product type. Of course, we can apply in that case also the operatorSh which is de�ned for a larger class of functions. But the operators Sh andEh di�er in the part of the boundary where Dirichlet boundary conditions arepreserved, see also the comparison in Section 3.7. As we already did for Shin Subsection 3.3.2 we prove a stability estimate for functions from weightedSobolev spaces V `;p� (Se) in Subsection 3.5.2.Theorem 3.4 Consider an element e of a tensor product mesh and assumethat (3.52) and (3.53) are ful�lled. Then the operator Eh satis�es for all q 2[1;1] the following estimates:jEhu;Wm;q(e)j . (meas3e)1=q�1=p Xj�j�1h�jD�u;Wm;p(Se)j (3.56)
if m � 1 or p > 2, andkEhu;Lq(e)k . (meas3e)1=q�1=p Xj�j�`h�kD�u;Lp(Se)k (3.57)
with ` and p satisfying (3.55). The approximation error estimateju� Ehu;Wm;q(e)j . (meas3e)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(Se)j(3.58)holds if 0 � m � `�1 � k, p satis�es (3.55), q is such thatW `;p(e) ,! Wm;q(e),and u 2 W `;p(Se).



3.5 The operator Eh: choosing long edges in the three-dimensional case 125We will see in the proof that for certain derivatives DEhu the stability esti-mate (3.56) can still be improved.Proof We prove the theorem for brick elements. Other element types aretreated similarly, see the discussion in the proof of Lemma 3.5. We have toconsider di�erent cases separately.First, let  be a multi-index with jj = m and 1 6= 0, 2 6= 0. We use thedi�erence technique developed in the proof of Theorem 3.3 for both directionsx1 and x2. In analogy to (3.51) we obtain for all w 2 P3m�1kDEhu;Lq(e)k= kDEh(u� w);Lq(e)k. h�h11 h22 (meas3e)1=q�1=p  @1@x11 @2@x22 (u� w);Lp(Se)� h�33 (meas3e)1=q�1=p Xj�j�3 h�jD�u;W 1+2;p(Se)j:
Using Corollary 3.1 and (3.52) we concludekDEhu;Lq(e)k . h�33 (meas3e)1=q�1=p Xj�j=3 h�jD�u;W 1+2;p(Se)j

� (meas3e)1=q�1=pju;Wm;p(Se)j:In a second case we assume n 6= 0, n = 1 or n = 2, but 3�n = 0, 3 6= 0. Thenwe can use the di�erence technique only within some faces fi (i = 0; : : : ; k)which are parallel to the xn; x3-plane. De�ning f := Ski=0 fi we �nd as abovethat for all w 2 P3m�1kDEhu;Lq(e)k= kDEh(u� w);Lq(e)k. h�hnn (meas3e)1=q(meas2f)�1=p  @n@xnn (u� w);Lp(f) : (3.59)Using the trace theorem W 3;p(Se) ,! Lp(f) and again Corollary 3.1 as wellas (3.52) we obtainkDEhu;Lq(e)k. h�33 (meas3e)1=q�1=p Xj�j�3 h�jD�(u� w);W n;p(Se)j
. h�33 (meas3e)1=q�1=p Xj�j=3 h�jD�u;W n;p(Se)j
� (meas3e)1=q�1=pju;Wm;p(Se)j:



126 3 Scott-Zhang interpolation on anisotropic elementsConsider now the remaining pure derivatives. Let �rst be n = m 6= 0, n = 1or n = 2, 3 = 0. Estimate (3.59) holds in this case as well. By using p = 1and w = 0 it reads nowkDEhu;Lq(e)k . (meas3e)1=q(meas2f)�1kDu;L1(f)k: (3.60)With the trace theorem W 1;p(Se) ,! L1(f) for all p 2 [1;1] we conclude theassertion (3.56).Finally, for 3 = m 6= 0, 1 = 2 = 0, the proof of the stability is completelyanalogous to the proof of Lemma 3.2. We have for all w 2 P3m�1kDEhu;Lq(e)k . h�m3 (meas3e)1=qXi2Ie(meas1�i)�1ku� w;L1(�i)k:
The trace theorem Wm+1;p(Se) ,! L1(�i) (which is the reason for the assump-tion m � 1 or p > 2) and Corollary 3.1 yieldkDEhu;Lq(e)k. h�m3 (meas3e)1=q�1=p Xj�j�m Xj�j�1h�+�kD�+�(u� w);Lp(Se)k

. h�m3 (meas3e)1=q�1=p Xj�j=m Xj�j�1h�+�kD�+�u;Lp(Se)k

. (meas3e)1=q�1=p Xj�j�1h�jD�u;Wm;p(Se)j:
Note that in this last case (3 = m) for m � 2 and for m = 1, p > 2, it caneven be proved thatkDEhu;Lq(e)k . (meas3e)1=q�1=pju;Wm;p(Se)jbecause then Wm;p(Se) ,! L1(�i) holds.Estimate (3.57) is trivial sincekEhu;Lq(e)k . (meas3e)1=qXi2Ie(meas1�i)�1ku;L1(�i)k;
and the embedding W `;p(Se) ,! L1(�i) holds just for `; p satisfying (3.55).Estimate (3.58) is concluded from (3.56) and (3.57) as in the proof of Theorem3.2.It is interesting to point out that the proof shows thatkDEhu;Lq(e)k . (meas3e)1=q�1=pju;Wm;p(Se)j (3.61)



3.5 The operator Eh: choosing long edges in the three-dimensional case 127holds for  with jj = m if at most one of the numbers 1; 2; 3 vanishes. Ourway of proof does not work for pure derivatives. Consider for example the case = (1; 0; 0). To prove (3.61) with p > 2 (Ehu is de�ned only for u 2 W 1;p(
)with p > 2.) one would have to skip the trace on f and to use a trace theoremin the form (3.21). But this leads tokDEhu;Lq(e)k . h�11 (meas3e)1=q�1=p Xj�j�1h�kD�u;Lp(Se)k
with some diverging terms at the right hand side. The case  = (1; 0; 0) couldbe treated only ifkDEhu;Lq(e)k . (meas3e)1=q�1=pkDu;Lp(Se)kwas valid. It is not clear whether this estimate holds.Remark 3.1 Our motivation for introducing the operator Eh was to be ableto treat the general case of three independent mesh sizes h1 � h2 � h3. Ofcourse this includes the special case h1 � h2. We point out that in thiscase the transformation (3.53) can be generalized to (3.2), (3.3). To see thatthen the statement of Theorem 3.4 remains true consider an arbitrary elemente 2 Th and denote its projection into the x1; x2-plane by �. Since Th is oftensor product type, and since all �i are perpendicular to the x1; x2-plane, itsu�ces to choose Se such that its projection to the x1; x2-plane is again � (and�i � Se), compare Figure 3.10. Via the transformation0@ x1x2x3

1A = 0@ h�11 Be ... 0. . . . . . . . .0 ... 1
1A0@ ~x1~x2~x3

1A =: ~B0@ ~x1~x2~x3
1A ;

Be from (3.2), the domains e and Se can be mapped to ~e and ~Se = S~e whichsatisfy (locally) the assumptions made at the beginning of this section. Thatmeans that Theorem 3.4 holds true with respect to the coordinate system~x1; ~x2; ~x3. By observing thatdet ~B � 1; k ~Bk � 1; k ~B�1k � 1we �nd that Theorem 3.4 extends to the meshes described above.
3.5.2 Stability in weighted Sobolev spacesAs in Subsection 3.3.2 we do not have an estimate with m = ` = 1 for Eh.Therefore we consider a stability estimate for functions from weighted Sobolev
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x1
x2

x3 e e e

Fig. 3.10 Illustration of the possible choice of a smaller Se in the case of Eh (three elementtypes).
spaces V `;p� (Se). These spaces were introduced in (1.19), (1.21). To be able toapply the transformation (3.53) to the weight we will restrict the considerationto the case h1 � h2. However, we can then relax (3.53) to (3.2), see Remark3.1 above.Lemma 3.6 Consider an element e of a tensor product mesh and assumethat (3.52) and (3.53) are ful�lled. Let m be an integer and �; p; q be realnumbers with 0 � m � k, p; q 2 [1;1], � < 2 � 2p , � � 1. Then foru 2Wm;p(Se) \ V m+1;p� (Se) the stability estimate

jEhu;Wm;q(e)j � (meas3e)1=q�1=p h��1 Xj�j=m�1Xjtj=1htkD�+tv;V 1;p� (Se)k(3.62)holds if m � 1 or p � 2.Proof Observe that the relationskv;L1(Se)k � kr��;Lp0(Se)k � kr�v;Lp(Se)k; (3.63)kr��;Lp0(Se)k . (meas3Se)1�1=ph��1 (3.64)



3.6 Comments on related work 129(compare (3.33), (3.34)) lead to the embedding
V m+1;p� (Se) ,! V m+1;10 (Se) ,! Wm+1;1(Se); � < 2� 2p;that means u 2 Wm+1;1(Se). Therefore we can apply Theorem 3.4 (see alsoRemark 3.1) with p = 1:jEhu;Wm;q(e)j . (meas3e)1=q�1 Xj�j�1h�jD�u;Wm;1(Se)j (3.65)

Notice further that (3.63), (3.64) lead to the estimate
kv;L1(Se)k . (meas3Se)1�1=ph��1 kr�v;Lp(Se)k; � < 2� 2p:So we getXj�j�1Xjtj=1h�kD�+tv;L1(Se)k
. (meas3Se)1�1=ph��1 0@Xj�j=1Xjtj=1h�kr�D�+tv;Lp(Se)k+

+Xjtj=1h1kr��1Dtv;Lp(Se)k1A
. (meas3Se)1�1=ph��1 Xjsj=1 hskDsv;V 1;p(Se)k:

Together with (3.65) the assertion (3.62) is concluded.
3.6 Comments on related work
Comment 3.1 The operators of Cl�ement and Oswald. The well-knownCl�ement operator [64] �ts perfectly in the framework developed in Section 3.2.We have just to replace the de�nition of the domains �i by �i := Se3X(i) e andto use Pdk instead of Pk;�i. The resulting operator Ch,(Chu)(x) :=Xi2I (��iu)(X(i)) � 'i(x);



130 3 Scott-Zhang interpolation on anisotropic elementsis even de�ned for u 2 L1(
) and allows the estimateju� Chu;Wm;q(e)j . (measde)1=q�1=ph`�mju;W `;p(Se)j;0 � m � ` � k + 1, on isotropic meshes.The operator Ch in this original form does not reproduce the piecewise poly-nomials vh 2 Vh, Chvh = vh is in general not satis�ed for vh 2 Vh. But thiscan be corrected by de�ning ��i : L2(�i)! Vhj�i .A modi�cation of the Cl�ement operator is discussed by Oswald [151]. He �xedjust one (arbitrary) element e =: �i with X(i) 2 e. The resulting operator Ohallows the same estimates as Ch, and we have Vhj�i = Pk;�i .For Ch and Oh one can verify easily that all estimates in Section 3.2 remaintrue. Condition (3.13) can even be omitted; the operator is de�ned for allu 2 L1(
). Therefore, estimates (3.14), (3.15), (3.17), and (3.18) hold for` = 0 as well. Example 3.1 can be modi�ed in the obvious way. (Of course,Zh has to be substituted by Ch or Oh in all relations.) Note that we need inthe proof only Chw = w for w 2 P d̀�1, which is satis�ed, no matter whether��i is acting into Pdk or Vhj�i .The disadvantage of both Ch and Oh is that they do not preserve Dirichletboundary conditions. To satisfy such boundary conditions one has to considera modi�cation of Ch near the boundary which is small enough to keep theapproximation order [64, 117, 174].Comment 3.2 The operators of Cl�ement and Scott/Zhang for non-simplicial elements. In the original papers by Cl�ement [64] and Scott/Zhang[170], only a�ne, isotropic, simplicial elements were considered. It turns outthat the theory can easily be extended to a�ne, isotropic elements of othertypes (quadrilaterals, hexahedra, pentahedra). For a study of isoparametricelements, see [44, 145].Comment 3.3 Results of Siebert and Kunert. Siebert [174] and Kunert[117] derived also some results for the operator Ch for anisotropic meshes.However, they considered only the case k = 1, p = 2, and only subsetsH1T (
) � W 1;2(
) of so-called mesh adapted functions. This allows themto prove global results of the formXe %�1e kv � Chv;L2(e)k . jv;W 1;2(
)j;Xe hi;e%�1e  @@xi (v � Chv));L2(e) . jv;W 1;2(
)j; i = 1; : : : ; d;where %e � minj=1;::: ;d hj;e. Using these estimates they prove asymptotic prop-erties of a-posteriori error estimators. For v they insert the (exact) �nite



3.7 Comparison of the operators 131Tab. 3.1 Comparison of the operators: Treated �nite elements.d = 2 d = 3Zh, Ch, Oh tensor product meshes meshes of tensor product typeh1; h2 arbitrary h1 � h2 . h3 or h1 � h2 & h3tensor product meshesh1; h2; h3 independentSh tensor product meshes meshes of tensor product typeh1 . h2 h1 � h2 . h3Lh tensor product meshes meshes of tensor product typeh1 & h2 h1 � h2 & h3Eh meshes of tensor product typeh1 � h2 . h3tensor product meshesh1 . h2 . h3Ih tensor product meshes meshes of tensor product typeh1; h2 arbitrary h1 � h2 . h3 or h1 � h2 & h3tensor product meshesh1; h2; h3 independenteven for more general meshes, even for more general meshes,see Sections 2.2 and 2.4 see Sections 2.3, 2.5 and 2.6
element error u � uh. Unfortunately, the condition u � uh 2 H1T (
) can notbe proved/tested in general, see also the discussion of anisotropic a-posteriorierror estimators in Section 6.2.
3.7 Comparison of the operators
The starting point of our investigation was the interpolation operator Zh intro-duced by Scott and Zhang [170]. We have seen in Section 3.2 that anisotropicestimates are valid for m = 0 but in general not for m � 1. Therefore we in-troduced three modi�cations and investigated the resulting operators Sh, Lh,and Eh, for the de�nitions see pages 107, 116, and 123. In order to summa-rize and to compare the di�erent Scott-Zhang type interpolation operators wegive a tabular overview. For comparison we add also the results for the nodalinterpolant Ih and for the operators Ch (Cl�ement) and Oh (Oswald).In Table 3.1 we �nd the element types which the operator is applicable for.Note the slight di�erence of tensor product type and tensor product elementsin three dimensions. Tensor product type corresponds to transformation (3.2),(3.3), and tensor product means the restriction to transformation (3.53), see



132 3 Scott-Zhang interpolation on anisotropic elementsTab. 3.2 Comparison of the operators: Conditions for the stability and error estimates.Ch, Oh m = 0, 0 � ` � k + 1, p; q 2 [1;1]Zh m = 0, 1 � ` � k + 1, p; q 2 [1;1]Sh 0 � m � `� 1, 1 � ` � k + 1, p; q 2 [1;1]for m � 2 triangles and tetrahedra are excludedLh 0 � m � `, 1 � ` � k + 1, p; q 2 [1;1]Eh 1 � m � `� 1, 1 � ` � k + 1, p; q 2 [1;1]m = 0, 2 � ` � k + 1, p; q 2 [1;1]m = 0, ` = 1, p 2 (2;1], q 2 [1;1]Ih 0 � m � `� 1, 1 � ` � k + 1, q 2 [1;1],p > d=` if ` < d and m = 0,p > 2 if d = 3 and m = `� 1 > 0m = 0, ` = 0, p =1, q 2 [1;1]Tab. 3.3 Comparison of the operators: Conditions for the stability in weighted Sobolevspaces.Ch, Oh, Zh not treatedSh 0 � m � k, p; q 2 [1;1], � < 2� 2=p, � � 1for m � 2 triangles and tetrahedra are excludedLh not treatedEh 1 � m � k, p; q 2 [1;1], � < 2� 2=p, � � 1m = 0, p 2 (2;1], q 2 [1;1], � < 2� 2=p, � � 1Ih not treated in this form
also (1.16){(1.18).Table 3.2 compares the conditions for which the stability estimatejQhu;Wm;q(e)j . (measde)1=q�1=p Xj�j�`�mh�jD�u;Wm;p(Se)j (3.66)
holds, Qh 2 fCh;Oh;Zh; Sh;Lh;Eh; Ihg. In the case of Sh and Eh we addition-ally proved stability in weighted Sobolev spaces. The estimatejQhu;Wm;q(e)j � (measde)1=q�1=ph��1 Xj�j=m�1Xjtj=1htkD�+tu;V 1;p� (Se)k
holds under the conditions given in Table 3.3.The approximation error estimateju�Qhu;Wm;q(e)j . (measde)1=q�1=p Xj�j=`�mh�jD�u;Wm;p(Se)j(3.67)



3.7 Comparison of the operators 133Tab. 3.4 Comparison of the operators: Restrictions in the applicability.Ch, Oh, Zh only m = 0Sh m = ` excluded, only m = 0; 1 for simplices, in 3D only needleelementsLh in 3D only at elementsEh m = ` excluded, restrictions on p when m = 0, ` = 1Ih m = ` excluded, restrictions on p when m = 0, ` < d or m = `�1 > 0
holds if the conditions of Table 3.2 are satis�ed and the parameters `; p;m; q aresuch that the embedding W `;p(e) ,! Wm;q(e) holds. The operator Ih plays anexceptional role here, because estimate (3.67) is proved directly. The stabilityin the sense of (3.66) can be concluded via jIhuj � juj + ju � Ihuj. Moreover,anisotropic interpolation error estimates are derived also for functions fromweighted Sobolev spaces, see Subsection 2.3.2.Some shortcomings of the operators are given in Table 3.4. Additionally,we state that Dirichlet boundary conditions u = g 2 Vhj�1 on �1 can besatis�ed on any part of @
 for Zh and Ih, on parts of the boundary which areparallel to the x1-axis/x1; x2-plane for Sh and Lh, and on parts of @
 whichare perpendicular to the x1; x2-plane for Eh.Finally, we mention that Sh and Eh have been successfully applied in the studyof the Poisson problem in a domain with an edge where the singularity wastreated with anisotropic mesh re�nement, see Section 4.3. The operator Lhwas applied by Becker [41] to show the stability and an approximation errorestimate of the stabilized Q1=Q0-element pair in the context of the Stokesequation. The anisotropic estimates for Ih have been applied in the studyof di�usion problems in domains with corners and edges [9, 19, 20, 21, 153],see also Sections 4.3 and 4.4, as well as for singularly perturbed convection-di�usion-reaction problems with anisotropic re�nement in boundary layers [5,13, 14, 73], see also Sections 5.3 and 5.4.
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4 Anisotropic �nite element approximationsnear edges
This chapter is concerned with a speci�c �nite element strategy for solvingelliptic boundary value problems in domains with edges. A class of anisotrop-ically graded meshes is introduced and the optimal convergence rate of the�nite element error is proved. Numerical tests are presented.
4.1 The aim of this chapter
Chapters 4 and 5 contain anisotropic discretization strategies and global er-ror estimates for model problems, for example the Poisson problem and theconvection-di�usion-reaction problem. The di�erential operators in these prob-lems are simple, the solution is always only a scalar function. Our main interestis to treat typical peculiarities (typical also for more complex problems) likeboundary layers or edge and corner singularities. We focus on the applicabilityof the techniques to general polygonal/polyhedral domains and to piecewisepolynomial trial functions of arbitrary (but �xed) degree k.
In this chapter we study elliptic problems posed over three-dimensional do-mains with corners and edges. As discussed in Subsection 4.2.1 the solutionof such problems has both singular and anisotropic behaviour. The singu-larity leads to a reduced convergence order of the �nite element method onquasi-uniform meshes. Two-dimensional problems with corner singularitiescan be treated with local mesh grading in order to improve the approximationorder, see Subsection 4.2.2. This approach can be generalized to the three-dimensional case in two ways; we introduce them in Subsection 4.2.3. It turnsout that the adequate re�nement is anisotropic [9, 19, 21].In Section 4.3, we consider the Poisson problem,

��u = f in 
; u = 0 on �1; @u@n = 0 on �2 := @
 n �1;



136 4 Anisotropic �nite element approximations near edgesfor simplicity over a three-dimensional tensor product domain 
 = G� (0; z0).We prove in Subsection 4.3.1 (Theorem 4.1 and Corollary 4.1) for model casesand piecewise (multi-)linear trial functions the approximation estimateku� uh;Wm;2(
)k . h2�mkf ;L2(
)k; m = 0; 1;by using the Scott-Zhang interpolation results.The principal di�culties are the following:First, the solution u is contained in W 2;2(Se) if the neighbourhood Se of theelement e has positive distance to the edge. Thus we can estimate the inter-polation error byju� Ehu;W 1;2(e)j . Xj�j=1h�e jD�u;W 1;2(Se)j: (4.1)
The norm at the right hand side grows, however, to in�nity for some deriva-tives D� if the distance of Se to the edge E tends to zero. So we have to �nd asuitable description in oder to compensate the large norms with small elementsizes hi;e. Second, the solution u is not contained in W 2;2(Se) if the neighbour-hood Se of the element e has zero distance to the edge. In this case we usedlocal estimates for functions from weighted Sobolev spaces V 2;2� (Se). Third,the estimate (4.1) does not hold if Eh is replaced by the Lagrange interpolantIh. In this case we need at the right hand side the space W 1;p(e) with somep > 2, see Section 2.1. Nevertheless, one can proveku� Ihu;W 1;2(
)k . hbut we needed more smoothness of the data (f 2W 4;2(
) in [9]) or a strongerre�nement condition [19].By using trial functions of higher degree k and a corresponding stronger an-isotropic mesh grading one can prove for model cases (Examples 4.2 and 4.3)that solutions with edge singularities can be approximated according toku� uh;W 1;2(
)k . hk:The basis for this estimate is set by the global interpolation error estimatesin Theorems 4.2 (for the Lagrange interpolant and a singularity exponent� > 1=2) and 4.3 (for the modi�ed Scott-Zhang interpolants Sh and Eh and� � 1). Of course, the right hand side f has to be su�ciently smooth.For general polyhedral domains or more general di�erential operators one hasto combine the anisotropic re�nement near singular edges with an isotropic re-�nement for treating the additional corner singularities. One of the challenges



4.1 The aim of this chapter 137has been to describe a family of meshes which is both suited for the approxi-mation theory and for a simple realization in a computer program. With ourproposal [21], see also the summary in Section 4.4, the construction of suchmeshes is principally known. The analysis is done, however only in the case ofpiecewise linear trial functions, k = 1 (Theorem 4.5 and Corollary 4.2). Thedi�culty for k � 2 consists in a su�ciently �ne description of the propertiesof the solution u. Section 4.4 is completed with a computation of the Poissonequation in the Fichera domain.One of the surprising results is that the anisotropic mesh grading does notdisturb the asymptotics of the condition number � of the sti�ness matrix. Weshow in Subsection 4.3.3 that � . h�2 as in the case of a family of quasi-uniform meshes and a smooth solution. However, this does not imply thatoptimal preconditioning techniques for families of isotropic meshes can be usedfor anisotropic meshes. We analyze this in Section 6.3.Note that we present asymptotic estimates always in terms ofh := maxe2Th diam e:
Since we advocate only strategies where the number of elements is Nel � h�d,the error can easily be expressed in terms of Nel or the number N of unknowns(degrees of freedom).
We end the current section with a philosophical comment. The performanceof the h-version of the �nite element method is strongly determined by thefamily of meshes. Therefore the choice of an appropriate family of meshes Thhas to be made carefully. It should satisfy the following requirements, or itshould at least be a good compromise between them.First, in order to allow an optimal decrease of the �nite element error as theparameter h describing the family tends to zero, the meshes must be re�nedin certain parts of the domain. This can be done a-priori by incorporatinganalytic knowledge of the problem into the design of the meshes, see Sections4.2{5.4. Alternatively, the family can be de�ned in an a-posteriori (adaptive)strategy, this means that a new mesh is de�ned by exploiting the informationgiven by the approximate solution uh on the previous mesh(es), see Section 6.2.Second, determining a �nite element solution involves the solution of an al-gebraic system of equations. If the usual nodal basis functions are used toassemble this system then the resulting matrix (sometimes called the sti�nessmatrix ) is ill-conditioned. Solution techniques/preconditioners that are basedon a hierarchy of meshes (multi-grid, BPX) turn out to overcome this probleme�ectively.



138 4 Anisotropic �nite element approximations near edgesThird, the meshing strategy should be general enough to handle domains ofarbitrary shape. However, it should be simple enough to allow an e�ectiveimplementation on serial and parallel computers.In the examples of Chapters 4 and 5, the families of meshes are de�ned accord-ing to Item 1 above, namely, to establish optimal a-priori error estimates withonly O(h�d) �nite elements. It is still a challenge to improve this approachby formulating a corresponding adaptive re�nement strategy; we comment onthis in Section 6.2. We remark further that the example families of meshescan be constructed in a hierarchical way. However, the foundation of optimalsolution techniques is still in its infancy, see Section 6.3. Finally, both types ofmesh can be de�ned in a subdomain approach, see Sections 4.4, 5.3 and 5.4.This makes them suitable in the sense of the third requirement.
4.2 The Poisson problem in domains with edges: anintroduction
4.2.1 Statement of the problemIn this section, we give an overview over the mathematical problem we wantto treat in this chapter. First we introduce analytical properties of the Pois-son problem in a domain with edges. We will see then that the �nite elementmethod on quasi-uniform meshes su�ers in general from a reduced order of con-vergence. Two-dimensional problems with corner singularities can be treatedwith local mesh grading in order to improve the approximation order, see Sub-section 4.2.2. This approach can be generalized to the three-dimensional casein two ways; we discuss this in Subsection 4.2.3. Before, at the end of thissubsection, we mention several other ways to cope with edge singularities.
Consider the Dirichlet problem for the Poisson equation,��u = f in 
; u = 0 on @
; (4.2)over a bounded polyhedral domain 
 � R 3 . For simplicity, let 
 be a prismaticdomain, 
 = G� Z; (4.3)where G � R 2 is a polygonal domain and Z = (0; z0) � R 1 is an interval. Thedomain G shall have one corner C with interior angle ! > �. The other interiorangles of G shall be smaller than �, see Figure 4.1. Denote by E = C �Z the
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Fig. 4.1Illustration of a prismatic domain with a singularedge.
edge with the large interior angle.It is well known that the (variational) solution u of (4.2) has, in general,singular behaviour near E. The solution u can be decomposed into a singularpart us and a regular part ur 2W 2;2(
), u = us + ur, whereus = �(r)(x)r��(�); � = �! : (4.4)Here we denote by r; � the polar coordinates in a plane perpendicular to theedge (r := dist (x;E), � 2 (0; !)), �(r) is a smooth cut-o� function (�(r) = 1for r < R0, �(r) = 0 for r > 2R0, R0 is a constant), (x) 2 W 2;2� (
) is acoe�cient function, and �(�) = sin�� [116].Remark 4.1 Note that  depends on all three spatial coordinates unless theright hand side f is su�ciently smooth (D(0;0;j)f 2 L2(
), j = 1; 2). Thecoe�cient function , sometimes called stress intensity distribution, can berepresented explicitly by a convolution integral,

(r; x3) = 1� ZR rr2 + s2 q(x3 � s) ds;
where the smoothness of q can be characterized in Besov spaces depending on� [88].We remark also that in the two-dimensional case the coe�cient  is a constant(sometimes called the stress intensity coe�cient). Furthermore, the singularpart us may consist of a sum of several singular functions,us = �(r)Xi i(x)r�i�i(�);
for example in the case of mixed boundary conditions. For more general opera-tors the situation becomes more complicated because the exponents �i are not



140 4 Anisotropic �nite element approximations near edgesexplicitly known. They correspond to eigenvalues of a related operator eigen-value problem where �i(�) are the eigenfunctions. Moreover, there are specialangles ! where logarithmic terms have to be included in the representation.For an overview see, for example, the monographs [66, 87, 116].For our purposes it is su�cient to know integrability properties of derivativesof the solution. That means that we do not need to know the terms of therepresentation formula. So we get by integrationu 62W 2;2(
) (4.5)even in the case of smooth data f 2 C1(
). Furthermore, one can prove thatu 2W 1+s;2(
) for s < � (4.6)for f 2 L2(
).Nevertheless, second order (generalized) derivatives of u exist. They are inte-grable in the following sense:r� @u@xi 2W 1;2(
) for � > 1� �; i = 1; 2; (4.7)@u@x3 2W 1;2(
); (4.8)see Lemma 4.1. We mention here an anisotropic feature of the solution; onlythe derivatives in directions perpendicular to the edge are singular.Finishing the description of the analytic properties of u we would like to pointout that the domain was chosen such that the example is as simple as possible.� The domain 
 has one \singular edge". The case of more than one singularedge can be treated similarly because the singularities are of local nature.� For general polyhedral domains one has to consider not only edge singu-larities but also corner singularities. However, these do not contribute to theanisotropic character of the solution which is the interest here. Prismatic do-mains have the advantage that no corner singularities appear [181, 191], seeComment 4.2 on page 173.
Consider now the solution of Problem (4.2) with a �nite element method. Forsimplicity let us use tetrahedral elements and piecewise linear basis functions.If the mesh is quasi-uniform, h := maxe2Th diam (e) � mine2Th %e, then thepoor regularity of u as given by (4.6) leads to the �nite element error estimatesku� uh;W 1;2(
)k . h��"; (4.9)ku� uh;L2(
)k . h2(��"); (4.10)



4.2 The Poisson problem in domains with edges: an introduction 141with arbitrarily small " > 0 [3, page 82], [165]. Using regularity results inBesov spaces instead of Sobolev-Slobodetski�� spaces it is possible to provethese estimates even for " = 0 [72]. One can also give an example that showsthat estimate (4.9) is sharp in the sense ku� uh;W 1;2(
)k & h� [3, page 85].In view of this loss of accuracy of the standard �nite element method, manyspecially adapted numerical methods have been developed which yield errorestimates of the same quality as for problems with a regular solution. Inthis monograph we shall focus on a-priori local mesh grading techniques. Weintroduce this approach in Subsections 4.2.2 and 4.2.3. In the remainder ofthis subsection we shortly review other methods.
A well-known technique is the singular function method [49, 71], [182, Section8.2], also called Fix method [181], augmenting technique [194], or additive sep-aration of the singularities [150, pages 267{272]. In the two-dimensional case,the basic idea is to augment the �nite element space V0h by singular functions�(r)r�i�i(�). Note that us = �(r)Pi ir�i�i(�), i 2 R , in two dimensions,see Remark 4.1 above. The proof of �nite element error estimates is then sim-ple because the coe�cients of these functions are real numbers. The extensionto three dimensions is not straightforward, however. Edge singularities con-tain a coe�cient function  = (x) which has to be approximated [181]. If,additionally, corner singularities appear, then the coe�cients of these singularfunctions are constant. However, the exponents �i and the eigenfunctions �ihave to be determined numerically [38] and approximate (non-exact) singularfunctions have to be used [39].A similar approach is to calculate the singular part of the solution explicitly. Inaddition to the solution of the eigenvalue problem mentioned in Remark 4.1,this includes the computation of the corresponding coe�cient, the so-calledstress intensity factor [30, 51].If the solution u and the right hand side f can be represented by a Fourierseries, as in Problem (4.2), (4.3),

u = 1Xi=0 ui(x1; x2) sin i�z0 x3; f = 1Xi=0 fi(x1; x2) sin i�z0 x3;then the coe�cients ui satisfy the boundary value problem
��ui +�i�z0�2 ui = fi in G; ui = 0 on @G;

recall that 
 = G�(0; z0). The coe�cients ui, i = 1; : : : ; N , can be determinedapproximately by a �nite element method over G. The error in this method



142 4 Anisotropic �nite element approximations near edgesconsists of the �nite element error and a truncation error because only a �nitenumber of coe�cients can be calculated. This approach, the Fourier �niteelement method, was analyzed for problems in rotationally symmetric domainsin [99, 147, 193]. The functions ui have singular behaviour near the corners ofG which can be treated by mesh re�nement [100, 101, 193] or by the singularfunction method [122, 124].The idea of windowing [11], [59, Section 2.5.3.], [150, pages 286{287] or localdefect correction techniques [48, 91], [92, pages 293{302], is to solve the problemon an unre�ned mesh covering the whole domain and to improve the solutionby solving (a) problem(s) in some window(s) in the neighbourhood of thecorners or edges.Other methods include the hp-version of the �nite element method and theboundary element method, both with anisotropic mesh re�nement, see forexample [89, 153, 168], and the �nite volume method on graded meshes [132].
4.2.2 Local mesh grading in two dimensionsLocal mesh grading near geometrical singularities was �rst investigated in thetwo dimensions [28, 158] [150, page 274f.]. Therefore it is convenient for themotivation to discuss �rst this case.As pointed out in Remark 4.1, the singular part us of the solution u may berepresented byus =  �(r)r��(�);  2 R ;in the two-dimensional case. We now follow an idea of Oganesyan and Rukho-vets [149] and consider the coordinate transformation� rR0�� = %R0 ; � 2 (0; 1]: (4.11)
This means that the neighbourhoodU = fx 2 R : dist (x;C) < R0gof the corner C = (X1; X2) is transformed into itself, but us is nowus = us(%; �) = � ��(%)%�=��(�):The advantage is that the derivatives @k+1us=@%k+1 (k = 1; 2; : : : ) are, incontrast to @k+1us=@rk+1, square-integrable for su�ciently small values of �
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Fig. 4.2 Quasi-uniform mesh in the transformed plane (%; �) (left) and graded meshes in theoriginal (r; �) plane: � = 0:7 (middle) and � = 0:4 (right).
(� < �=k). So we can suppose that us(%; �) can be approximated on a quasi-uniform mesh of element size h with optimal order (depending on the degreeof the shape functions).Trying to avoid this coordinate transformation for practical calculations (forexample one would also have to transform the input data) has led to the ideaof creating the mesh only in the transformed domain, of transforming backimmediately and of computing the �nite element solution on the transformedmesh but in the original coordinate system. (Actually, we transform only thecoordinates of the nodes and connect them again by straight lines.) Two ex-amples of transformed meshes are given in Figure 4.2. In the following, wederive another description of the graded mesh so constructed, in the origi-nal coordinates. We try to �nd a relation between the diameter diam (e) ofan element e and its distance dist (e; C) from the corner point. (Instead ofdist (e; C) := minx2e jx � Cj we can use the more easily computed quantitymini=1;::: ;ne jX(i)e � Cj, where fX(i)e gnei=1 is the set of vertices of the element e.)Elements with a vertex at the corner of the domain are contained in the trans-formed domain in a circle of radius % = h, which means in the original domaindiam (e) � h1=� if dist (e; C) = 0:For elements without a vertex at the corner we �nd a circular annulus thatcontains the element and has an inner radius %i and an outer radius %o suchthat %o � %i � h. In the same way we can write for the original domainro � ri � diam (e), r�o = %o, r�i = %i. Consequently, we havehdiam (e) � r�o � r�iro � ri = �r��1�for some r� 2 (ri; ro). This relation can be rewritten in the form diam (e) �hr1��� . Since ri < r� < ro = %1=�o � (2%i)1=� = 21=�ri we get r� � dist (e; C).



144 4 Anisotropic �nite element approximations near edgesWe can summarize and state that within a re�nement neighbourhood U aroundthe corner C := (X1; X2) the elements e should have a size according to
diam (e) � ( h1=� if C 2 e;h dist (e; C)1�� if C 62 e; (4.12)

where h is the parameter of the family Th and � is the re�nement parameter.Note that such meshes have O(h�2) elements. It has been proved in [28, 158][150, page 274f.] that the error estimatesku� uh;W 1;2(
)k . h; (4.13)ku� uh;L2(
)k . h2; (4.14)hold provided that � is chosen according to� < � (4.15)and that piecewise linear trial functions are used. This type of mesh, with� = �=2, is also optimal in the sense of ku � uh;L1(
)k [166], [190, Section14].The easiest way to construct such a mesh is as described by the motivationabove: generate a quasi-uniform (ungraded) mesh and move the nodes from Uvia the coordinate transformation (4.11). This transformation can be writtenin a programmer's style byr := [(x1 �X1)2 + (x2 �X2)2]1=2;x1 := X1 + (x1 �X1)(r=R0)�1+1=�;x2 := X2 + (x2 �X2)(r=R0)�1+1=�: (4.16)
Note that the number of elements and nodes remains unchanged and thatcondition (1.4) (bounded aspect ratio, the bound depends on �) is still ful�lledafter the transformation.Another variant to construct such meshes is the method of dyadic partitioning[80]: starting with a coarse mesh the elements are divided until condition (4.12)is ful�lled.
4.2.3 Isotropic and anisotropic local mesh grading in threedimensionsWhen the approach of Subsection 4.2.2 is extended to our example with athree-dimensional domain we have to distinguish between two types of meshwhich can be generated.
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h1=�Fig. 4.3 Comparison of isotropic (left) and anisotropic (right) mesh grading: meshes.
1. By describing the meshes via condition (4.12) it is possible to constructa family of isotropic meshes (bounded aspect ratio) and to prove the errorestimates (4.13), (4.14), for all f 2 L2(
) if the parameter � satis�es (4.15)[11, 23, 123]. We suggest that these isotropic meshes should be constructedusing the method of dyadic partitioning [80], see Figure 4.3 (left).The disadvantage of such meshes is that for � � 1=3 the asymptotic number ofelements Nel as well as the condition number � of the sti�ness matrix increase,Nel � h�3j lnhj; h�dj lnhj . � . h�2�" for � = 13 ;Nel � h�1=�; h1�1=� . � . h1�1=��" for � < 13 ; (4.17)
" > 0 is an arbitrary small number, see [11, 23]. This means that this type ofmesh is not optimal for � � 1=3.2. When we consider a neighbourhood of the edge and employ the transforma-tion (4.16) to the nodes of quasi-uniform meshes, we get an anisotropic mesh,see Figure 4.3 (right). Under a maximal angle condition, see page 54, to theelements e, the estimates (4.13), (4.14), have been proved for � < � as well,see Remark 4.2 below. The asymptotic number of elements Nel as well as thecondition number � of the sti�ness matrix are in this case optimal for all �,Nel � h�3; � � h�2 for all � 2 (0; 1]: (4.18)The �rst statement follows by construction. The estimate of the conditionnumber was originally proved in the preprint version of [19, 20]. Since thisversion was never published the proof is included in Subsection 4.3.3.One can compare both approaches from a theoretical point of view. Theconclusions are that the �rst strategy does not exploit property (4.8), and ithas de�ciencies for small �, � � 1=3. The choice � � 1=3 becomes necessary



146 4 Anisotropic �nite element approximations near edgesfor highly singular solutions of problems with mixed boundary conditions.But all these considerations are in an asymptotic sense where most of theconstants are unknown. Therefore we will now compare the strategies in acomputational example [15, 18] which was calculated with the �nite elementpackage FEMPS3D. For a short description of the code see Comment 6.2 onpage 236.Example 4.1 Consider the Laplace equation with essential boundary condi-tions, ��u = 0 in 
; u = g on @
;in the three-dimensional domain 
 = f(x1; x2; x3) = (r cos�; r sin�; z) 2 R 3 :r < 1; 0 < � < 3�=2; 0 < z < 1g. The right hand side g is taken such thatu = (10 + z) r2=3 sin 23�is the exact solution of the problem. It has the typical singular behaviour at theedge. We constructed the three types of mesh discussed above (quasi-uniform,isotropically re�ned with � = 0:5, anisotropically re�ned with � = 0:5) withdi�erent numbers N of unknowns. From the numerical solution and the knownexact solution, the energy norm ju � uh;W 1;2(
)j of the �nite element errorwas computed. The relative norms
ju� uh;W 1;2(
)j% := ju� uh;W 1;2(
)jjuh;W 1;2(
)jare arranged in a double logarithmic scale in Figure 4.4. The example veri�esthe theoretical results (4.9) and (4.13). The anisotropic strategy gives a slightlysmaller error. This can be taken as an indication that the isotropic strategyleads to overre�nement near the edge, and that anisotropic meshes are moreappropriate to treat edge singularities. �We end this section with two remarks motivating the extensive treatment oflocal interpolation error estimates in this monograph.Remark 4.2 The investigation of the anisotropic mesh re�nement strategyled to the development of a basic theory about anisotropic local error estimatesfor the Lagrange interpolant, see [9]. With these estimates it was possible toprove estimate (4.13) under rather high assumptions on the regularity of theright hand side f . These assumptions were relaxed in [19, 20] where localinterpolation error estimates were also proven for functions from weightedSobolev spaces, see also Subsection 2.3.2. However, the most interesting case
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Fig. 4.4 Comparison of isotropic and anisotropic mesh grading: diagram.
f 2 L2(
) could still not be treated. This is de�cient because Nitsche's methodfor obtaining an L2(
)-estimate of the �nite element error is not applicable.Moreover, the re�nement condition in [19, 20] is slightly stronger than (4.15).Only after proving anisotropic local estimates for modi�cations of the Scott-Zhang operator, see Chapter 3, was it possible to prove the estimates (4.13)and (4.14) for f 2 L2(
) and under the re�nement condition (4.15) [7]. Wepresent this proof in Subsection 4.3.1.Remark 4.3 The introductory example (4.2), (4.3), is the simplest one pos-sible for the illustration in this section. It is usually the starting point forthe investigation of new methods. A broader class of problems includes ar-bitrary self-adjoint elliptic operators of second order, mixed boundary condi-tions, and general polyhedral domains. In [23], the isotropic mesh re�nementstrategy is investigated comprehensively for such problems. One of the di�-culties that arise is that the regularity of the solution u can become so poorthat u 62 W s;2(
) for any s > 3=2, which causes the Lagrangian interpolationtheory to fail. In this case another approximation operator must be employed.The one chosen in [23] was the Scott-Zhang operator [170]. This examplefurther motivates the investigation in Chapter 3.



148 4 Anisotropic �nite element approximations near edges4.3 The Poisson problem with edge singularities
4.3.1 The case of (multi-)linear trial functionsConsider the Poisson problem

��u = f in 
; u = 0 on �1; @u@n = 0 on �2 := @
 n �1;(4.19)over a bounded polyhedral domain 
 � R 3 . For simplicity, let 
 be a prismaticdomain, 
 = G� Z; (4.20)where G � R 2 is a polygonal domain and Z = (0; z0) � R 1 is an interval.This restriction is made because we want to focus on edge singularities in thissection. More general domains are considered in Section 4.4.In the previous section we summarized already some facts about the pureDirichlet problem, �2 = ;. We discussed the singular behaviour near edgesfor f 2 L2(
), see (4.4){(4.8) and Remark 4.1. Furthermore, we motivated inSubsection 4.2.3 the utilization of anisotropic �nite element meshes by theo-retical considerations and by a numerical test example. Finally, we reviewedprevious contributions of the author to the numerical analysis of (isotropic andanisotropic) mesh re�nement techniques [3, 7, 9, 11, 15, 18, 19, 20, 23], see,for example, Remarks 4.2 and 4.3, and we pointed to related literature.In all previous papers, the investigation of anisotropic mesh re�nement nearedges is restricted to the case k = 1, (multi-)linear elements. The �nal resultwas derived in [7] as an application of the modi�ed Scott-Zhang operators Shand Eh. We present this estimate next. In Subsection 4.3.2 we discuss howthe case k � 2 can be treated.Consider the model situation that�1 = fx 2 @
 : 0 < x3 < z0g: (4.21)We assume that the cross-section G has only one corner with interior angle! > � at the origin. Thus 
 has only one \singular edge" E which is part ofthe x3-axis. The case of several singular edges parallel to the x3-axis does notintroduce additional di�culties because the singularities are of local nature.Let V0 � W 1;2(
) be the space of all W 1;2(
)-functions which vanish at theDirichlet part of the boundary, and introduce the bilinear form a(:; :) : V0 �



4.3 The Poisson problem with edge singularities 149V0 ! R by a(u; v) := R
ru � rv: Then the variational form of problem (4.19)is given by:Find u 2 V0 : a(u; v) = (f; v)
 8v 2 V0: (4.22)The existence of a unique variational solution u follows from the Lax-Milgramlemma. The properties of the solution u can be described favourably using theweighted Sobolev spaces V `;p� (
) introduced in Section 1.3.Lemma 4.1 Assume that (4.20) and (4.21) are satis�ed. Then the solutionu of (4.22) satis�es for i = 1; 2, and �2 > 1� �, � = �=!,@u@xi 2 V 1;2�2 (
);  @u@xi ;V 1;2�2 (
) . kf ;L2(
)k; (4.23)@u@x3 2 V 1;20 (
);  @u@x3 ;V 1;20 (
) . kf ;L2(
)k: (4.24)
The index of �2 indicates that the weight r�2 belongs to second order deriva-tives, compare Assumption 4.1 in Subsection 4.3.2.Proof The singularity of the edge at the x3-axis can be described by (4.23),(4.24), see for example [116, Sections 26 and 30], Comment 4.3 on page 174 or[19, Section 2]. One can show by mirror techniques that the corners and edgesat the bottom and the top face do not introduce singularities, see also Comment4.2 on page 173. Finally, the remaining edges parallel to x3-axis were assumedto have an opening angle smaller than � such that no singularity occurs.We de�ne now a family of meshes of tensor product type, Th, see Sections1.3 and 3.1 for a de�nition of this type. Such a mesh can be constructedby introducing in G the standard graded mesh for two-dimensional cornerproblems, see the end of Subsection 4.2.2, which is then extended in the thirddirection using a uniform mesh size h. In this way we obtain a pentahedralor, by dividing each pentahedron, a tetrahedral triangulation of 
, see Figure4.3 on page 145 for an illustration. The grading near the singular edge E isdescribed by a parameter � 2 (0; 1] such that the elements of the mesh Thsatisfy the following relations:

h1;e � h2;e � 8<: h1=� if dist (e; E) = 0;h(dist (e; E))1�� if 0 < dist (e; E) . 1;h if dist (e; E) � 1: (4.25)
h3;e � h: (4.26)By V0h := fvh 2 V0 : vhje 2 P1;e 8e 2 Thg



150 4 Anisotropic �nite element approximations near edgeswe de�ne the standard �nite element space V0h � C(
) over Th. We derivenow an interpolation result for the solution of (4.22).Theorem 4.1 Let u be the solution of (4.22) and k = 1 (multi-linear trialfunctions). Then the estimateju� Ehu;W 1;2(
)j . h kf ;L2(
)kholds if � < �. The operator Eh was de�ned in Section 3.5.Proof We reduce the estimation of the global error to the evaluation of thelocal errors and distinguish between the elements far from the edge E and theelements close to E. Moreover, we write shortly re for dist (e; E).For all elements e with Se \ E = ; we can use Theorem 3.4 with m = k = 1and ` = p = q = 2:ju� Ehu;W 1;2(e)j. Xj�j=1h�e jD�u;W 1;2(Se)j
. 2Xi=1 hi;er��2e ���� @u@xi ;V 1;2�2 (Se)����+ h3;e ���� @u@x3 ;V 1;20 (Se)���� (4.27)for any �2 > 1 � �. Here, we have used the fact that re . dist (Se; E) holds,which follows fromre � dist (Se; E) + h1;e0 � dist (Se; E) + h [dist (Se; E)]1��for su�ciently small h, compare also Figure 3.3 on page 101 for an illustration.We apply now the assumption (4.25) and obtain for re . 1 and �2 = 1 � �the relation hi;er��2e � hr1����2e = h (i = 1; 2). The choice �2 = 1 � � isadmissible due to the re�nement condition � < �. In the case re � 1 we havealso hi;er��2e . h. Combining this with (4.27) we obtain

ju� Ehu;W 1;2(e)j . h 2Xi=1
���� @u@xi ;V 1;2�2 (Se)����+ h ���� @u@x3 ;V 1;20 (Se)���� : (4.28)

Consider now the elements e with Se \ E 6= ;. We use the triangle inequalityand Lemma 3.6 with m = k = 1, p = q = 2, �2 2 (1� �; 1):ju� Ehu;W 1;2(e)j. ju;W 1;2(e)j+ jEhu;W 1;2(e)j. Xj�j=1 kD�u; L2(e)k+ h��21;e Xj�j=1h�e kD�u; V 1;2�2 (Se)k: (4.29)



4.3 The Poisson problem with edge singularities 151For the �rst term we use that r . h1;e in e and 1� �2 > 0 and obtainXj�j=1 kD�u; L2(e)k
. 2Xi=1 h1��21;e  @u@xi ;V 0;2�2�1(e)+ h1;e  @u@x3 ;V 0;2�1 (e)
. h 2Xi=1

 @u@xi ;V 1;2�2 (e)+ h @u@x3 ;V 1;20 (e) : (4.30)
We also used that h1��21;e � h(1��2)=� = h for �2 = 1 � �. The second term istreated with similar arguments:h��21;e Xj�j=1h�e kD�u; V 1;2�2 (Se)k

. 2Xi=1 h1��21;e  @u@xi ;V 1;2�2 (Se)+ h��21;e h @u@x3 ;V 1;2�2 (Se)

. h 2Xi=1
 @u@xi ;V 1;2�2 (Se)+ h @u@x3 ;V 1;20 (Se) : (4.31)

The last term was estimated using r�2 � h�21;e.Inserting (4.30) and (4.31) in (4.29) we �nd that (4.28) (with full norms insteadof seminorms at the right hand side) holds for elements with Se \ E 6= ; aswell. Summing up over all elements we obtain
ju� Ehu;W 1;2(
)j . h 2Xi=1

 @u@xi ;V 1;2�2 (
)+ h @u@x3 ;V 1;20 (
) ;
�2 = 1� � 2 (1� �; 1). Here we used that any patch Se overlaps only with a�nite number (independent of h) of patches Se0 . By applying Lemma 4.1 thetheorem is proved.The �nite element solution uh is determined by:Find uh 2 V0h : a(uh; vh) = (f; vh)
 8vh 2 V0h: (4.32)Corollary 4.1 Let u be the solution of (4.22) and let uh be the �nite elementsolution de�ned by (4.32). Assume that the mesh is re�ned according to � < �.Then the �nite element error can be estimated byju� uh;W 1;2(
)j . h kf ;L2(
)k;ku� uh;L2(
)k . h2 kf ;L2(
)k:



152 4 Anisotropic �nite element approximations near edgesProof The �rst estimate follows from Theorem 4.1 via the projection propertyof the �nite element method. Note that Ehu 2 V0h due to (4.21). The L2(
)-estimate is obtained by Nitsche's method.Remark 4.4 By analogy one can prove for � < � � 1 thatju� uh;W 1;2(
)j . h�=��" kf ;L2(
)k;ku� uh;L2(
)k . h2(�=��") kf ;L2(
)k;for arbitrary small " > 0. That means that we get for the unre�ned mesh(� = 1) only an approximation order ��" (W 1;2(
)-norm) or 2(��") (L2(
)-norm). We conjecture that the " can be omitted. But this needs another wayof proof, for example using the theory of interpolation spaces, compare [28] forthe two-dimensional case. However, one can show by an example that theseestimates cannot be improved further [3]. Numerical tests support the results,see Example 4.1 and [9, 15, 20].Remark 4.5 Consider other variants of boundary conditions.1. If �1 � fx 2 @
 : x3 = 0 _ x3 = z0g, then Shu 2 V0h and the whole theorycan be applied as well, provided that (4.23) and (4.24) can be shown for thiscase as well. (This situation is not covered by the theory reviewed in Comment4.3 on page 174.)Note that we used in the proof of Theorem 4.1 only the following propertiesof Eh: ju� Ehu;W 1;2(e)j . Xj�j=1h�e jD�u;W 1;2(Se)j;
jEhu;W 1;2(e)j . h��21;e Xj�j=1 kD�u; V 1;2�2 (Se)k:Both estimates hold true for Sh as well, see Theorem 3.2 and Lemma 3.4.We point out that in particular the �rst of these two estimates, the anisotropiclocal interpolation estimate, is an essential ingredient of the proof of the op-timal global error estimate. This estimate is neither satis�ed for Eh replacedby Ih (see Sections 2.1 and 2.3) nor for Zh, Ch, or Oh (see the discussion inSection 3.6).2. Conditions of third kind can be treated like Neumann boundary conditions.3. If the type of the boundary condition changes at the edge E we can proceedin the same way as described by Lemma 4.1 (see also Comment 4.3 on page174), Theorem 4.1 and Corollary 4.1. We have only to set � = �=(2!).Note that in this case edges produce a singularity if ! > �=2. Therefore it isvery likely that more than one singular edge has to be treated.



4.3 The Poisson problem with edge singularities 1534. If Dirichlet boundary conditions are given on (parts of) both fx 2 @
 :0 < x3 < z0g and fx 2 @
 : x3 = 0 _ x3 = z0g then neither Shu 2 V0hnor Ehu 2 V0h. In such cases we have to modify Sh or Eh near the Dirichletboundary, as it was done by Cl�ement for Ch [64]. But we will not develop thishere.
4.3.2 Higher order trial functionsWe will now discuss the case of higher order trial functions, k � 2. On the onehand, this case simpler than k = 1 since we can use the Lagrange interpolant Ih(when � > 1=2) to obtain optimal interpolation error estimates. The di�cultywith Ih mentioned in Remarks 4.2 and 4.5 (Item 1) do not occur. However, thecritical point for the case k � 2 is the description of all singularities appearing.Therefore, let us focus on edge singularities and assume for the moment thefollowing property of u which is a straightforward generalization of (4.23),(4.24). For a discussion of this assumption see Examples 4.2 and 4.3 at theend of this subsection, and Comment 4.3 on page 174.Assumption 4.1 The function u has only one singularity at E = fx 2 @
 :x1 = x2 = 0g. There holds

u 2 V k+1;2�k+1 (
); @u@x3 2 V k;2�k (
); : : : ; @ku@xk3 2 V 1;2�1 (
);where �n = maxfn+ ��; 0g, �� > ��� 1. Reformulated, this means for all �with j�j � k + 1D�u 2 V 0;2�� (
); �� = maxf�1 + �2 + ��; 0g; �� > ��� 1:(4.33)Then we obtain the following interpolation error estimate.Theorem 4.2 Let u satisfy Assumption 4.1 with some � > 1=2. Assumethat the mesh is constructed as described in Subsection 4.3.1. For k � 2 theinterpolation error estimateju� Ihu;W 1;2(
)j . hk Xj�j=k+1 kD�u;V 0;2�� (
)k (4.34)
holds provided that the grading parameter � satis�es

� < �k if � � k; � = 1 if � > k: (4.35)



154 4 Anisotropic �nite element approximations near edgesProof The assertion is clear for � > k because we have a quasi-uniform meshand u 2W k+1;2(
) in this case.Let now � � k and consider all elements e which do not touch the edge E. Weuse Theorem 2.2, (4.25), (4.26), and Assumption 4.1 in order to getju� Ihu;W 1;2(e)j. Xj�j=k Xjj=1h�e kD�+u;L2(e)k (4.36)
. hk Xj�j=k Xjj=1(dist (e; E))(1��)(�1+�2)kD�+u;L2(e)k
. hk Xj�j=k Xjj=1 kD�+u;V 0;2(1��)(�1+�2)(e)k: (4.37)

We show now(1� �)(�1 + �2) � ��+ (4.38)with ��+ as introduced in (4.33). From � < �=k we get �� � 1 < �k� � 1.Hence we can choose �� 2 (��� 1;�k�� 1] such that
��� + 1� � k (4.39)

and conclude �1+�2 � k � �(��+1)=� < �(��+1+2)=�, (1��)(�1+�2) >��+�1+�2+ 1+ 2. Since � � 1 we obtain also (1��)(�1+�2) � 0. Theseestimates together give (4.38). With (4.37) we getju� Ihu;W 1;2(e)j . hk Xj�j=k+1 kD�u;V 0;2�� (e)k: (4.40)
If the element touches the edge E, E \ e 6= ;, we use Theorem 2.4 and As-sumption 4.1 in order to obtainju� Ihu;W 1;2(e)j . Xj�j=k Xjj=1h�e h���+1;e kD�+u;V 0;2��+ (e)k: (4.41)
This estimate is valid for ��+ < k � 1=2 only, see the assumption in (2.63),which means for � = (k; 0; 0),  = (1; 0; 0) that �� + (k + 1) < k � 1=2,�� < �3=2. Together with �� > �� � 1 this yields the assumption made,� > 1=2. Now we simplify,h�e h���+1;e = h�e . hk



4.3 The Poisson problem with edge singularities 155if ��+ = 0,h����1�21;e h�33;e . h�3�(��+1+2)=�if ��+ = �� + �1 + �2 + 1 + 2. The last exponent can be simpli�ed furtherby using (4.39) and jj = 1, namely �3� (��+ 1+ 2)=� � �(��+1)=� � k.By inserting this into (4.41) we obtain that (4.40) holds also in this case. Bysumming up all the elementwise estimates we get (4.34).The case � � 1=2 was excluded in Theorem 4.2 since the Lagrangian inter-polation operator can be applied only for continuous functions. For mixedboundary value problems, where � = �=(2!), this means ! < �. We cannottreat concave edges in this way. This restriction can be overcome when a mod-i�ed Scott-Zhang interpolant is used instead of the Lagrange interpolant, asin Theorem 4.1.Theorem 4.3 Let u satisfy Assumption 4.1 with some � � 1. Assume thatthe mesh is constructed as described in Subsection 4.3.1 and that the gradingparameter � satis�es (4.35). Then the estimatesju� Shu;W 1;2(
)j . hk Xj�j=k+1 kD�u;V 0;2�� (
)kju� Ehu;W 1;2(
)j . hk Xj�j=k+1 kD�u;V 0;2�� (
)khold for all k � 1.Proof For k = 1 the theorem was ver�ed in Subsection 4.3.1. The ideas toprove this theorem for k � 2 are contained in the proofs of Theorems 4.1 and4.2. Elements e with Se \ E = ; can be treated as in the proof of Theorem4.2, and the remaining elements as in the proof of Theorem 4.1. Note that wehave assumed � � 1 in order to obtain h1;e � h1=� � hk=� � hk in front of theterm k@u=@x3;V 1;20 (
)k.Let us discuss now applications of the last two theorems.Example 4.2 Assumption 4.1 covers the typical behaviour of the solution of(4.22) near an edge, at least for Dirichlet and mixed boundary conditions.This can be derived from the study of such problems in a dihedral angle fx =(r cos�; r sin�; x3) 2 R 3 : 0 < r < 1; 0 < � < !; x3 2 R g, see Comment 4.3on page 174 and also Item 4.5 in Remark 4.5. This means, if supp f � (
[E)then one concludesju� uh;W 1;2(
)j . hk;ku� uh;L2(
)k . hk+1:



156 4 Anisotropic �nite element approximations near edgesThe �rst estimate is obtained for k � 2, � > 1=2, from Theorem 4.2, and fork � 1, � � 1, from Theorem 4.3. The second estimate is proved by Nitsche'smethod. �
Example 4.3 Consider k = 2, general f 2 V 1;20 (
) (the weight has to betaken with respect to all singular edges), and assume (4.21). Then all edgesEj which are parallel to the x3-axis and with interior angle !j > �=2 aresingular edges. The behaviour of the solution near these edges is described byAssumption 4.1, see Comment 4.3 on page 174. All edges which are orthogonalto the x3-axis are non-singular since the leading terms of the decompositionare r sin� = y and r3 ln r�(�) 2 W 4�";2(
). The corner singularities areincluded in the edge singularities described above, see Comment 4.2 on page173. Consequently, the only singularities are near the singular edges. We canapply the mesh re�nement as described above and obtainju� uh;W 1;2(
)j . h2;ku� uh;L2(
)k . h3:from Theorem 4.2. �
In the general case we have to treat edge and corner singularities where thesingular edges can also intersect. A suitable re�nement strategy is describedfor k = 1 in the next section. We conjecture that this strategy is also adequatefor k � 2 (with � depending on k as in (4.35)). For � > 1=2 the convergencecan be proved by using the Lagrange interpolation operator, see [21, Proof ofTheorem 5.1] for k = 1. For k � 2 the proof is even simpler than for k = 1since the H�older technique [21, Proof of Theorem 5.1] can be avoided, seethe proof of Theorem 4.2. The critical part is the proof of the correspondinganisotropic regularity results.For � � 1=2 the Lagrangian interpolation operator cannot be applied. Sincethe modi�ed Scott-Zhang operators are investigated for meshes of tensor prod-uct type only, it is not clear how to prove convergence in this case.
4.3.3 Condition number of the sti�ness matrixConsider the nodal basis f'i(x)gNi=1 with 'i(X(j)) = �i;j in Vh (or V0h, re-spectively), with N being the number of degrees of freedom. Thus eachfunction vh 2 Vh (or V0h) can be represented by vh(x) = PNi=1 vi'i(x), withvi = vh(X(i)).The sti�ness matrix K := (ai;j)Ni;j=1 has the entries ai;j = a('j; 'i). We want



4.3 The Poisson problem with edge singularities 157to estimate the condition number � of this matrix,
� := �max(K)�min(K) (4.42)

where �max and �min are the maximal and minimal eigenvalues of K, respec-tively.Lemma 4.2 The condition number of the sti�ness matrix A which is relatedto problem (4.19) is bounded by� . h�2; (4.43)That means, the order of the condition number is the same as in the case ofsmooth solutions and isotropic meshes.Proof Due to the boundedness and the ellipticity of the bilinear form we geta(vh; vh) � kvh;W 1;2(
)k2 8vh 2 Vh (V0h):Denoting by h : ; : i the Euclidean scalar product in RN and by v := (vi)Ni=1the grid function related to vh, we obtain the identity a(vh; vh) = hKv; vi andget by using the Rayleigh quotient�max . maxv2RN kvh;W 1;2(
)k2hv; vi ;
�min & minv2RN kvh;W 1;2(
)k2hv; vi :We are now looking for an upper and a lower bound of kvh;W 1;2(
)k2 in termsof hv; vi.Using the inverse inequality we havekvh;W 1;2(
)k2 = Xe2Th kvh;W 1;2(e)k2 .Xe2Th h�21;ekvh;L2(e)k2: (4.44)

On the reference element ê we havekv̂h;L2(ê)k2 �Xj2Ie v2j ; (4.45)
since norms in Ne-dimensional spaces are equivalent. Ie is the set of numbersof the nodes belonging to e. Transforming (4.45) to e we getkvh;L2(e)k2 � meas(e)Xj2Ie v2j : (4.46)



158 4 Anisotropic �nite element approximations near edgesInserting (4.46) into (4.44) and using meas(e) � h21;eh and that each nodebelongs only to a bounded number of elements we getkvh;W 1;2(
)k2 . hhv; vi�max . h (4.47)For the lower estimate of kvh;W 1;2(
)k2 we use the embeddingW 1;2(
) ,!W 1;21��(
) ,!W 0;2�� (
)which holds for 0 � � < 1 [116, Subsection 0.11]. Consequently, we havekvh;W 1;2(
)k2 & kr��vh;L2(
)k2: (4.48)Denoting Re := maxx2e r(x), and using (4.46) we get from (4.48)kvh;W 1;2(
)k2 &Xi2I R�2�e kvh;L2(e)k2 &Xi2I R�2�e h21;ehXj2Ie v2jUsing h1;e & hR1��e (which follows from (4.25) and holds for all e 2 I) andchoosing � = 1� �, we obtainkvh;W 1;2(
)k2 & h3hv; vi�min & h3 (4.49)independent of the choice of �.From (4.47) and (4.49) we get the estimate (4.43).In the proof we used some ideas of the proof for the case of mesh gradingin two dimensions [150]. With analogous arguments we had investigated in[11] the case of isotropic mesh grading near edges. In contrast to Lemma 4.2we get �min & h3 for isotropic elements only in the case � > 1=3, see [11].For � � 1=3 we obtain �min & h1=�+" and thus � & h1�1=�+", " > 0 arbitrarilysmall. But we stress that Lemma 4.2 is related to anisotropic mesh re�nement.The author is not aware of a similar result for such meshes.



4.4 Di�usion problems in domains with corners and edges 1594.4 Di�usion problems in domains with corners andedges
In Sections 4.2 and 4.3 we considered the Poisson problem in a prismaticpolyhedral domain 
 � R 3. There, we focused on the approximation of edgesingularities by using anisotropic �nite element meshes. The aim of this sectionis to treat a general di�usion problem,

� 3Xi;j=1 ai;j @2u@xi@xj = f in 
; u = 0 on @
; (4.50)
where 
 � R 3 is an arbitrary polyhedral domain. The coe�cients ai;j = aj;i areassumed to be constant. The operator shall be elliptic,P3i;j=1 ai;j�i�j � C0 > 0for all �1; �2; �3 2 R such that �21 + �22 + �23 = 1. If 
 is not convex then thesolution has in general singular behaviour near the edges and the corners. Wesummarize here the results which are published in [21]. Therefore we restrictourselves to tetrahedral meshes and to linear shape functions (k = 1).The idea is quite obvious, we want to combine anisotropic mesh re�nementnear singular edges with isotropic re�nement near corners. One di�culty isto describe and to construct the meshes in the transition from anisotropy toisotropy. A complication is that corner singularities can be stronger or weakerthan edge singularities. In [23], where isotropic mesh re�nement was consid-ered, this was circumvented by controlling the re�nement with the strongestsingularity appearing in the problem under consideration. We try to avoid thisby allowing di�erent re�nement parameters in di�erent regions. Moreover, inSection 4.3 the tensor product character of prismatic domains was used todescribe the mesh. But these orthogonalities are no longer available becausewe want to treat general polyhedral domains.A second di�culty is the choice of an approximation operator.� For linear shape functions we have applied in Section 4.3 the operators Shand Eh. This allowed us to prove the desired error estimate under the optimalgrading condition (4.35). But these operators were investigated in Chapter3 for meshes of tensor product type only. It is not clear how to extend thistheory to treat the more general meshes which are necessary here.� When we use the Lagrangian interpolation operator Ih then one of the keyestimates,ju� Ihu;W 1;2(e)j . (meas3e)1=2�1=p Xj�j=1h�jD�u;W 1;p(e)j; (4.51)



160 4 Anisotropic �nite element approximations near edgesis not valid for p = 2 but for p > 2 only. Therefore we need the regularitytheory in Banach spacesW `;p(
) with p > 2. In particular, the regular part urof the solution must satisfy ur 2 W 2;p(
). For this we assume that the righthand side f of problem (4.50) satis�esf 2 Lp(
) for some p > 2: (4.52)The drawback is that we obtain the optimal convergence order only with agrading condition which is slightly too strong.In any a-priori technique for coping with edge and corner singularities weassume some knowledge about the singular exponents. In particular, for meshre�nement techniques a lower bound of the leading exponent is needed. Foredges these exponents can in general be given analytically, but for cornersan eigenvalue problem for the Laplace-Beltrami operator has to be solvednumerically, see Comment 4.1 on page 173. An edge E or a corner C is calledsingular if the leading singularity exponent �E or �C satis�es �E � 2� 2=p or�C � 2� 3=p, respectively.The plan of this section is as follows. We discuss the construction of a suitablefamily of �nite element meshes as extensive as in [21]. Then we state the reg-ularity and the approximation result without proofs. They are very technicaland can be found in [21]. After some discussion we present a numerical testexample. We end the section with a discussion of shape functions of higherdegree and possible extensions to more general boundary value problems.In order to explain our approach we subdivide 
 into a �nite number of disjointtetrahedral subdomains, 
 = SJj=1
j, such that each subdomain contains atmost one singular edge and at most one singular corner. In this way welocalize the problem and reduce all considerations to few standard cases. Herewe exploit that the singularities are of local nature only.The freedom in the choice of the �nite element mesh is restricted by the fol-lowing three needs:A. general admissibility conditions arising from the �nite element theory andthe subdomain approach,B. re�nement conditions, such that the global error estimates can be proven,C. geometrical conditions on the elements such that anisotropic local interpo-lation error estimates can be proven.We will now elaborate a set of conditions that satis�es all the needs. After-wards we give simple examples how one can construct such a mesh. We pointout that we do not attempt to give a minimal set of conditions. Rather, we



4.4 Di�usion problems in domains with corners and edges 161want to describe a set of conditions that is both su�cient for our error esti-mates and simple to be veri�ed for our examples. We also admit (but do notrequest) overre�nement in certain regions if the mesh generation algorithm canbe kept simple then.The general conditions on the triangulation Th = feg are the following.
A1. The domain is covered by the closure of the �nite elements e, 
 = Se2Th e.A2. The triangulation is such that the subdomains 
j are resolved exactly: ife \ 
j 6= ; then e � 
j.A3. The elements are disjoint, e \ e0 = ; 8e; e0 2 Th, e 6= e0.A4. Any face of any element e is either a subset of the boundary @
 or faceof another element e0 2 Th.A5. The number Nel of elements is related to the global mesh parameter h byNel � h�3:To describe the re�nement conditions we need some further notation. First,de�ne in each subdomain 
j (j = 1; : : : ; J) a Cartesian coordinate system(x(j)1 ; x(j)2 ; x(j)3 ) with the following properties:� One corner of 
j is located at the origin. In particular, if 
j possesses are�nement corner, then this one is chosen.� One edge of 
j is contained in the x(j)3 -axis. In particular, if 
j possesses are�nement edge, then this one is used.We use here the term re�nement edge/corner instead of singular edge/cornersince we want to allow re�nement near edges/corners which are not singular.This can be advantageous for a simpler construction of the meshes or just sinceonly a lower estimate of the singular exponent is known.Next, we denote for each �nite element e � 
j byre := infx2e h(x(j)1 )2 + (x(j)2 )2i1=2 ;Re := infx2e h(x(j)1 )2 + (x(j)2 )2 + (x(j)3 )2i1=2 ;
the distances of e to the x(j)3 -axis and the origin. Note that Re � re. Moreover,we introduce in each 
j re�nement parameters �j ; �j 2 (0; 1] corresponding tothe re�nement edge/corner, respectively. If there is no re�nement edge/cornerwe let �j = 1 or �j = 1, respectively.



162 4 Anisotropic �nite element approximations near edgesAs mentioned above we want to admit overre�nement. Therefore we distin-guish between size parameters H1;e, H3;e (e 2 Th),H1;e := � h1=�j if re = 0;hr1��je if re > 0;H3;e := � h1=�j if 0 � Re . h1=�j ;hR1��je if Re & h1=�j ;and actual mesh sizes ~h1;e, ~h2;e, ~h3;e which are de�ned as the lengths of theprojections of e � 
j on the x(j)1 -, x(j)2 -, or x(j)3 -axis, respectively. (The tilde isused because this de�nition is di�erent from the mesh sizes h1;e, h2;e, h3;e asused in Section 2.3.) Note that h1=�j � hR1��je for Re � h1=�j .The relation between these sizes is given by condition B1:B1. If �j < 1 then ~h1;e � ~h2;e � H1;e, ~h3;e . H3;e (e 2 Th). But in particularwe demand that ~h3;e � H3;e if re = 0.If �j = 1 then ~hj;e . H3;e (e 2 Th, j = 1; 2; 3) and in particular ~hj;e � H3;e ifRe = 0.Note that Assumption A5 is indeed a condition but not a consequence of B1.That was di�erent in Section 4.3 where overre�nement was not allowed. Inthis sense we will also demand two similar conditions:B2. The number of elements e � 
j with re = 0 is of order h�1.B3. The number of elements e � 
j such that 0 � Re . h1=�j is bounded byh2�j=�j�2. In particular, there is only one element e with Re = 0.Though further conditions on the parameters �j and �j are imposed in Theo-rem 4.5, we want to ensure a priori that H1;e . H3;e for �j < 1:B4. If �j < 1 then �j � �j (j = 1; : : : ; J).The next set of conditions is imposed such that the anisotropic local interpo-lation error estimates of Section 2.3 hold.C1. The �nite elements e must satisfy the maximal angle condition, see page54.C2. If 
j contains a re�nement edge then all elements e � 
j have two verticessuch that the straight line through them is parallel to the x(j)3 -axis.C3. If 
j does not contain a re�nement edge then all elements are isotropic,that means, they have bounded aspect ratio.Note that we used in Section 2.3 the maximal angle condition C1 and a co-ordinate system condition which is very technical. It is possible to avoid thelatter condition by imposing C2 and ~h1;e � ~h2;e.
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Case 4Fig. 4.5 Illustration of the meshing of the subdomains (n = 4). Case 1: Equidistant mesh.Case 2: Re�nement towards a corner (�j = 0:67). Case 3: Re�nement towards anedge (�j = 0:5). Case 4: Re�nement towards a corner and an edge (�j = 0:67,�j = 0:5).
Lemma 4.3 For any polyhedral domain 
 � R 3 it is possible to generatemeshes which satisfy all the Assumptions A1{C3.
Proof We start with the meshing of one subdomain 
j and then we discussthe satisfaction of Condition A4 after gluing together the meshes of the sub-domains. Let us distinguish four cases: 1) 
j contains neither a re�nementcorner nor a re�nement edge, 2) 
j contains a re�nement corner but no re�ne-ment edge, 3) 
j contains a re�nement edge but no re�nement corner, 4) 
jcontains both a re�nement corner and a re�nement edge.The meshing in these four situations is illustrated in Figure 4.5. A mathe-matical description of this mesh generation procedure can be given as follows:Introduce barycentric coordinates �(j)0 ; : : : ; �(j)3 (�(j)i > 0,P3i=0 �(j)i = 1) in 
jsuch that the re�nement corner has the coordinate �(j)0 = 1 and the re�ne-ment edge is described by �(j)1 = �(j)2 = 0. Let n 2 N be an integer such thath � n�1.



164 4 Anisotropic �nite element approximations near edgesCase 1: The vertices P�, � = (�1; �2; �3), have the coordinates�(j)1 = �1n ; �(j)2 = �2n ; �(j)3 = �3n ; 0 � j�j � n:The tetrahedra are described as quadruples of vertices; they are(P�; P�+(1;0;0); P�+(0;1;0); P�+(0;0;1)); 0 � j�j � n� 1;(P�+(1;0;0); P�+(0;1;0); P�+(0;0;1); P�+(1;0;1)); 0 � j�j � n� 2;(P�+(0;1;0); P�+(0;0;1); P�+(1;0;1); P�+(0;1;1)); 0 � j�j � n� 2;(P�+(1;0;0); P�+(0;1;0); P�+(1;1;0); P�+(1;0;1)); 0 � j�j � n� 2;(P�+(0;1;0); P�+(1;1;0); P�+(1;0;1); P�+(0;1;1)); 0 � j�j � n� 2;(P�+(1;1;0); P�+(1;0;1); P�+(0;1;1); P�+(1;1;1)); 0 � j�j � n� 3:
Case 2: The topology is as in Case 1 but the coordinates of the vertices P�change to

�(j)1 = �1n � j�jn ��1+1=�j; �(j)2 = �2n � j�jn ��1+1=�j; �(j)3 = �3n � j�jn ��1+1=�j;
0 � j�j � n.Case 3: We introduce here a larger set of nodes P�0 � �1 + �2 � n; 0 � �3 � n if �1 + �2 < n;�3 = 0 if �1 + �2 = n;with the coordinates�(j)1 = �1n ��1+�2n ��1+1=�j ;�(j)2 = �2n ��1+�2n ��1+1=�j ;�(j)3 = �3n (1� �(j)1 � �(j)2 ):The tetrahedra are described in three cases:Subdivision of pentahedra:(P�; P�+(1;0;0); P�+(0;1;0); P�+(0;0;1)); 0 � �1 + �2 � n� 2;(P�+(1;0;0); P�+(0;1;0); P�+(0;0;1); P�+(1;0;1)); 0 � �1 + �2 � n� 2;(P�+(0;1;0); P�+(0;0;1); P�+(1;0;1); P�+(0;1;1)); 0 � �1 + �2 � n� 2;(P�+(1;0;0); P�+(0;1;0); P�+(1;1;0); P�+(1;0;1)); 0 � �1 + �2 � n� 3;(P�+(0;1;0); P�+(1;1;0); P�+(1;0;1); P�+(0;1;1)); 0 � �1 + �2 � n� 3;(P�+(1;1;0); P�+(1;0;1); P�+(0;1;1); P�+(1;1;1)); 0 � �1 + �2 � n� 3;0 � �3 � n� 1 in all cases.



4.4 Di�usion problems in domains with corners and edges 165Subdivision of pyramids:(P�+(1;0;0); P�+(0;1;0); P�+(1;0;1); P�+(1;1;0)); �1 + �2 = n� 2;(P�+(0;1;0); P�+(1;0;1); P�+(0;1;1); P�+(1;1;0)); �1 + �2 = n� 2;0 � �3 � n� 1 in both cases.Remaining tetrahedra:(P�; P�+(0;0;1); P�+(1;0;0); P�+(0;1;0)); �1 + �2 = n� 1;0 � �3 � n� 1:Case 4: The topology is as in Case 3 but the �(j)3 -coordinate of the points P�changes to�(j)3 = ��3n �1=�j (1� �(j)1 � �(j)2 ):We have now to prove that such a mesh satis�es all conditions: A1, A2, A3, andA5 are obvious. Assumption A4 is equivalent to the necessity that the faces
j \ 
j0 are meshed in the same way. This leads in general to some cascadee�ect: let M � @
 be a connected set of re�nement edges and vertices (edgesare here considered as closed sets), then we have to choose�j = �j = �M for all j : 
j \M 6= ;:That means that the re�nement is determined by the strongest singularity inthis region. An exception is the case when the face �(j)3 = 0 is part of theboundary @
. Then �j can be chosen larger than �j. We remark that thecascade e�ect could be avoided by using mortar elements [45].The coordinate transformation �(j)0 ; : : : ; �(j)3 7! x(j)1 ; : : : ; x(j)3 is independent ofh. Therefore, Assumption B1 can easily be veri�ed by noting that(s+ h)1=�j � s1=�j � hs1��j ;�(j)1 + �(j)2 + �(j)3 � Re for all e with Re > 0,�(j)1 + �(j)2 � re for all e with Re > 0.Indeed, in Case 2 all elements are isotropic, that means ~hi;e is of the size ofthe distance of the two planes �(j)4 = ( j�j+1n )1=�j and �(j)4 = ( j�jn )1=�j ,~hi;e � � j�j+1n �1=�j � � j�jn �1=�j � hR1��je (i = 1; 2; 3):In cases 3 and 4, the projection of the element into the �(j)1 ; �(j)2 -plane isisotropic, that means~hi;e � ��1+�2+1n �1=�j � ��1+�2n �1=�j � hr1��je (i = 1; 2):
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Fig. 4.6Modi�cation of Case 4 for �j = �j < 1.
Finally, we see in Case 4 that~h3;e . �(j)3 (P:;:;�3+1)� �(j)3 (P:;:;�3) + (~h1;e + ~h2;e). ��3+1n �1=�j � ��3n �1=�j + hr1��je. h(x(j)3 )1��j + hr1��je. hR1��je ;because �j � �j .Condition B2 is satis�ed by construction. B3 is checked by realizing that thenumber of elements is of order i2 where i satis�es (i=n)1=�j . (1=n)1=�j , thatmeans i . n1��j=�j . Condition B4 is independent of our meshing strategy.Conditions C1{C3 are also satis�ed by construction. Note that overre�nementis accepted in Cases 3 and 4 near the edge �(j)0 = �(j)4 = 0 and due to thecascade e�ect described above.
Remark 4.6 Note that the number of elements is n3 for Cases 1 and 2, and3n3 � 3n2 + n for Cases 3 and 4. We introduced the richer topology in thelatter cases to ensure the maximal angle condition C1. However, we can usethe topology of Cases 1/2 if �j = �j < 1, compare Figure 4.6. The vertices P�have then the coordinates�(j)1 = �1n ��1+�2n ��1+1=�j ;�(j)2 = �2n ��1+�2n ��1+1=�j ;�(j)3 = � j�jn �1=�j � �(j)1 � �(j)2 :0 � j�j � n.We point out that also simpler meshing strategies can be applied where over-re�nement takes place in more regions. Figure 4.8 shows an example wherearti�cial re�nement edges are introduced. Moreover, we introduced the As-sumptions A1{C3 in order to allow other re�nement strategies which are not
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Fig. 4.7Tensor product domain with mesh re�nement nearthe singular edge and the corners.
based on the domain decomposition approach, see Figure 4.7 for an examplewith a coordinate transformation.We introduce now the �nite element space Vh of all continuous functions whoserestriction to any e (e 2 Th) is a polynomial of �rst degree. Furthermore, welet V0h be de�ned by V0h := fvh 2 Vh : vhj@
 = 0g. Note that Vh � H1(
) andV0h � V0. The variational formulation of problem (4.50) reads as follows.Find u 2 V0 : a(u; v) = (f; v)
 8v 2 V0; (4.53)where the bilinear form a(:; :) is de�ned by

a(u; v) := Z
 3Xi;j=1 ai;j @u@xi @v@xj :Furthermore, the �nite element solution is de�ned byFind uh 2 V0h : a(uh; vh) = (f; vh)
 8vh 2 V0h: (4.54)
Let �(j)E;n and �(j)C;n, n = 1; 2; : : : ; be the singularity exponents with respectto the singular edge and the singular corner of 
j, j = 1; : : : ; J . De�ne inparticular the leading singular exponents by �(j)E := �(j)E;1, �(j)C := �(j)C;1. Notethat these exponents are de�ned by 
 (and the di�erential operator) and notonly by 
j, compare Comment 4.1 on page 173. If no edge/corner of 
j isedge/corner of 
 then we de�ne �(j)E :=1, �(j)C :=1, respectively.The regularity of derivatives of u can be described by means of the weightedSobolev spaces V `;p�;� (
j), see Section 1.3, page 27, for the de�nition.Theorem 4.4 [21, Theorem 2.10] Assume that 2 � p < 6, �(j)E;n 6= 2 � 2=p,�(j)C;n 6= 2�3=p, for all n = 1; 2; : : : , j = 1; : : : ; J , and �(j)E > 1�2=p. Then the



168 4 Anisotropic �nite element approximations near edgessolution u of the general problem (4.50) admits the following decomposition in
j: u = ur + us; (4.55)where ur 2W 2;p(
j) and@us@x(j)i 2 V 1;p�;� (
j); i = 1; 2; (4.56)@us@x(j)3 2 V 1;p�;0 (
j); (4.57)
for any �; � � 0 satisfying � > 2� 3=p� �(j)C and � > 2� 2=p� �(j)E .In the following, we investigate �rst the global interpolation error for the familyof anisotropically graded meshes introduced above. Then we obtain the global�nite element error estimate via the C�ea lemma.Theorem 4.5 [21, Theorem 5.1] Let u be the solution of the boundary valueproblem (4.53) with f 2 Lp(
), 2 < p < p+,

p+ := minj (6; 21� �(j)C ; 11� �(j)E
) : (4.58)

In addition to the condition B4, assume that the re�nement parameters �j; �jsatisfy the following conditions for all j:�j < �(j)E p2p� 2 ; (4.59)
�j < ��(j)C + 12� 2p5p� 6 ; (4.60)1�j �52 � 3p�+ 1�j ��(j)C � 2 + 3p� > 1: (4.61)Then for the interpolation error u� Ihu the following estimate holds:ju� Ihu;W 1;2(
)j . h kf ;Lp(
)k: (4.62)Proof The theorem can be proved by distinguishing the four cases as men-tioned in the proof of Lemma 4.3 and by using the local interpolation errorestimates for functions from (weighted) Sobolev spaces, see [21, Section 5].Before, one has to ensure that Theorems 2.2, 2.4, and 2.5 can be proved ifh1;e; h2;e; h3;e are replaced by ~h1;e; ~h2;e; ~h3;e, as de�ned above. This was done in[21, Section 4].



4.4 Di�usion problems in domains with corners and edges 169Corollary 4.2 Let u be the solution of the boundary value problem (4.53)with f 2 Lp(
), 2 < p < p+, p+ from (4.58), and let uh be the �nite elementsolution of (4.54). Then the error estimateku� uh;W 1;2(
)k . h kf ;Lp(
)kholds if all re�nement parameters �j and �j, j = 1; : : : ; J , satisfy the condi-tions (4.59){(4.61).Let us discuss the assumptions of this approximation result. First, we note thatthe restriction p < p+ is not essential for this estimate, because f 2 Lp(
)yields f 2 Lq(
) for q � p and kf ;Lq(
)k . kf ;Lp(
)k. We can applyTheorem 4.5 for q < p+. Nevertheless, we have to replace p in the conditionsof the Theorem 4.5 by minfp; p+ � �g, � > 0 arbitrarily small.In order to use meshes which are not too much re�ned, the estimates are mostfavourable for p close to 2. For p = 2+� (� is an arbitrarily small real number),the re�nement conditions reduce to�j < �(j)E �1� �2 + 2�� ;�j < ��(j)C + 12��1� 3�4 + 5�� ;1�j + 1�j ��(j)C � 12� > 1 + 3�4 + 2� � 1�j � 1�j� :On the other hand it is not clear in which way the constant in the localinterpolation error estimate depends on p; we suspect that it grows to in�nityfor p! 2.The conditions (4.59) and (4.60) are the edge and corner re�nement conditions,respectively. They are expected because they balance the edge and cornersingularities (compare with [19, 23, 123]). On the contrary, the condition(4.61) seems to be arti�cial but actually it comes from the anisotropy of themesh near the corner. Indeed, (4.61) follows from (4.60) and p > 2 in the case�j = �j . In the case �j 6= �j , it imposes a condition between �j and �j , thismeans that the mesh cannot be too much anisotropic. For the Fichera domaintreated in Example 4.4, we have �C � 0:45 and �E = 2=3. We then see thatfor p close to 2, the condition (4.61) holds for �j = 0:6 and �j = 0:9.Example 4.4 We consider the Poisson equation with a speci�c right handside, together with homogeneous Dirichlet boundary conditions:��u = R�1 in 
;u = 0 on @
:



170 4 Anisotropic �nite element approximations near edgesThe domain 
 := (�1; 1)3 n [0; 1]3 has three edges with interior angle !0 = 32�,which meet in the center of coordinates; we denote by R the distance to thispoint. Sometimes such a corner is called Fichera corner. Note that the righthand side is contained in Lp(
) for p < 3.In order to determine the regularity of the solution, we consider �rst the cornersingularity and �nd that �C � 0:45 [168]. The edge singularities are describedby �E = �=!0 = 2=3.This problem was solved �rst with ungraded meshes and mesh sizes hi = 1=i,i = 2; 3; : : : ; 48. We compare this with three re�nement strategies. The �rstone is obtained by a simple coordinate transformationxi := xi � jxij�1+1=�j ; i = 1; 2; 3;for all vertices (x1; x2; x3). It leads to overre�nement near the coordinateplanes, see Figure 4.8. The second one was described by our constructiveproof of Lemma 4.3, see pages 163{166. The corresponding mesh is illustratedin Figure 4.9. The optically bad elements near the diagonals can be avoidedby using the strategy of Case 4a instead of Case 4, compare Remark 4.6 andFigure 4.10. For all j we used the parameters �j = �j = 0:6.The calculations were done using the code FEMPS3D which is describedshortly in Comment 6.2 on page 236. We remark only that the energy ofthe �nite element error was estimated with an error estimator of residual typewhich was tuned for treating anisotropic meshes, see also Section 6.2. Thenorms are given in form of a diagram in Figure 4.11.We see that the theoretical approximation order h � N�1=3, N is the numberof nodes, can be veri�ed in the practical calculation for all three re�nementstrategies. The error is the smallest in the third re�nement strategy, however,the di�erence between the strategies is small. �
Remark 4.7 We believe that the approach to mesh re�nement as introducedin this section is applicable to a larger class of problems since the singularitiescan be characterized in a similar way for general second order boundary valueproblems including systems of equations. For isotropic mesh re�nement theapproximation theory was given in [23] in this generality. For anisotropic meshre�nement, however, there are some remaining tasks.1. We conjecture that Theorem 4.4 can be proved also for other boundaryconditions (Neumann, Robin, mixed). Then Theorem 4.5 is valid as longas �(j)E > 1=2 for all j. (Otherwise (4.58) yields p+ � 2 which contradictsanother assumption of Theorem 4.5.) For �(j)E � 1=2 there is no " > 0 suchthat u 2 W 3=2+";2(
). Therefore the Lagrangian interpolation operator is not
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Fig. 4.8 Example 4.4: First strategy, a simple coordinate transformation. Left: perspectiveview. Right: cut at x3 = 0.

Fig. 4.9 Example 4.4: Second strategy, re�nement according to Cases 1{4. Left: perspectiveview. Right: cut at x3 = 0.

Fig. 4.10 Example 4.4: Third strategy, re�nement with Case 4a instead of Case 4. Left:perspective view. Right: cut at x3 = 0.
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Fig. 4.11 Example 4.4: Estimated error � in the energy norm for various mesh sizes.
applicable. It is an open problem to extend the Scott-Zhang interpolationtheory to non-tensor product meshes.2. For more general boundary value problems like the Lam�e system of elasticitywe do not know about an anisotropic regularity theory in the sense of Theorem4.4. In particular, the theory must be developed in non-Hilbert spaces sincewe need p > 2.3. For k � 2 the regularity theory in Hilbert spaces (p = 2) can be applied,compare Theorem 4.2 on page 153. If the regularity result of Theorem 4.4 canbe extended to higher order derivatives like in Assumption 4.1, then the proofof the approximation result is straightforward.



4.5 Three comments on the analytical properties of u 1734.5 Three comments on the analytical properties of u
In this section we present some analytical background which was omitted inSections 4.2{4.4 since we wanted to focus on the numerical part of the theory.Comment 4.1 Calculation of the singularity exponents. Consider �rstthe Poisson problem. For homogeneous Dirichlet or Neumann boundary con-ditions the singularity exponents with respect to an edge E are given by�E;n = n�=!E > 1=2, n = 1; 2; : : : , where !E is the angle between the twofaces of 
 containing E. In the case of mixed Dirichlet/Neumann boundaryconditions we have �E;n = (n� 1=2)�=!E > 1=4, n = 1; 2; : : : .Let CC � R 3 be the in�nite polyhedral cone which coincides with 
 in aneighbourhood of a corner C of 
, and let S2C be the unit sphere centered atC. Set GC := CC \ S2C and denote by �n > 0, n = 1; 2; : : : ; the eigenvalues(in increasing order) of the Laplace-Beltrami operator on GC (with Dirichletboundary conditions). Then the singular exponents related to C are given by�C;n = (�n + 1=4)1=2 � 1=2, n = 1; 2; : : : . Papers on a numerical calculationof the singular exponents �C;n include [40, 121, 168]. In some cases theseexponents can be calculated analytically, see Comment 4.2.In Section 4.4 we considered a more general di�erential operator, see (4.50).Since we assumed constant coe�cients, there exists a linear change of variablesy = Bx which transforms the problem (4.50) into the Poisson problem withhomogeneous Dirichlet boundary conditions in another polyhedral domain 
0.The singularity exponents can then be calculated as described above but withrespect to the transformed domain.Comment 4.2 Corner singularities in tensor product domains. Tensorproduct domains in the sense of Section 4.3 have the advantage that the cornersingularities can be described explicitly. Consider a corner C at the origin ofthe coordinate system. A neighbourhood U(C) � 
 can be described inspherical coordinates by U(C) = fx = (R cos� sin �;R sin� sin �;R cos �) :O < R < R0; 0 < � < !; 0 < � < �=2g: The singular functions have the form[181, 191]

uC;i = R�C;iFi(�; �); �C;i = ��i + 14�1=2 � 12 ;where �i; Fi are the eigenvalues/eigensolutions of the eigenvalue problem forthe Laplace-Beltrami operator,F�� + F� cot � + F��(sin �)�2 = ��iF in G;



174 4 Anisotropic �nite element approximations near edgesG = fx = (cos� sin �; sin� sin �; cos �) : 0 < � < !; 0 < � < �=2g, andboundary conditions corresponding to the original problem. Separation ofvariables, F (�; �) = �(�)�(�), leads to�00 + �2E;i� = 0 in (0; !);�00 +�0 cos � + (�i � �2E;i(sin �)�2)� = 0 in �0; �2� :For the Dirichlet problem we get the solution�E;1 = �! ; �1(�) = sin�E;i�;�1 = (�E;1 + 1)(�E;1 + 2); �1(�) = (sin �)�E;1 cos �;�C;1 = �E;1 + 1;see also [191]. This means that the leading corner singularity isUC;1 = R�E;1+1 sin�E;1�(sin �)�E;1 cos �= (R sin �)�E;1(R cos �) sin�E;1�= x3r�E;1 sin�E;1�;which has precisely the structure of the leading edge singularity function.In the case of the mixed boundary value problem with u = 0 for � = 0; !, and@u=@n = 0 for � = �=2 we obtain [191]�E;1 = �! ; �1(�) = sin�E;i�;�1 = �E;1(�E;1 + 1); �1(�) = (sin �)�E;1 ;�C;1 = �E;1;that meansUC;1 = R�E;1 sin�E;1�(sin �)�E;1 = r�E;1 sin�E;1�:In the case u = 0 for � = 0, and @u=@n = 0 for � = ! and � = �=2 the sameresults are valid with �E;1 = �=(2!).Comment 4.3 Regularity of the solution u of the Poisson problem ina domain with one single edge. The regularity theory for elliptic boundaryvalue problems in non-smooth domains with corners and edges is well devel-oped, especially in the framework of weighted Sobolev spaces. Boundary valueproblems in domains with non-intersecting edges are treated in [113, 129, 131],and in polyhedral domains in [66, 130, 154], see also the monograph [116] andthe summary of results in [23, Section 2].



4.5 Three comments on the analytical properties of u 175Let us formulate here a regularity result for domains 
 with one single edge Ewith constant internal angle (either 
 is a dihedral angle and f is assumed tohave bounded support, or 
 is a bounded domain with only one closed edge).The result was originally proved in [129] in more general form. We use herethe formulation of [116, Theorem 26.3] where we have set speci�cally m = 1,p = p1 = 2.The critical point is hidden in two assumptions.A1 Let u 2 V `+2;2�+` (
) be a solution of (4.19) with right hand side f 2 V `;2�+`(
)where � � 1 is not a singularity exponent.This assumption is essential since we investigate the regularity in the scaleV `;p� (
) of weighted Sobolev spaces. But we have existence and uniquenessof the solution u of (4.19) in the space V0 � V = W 1;2(
) which does notbelong to this scale. Note that ` can be an arbitrary integer, see [116, Lemma27.2(ii)]. Spaces with negative ` are de�ned by V `;2� (
) = (V �`;2�� (
))0 [116,Subsection 0.8].The investigation of the regularity is done by applying a Fourier transform to(4.19) and a further change of variables, see [116, Subsections 22.4 and 26.1].The resulting operator pencil is denoted by A(�; �), � 2 E, � = �1.A2 For all � 2 E and � 2 f�1g both kerA(�; �) and cokerA(�; �) are trivial.Both conditions, A1 and A2, are satis�ed for the Dirichlet problem for thePoisson equation where ` = �1, � = 1 [116, Subsection 28.1], and for mixedboundary conditions, where ` = �1; 0, � = 1 [116, Subsection 32.2], see also[165, Lemma 4].Theorem 4.6 [116, Theorem 26.3] Let Assumptions A1 and A2 be valid andassume that f 2 V `;2�+`(
) \ V `1;2�1+`1(
) with �� < �1 � 1 < � where � is theleading (smallest positive) singularity exponent. Then u 2 V `1+2;2�1+`1 (
) andku;V `1+2;2�1+`1 (
)k . kf ;V `1;2�1+`1(
)k:The application of this theorem for f 2 L2(
) leads toku;V 2;2maxf�; 0g(
)k . kf ;V 0;2maxf�; 0g(
)k . kf ;L2(
)k; � > 1� �;(4.63)in particularkD�u;V 2�j�j;2maxf�; 0g�2+j�j(
)k . kf ;L2(
)k; j�j � 2; � > 1� �:(4.64)



176 4 Anisotropic �nite element approximations near edgesTheorem 4.6 does not give the optimal regularity for derivatives of u in tan-gential direction. Therefore we state another theorem in the formulation of[116]. This one was originally proved in [131].Theorem 4.7 [116, Theorem 30.1(iii)] Let Assumptions A1 and A2 be validand assume that f 2 V `;2�+`(
)\V `1;2�1+`1(
) with ` � 0 and ��� 1 < �1� 1 < �.Then @u=@x3 2 V `1+1;2�1+`1 (
) and @u@x3 ;V `1+1;2�1+`1 (
) . kf ;V `1;2�1+`1(
)k:The application of this theorem for f 2 L2(
) leads to @u@x3 ;V 1;2� (
) . kf ;V 0;2� (
)k . kf ;L2(
)k;� 2 (��; 1 + �), or @u@x3 ;V 1;2maxf�; 0g(
) . kf ;L2(
)k; � > ��: (4.65)
For the Dirichlet problem we can now apply both theorems recursively. Wechange the notation slightly in order to be in accordance with Assumption 4.1.For f 2 L2(
) we obtain from Theorems 4.6 and 4.7u 2 V 2;2�2 (
); @u@x3 2 V 1;2�1 (
); (4.66)�n = maxf�+n; 0g, � > �1��. Let now f 2 V 1;20 (
) � L2(
). We concludewith @u=@x3 = 0 on @
 that @u=@x3 is the weak solution of�� @u@x3 = @f@x3 2 L2(
) in 
; @u@x3 = 0 on @
:The theorems give now@u@x3 2 V 2;2�2 (
); @2u@x23 2 V 1;2�1 (
):Since f 2 V 1;20 (
) implies f 2 V 1;2�3 (
) we get also u 2 V 3;2�3 (
), �3 as in (4.66).Proceeding that way for f 2 V k�1;20 (
) givesu 2 V k+1;2�k+1 (
); @u@x3 2 V k;2�k (
); : : : ; @ku@xk3 2 V k+1;2�1 (
);with �n from (4.66). This is just what we stated in Assumption 4.1.



5 Anisotropic �nite element approximationsin boundary layers
This chapter deals with singularly perturbed reaction-di�usion and convection-di�usion-reaction problems. Special anisotropic meshes of Shishkin type areinvestigated in order to derive �nite element error estimates which are uni-formly valid with respect to the perturbation parameter.
5.1 The aim of this chapter
In this chapter we consider singularly perturbed problems. We are mainlyinterested in a resolution of boundary layers. The main results include thefollowing.In Section 5.2 we discuss several approximation strategies for the model prob-lem �"2�u+ cu = f in 
 � R d (d = 2; 3); u = 0 auf @
:The solution u is characterized for 0 < " � 1 by a boundary layer of widthO("j ln "j). We show that the �nite element method both on quasi-uniformmeshes and on meshes with isotropic re�nement in the boundary layer doesnot lead to error estimates which are quasi-uniform with respect to the per-turbation parameter "� 1 (Lemmata 5.1 and 5.2). As our favorite variant wepropose to use in the layer anisotropic elements with size h1 = h in tangentialdirection and h2 = ah normal to the boundary. The parameter a describesthe width of the re�nement zone. In [5, 6, 14] we proved for a � "j ln "j theuniform error estimatejjju� uh jjj
 . hk"1=2j ln "jk+1=2 + hk+1 (5.1)in the energy norm jjj : jjj
 � "j : ;W 1;2(
)j+ k : ;L2(
)k. We note, however,that in these papers corner/edge singularities were excluded by demandingcertain compatibility conditions on the data. We postpone the proof of (5.1)



178 5 Anisotropic �nite element approximations in boundary layersto Section 5.3 but we con�rm the result by a numerical test example. Withsome remarks (Remarks 5.1, 5.2, 5.3, and 5.4) we refer also to related literature.The error analysis for the anisotropic mesh re�nement strategy is presented inSection 5.3. Additionally to [5, 6, 14], we focus on two new points.1. We incorporate an additional mesh re�nement to treat also corner singu-larities. This is restricted to two dimensions but the techniques should workalso in three dimensions.2. Results in related literature led to the assumption that for h � " (which isthe interesting case in practice) a numerical layer of width a = O("j lnhj) ismore appropriate. Therefore we investigate also this case in Section 5.3.We mention here that the two cases in Item 2 look similar but they needdi�erent strategies for the proof.� In the case a = a�"j ln "j we get for dist (x; @
) � a the a-priori estimatejD�u(x)j . "a��j�j for the solution u. That means we can use the standardinterpolation theory for the large elements in the interior of the domain if onlya� is su�ciently large such that jD�uj is bounded uniformly in ".� In the case a = a�"j lnhj we get for dist (x; @
) � a the a-priori estimatejD�u(x)j . ha�"�j�j. Therefore we must use low derivatives (if possible noderivative) of u in order to get a bound uniform in ". Fortunately, the powersof h can be extracted due to the ha�-term in the a-priori estimate above.The �nal result isjjju� uh jjj
 . hk"1=2minfj lnhjk+1=2; j ln "jk+1g+ hk+1;if a = a�"minfj lnhj; j ln "jg with a suitable constant a� (Corollary 5.1). Thesection ends with a discussion of insu�cient re�nement near the corners.We mention again that we present the asymptotic estimates in general in termsof h := maxe2Th diam e. Since we advocate only strategies where the numberof elements is Nel � h�d, the error can easily be expressed in terms of Nel orthe number N of unknowns (degrees of freedom).
The reaction-di�usion problem (5.2) was chosen as one of the simplest singu-larly perturbed problems to motivate the usefulness of anisotropic meshes. InSection 5.4 we consider a slightly di�erent example as well. In the convection-di�usion-reaction problem�"�u+ b � ru+ cu = f in 
 = (0; 1)2; u = 0 on @
;three types of boundary have to be distinguished. At the inow boundary(b � n < 0, n is the outer normal on @
) there is no layer. At the outow



5.2 Discretization techniques for a reaction-di�usion problem: state of the art 179boundary (b �n > 0) there is an ordinary (or outow) layer of width O("j ln "j).Parts of the boundary with b�n = 0 are called characteristic. There will appeara parabolic layer of width O("1=2j ln "j) in these regions.In Subsection 5.4.2 and 5.4.3 we summarize some approximation results fora pure and a stabilized Galerkin �nite element method on anisotropic meshes(Theorem 5.4). The surprising point is that one can even for the pure Galerkinmethod prove uniform convergence (with respect to "� 1) in an "1=2-weightedW 1;2(
)-norm [73, 186]. However, as reported in [162], practical calculationswith linear and bilinear elements show that these estimates are very sensitive tothe choice of a certain mesh parameter. Such non-robust behaviour reduces thepractical importance of the pure Galerkin method. Therefore we consider also astabilized Galerkin method and summarize and reformulate results which wereobtained in [13]. For our proposed choice of the stabilization parameters wewere able to prove, under some assumptions on u, that the �nite element errorconverges in an energy type norm with the optimal order almost uniformlywith respect to " (Theorem 5.4),jjju� uh jjj
;� . hkj ln "jk+1=2:Here, we used re�nement zones of the width of the boundary layers.
5.2 Discretization techniques for a reaction-di�usionproblem: state of the art
Let us study the reaction-di�usion model problemL"u := �"2�u+ cu = f in 
 � R d ; u = 0 on @
; (5.2)where " 2 (0; 1] is the di�usion parameter, c and f are su�ciently smoothfunctions, c � c0 > 0, and d = 2; 3. We introduce in this section the speci�cdi�culties of boundary layers and refer to relevant literature. In particular, wewill see that the numerical approximation of functions with boundary layersleads naturally to anisotropic �nite elements.For d = 2 the boundary value problem (5.2)) describes, for example, a tem-perature distribution in a thin domain 
� (0; z0), z0 � 1, where the temper-ature can be considered as constant in the x3-direction. Heat transfer acrossthe boundary parts x3 = 0 and x3 = z0 enters the model by the term cu.In addition, problem (5.2) appears within a Newton iteration of nonlinearreaction-di�usion problems,�"2�u+ g(x; u) = f in 
; u = 0 on @
;
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or in an implicit semi-discretization of a time-dependent partial di�erentialequation @u@t ��u = ~f
with � = "2 being the step size.In the singularly perturbed case " � 1 the solution of (5.2) is characterizedby a boundary layer of width O("j ln "j), see, for example, [96]. This is causedby the fact that the solution u0 of the algebraic limit equationc(x)u0(x) = f(x) in 
 (5.3)in general cannot satisfy the given boundary condition. The e�ect is illustratedin Figure 5.1 for the one-dimensional example�"2u00 + u = 1 in (0; 1); u(0) = u(1) = 0; (5.4)where the exact solution can be given analytically,

u(x) = (ex=" � 1)(e�1=" � 1)� (e�x=" � 1)(e1=" � 1)e1=" � e�1=" :



5.2 Discretization techniques for a reaction-di�usion problem: state of the art 181In higher space dimensions, the boundary layer is of the same nature. Theconsequence is that one cannot expect an a-priori estimate of the solutionbetter thanju;W `;2(
)j . "1=2�`; ` � 1: (5.5)For this estimate we excluded additional e�ects of higher space dimensions likecorner and edge singularities.We investigate now error estimates for the �nite element solution uh deter-mined by:Find uh 2 V0h : a(uh; vh) = (f; vh)
 8vh 2 V0h: (5.6)Here, a(u; v) := "2(ru;rv)
 + (cu; v)
 is the bilinear form which de�nes theenergy normjjj v jjj
 := �a(v; v)�1=2 � "jv;W 1;2(
)j+ kv;L2(
)k: (5.7)The �nite element space V0h � C(
) is de�ned byV0h := fvh 2 V0 : vhje 2 Pk;e 8e 2 Thg: (5.8)Lemma 5.1 Consider problem (5.2) and assume that the solution u satis�esthe estimate (5.5). Then the �nite element error satis�es the error estimatejjju� uh jjj
 . hk"1=2�k (5.9)when a family of quasi-uniform meshes is used.Proof Due to the Galerkin orthogonality, the error in the energy norm canbe estimated viajjju� uh jjj
 � jjju � vh jjj
 8vh 2 V0h: (5.10)Therefore we need only to bound the interpolation error jjju� Ihu jjj
.Since the mesh is quasi-uniform we obtainjjju� Ihu jjj
 . "ju� Ihu;W 1;2(
)j+ ku� Ihu;L2(
)k. "hkju;W k+1;2(
)j+ hkju;W k;2(
)j:With (5.5) and (5.10) we obtain (5.9). In the case k = 1 the estimateku� Ihu;L2(
)k . hju;W 1;2(
)j



182 5 Anisotropic �nite element approximations in boundary layers(which was used above) does not hold for the Lagrangian interpolation oper-ator. Instead, one has to use another interpolation operator, for example Ch,Oh, or Sh, see Chapter 3.Due to the factor "1=2�k in (5.9) we must expect that the convergence order hkcan be observed only for small h, when the boundary layer is resolved. Thiscan be seen in the test described below, see Table 5.1 in Example 5.1.Remark 5.1 Schatz and Wahlbin [167] analyzed carefully two- (and one-)dimensional problems. They derived L2(
)-, L1(
)-, and pointwise errorestimates for quasi-uniform meshes with linear �nite elements. Also the caseof rough data is addressed. We cite two estimates which hold uniformly in ".For convex 
 and c; f 2 H1=2;1(
) (in the sense of interpolation spaces) theestimate ku� uh;L2(
)k . min(ph; h2"�3=2)holds. Moreover, uniform estimates in the senseku� uh;L2(
)k . min(h; h2"�1)jjju � uh jjj . min(h; ")hold if f 2W 1;20 (
), that means, if f satis�es homogeneous Dirichlet boundaryconditions.
An improvement to the approximation on quasi-uniform meshes is to use lo-cally re�ned meshes in the boundary layer 
L := fx 2 
 : dist (x; @
) � ag,a � "j ln "j.Lemma 5.2 Let Th contain (isotropic) elements of diameter "1�1=(2k)h in theboundary layer but elements of diameter h outside (where the solution has nolarge derivatives). Under the assumption thatju;W `;2(
L)j . "1=2�`; ` � 1; (5.11)ju;W `;2(
 n 
L)j . 1; (5.12)we obtainjjju� uh jjj
 . hk: (5.13)However, the number of elements increases to O("1�d+d=(2k)j ln "jh�d) in thelayer (for d = 2; 3).



5.2 Discretization techniques for a reaction-di�usion problem: state of the art 183Proof We proceed as in the proof of Lemma 5.1. Using (5.11) and (5.12) wederive jjju � Ihu jjj
L . ("1�1=(2k)h)k �"ju;W k+1;2(
L)j+ ju;W k;2(
L)j�. hk"k�1=2(" "1=2�(k+1) + "1=2�k) = hk;jjju� Ihu jjj
n
L . hk �"ju;W k+1;2(
 n 
L)j+ ju;W k;2(
 n 
L)j�. hk("+ 1):With the projection property (5.10) we conclude (5.13). The number of ele-ments is obtained by dividing the area/volume of the layer by the area/volumeof the elements in the layer.A closer look at the structure of the boundary layer demonstrates that largederivatives only occur perpendicularly to the boundary and not in the tangen-tial direction. Hence, anisotropic re�nement, with elements of diameter h inthe tangential direction and with thickness of order "j ln "jh in the normal di-rection, is much more e�cient in the layer. While using only O(h�d) elementsone can prove, under some assumptions on the solution, that the error behaveslike jjju� uh jjj
 . hk("1=2�� + h) (5.14)with � > 0 arbitrarily small, see [5, 6, 14]. We will discuss this for the two-dimensional case extensively in Section 5.3. Before, we will present a numericaltest and some remarks.The a-priori error analysis is valuable especially in cases when the asymptoti-cal approximation order can be con�rmed by numerical tests with a moderatenumber of elements. Therefore we document now a test example which wascomputed with the �nite element multi-grid package FEMGPM, which is de-scribed briey in Comment 6.1 on page 235.Example 5.1 As a numerical example we took the boundary value problemfrom [167, Example 11.3]:�"2�u+ u = 0 in 
 = (0; 1)2; u = e�x1=" + e�x2=" on @
:A boundary layer appears only at M = fx 2 @
 : x1 = 0 _ x2 = 0g. Weintroduce a parameter a describing the width of the numerical boundary layerand use a partition of the domain into four rectangles (0; a)2, (0; a) � (a; 1),(a; 1)�(0; a), and (a; 1)2. The rectangles were uniformly hierarchically re�ned,see Figure 5.2. We varied the number of elements Nel and computed numericalsolutions with piecewise linear trial functions for di�erent values of " and a[14]. From these solutions we calculated the energy norm jjju � uh jjj of the
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a Fig. 5.2Anisotropically re�ned mesh for the numerical test,Nel = 27.Tab. 5.1 Error norm for a = 0:5.Nel " = 10�1 " = 10�3 " = 10�527 0.114 e+0 0.278 e+0 0.282 e+029 0.570 e�1 0.189 e+0 0.195 e+0211 0.285 e�1 0.128 e+0 0.136 e+0213 0.143 e�1 0.856 e�1 0.955 e�1215 0.713 e�2 0.543 e�1 0.674 e�1

Tab. 5.2 Error norm for a = "j log10 "j.Nel " = 10�1 " = 10�3 " = 10�527 0.747 e�1 0.894 e�2 0.130 e�229 0.387 e�1 0.518 e�2 0.657 e�3211 0.196 e�1 0.362 e�2 0.330 e�3213 0.980 e�2 0.298 e�2 0.167 e�3215 0.490 e�2 0.256 e�2 0.877 e�4Tab. 5.3 Error norm for a = 2"j log10 "j.Nel " = 10�1 " = 10�3 " = 10�527 0.511 e�1 0.134 e�1 0.218 e�229 0.257 e�1 0.681 e�2 0.112 e�2211 0.129 e�1 0.342 e�2 0.568 e�3213 0.644 e�2 0.171 e�2 0.285 e�3215 0.322 e�2 0.864 e�3 0.143 e�3

Tab. 5.4 Error norm for a = 4"j log10 "j.Nel " = 10�1 " = 10�3 " = 10�527 0.912 e�1 0.257 e�1 0.395 e�229 0.456 e�1 0.134 e�2 0.217 e�2211 0.228 e�1 0.680 e�2 0.112 e�3213 0.114 e�1 0.342 e�2 0.568 e�3215 0.571 e�2 0.171 e�2 0.285 e�3
�nite element error by a numerical integration formula which was determinedsuch that the integration error was independent of Nel (but dependent on u(")and a). The error is given in Tables 5.1{5.4.We can draw three conclusions. In Table 5.1 the error is displayed when aquasi-uniform mesh is used. We see the asymptotic behaviour of the errorin the case of a large value of ", but the error is far from this asymptoticbehaviour in case of small ". For a = a�"j log10 "j we obtain the expected orderof the approximation error for small " as well. That means the a-priori errorestimates in (5.9) and (5.14) are con�rmed.Second, The error estimate (5.14) indicates that the error should diminish withdecreasing ". This e�ect can be seen in Tables 5.2{5.4.Third, by comparing Tables 5.2{5.4 we see that the performance depends uponthe scaling factor a�. The error analysis demands only a lower bound on thisparameter but obviously it should be chosen carefully. �



5.2 Discretization techniques for a reaction-di�usion problem: state of the art 185We end this section with remarks on related results from other authors, oninterior layers, and on stabilized Galerkin methods.Remark 5.2 Mesh re�nement near the boundary is not new. An obviousidea to mesh a rectangular/cuboidal domain is to use the cross product ofadapted one-dimensional meshes. This leads naturally to anisotropic elementsin the boundary layer. The main di�erence between approaches is how theyre�ne in one dimension. Bakhvalov [32] used a gradually re�ned mesh whichis optimally adapted to the exponential character of the functions describingthe layer,
X(i) = � "c0 ln qq�i=N ; i = 0; : : : ; i0;� + � iN ; i = i0 + 1; : : : ; N;with two parameters c0 and q 2 (0; 1) which determine the remaining constants�; � and i0. Shishkin [139, 173] simpli�ed this mesh and uses piecewise uniformmeshes, X(i) = � a iN ; i = 0; : : : ; N;a+ (1� a) i�NN ; i = N + 1; : : : ; 2N;with a parameter a � " lnN .Previous results concerning the resolution of boundary layers for the modelproblem (5.2) are due to Shishkin [172, 173] in the context of �nite di�erencemethods in two and three dimensions, due to Blatov [47] in the context ofthe h-version of the �nite element method (bilinear elements), and due toMelenk/Schwab [135] and Xenophontos [196] for the hp-version of the �niteelement method, both in two dimensions only. In [47, 172] the authors usedmeshes of Bakhvalov type, and in [173] Shishkin meshes. The error estimateswere derived in the maximum norm [47, 172, 173], see also [139], or in theenergy norm [135, 196].A critical review of decompositions of the solution, approximations on locallyre�ned meshes, and error estimates for one- and two-dimensional problems isgiven in [162].Remark 5.3 In the case that c and f are not su�ciently regular, for examplepiecewise constant, we �nd a discrepancy in the properties of the solutions uand u0 of (5.2) and (5.3), respectively. While u is at least contained inW 1;2(
),this can be violated for u0. It can be interpreted as a smoothing property ofthe di�usion term �"2�u. The result is that u can also have interior layers.They have similar properties to boundary layers, for example a thickness ofO("j ln "j). However, the geometry of these layers can be arbitrarily compli-cated. Therefore,



186 5 Anisotropic �nite element approximations in boundary layers1. we have to approximate curved manifolds, and2. we cannot assume that certain sides of the �nite elements are always parallelto the coordinate axes.Algorithmic ideas about how to do the approximation have been proposed in[125], see, for example, Figures 9, 10, and 12 of this paper, and in [176]. Anumerical localization procedure for interior layers is also described in [205]in the context of compressible (viscous and inviscid) ow problems. All thecomputational results are promising.We remark that it is much easier to approximate a curved interior manifold byanisotropic elements, than it is to approximate a curved boundary. The reasonfor this is that in the latter case only one side of the curved manifold belongsto the domain 
. The other side should not be covered by the triangulation.We will not study such problems in this report. But we underline that for thetreatment of them it is necessary to investigate not only elements where thelongest side is parallel to an axis of the coordinate system. (Here we mean awell chosen coordinate system which is adapted to the boundary or interiorlayer.) Therefore we discussed in Chapter 2 the coordinate system conditionquite extensively.Remark 5.4 In the literature one can �nd a number of variants to stabilizethe Galerkin �nite element method, see for example [31, 79, 105]. The basicidea is to modify the bilinear and linear forms to becomea(u; v) := Xe2Th(L"u; v + �eLv)e;
hf; vi := Xe2Th(f; v + �eLv)e;

where L = L" (Galerkin/Least-squares method [105]) or L = �L"� (unusualstabilized �nite element method [31]). For the self-adjoint di�erential operatorL", as in (5.2), the optimization (with respect to minimizing the energy norm)of the choice of the set of numerical di�usion parameters �e � 0 leads to �e = 0for all e, that is the pure Galerkin method (Galerkin orthogonality). The resultmay be di�erent for other norms.In the case of a constant coe�cient c Franca and Farhat [79] choose L = �L"�and �e = [diam (e)]2=[c(diam (e))2 + "2] and obtain a diminution of the errorin the maximum norm. This, however, was demonstrated only in a compu-tational example (\picture norm"), but not analytically. The explanation isthat for piecewise linear trial functions this method is equivalent to a pureGalerkin method with an enriched trial space (piecewise linears plus cubicelement bubble functions) [79].



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 187The approximation error of this method was analyzed in [14] for higher ordertrial functions and with respect to anisotropic meshes. It turned out that thereis a range of values from which �e can be chosen such that the error estimate(5.14) is preserved. This freedom can then be used to control the error in someother norm. But this was not pursued further.
5.3 Boundary layers and corner singularities in a reac-tion-diffusion problem
5.3.1 Properties of the exact solutionIn the previous section we summarized results on the numerical treatment ofthe reaction-di�usion model problemL"u := �"2�u+ cu = f in 
; u = 0 on @
; (5.15)(0 < "� 1, c = c(x) � c0 > 0).In this section we will continue this discussion with two additional points.First, we discuss the analytical properties of u in general polygonal domains,and we treat the arising corner singularities. Second, we investigate twoslightly di�erent versions of anisotropic mesh re�nement. The di�erence is inthe width a of the re�nement layer, see the illustration in Figure 5.2 on page184: the original Shishkin meshes [139, 173] are characterized by a � "j ln hjwhereas for the Shishkin type meshes in [14] the relation a � "j ln "j was as-sumed.The plan is to introduce some notation and to discuss the analytical propertiesof u in this subsection. In the other two subsections we derive estimates forthe interpolation error and the �nite element error, respectively.We begin with a parameter dependent partition of 
 as illustrated in Figure5.3. The subdomains are obtained by introducing lines with a distance a (this isthe parameter), " < a� 1, to the boundary and eventually, near corners withlarge angles, some more lines perpendicularly to them. The interior domainis denoted by 
1, the union of the small subdomains 
2;j near the cornersCj by 
2 := SJj=1
2;j, and the union if boundary strips by 
3 := SJj=1
3;j.Furthermore, we de�ne by 
�2 := SJj=1
�2;j the union of corner regions 
�2;j :=fx 2 
 : dist (x;Cj) < "g and note that 
�2;j � 
2;j.The parameter a will later be chosen as the thickness of the re�nement layer(a = a�"j ln "j or a = minfa
; a�"j lnhjg with suitably chosen constants a�
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Fig. 5.3 Illustration of the partition of 
 for a reaction-di�usion problem.
and a
) but here it is essential that we can de�ne in 
3 a boundary �ttedcoordinate system (x1; x2) with x2 = dist (x; @
). Derivatives D� are to beunderstood with respect to this coordinate system. Points in 
1 [ 
2 can beconsidered in any Cartesian coordinate system. Moreover, for points in 
 wede�ne by r the distance to the set of corners fCjgJj=1. Note that we have inparticular r = dist (x;Cj) for x 2 
2;j.Assumption 5.1 Let u be the solution of (5.15) where f and c are su�cientlysmooth functions, 0 < "� 1, and c � c0 > 0. For given k; n 2 N , n � k + 1,the solution u can be decomposed into a smooth term us, a boundary layer termub, a corner singularity uc, and a remainder ur, u = us + ub + uc + ur. Thereis a constant 0 > 0 such that the terms satisfy the following estimates for all� 2 N 2 : j�j � k + 1:jD�usj . 1 in 
; (5.16)jD�ubj . � "��2e�0x2=" + "�j�je�0r=" in 
3;"�j�je�0dist (x;@
)=" in 
 n 
3; (5.17)

jD�ucj .
8>><>>:

"��jr�j�j�je�0r=" in 
�2;j when �j < k + 1;"�j�jj ln(r=")j e�0r=" in 
�2;j when �j = k + 1;0 in 
�2;j when �j > k + 1;0 in 
 n 
�2 ; (5.18)



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 189and kur;W `;2(
)k . "n�`; ` � k + 3; (5.19)where �j = �=!j and !j is the interior angle at the corner Cj.We underline that the constants hidden in . and � are always independent of" (and h) but they can depend on �. Note further that the term "�j�je�0r="in (5.17) contains for x 2 
3;j also the inuence of layer terms with respect toother boundary sides and of so-called corner layers. Since the boundary layerhas the same structure on the whole boundary @
 we can use the compactnotation ub. This is not any longer possible if convection-di�usion-reactionproblems are considered, see the more involved notation in Assumption 5.2. Weremark also that the decomposition of u is usually made much more detailedthan here. In particular, the smaller we want to make the remainder ur,this means, the larger we want to make n, the more terms of the detaileddecomposition we have to include into us, ub, and uc. This is possible if thedata f and c are su�ciently smooth. It is also clear that a large k, this meansthe existence of high derivatives of us, ub, uc, and ur, requires more smoothnessof the data than a small k.Remark 5.5 If we replaced �2 in (5.17) by j�j we could prove Assumption5.1; the estimates could then be extracted from [110, 111].This is not a convincing result, since we want to use the original form ofAssumption 5.1. But for the sake of completeness we will prove the statementof the remark.Proof Set us =PJj=1P2ni=0 "iuj;i. From [110, (3.6)] we obtainuj;0 = f0j;0=c; uj;1 = f0j;1=c; uj;i = (f0j;i +�uj;i�2)=c; i = 2; 3; : : : ;where f0j;i is de�ned in [110, (4.4)] by
f0j;i = 8<: �jf; if i = 0;0 if i = 1; 3; 5; : : : ;�PJj0=0[2r�j � ruj0;i�2 + uj0;i�2��j] if i = 2; 4; 6; : : : ;where �j is a smooth cut-o� function. From jD�f j . 1 we get jD�uj;2mj .c�(m+1)0 . 1, m = 0; 1; : : : . Since u2m+1 = 0 we obtain (5.16).In ub we collect the boundary layer terms V̂j;2n, Ŵj;2n, and Zj;2n;M , as well asthat terms of U (s)asy;j;2n;M that are not contained in (5.18). With [110, (3.26)and (3.38)] we obtain the estimate for zj;i:jD�zj;ij . "�j�je�0r=" . "�j�je�0dist (x;@
)=":



190 5 Anisotropic �nite element approximations in boundary layersFor the other terms let us distinguish two cases, x 2 
 n 
�2 and x 2 
�2 .In the �rst case we have
ub = JXj=1 2nXi=0 "i�j(r=") (vj;i + wj;i) + JXj=1 2n+MXi=0 "izj;i;

where �j is a smooth cut-o� function with �(z) = 0 for z < 1=2 and �(z) = 1for z > 1, see [110, page 132]. From [110, (3.13) and (3.16)] we obtain forx 2 
3 jD�vj;ij . "�j�je�0x2="; jD�wj;ij . "�j�je�0x2="; (5.20)since r� = r�=" � r(sin �)=" = x2=" andjD�wj . Xj�j=j�j r��2 jD�1r D�2� wj . Xj�j=j�j "��2e�0r� . "�j�je�0r�
for w = vj;i. (Even if the transformation (r; �)! (x1; x2) is done more carefullythe author was not able to replace j�j by �2 in (5.20): since f1j;0 = 0, see [110,page 141], we have vj;0 = Ce�pq0r�=" andjD(1;0)vj;0j � jpq0"�1e�pq0r�="(� cos � + sin �)j � "�1e�0x2="for � � 1.) A similar argument can be applied for wj;i. For x 62 
3 it remainsto show that r� & dist (x; @
). Indeed, if � � 1 this is obvious, and for � < 1we �nd that r� � r sin � which is the distance to the boundary edge with� = 0.Consider now the case x 2 
�2 . Then we can use [110, Theorem 6.2] to prove(5.17), (5.18), in that case. Note that uc contains only the singular terms ofU (s)asy;j;2n;M , and they vanish outside 
�2 .Finally, [110, Theorem 6.1] yields (5.19) where n and ` have a di�erent meaninghere and in [110].We remark that there is a revised version [111] of [110] where instead of polarcoordinates (r; �) an in general non-orthogonal coordinate system (e; y) is usedto describe the terms vj;i and wj;i. With this additional material one can proveAssumption 5.1 for ! = �=2 and ! = 3�=2 but it is not clear how to do thisfor general !.Writing �2 in (5.17), however, makes sense since it is well known that layerterms have a behaviour as e�0dist (x;@
)=". The di�culty with Kellogg's resultis that he used polar coordinates (r; �) centered at the vertices of 
 which



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 191seems to be not suited in regions with " . r � 1, " . � . 1. The problemsremain also in the revised version [111] of [110]. In the former paper [96],Han and Kellogg treated the case when 
 is the unit square. They derived aslightly di�erent splitting with boundary layer terms ub in Cartesian coordi-nates and with an estimate as given by (5.17). But in that paper, it was notobtained that the corner singularities (5.18) restrict to an "-neighbourhoodof Cj. Nevertheless, Assumption 5.1 seems to be correct, a proof will appearelsewhere [67].
5.3.2 Interpolation error estimates on locally re�ned meshesFor applying the �nite element method, the inner domain 
1 is meshed ingeneral (see Remark 5.6 for the exception) using O(h�2) isotropic triangles orquadrilaterals e with mesh size diam e � h. The boundary layer strips 
3;j,j = 1; : : : ; J , are subdivided into O(h�1) �O(h�1) trapezoids of comparablesize. If desired each trapezoid can be divided into two triangles. Thus we geth1;e � h and h2;e � ah in 
3;j:The subdomains 
2;j, j = 1; : : : ; J , are split into O(h�2) (possibly isotropic)elements satisfying the maximal angle condition. If �j > k + 1 (recall that kcorresponds to the degree of the polynomial trial functions) then all elementshave the same size, otherwise we demanddiam e � "h1=�j if Cj 2 e;diam e � "h(r=")1��j if e � 
2;j; 0 < dist (Cj; e) . ";diam e . ah if e � 
2;j; " . dist (Cj; e): (5.21)
The parameters �j are chosen such that

�j < �jk if �j � k; �j = 1 if �j > k: (5.22)
We explain the construction near corners by the example of an isotropic trian-gle with edges of length O(a) and one vertex in Cj. A subtriangle with edgesof length O(") and one vertex in Cj (shaded in Figure 5.4) can be covered bya re�ned mesh as explained in Section 4.2. The remaining quadrilateral canbe divided into O(h�1)�O(h�1) quadrilateral elements which can (but do nothave to) be split into two triangles each. If the quadrilaterals are obtained bya uniform splitting we get elements with an aspect ratio a=". This is allowedbut it can be avoided by some transition layer where the element size "h isdoubled until ah is reached.
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� ah
� "h1=�j � "h
Fig. 5.4 Illustration of the mesh re�nement near corners.
Remark 5.6 For compatibility reasons, elements e with diam e � h and %e �ah must be used in regions 
1;j � 
1 close to corners Cj with large interiorangles. Observe that these regions are small, meas2
1;j � ah.The �nite element space V0h � C(
) is de�ned again by (5.8). In the remainingpart of this subsection we derive interpolation error estimates for u on thefamily of meshes just described. We distinguish two di�erent choices of theparameter a.Lemma 5.3 Let uc satisfy (5.18), and let Th be as described above. Then theinterpolation error can be estimated byjuc � Ihuc;Wm;2(
)j . "1�mhk+1�m; m = 0; 1;if �j < �j + 1�mk + 1�m for �j � k;�j = 1 for �j > k; j = 1; : : : ; J: (5.23)
Moreover, the estimatekuc � Ihuc;L1(
)k . hk+1holds if �j satis�es�j < �jk + 1 for �j � k + 1; j = 1; : : : ; J: (5.24)



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 193The parameter k corresponds to the degree of the polynomials, see (5.8) and(1.14).In the case " � 1 the result is classical, see [28], [150, pages 274f.] and [158]for k = 1, and [81] for general k. However, in these references the constructionof the mesh is more restrictive than here. Note that (5.22) is the stronger ofthe conditions (for m = 0 and m = 1) mentioned in the lemma.Proof We estimate the error in 
�2;j with arbitrary j 2 f1; : : : ; Jg and dis-tinguish two cases. Note that we can assume that �j � k + 1 since otherwiseuc = 0 in 
�2;j.First, let Cj 2 e. By (5.18) and (5.21) we obtain with kIhuc;L1(e)k .kuc;L1(e)k thatkuc � Ihuc;L1(e)k . kuc;L1(e)k . "��j ("h1=�j)�j � h�j=�j . hk+1(5.25)for �j from (5.24). By analogy we getkuc � Ihuc;L2(e)k . (meas2e)1=2kuc;L1(e)k. "��j ("h1=�j)�j+1 � "h(�j+1)=�j . hk+1for �j � minf(�j + 1)=(k + 1); 1g. For the estimate of the derivative ofthe interpolation error we have to modify this proof slightly since we cannotassume that uc 2W 1;1(e). But we have uc 2W 1;2(e). By integration we get
juc;W 1;2(e)j2 . "�2�j Z diam e0 r2�j�2r dr . "�2�j(diam e)2�j � h2�j=�j

and hence by using the inverse inequality and (5.25)juc � Ihuc;W 1;2(e)j. juc;W 1;2(e)j+ (diam e)�1(meas2e)1=2kIhuc;L1(e)k. h�j=�j . hk (5.26)for �j � minf�j=k; 1g. Note that we have to add a logarithmic term for�j = 1, juc;W 1;2(e)j2 . "�2 Z diam e0 ���ln r" ���2 r dr. "�2r2 �(ln(r="))22 � ln(r=")2 + 14�diam e0. h1=�j(lnh)2;but for �j < 1=k the result remains the same.



194 5 Anisotropic �nite element approximations in boundary layersLet now re := dist (e; Cj) > 0. In this case we can use the interpolation errorestimates. We get with (5.21) and for m = 0; 1juc � Ihuc;Wm;2(e)j2. (diam e)2(k+1�m)juc;W k+1;2(e)j2. ["h(re=")1��j ]2(k+1�m)"�2�j Ze r2(�j�k�1). "2[�j(k+1�m)��j ]h2(k+1�m) Ze r2[(1��j)(k+1�m)+�j�k�1]
� "2[�j(k+1�m)��j ]h2(k+1�m) Ze r2[�j�m��j(k+1�m)]

since re � r in e. HenceXe�
�2;jCj 62e juc � Ihuc;Wm;2(e)j2
. "2[�j(k+1�m)��j ]h2(k+1�m) Z "0 r2[�j�m��j(k+1�m)]+1 dr� "2[�j(k+1�m)��j ]h2(k+1�m)"2[�j�m��j(k+1�m)]+2� "2(1�m)h2(k+1�m) (5.27)if �j � m � �j(k + 1 � m) > �1 which follows from (5.23). For �j = k + 1we have to include the logarithmic term as above but the result remains thesame. The L1-estimate is derived viakuc � Ihuc;L1(e)k . (diam e)k+1juc;W k+1;1(e)j. ["h(re=")1��j ]k+1"��jr�j�k�1e� "�j(k+1)��jhk+1r�j��j(k+1)e . hk+1since �j � �j(k + 1) > 0 and re . ".Together, the estimates (5.26){(5.27) give the desired result since uc = 0 in
 n 
�2 .

Lemma 5.4 Let ub satisfy (5.17) and let Th be as described above with a =a�"j ln "j, a� � (k + 1)=0. Then the interpolation error estimatesjub � Ihub;Wm;2(
)j . "1=2�mj ln "jk+1=2hk; m = 0; 1; (5.28)kub � Ihub;L1(
)k . j ln "jk+1hk+1; (5.29)hold.Proof In 
1 we have jD�ubj . "�j�je�0a�j ln "j = "k+1�j�j. Hence the desiredestimates are satis�ed when restricted to 
1.



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 195In 
2 we have jD�ubj . "�k�1 for j�j = k + 1. Hence we get for m = 0; 1jub � Ihub;Wm;2(
2)j . (meas2
2)1=2(ah)kjub;W k+m;1(
2)j. ak+1hk"�k�m � "1�mj ln "jk+1hk;kub � Ihub;L1(
2)k . (ah)k+1jub;W k+1;1(
2)j. j ln "jk+1hk+1:Finally, in 
3 we have jD�ubj . "��2 + "�j�je�0a�j ln "j . "��2. By usingTheorem 2.1 or 2.8 we getkub � Ihub;L2(
3)k. (meas2
3)1=2 Xj�j=k h�1(ah)�2kD�ub;L1(
3)k
. (meas2
3)1=2 Xj�j=k h�1(ah)�2"��2� (meas2
3)1=2hk Xj�j=k j ln "j�2� hk"1=2j ln "jk+1=2jub � Ihub;W 1;2(
3)j. (meas2
3)1=2 Xj�j=k h�1(ah)�2jD�ub;W 1;1(
3)j
. (meas2
3)1=2hk Xj�j=k a�2"��2�1� hk"�1=2j ln "jk+1=2kub � Ihub;L1(
3)k. Xj�j=k+1h�1(ah)�2kD�ub;L1(
3)k
. hk+1j ln "jk+1:Summing up these estimates we get the assertion.

Lemma 5.5 Let ub satisfy assumption (5.17) and let Th be as described abovewith a = minfa
; a�"j ln hjg, a� � (k + 1)=0, a
 suitably chosen. Then theinterpolation error estimateskub � Ihub;L2(
)k . hk(h+ "1=2j lnhjk+1); (5.30)jub � Ihub;W 1;2(
)j . "�1=2hkj ln hjk+1; (5.31)kub � Ihub;L1(
)k . hk+1j ln hjk+1; (5.32)hold.



196 5 Anisotropic �nite element approximations in boundary layersSome ideas for the following proof were taken from [73].Proof We prove the lemma �rst for the case a = a�"j ln hj. In 
1 we havejD�ub(x)j . "j�je�0dist (x;@�)=". Since R1a e�20x2=" dx2 � "e�20a=" � "h2(k+1)we obtainkD�ub;L2(
1)k . "�j�j+1=2hk+1;kD�ub;L1(
1)k . "�j�jhk+1:Consequently, we derive by using the triangle inequalitykub � Ihub;L2(
1)k . (meas2
1)1=2kub;L1(
1)k . hk+1jub � Ihub;W 1;2(
1)j . jub;W 1;2(
1)j+ h�1kIhub;L2(
1)k. "�1=2hk+1 + hk . "�1=2hk;kub � Ihub;L1(
1)k . kub;L1(
1)k . hk+1:The W 1;2-norm estimate has to modi�ed slightly in the exceptional subregions
1;j close to corners Cj with large interior angles, see the remark at the endof the description of the mesh. With %e � ah and meas2
1;j � ah we obtainjub � Ihub;W 1;2(
1;j)j . jub;W 1;2(
1;j)j+ (ah)�1kIhub;L2(
1;j)k. "�1=2hk+1 + (ah)�1(ah)1=2hk+1. "�1=2hk;that means, the result above is valid.In 
2 we have jD�ubj . "�k�1 for j�j = k + 1 and we get by analogy to theproof of Lemma 5.4jub � Ihub;Wm;2(
2)j . "1�mhkj ln hjk+1;kub � Ihub;L1(
2)k . hk+1j lnhjk+1:In 
3 we evaluate the terms separately. Let ub =: u1 + u2 withjD�u1j . "��2e�0x2=" . "��2 ;jD�u2j . "�j�je�0r=" . "�j�je�0a�j lnhj . "�j�jhk+1:The �rst term can be treated as ub in the proof of Lemma 5.4. We getju1 � Ihu1;Wm;2(
3)j . hk"1=2�mj lnhjk+1=2ku1 � Ihu1;L1(
3)k . hk+1j lnhjk+1:The second term can be bounded as ub in 
1. One has only to mention thatthe inverse inequality in the W 1;2-estimate leads to a factor (ah)�1 � ("h)�1instead of h�1. This, however, does not inuence the result since (meas2
3)1=2produces another a1=2. Summing up the estimates we get the assertion fora = a�"j lnhj.



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 197Tab. 5.5 Example 5.1: Scaled error norm jjju� uh jjj
=("1=2j log10 "jh) for a = 2"j log10 "j.h�1 " = 10�1 " = 10�3 " = 10�54 0.648 0.564 0.5528 0.650 0.574 0.56616 0.653 0.576 0.57432 0.653 0.576 0.57664 0.653 0.583 0.578
In the remaining case a = a
 6= a(") the mesh is quasi-uniform. We getjub � Ihub;Wm;2(
)j . hkjub;W k+m;2(
)j . "1=2�k�mhk;kub � Ihub;L1(
2)k . hk+1jub;W k+1;1(
)j . "�k�1hk+1:(The factor "1=2 is obtained by integration of (5.17).) With " < a
=(a�j lnhj) �j ln hj�1 we obtain the desired result.
Remark 5.7 We mention that the quality of the interpolation error estimatesfor ub can be improved. First, the L2-estimate can be made of order hk+1 inboth lemmata but this is not exploited further.Second, it is possible to diminish the exponent of the logarithmic term in(5.28) from k + 1=2 to k, see the preprint version of [14], but this re�nedproof does not extend to three dimensions when k = 1. Therefore we donot pursue this further. We conclude from a computational argument thatthe result is optimal with this modi�cation. Table 5.5 displays the scaled errornorm jjju�uh jjj
=("1=2j log10 "jh) for calculations of Example 5.1 with di�erentvalues of h and ". It becomes constant for decreasing " and h.
Theorem 5.1 Let u satisfy Assumption 5.1 and consider Th as describedabove with � satisfying (5.22). For a = a�"j ln "j, a� � (k + 1)=0, we ob-tain ju� Ihu;L2(
)j . "1=2j ln "jk+1=2hk + hk+1;ju� Ihu;W 1;2(
)j . "�1=2j ln "jk+1=2hkku� Ihu;L1(
)k . j ln "jk+1hk+1:For a = minfa
; a�"j lnhjg, a� � (k + 1)=0, a
 suitably chosen, we getku� Ihu;L2(
)k . hk(h+ "1=2j ln hjk+1);ju� Ihu;W 1;2(
)j . "�1=2hkj lnhjk+1;ku� Ihu;L1(
)k . hk+1j lnhjk+1:



198 5 Anisotropic �nite element approximations in boundary layersProof For ub and uc use Lemmata 5.3{5.5, for us and ur use thatj(us + ur)� Ih(us + ur);Wm;q(
)j. hk+1�m jus + ur;W k+1;q(
)j (5.33). � hk+1�m [(meas2
)1=2 + "2] if q = 2hk+1�m [1 + 1] if q =1: (5.34)In order to bound ur we take n � k + 3 in Assumption 5.1. In the caseq = 1 we use apply the embedding W k+3;2(
) ,! W k+1;1(
) which giveskur;W k+1;1(
)k . kur;W k+3;2(
)k . 1.
5.3.3 Finite element error estimatesWe conclude now the error estimate in the energy norm (5.7) for the �niteelement solution uh determined by (5.6).Theorem 5.2 Let u satisfy Assumption 5.1 and let uh be the �nite elementsolution on a family of meshes as described in Subsection 5.3.2 where � satis�es(5.22). For a = a�"j ln "j, a� � (k + 1)=0, we obtainjjju� uh jjj
 . hk("1=2j ln "jk+1=2 + h); (5.35)whereas for a = minfa
; a�"j ln hjg, a� � (k + 1)=0, the estimatejjju� uh jjj
 . hk("1=2j lnhjk+1 + h); (5.36)holds.Proof Use Theorem 5.1 and the projection property of the �nite elementmethod with respect to the energy norm.
Remark 5.8 We proved error estimates for the Galerkin solution on two typesof anisotropically re�ned �nite element meshes. Let us compare both ap-proaches. In Shishkin type meshes we use a = a�"j ln "j, a� � (k+1)=0. Thatmeans that the re�ned mesh covers the layer. Indeed, we have D(0;j)e�0x2=" �"k+1�j in 
1. With Shishkin meshes, a = minfa
; a�"j lnhjg, we resolve onlypart of the layer as long as h > ". Is this \more economical" [186]? We obtainwith N2 elements

jjju� uh jjj
 . � N�k"1=2j ln "jk+1=2 +N�(k+1) if a = a�"j ln "j;N�k"1=2j lnN jk+1 +N�(k+1) if a = a�"j lnN j:(5.37)



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 199If the constants in these two estimates (hidden in .) are equal (which is notclear) then the error is smaller for Shishkin meshes.The di�erence in (5.37) is much more essential in convection-di�usion-reactionproblems, where the term "1=2 does not appear in estimates like (5.37), seeSection 5.4. In this case we get even lim"!0 jjju � uh jjj
 = 1 for �xed h andShishkin type meshes.We would like to propose another de�nition for a, namelya = a�"minfj lnhj; j ln "jg; (5.38)resulting in a slightly sharper estimate than both (5.35) and (5.36).Corollary 5.1 Let u satisfy Assumption 5.1 and let uh be the �nite elementsolution of problem (5.15) on a family of meshes as described above where �satis�es (5.22). For a as in (5.38) we obtainjjju� uh jjj
 . hk"1=2minfj lnhjk+1=2; j ln "jk+1g+ hk+1:Remark 5.9 As we have seen in Sections 2.3, 2.5, and 2.6, the validity ofthe local interpolation error estimates for anisotropic �nite elements dependscritically on the dimension of the domain. For some cases of the parametersk, m, and q, more regularity has to be assumed in three dimensions. But inthe proofs of Lemmata 5.4 and 5.5 we used only that ub 2 W k+1;1(
3) suchthat the anisotropic error estimates hold in three dimensions as well. However,estimate (5.33) in the proof of Theorem 5.1 is not valid in the single instanced = 3, k = 1, m = 1, q = 2. The way out is to use additional smoothnessus + ur 2W k+2;2(
) and an interpolation error estimate as in the second partof Corollary 2.2. With these arguments we see that the results of Lemmata5.4 and 5.5 can be extended to three dimensions provided that an assumptionlike 5.1 is given.The critical part in the investigation of the three-dimensional problem is thatthe singular part uc contains not only corner singularities but also edge singu-larities. They have to be approximated, for example, by re�ned meshes similarto them discussed in Section 4.4.An analysis for the case 
 = (0; 1)3 and without corner and edge singularities(as it is possible under some compatibility conditions on the data) can befound in [14].Let us discuss the implications of an insu�cient treatment of the corner sin-gularity uc.



200 5 Anisotropic �nite element approximations in boundary layersExample 5.2 Consider an integer j 2 f1; : : : ; Jg such that �j < k. Let ucsatisfy (5.18). Assume that Th is constructed as described at the beginningof Subsection 5.3.2, with the exception that Th is quasi-uniform in 
�2;j. Theelement size in this subdomain is denoted by h. �Lemma 5.6 In the situation of Example 5.2 the interpolation error can beestimated bykuc � Ihuc;L2(
�2;j)k . h("�1h)�j��;juc � Ihuc;W 1;2(
�2;j)j . ("�1h)�j��;kuc � Ihuc;L1(
�2;j)k . ("�1h)�j��:Before we prove the lemma we formulate a corollary which follows due to theprojection property of the �nite element method.Corollary 5.2 In the situation of Example 5.2 the �nite element error can beestimated byjjju� uh jjj
 . ("+ h)("�1h)�j��
. "h�j�� �8<: 1 if �j = 1; that means h � "h;j ln "j�j�� if h � ah and a � "j ln "j;j lnhj�j�� if h � ah and a � "j ln hj:Proof (Lemma 5.6) By analogy to the proof of Lemma 5.3 we obtain forelements e with Cj 2 e (that means re := dist (e; Cj) = 0) the estimateskuc � Ihuc;L1(e)k . kuc;L1(e)k . "��jh�j ;kuc � Ihuc;L2(e)k . (meas2e)1=2kuc;L1(e)k . "��jh1+�j ;juc � Ihuc;W 1;2(e)j . "��jh�j :For elements with re > 0 we use that h . re . r in e and �j < k to obtain form = 0; 1 and arbitrary � 2 (0; k � �j)juc � Ihuc;Wm;2(e)j2 . h2(k+1�m)juc;W k+1;2(e)j2. h2(1�m+�j��)h2(k��j+�)"�2�j Ze r2(�j�k�1). h2(1�m+�j��)"�2�j Ze r2(�1+�)and similarly

kuc � Ihuc;L1(e)k2 . h2kjuc;W k+1;2(e)j2 . h2(�j��)"�2�j Ze r2(�1+�):



5.3 Boundary layers and corner singularities in a reaction-diffusion problem 201Summing up these estimates we getkuc � Ihuc;L2(
�2;j)k2. "�2�jh2(1+�j) + "�2�jh2(1+�j��) Z "0 r2(�1+�)+1 dr. "2(��j+�)h2(1+�j��);juc � Ihuc;W 1;2(
�2;j)j2. "�2�jh2�j + "�2�jh2(�j��) Z "0 r2(�1+�)+1 dr. "2(��j+�)h2(�j��);kuc � Ihuc;L1(
�2;j)k2. max�"�2�jh2�j ; "�2�h2(�j��) Z "0 r2(�1+�)+1 dr�. "2(��j+�)h2(�j��):
We conjecture that � = 0 can be achieved by a more involved proof, see[150, page 275] for a proof with a more special �nite element mesh. In thatmonograph we �nd also an example [150, page 265] which can be modi�edslightly to show that these estimates are sharp in the following sense.
Lemma 5.7 For v = "��r� sin�� (r := dist (x;Cj)) we get in general nobetter result than

minvh2V0h jjj v � vh jjj
 & "h� �8<: 1 if �j = 1; that means h � "h;j ln "j� if h � ah and a � "j ln "j;j lnhj� if h � ah and a � "j ln hj;(5.39)
if the mesh is chosen as described in Example 5.2.
Proof Without loss of generality assume that Cj = (0; 0). Let e be a trianglewith the vertices (0; 0), (b; 0) on the boundary of 
 and (0; b) in the interior.Since any vh 2 V0h satis�es the boundary condition we get via vh(0; 0) =vh(b; 0) = 0 the relation D(1;0)vh = 0. Consequently, we obtain by a direct



202 5 Anisotropic �nite element approximations in boundary layerscalculationjv � vh;W 1;2(e)j2� kD(1;0)v;L2(e)k2 � Z �=20 Z b=p20 (D(1;0)v)2rdrd�
= Z �=20 Z b=p20 ("���r��1 sin(�� 1)�)2rdrd�
= "�2��2(2�)�1(b=p2)2� Z �=20 sin2(�� 1)� d� � ("�1b)2�:Consequently,
minvh2V0hje jv � vh;W 1;2(e)j & "��h� � � h� if h � "h;(ah=")� if h � ah: (5.40)

This function v can also be considered in our example since the leading singu-larity is "��r� sin�� [110]. Such a term is in general contained in the solutionwhen the data do not satisfy certain compatibility conditions. Consequently,we cannot expect a better approximation order for the �nite element solutionthan that given in (5.39) when no mesh grading near the corners is applied.
5.4 A convection-di�usion-reaction problem
5.4.1 Statement of the problemThis section is concerned with the �nite element solution of the linear(ized)di�usion-convection-reaction model problemL"u := �"�u+ b � ru+ cu = f in 
; u = 0 on @
; (5.41)where 
 � R 2 is a bounded polygonal domain, " 2 (0; 1] is the perturbationparameter, and b, c, and f are su�ciently smooth functions satisfyingr � b = 0; c � 0 almost everywhere in 
: (5.42)Problem (5.41) is of singularly perturbed type when"�1jb(x)j � 1 and/or "�1jc(x)j � 1: (5.43)The solution u has in general sharp boundary or interior layers, as introducedin Sections 5.2 and 5.3 for the special case b � 0 but with a much greater
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b
ordinary layer

b
parabolic layerFig. 5.5 Illustration of the location of ordinary and parabolic boundary layers.

variety, see Example 5.3 for an introduction. The resolution of such layers isagain a typical application of anisotropic meshes.
Example 5.3 The location of boundary layers is well known. To get an ex-ample we consider problem (5.41) in the unit square 
 = (0; 1). Assume thatb = (cos�; sin�)T . In the case � 2 (0; �=2) there occur only ordinary (oroutow) boundary layers of thickness O("j ln "j) at the two sides x1 = 1 andx2 = 1. For � = 0 parabolic (or characteristic) layers of thickness O("1=2j ln "j)are located at x2 = 0 and x2 = 1. At the outow part of the boundary layer,x1 = 1, again an ordinary boundary layer occurs. In all cases there is no layerat the inow part of the boundary, see also Figure 5.5. In the case b � 0there is a layer along the whole boundary @
, see Sections 5.2 and 5.3. �
The investigation of properties of the analytical solution and of methods forthe numerical solution of (5.41) are topics of extensive current research. Agood review of the state of the art in January 1997 is given in [162]. So werestrict pointers to related literature to a minimum and present only someresults for the �nite element method on anisotropic meshes. But before wecan do that we have to introduce some notation and to discuss assumptionson the analytical solution.Denote by ��, �+, and �0 the inow, outow and characteristic parts of theboundary � = @
; the index denotes the sign of b � n where n is the outwardunit normal on �. Note that corners cannot be classi�ed by this de�nition, sothey do not belong to ��, �+, or �0. For simplicity we assume that the typeof the boundary does not change at corners with interior angle greater thanor equal to �. We discuss the additional di�culties with concave corners inRemark 5.12 at the end of this section.
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Fig. 5.6 Illustration of the partition for a convection dominated problem.

The parameter dependent partition of 
 is obtained by introducing lines with adistance a+ to �+ and a0 to �0, and eventually (near corners with large angles)some more lines perpendicularly to the parallel lines, see the illustration in Fig-ure 5.6. The parameters a+ and a0 will later be chosen as the thickness of there�nement layer (a+ � "j ln "j, a0 � "1=2j ln "j, or a+ � "j ln hj, a0 � "1=2j lnhj).Again, the interior domain is denoted by 
1, the union of the small subdo-mains 
2;j near corners Cj by 
2 := Sj 
2;j, and the union of all boundarystrips 
3;j near �+ and �0 by 
3 := Sj 
3;j. Note that there are no suchsubdomains near ��. Moreover, we introduce 
+ := S3i=2Sj:@
i;j\�+ 6=;
i;jand 
0 := S3i=2Sj:@
i;j\�0 6=;
i;j.
In 
3 we can de�ne a boundary �tted Cartesian coordinate system (x1; x2) withx2 = dist (x;�). Particular (in general non-orthogonal) coordinate systems arealso considered near (r . "1=2j ln "j) corners Cj 2 �+\�0. Then Cj is assumedto be the origin, �+ \ @
2;j is part of the x1-axis, and �0 \ @
2;j is part of thex2-axis. Derivatives (D�u)(x) for x in these subdomains are to be understoodwith respect to these coordinate systems. Points in the remaining subdomainscan be considered in any Cartesian coordinate system. Finally, we de�ne by rthe distance to the set of corners fCjgJj=1.



5.4 A convection-di�usion-reaction problem 205Assumption 5.2 Let u be the solution of problem (5.41) where b, c, and fare su�ciently smooth functions satisfying (5.42) and certain compatibilityconditions. De�ne index setsJ++ := fj : (@
2;j \ �) � �+g; J+ := fj : (@
3;j \ �) � �+g;J00 := fj : (@
2;j \ �) � �0g; J0 := fj : (@
3;j \ �) � �0g;J0+ := fj : Cj 2 �+ \ �0)g:Then the solution u can be split into a smooth term us, boundary layer termsub;j, j 2 J+ [ J0, and corner layer terms uc;j, j 2 J++ [ J00 [ J0+,u = us + Xj2J+[J0 ub;j + Xj2J++[J00[J0+ uc;j;such that jD�usj . 1 in 
;
jD�ub;j j .

8>><>>:
"��2e�0x2=" in 
3;j; j 2 J+;"�j�je�0dist (x;�\
3;j)=" in 
 n 
3;j; j 2 J+;"��2=2e�0x2=p" in 
3;j; j 2 J0;"�j�j=2e�0dist (x;�\
3;j)=p" in 
 n 
3;j; j 2 J0;

jD�uc;jj .
8>><>>:

"�j�je�0dist (x;Cj)=" if j 2 J++;"�j�j=2e�0dist (x;Cj)=p" if j 2 J00;"��1=2e�0x1=p""��2e�0x2=" if j 2 J0+; r . "1=2j ln "j;"�j�j=2e�0dist (x;Cj)=p" if j 2 J0+; r & "1=2j ln "j;with some constant 0 > 0.This assumption covers the typical behaviour of the solution within (ordinaryand parabolic) boundary layers, see also Example 5.4. However, problems withcorner singularities and interior layers are excluded. The treatment of cornersingularities is not completely clear since they may, due to the convection,inuence not only a neighbourhood of the corners. The treatment of interiorlayers was already discussed in Remark 5.3. They do not appear in so-calledproblems of channel type [13, 141] if the right hand side f and the inowboundary are su�ciently smooth [141, Theorem 2.3]. We admit also that thedescription of the behaviour near Cj 2 �+ [ �0 is speculative. We did notexclude parabolic layers, as it is done in Example 5.4, because we wanted tostress that there is no approximation problem with the terms ub;j , j 2 J0.Example 5.4 Consider
 = (0; 1)2; c � 0; b1(x) � �20 < 0; b2(x) � �20 < 0: (5.44)



206 5 Anisotropic �nite element approximations in boundary layersThen we have only ordinary boundary layers at the sides x1 = 0 and x2 = 0. Itis proved in [73] that the solution u ful�lls Assumption 5.2 for j�j � 2 providedthat the right hand side satis�es the compatibility conditionsf(Cj) = 0; j = 1; : : : ; 4; (Dsf)(1; 1) = 0; jsj � 2: (5.45)In particular, condition (5.45) guarantees that no interior layer emanates fromthe corner (1; 1) in the inow boundary layer. �Let us discuss now the �nite element solution of (5.41). The variational for-mulation of (5.41) reads:Find u 2 V0 : a(u; v) = (f; v)
 8v 2 V0; (5.46)where a(u; v) := "(ru;rv)
 + 12f(b � ru; v)
 � (b � rv; u)
g+ (cu; v)
:For a family Th of admissible triangulations we can de�ne a �nite elementspace Vh, see Section 1.3. We consider the following stabilized �nite elementmethod of Galerkin/Least-squares type [105].Find uh 2 V0h : ah(uh; vh) = hf; vhih 8vh 2 V0h; (5.47)with ah(u; v) := a(u; v) +Xe �e (L"u; L"v)e;hf; vih := (f; v)
 +Xe �e (f; L"v)e;and a set f�eg of non-negative numerical di�usion parameters.Remark 5.10 Method (5.47) is of Galerkin-Petrov type. This can be seeneasily by rewriting ah(:; :) and hf; :ih,ah(u; v) := Xe (L"u; v + �e L"v)e;hf; vih := Xe (f; v + �e L"v)e:Other methods of stabilization can be obtained, for example, by replacing+�e L"v by ��e L�"v in the expressions above, see also the explanation in Re-mark 5.4, page 186.



5.4 A convection-di�usion-reaction problem 2075.4.2 Error estimates for the pure Galerkin methodWith �e = 0 8e 2 Th we obtain by (5.47) the standard Galerkin method. Atleast on isotropic meshes the Galerkin solution may su�er from non-physicaloscillations (wiggles) unless the elementwise numbersPe := "�1diam e kb; [L1(e)]dk; �e := "�1(diam e)2kc;L1(e)k; (5.48)are su�ciently small. As a remedy, stabilized variants have been developed,for example (5.47) with �e > 0 [105]. Practical calculations on quasi-uniform(isotropic) meshes show that wiggles occur globally in 
 for the standardGalerkin method, but they are restricted to a numerical layer region of widthO(h�2j ln hj) for method (5.47) with suitable chosen parameters �e. The nu-merical layers are in general larger than the boundary and interior layers whichhave a width O("�1j ln "j). The size of �1 depends on the problem and char-acterizes the layer, see Example 5.3, whereas �2 depends on the discretizationand is not known in general.One can try to resolve the layers by means of anisotropic mesh re�nement. Forthe construction of the �nite element mesh we use ideas from Sections 5.2 and5.3. The boundary strips 
3;i are subdivided into O(h�1)�O(h�1) trapezoidswhich can be divided further into two triangles. Each of the subdomains 
1and 
2;j is split into O(h�2) elements e satisfying the maximal angle condition.In each subdomain the elements shall have comparable size.The Galerkin �nite element method on such meshes is analyzed for bilinearrectangular elements in [186]. The problem is like the one described in Example5.4, but with c � c0 > 0,
 = (0; 1)2; c � c0 > 0; b1(x) � �20 < 0; b2(x) � �20 < 0:(5.49)For a+ = minf1=2; (2=0)"j ln hjg these authors prove the interpolation errorestimates ku� Ihu;L1(
1)k . h2;ku� Ihu;L1(
 n 
1)k . h2j lnhj2;jjju � Ihu jjj
 . hj lnhj; (5.50)[186, Theorems 4.2 and 4.3] wherejjj v jjj2
 := "jv;W 1;2(
)j2 + kv;L2(
)k2:Theorem 5.3 Let u be the solution of (5.41) and assume that (5.42), (5.43),(5.45), and (5.49) are valid. Assume that uh 2 V0h is the Galerkin solution



208 5 Anisotropic �nite element approximations in boundary layers(�e = 0 for all e in (5.47)) on a Shishkin mesh with bilinear rectangular ele-ments and a+ = minf1=2; (2=0)"j ln hjg. Then the error estimatejjju� uh jjj
 . hj lnhj (5.51)holds.Proof Withjjju� uh jjj
. jjju� Ihu jjj
 + Xe2Thmin
�h�22 ku� Ihu;L2(e)k2;

"�1meas2e ku� Ihu;L1(e)k2�!1=2
. jjju� Ihu jjj
 + h�1ku� Ihu;L2(
1)k+"�1=2(meas2(
 n 
1))1=2ku� Ihu;L1(
 n 
1)kand (5.50) the result (5.51) is obtained [186].Moreover, the pointwise error estimatemaxi j(u� uh)(X(i))j . h1=2j ln hj3=2; X(i) 2 
 n 
1; (5.52)in the re�nement layer is proved in [186] by using the discrete Green function.But this estimate is not optimal.We remark also that the estimate (5.50) was proved later in a simpler, morespeci�c (term by term) way in [73]: these authors obtained for triangular andrectangular elements with k = 1ku� Ihu;L2(
)k . h2(1 + "1=2j lnhj2); (5.53)"1=2ju� Ihu;W 1;2(
1)j . h; (5.54)"1=2ju� Ihu;W 1;2(
 n 
1)j . hj ln hj; (5.55)by using the anisotropic interpolation error estimates of Theorems 2.1 and 2.6.Since these local estimates are now available also for trapezoidal elements, seeTheorem 2.8, these results extend to more general domains, provided thatAssumption 5.2 can be proved.From the theoretical point of view, estimates (5.51) and (5.52) show that thepure Galerkin method converges uniformly with respect to "� 1. However, asreported in [162], practical calculations with linear and bilinear elements showthat these estimates are very sensitive to the choice of the parameter a+. Suchnon-robust behaviour reduces the practical importance of the pure Galerkinmethod.



5.4 A convection-di�usion-reaction problem 2095.4.3 Error estimates for a stabilized Galerkin methodLet us consider from now on the stabilized Galerkin method of Galerkin/Least-squares type as given by (5.47) with �e > 0. The potential of this method,when combined with anisotropic �nite element meshes, was �rst investigatedtheoretically in [14] and numerically in [176]. Let us recall some results of [14].One can prove existence and uniqueness of the solution uh 2 V0h of (5.47) on ageneral admissible mesh (including anisotropic re�nement) [14, Theorem 3.4].The bilinear form ah(:; :) induces a norm in V ,jjj v jjj2
;� := ah(v; v)= "jv;W 1;2(
)j2 + kc1=2v;L2(
)k2 +Xe�
 �ekL"v;L2(e)k2: (5.56)
The �nite element error can be estimated in this norm via interpolation errorestimates by [14, estimate (3.28)]

jjju� uh jjj2
;� � infvh2V0h 2jjju� vh jjj2
;� +Xe2Th Z2eku� vh;L2(e)k2!(5.57)with Ze := minf"�1kb; [L1(e)]dk2; 2��1e g. (By using the technique of [186,(5.2){(5.3)] one can improve Ze toZe := minf"�1kb; [L1(e)]dk2; 2��1e ; h�12;eBe(mine c(x))�1=2g
which is helpful for c(x) � c0 > 0 and the treatment of Shishkin meshes.)Inserting the local interpolation error estimates (Theorems 2.1 and 2.6) andthe assumptions on the analytical solution u, and equilibrating some termsleads to a suitable choice of �e,�e = "�1h22;e(1 + P 2e + �2e)�1=2 if P 4e � 1 + P 2e + �2e;(5.58)�e = min� "B22 ; h22;e" 1 + P 2e + �e1 + P 2e + �2e� if P 4e � 1 + P 2e + �2e;(5.59)with Pe := "�1h2;eBe, Be := kb; [L1(e)]2k, �e := "�1h22;eCe, Ce := kc;L1(e)k,h2;e � h1;e. With this choice we get for a slightly di�erent mesh than intro-duced above (h2;e = "h in the ordinary boundary layer and h2;e = "1=2h in thecharacteristic boundary layer which leads to a number of elements of orderNel � h�2j ln "j2) the error estimatejjju� uh jjj
;� . hkj ln "j1=2(1 + kb; [L1(
)]2kh+ kc;L1(
)kh2)1=2� N�k=2el j ln "jk+1=2: (5.60)



210 5 Anisotropic �nite element approximations in boundary layersWe will give now an error estimate for the Shishkin type meshes introducedbefore in this section (a+ � "j ln "j, a0 � "1=2j ln "j). We comment on Shishkinmeshes (a+ � "j lnhj, a0 � "1=2j ln hj) im Remark 5.11 at the end of thissection. Since we did not include the dependence of u(x) on b(x) and c(x) inAssumption 5.2 we simplify further by assuming"� 1; jb(x)j � 1; jc(x)j . 1 in 
; (5.61)which results in (5.58) as the proper choice of �e,�e = h22;e("2 + h22;eB2e + h42;eC2e )�1=2: (5.62)Theorem 5.4 Let u satisfy Assumption 5.2 and let Th be as described abovewith a+ = a�"j ln "j, a0 = (a�=2)"1=2j ln "j, a� � (k+ 1)=0. Choose �e as givenby (5.62) and assume (5.61). Then the error estimatejjju� uh jjj
;�. hkj ln "jk+1(j ln "j�1 + kb; [L1(
)]2kh+ kc;L1(
)kh2)1=2 (5.63). hkj ln "jk+1=2 � N�k=2el j ln "jk+1=2 (5.64)is valid.Proof We follow the steps of the proof of the related result (5.60) in [14].From (5.57) we obtain by using the anisotropic interpolation error estimatesjjju� uh jjj2
;�. Xe2Th h"ju� Ihu;W 1;2(e)j2 + kc1=2(u� Ihu);L2(e)k2 +
+�ek"�(u� Ihu) + b � r(u� Ihu) + c(u� Ihu);L2(e)k2 ++��1e ku� Ihu;L2(e)k2i (5.65)

. Xe2Th h"2�eju� Ihu;W 2;2(e)j2 + ("+ �eB2e )ju� Ihu;W 1;2(e)j2 +
+(Ce + �eC2e + ��1e )ku� Ihu;L2(e)k2i. Xe2Th Xj�j=k�1 Xj�j=1 Xjj=1Ee;�;h2(�+�+)e kD�+�+u;L2(e)k2 (5.66)

with Ee;�; := "2�eh�2(�+)e + ("+ �eB2e )h�2e + (Ce + �eC2e + ��1e ). "h�2e + Ce + �e("2h�2(�+)e +B2eh�2e + C2e ) + ��1e. "h�22;e +Beh�12;e + Ce;



5.4 A convection-di�usion-reaction problem 211where we have used (5.62), such thatjjju� uh jjj2
;�. Xe2Th("h�22;e +Beh�12;e + Ce) Xj�j=k+1h2�e kD�u;L2(e)k2
. Xe2Th("h�12;eh1;e +Beh1;e + Ceh1;eh2;e)�Xj�j=k+1h2�e kD�u;L1(e)k2: (5.67)

We show now thatXj�j=k+1h2�e kD�u;L1(e)k2 . h2(k+1)j ln "j2(k+1) (5.68)
for all e 2 Th by distinguishing several cases.First, let e � 
1. From Assumption 5.2 we obtain for j�j = k + 1jD�ub;j j . "�(k+1)e�0a+=". "�(k+1)e�(k+1)j ln "j = 1 for j 2 J+;jD�ub;j j . "�(k+1)=2e�0a0=p". "�(k+1)=2e�(k+1)j ln "j=2 = 1 for j 2 J0;jD�uc;jj . "��1=2e�0a0=p""��2e�0a+=". "(k+1)=2 for j 2 J0+; r . "1=2j ln "j;jD�uc;jj . "�(k+1)=2e�0a0=p" . 1 for j 2 J0+; r & "1=2j ln "j:We can treat uc;j with j 2 J++ and j 2 J00 like ub;j with j 2 J+ and j 2 J0,respectively. That means kD�u;L1(e)k . 1. With h1;e . h, h2;e . h, weobtain (5.68) where the logarithmic term is even avoided.The case e � 
2;j can be treated with equal ideas for j 2 J++ and j 2 J00.Therefore we introduce the parameter � by

� = 1 for j 2 J++; � = 12 for j 2 J00:We have kD�(uc;j + ub;j�1 + ub;j);L1(e)k . e��j�j;all other terms can be treated as in 
1. Consequently, we get kD�u;L1(e)k .e��j�j, and with h1;e � h2;e � "�j ln "jh we obtain (5.68).



212 5 Anisotropic �nite element approximations in boundary layersIn corner domains 
2;j with j 2 J0+ we havekD�uc;j;L1(e)k . e��1=2��2;kD�ub;j�1;L1(e)k . e��1=2;kD�ub;j ;L1(e)k . e��2:Consequently, it is kD�u;L1(e)k . e��1=2��2 and with h1;e � "1=2j ln "jh,h2;e � "j ln "jh, we �nd again that (5.68) is valid. Note that we did notdistinguish here between the non-orthogonal coordinate system introducedin the paragraph before Assumption 5.2, and a Cartesian coordinate system(x1;?; x2;?) suited for the anisotropic interpolation error estimates, for exam-ple, x1;? = x1, x2;? = x1 cos!j + x2 sin!j , where !j < � is the interior angleat Cj. The exposition is to be understood that we have transformed betweenthe two systems whenever necessary. Since this transformation is independentof " and h and since @=@x2 = @=@x2;?, this approach is admissible.In the subdomains 
3;j we proceed similarly. Set � = 1 if j 2 J+ and � = 1=2if j 2 J0. Then we havekD�ub;j;L1(e)k . e���2;kD�ub;i;L1(e)k . � "�j�je�0a+=" . 1 8i 6= j; i 2 J+;"�j�j=2e�0a0=p" . 1 8i 6= j; i 2 J0;
kD�uc;i;L1(e)k .

8>><>>:
"�j�je�0a+=" . 1 8i 2 J++ \ fj; j + 1g;"�j�j=2e�0a0=p" . 18i 2 (J00 [ J0+) \ fj; j + 1g;"�j�je�0=p" � 1 8i 62 fj; j + 1g:Consequently, it is kD�u;L1(e)k . e���2 and we get (5.68) with h1;e . h,h2;e . "�j ln "jh.Finally, we have proved (5.68) for all e. By inserting (5.68) into (5.67) weobtain jjju� uh jjj2
;� . h2(k+1)j ln "j2(k+1)Xe2Th("h�12;eh1;e +Beh1;e + Ceh1;eh2;e)

which is the desired result since the number of elements is of order h�2 and"h�12;eh1;e � j ln "j�1, h1;e . h, h2;e . h for all e 2 Th.Remark 5.11 Consider now the analysis of the stabilized method for Shishkinmeshes (a+ � "j ln hj, a0 � "1=2j lnhj). Estimate (5.65) indicates that a term�eju � Ihu;W 1;2(e)j2 has to be treated. From the estimates (5.54), (5.55), weconjecture that �e cannot be chosen larger than O("),�e = minf"; h22;e("2 + h22;eB2e + h42;eC2e )�1=2g: (5.69)
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Fig. 5.7 Proposed mesh near a concave corner.
The remaining analysis for proving (5.51) can be done for (bi-)linear elements(k = 1) as discussed above for the pure Galerkin method. It is the task offurther tests whether a stabilization with �e � " in 
1 and 
2;j, j 2 J00, helps.Recall that this is much less than the stabilization suggested in [14], see (5.58),(5.59), or (5.62). It is not clear whether a result like (5.51) can be shown for�e larger than that given by (5.69).For a comparison of Shishkin and Shishkin type meshes we refer to Remark 5.22which is essentially applicable also for convection-di�usion-reaction problems.Remark 5.12 In this section we assumed for simplicity that the type of theboundary (inow, outow or characteristic) does not change at concave cor-ners. The reason is that near such corners di�erent types of mesh re�nementhave to overlap in a way which is not clear. In Figure 5.7 we give an example ofa corner Cj 2 �+ \ �0 with our proposal how the mesh should be constructedin the re�nement layers. One can observe the transition between mesh sizesa+h and a0h. A similar layer has to be added for the transition to elementswith mesh size h.
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6 Open problems
The main part of this chapter (Sections 6.1{6.3) is devoted to some topicswhich are treated unsatisfactorily up to now. They include a-priori and a-posteriori error analysis as well as the solution of the arising system of linearequations.Finally, with Section 6.4, a short description of software is appended. Thethree software packages were used for the numerical examples throughout thewhole monograph.
6.1 A-priori error analysis and further applications
Anisotropic mesh re�nement o�ers a great potential for the e�ective numericalsolution of all kinds of boundary value problems from science and engineeringwhere the solution has di�erent behaviour in di�erent space directions. Thisincludes in particular boundary layers in viscous ow problems and in variousplate and shell models, shock phenomena in ow problems, and singularitiesnear edges in Poisson type problems like di�usion and linear elasticity.We are on the way of the understanding of the �nite element method onmeshes without a minimal angle condition. The beginning of this developmentgoes back to the �fties and seventies. A large heuristic and experimentalcontribution has been made in particular by scientists and engineers fromthe �eld of computational uid dynamics. This monograph complements thiswith an attempt to summarize numerical-analytical results in this �eld and tocontribute to the mathematical foundation.In Chapters 4 and 5 we studied simple model problems and focused on a carefula-priori error analysis. The strengths of this investigation are the considera-tion of two- and three-dimensional problems in general polygonal/polyhedraldomains, and the treatment of lower and higher order �nite elements. Wehave seen that we needed a large amount of local interpolation error analysis.We have also seen that the problems are di�cult to treat since very accurate



216 6 Open problemsinformation on the behaviour of the solution is necessary. This results in openquestions even for these simple problems.1. In Chapters 2 and 3 we developed a quite extensive machinery of anisotropiclocal interpolation error estimates. Remaining tasks include� the development of an interpolation theory for non-smooth functions onnon-tensor product meshes, and� the de�nition and investigation of an interpolation operator Qh which isapplicable for three-dimensional needle elements (h1;e � h2;e � h3;e) and whichhas the following properties:ju�Qhu;W 1;2(e)j . ju;W 1;2(Se)jku�Qhu;L2(e)k . Xj�j=1h�e kD�u;L2(Se)k:These estimates are needed for the investigation of reliability and e�ciency ofa-posteriori error estimates using the ideas of [189].2. Re�nement strategies for the treatment of corner and edge singularities wereconsidered in Chapter 4 for di�usion problems. For isotropic mesh re�nementit is shown in [23] that the theory extends straightforward to general boundaryvalue problems of second order including systems of di�erential equations. Animportant application is the Lam�e system of linear elasticity. However, theresults of Sections 4.3 and 4.4 are not su�cient for this generalization in thecase of anisotropic re�nement.First, we cannot exclude corner singularities as in Section 4.3 since this waspossible only due to the simplicity of the Poisson equation.Second, for the proof of Theorem 4.5 we proved the anisotropic regularity inBanach spaces V k;p�;� (
) with p > 2. It is not clear how to do this for theLam�e system. It would be desirable to have an approximation theory forp = 2, compare Remark 4.7. This would be a basis for an extension to generalproblems.Finally, we mention that there were some open questions in the treatment ofthe boundary conditions, see Remark 4.5. Pointwise �nite error estimates havealso not been considered yet for anisotropically re�ned meshes.3. In Chapter 5 we considered singularly perturbed problems. The maindrawback is the lack in the analysis of the solution of such problems, forexample, in order to put Assumption 5.2 on a solid mathematical basis. Inparticular, the inuence of corner and edge singularities and their appropriatenumerical treatment is far from being satisfactorily solved. For convection-di�usion-reaction problems there is also not much theory for L1(
)-estimatesof the �nite element error [162].



6.1 A-priori error analysis and further applications 217Regardless of these unsolved problems we will mention other challenges:� the construction of reliable and e�cient a-posteriori error estimators andautomatic mesh adapting procedures,� the investigation of the inuence of anisotropic mesh re�nement on the linearalgebra part of the �nite element calculation, in particular the development ofrobust and e�cient solution techniques, and� the application and extension of the results from Chapters 2{5 to real ap-plication problems.In two separate sections, 6.2 and 6.3, we review some literature and report onour ongoing research into the �rst two topics. Concerning the third point wemention in particular ow problems where �rst results on the resolution (withanisotropic meshes) of all kinds of layers, shock fronts and other anisotropicpeculiarities can be found in the literature [42, 41, 97, 114, 134, 140, 152, 205].(This list is certainly incomplete.) We illustrate the utilization of anisotropicmeshes by one example from [134].Example 6.1 Viscous, compressible ow problems were discretized in [134] byan implicit �nite volume method. We reproduce here one of the examples giventhere which was used to test the e�ciency and reliability of this discretization.The example in [134, Subsection 4.2.2] describes a laminar ow where twoshock waves and a solid body (a cylinder) interact and produce all types ofpeculiarities (a contact discontinuity, a shock wave, an expansion wave, and aboundary layer). The reference values of the Reynolds number and the Machnumber were given by Re1 = 193:75 and Ma1 = 8:03 at the inow boundary.Figure 6.1 shows a triangulation of part of the domain (left hand side) andthe isolines of the Mach number (right hand side). In Figure 6.2 we zoom intothe mesh in a boundary layer region at the lower side of the cylinder. We seethat elements with high aspect ratio were used. �We will end this section by pointing to a further anisotropic approximationproblem.Example 6.2 Consider the numerical solution of the Euler equations by a�nite volume method on triangular meshes [77, 94, 98, 103, 107]. In orderto obtain values at the nodes of the mesh we use a dual mesh and call itselements cells. The simplest numerical solution is piecewise constant. Thisconstant value in each cell can be interpreted as an average value. In orderto increase accuracy, polynomials of a higher degree (� 1) are reconstructedfrom the cell averages, for example by a TVD (Total Variation Diminishing)or ENO (Essentially Non-Oscillatory) technique, see [179] and the literaturecited there. These techniques are well developed for isotropic meshes but
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Fig. 6.1 Example 6.1: triangulation of part of the domain (left) and isolines of the Machnumber (right).

Fig. 6.2 Example 6.1: window with a small part of the triangulation.



6.2 A-posteriori error estimates and adaptive mesh re�nement 219they produce non-physical solutions on anisotropic meshes unless heuristic(up to now) modi�cations are introduced. The mathematical theory for areconstruction which is robust with respect to anisotropic cells, is still in itsinfancy. �
6.2 A-posteriori error estimates and adaptive meshre�nement
A-priori analysis considers only the asymptotic behaviour of the �nite elementsolution as the number of degrees of freedom tends to in�nity. This is impor-tant because it can demonstrate that a certain family of meshes is optimal inthis sense. However, for detailed knowledge of the errors in a particular �niteelement approximation and for assessing its acceptability, an a-posteriori errorestimator has to be provided.Usually, the a-posteriori error estimator is calculated locally and can thus serveas an indicator for regions with large and small errors, respectively, as the qual-ity of the �nite element approximation in general varies over the computationaldomain. So-called automatic mesh adapting �nite element strategies consist inrepeating the three steps1. calculating an approximate solution,2a. estimating the error locally (and globally),3. generating an improved mesh,until the error is within a desired tolerance. If the adaptive procedure takesaccount of an anisotropic solution, then more information has to be extractedfrom the approximate solution. This includes at least2b. determining an appropriate aspect ratio and the stretching direction ofthe �nite elements.The aim of this section is not to give an overview over error estimators andre�nement strategies in general. For this, see, for example, [148, 183, 184,189]. Rather, we will discuss some aspects and point to di�culties and openproblems in the context of anisotropic discretizations.Let us start with error estimation. The estimator is an expression which can becalculated from the data of the problem and its numerical solution. Usually,the error ist estimated elementwise by some quantity �e which can then beaccumulated to a global error estimate �, for example, � = (Pe �2e)1=2. It isdesired that the following two properties can be proved.



220 6 Open problemsReliability. The error estimator should not underestimate the true error inthe norm of a space X(e), for example X = L2 or X =W 1;2,�e � ku� uh;X(e)k:Often, this property can be ensured only globally and modulo a constant,� � C1ku� uh;X(
)k: (6.1)E�ciency. The error estimator should not overestimate the true error,�e � ku� uh;X(e)k;in order to avoid unnecessary re�nement. This property can often be ensuredlocally, but up to a constant C2 (in some cases C2 = 1) and with respect tosome domain of inuence !e � e at the right hand side,�e � C2ku� uh;X(!e)k: (6.2)The ratio of estimated error and true error is called e�ectivity index, � :=�=ku� uh;X(
)k. Clearly, if (6.2) can be proved, then the e�ectivity index isbounded. In particular, it is desired that the e�ectivity index approaches one,� ! 1, as the exact error tends to zero. Then the estimator � is said to beasymptotically exact. Note that this property includes reliability, at least forh � h0.In the literature the estimators are often evaluated with respect to these prop-erties: can reliability and e�ciency be proved (analytically, sometimes onlyby numerical evidence), and if yes, how large are the constants? Can asymp-totical exactness be proved? Let us add here another point. If we can saynothing about the constants we may have a bad error estimate. However, theestimator can be a good error indicator, this means, an indicator where tore�ne or coarsen the mesh. For this it is desirable that the error estimatorbehaves uniformly in the whole domain and for any mesh size. The expression�e=ku � uh;X(e)k should not depend on e, and in particular not on he. Aconsequence would be that� = �(uh) � h� if ku� uh;X(
)k � h�: (6.3)Example 6.3 Let us consider the Poisson problem with homogeneous Dirich-let boundary conditions,��u = f in 
; u = 0 on @
:



6.2 A-posteriori error estimates and adaptive mesh re�nement 221The frequently used residual type error estimator [29] for estimating the energynorm of the error reads�2R;e(uh) := c1h2ekre(uh);L2(e)k2 + c2 XE�@en@
 hEkrE(uh);L2(E)k2(6.4)where the element residual re and the edge residual rE (gradient jump) arede�ned byre(uh) := f +�uhrE(uh) := limt!+0 � @@nE uh(x+ tnE)� @@nE uh(x� tnE)� ; x 2 E:Here, E denotes a face of e and nE is any of the two unitary normal vectors toE. For a detailed analysis one has to modify the element residual by replacingf by some projection into a �nite-dimensional space [189] but we will not gointo these details here. There is not much known about the constants c1 andc2 in (6.4); see [60, 61] for latest attempts to compute these constants forisotropic meshes.While the actual choice of he and hE is of less importance for isotropic meshesthis is problematic in the anisotropic case. The elements are no longer char-acterized by one single size parameter. In particular, we point out that aninappropriate choice may give misleading results. For the tests in [18] weexperimented with hE := (meas2E)1=2 and hE := (meas3e)1=3 and obtainedinaccurate approximation orders; (6.3) was not satis�ed. Later, better choiceswere proposed in [174]
he := mini=1;::: ;dfhi;eg; hE := measdemeasd�1E ; (6.5)

and in [117]
he := mini=1;::: ;dfhi;eg; hE := h2e measd�1Emeasde : (6.6)

Both authors analyzed their choices and were able to prove results concerningreliability and e�ciency.E�ciency is not critical, but the constant C2 in (6.2) depends on uh and Thfor the estimator (6.4), (6.5), C2 = C2(uh; Th) [174]. For adequately re�nedmeshes we get an uniform bound for C2(uh; Th). The expression C2(uh; Th) canalso be monitored during the �nite element calculation. Estimator (6.4), (6.6)is proved to be e�cient without this dependence on C2(uh; Th).



222 6 Open problemsThe critical point for both estimators is reliability. The \constant" C1 in (6.1)depends in both papers on r(u � uh) and Th, at least can the assumptionsbe reformulated in this way, see [118]. It turns out again that we obtainC1(r(u � uh); Th) . 1 for adequately re�ned meshes. But what happens inthe general case? In [118] it is proposed to approximateC1(ru�ruh; Th) � C1(rRuh �ruh; Th)where rRuh is a recovered gradient. First numerical results show that thisworks well. �In Example 6.3 we discussed only the simplest model problem. Even for this itis not clear at present time which one of the following two hypotheses is true.H1. It is possible to de�ne he and hE in a way such that e�ciency and re-liability can be proved without any assumptions or expressions like C1(ru �ruh; Th), C2(uh; Th).H2. There is no choice of he and hE such that the corresponding error esti-mator is both reliable and e�cient for any u and Th.Current insight is supporting the second hypothesis [70]. In [117] and sub-sequent work of this author the theory of error estimators for discretizationswith anisotropic meshes is extended in various directions:� further error estimators for the Poisson equation (a residual based estimatorfor the L2-norm of the error, local Dirichlet problem error estimators for theenergy norm and the L2-norm, a Zienkiewicz-Zhu [206, 207] like error estima-tor),� further boundary conditions (Neumann conditions @u=@n = g2 and Robinconditions @u=@n = �(g2 � u)),� a residual error estimator for the reaction-di�usion problem �"2�u+cu = fin 
, u = 0 on @
.Care is taken that the error estimator works uniformly well for � 2 (0;1)in the case of Robin conditions and for " 2 (0; 1) in the reaction-di�usionproblem. In all cases we �nd that the reliability can only be proved up to thefactor C1(r(u� uh); Th).Finally, we remark that there are other error estimators/indicators for aniso-tropic discretizations [42, 152, 155] but the analytical foundation in the abovesense is less well developed.Let us focus now on the generation of an improved mesh. Several authors usethe heuristic argument that (in two dimensions) the local aspect ratio shouldcorrespond to the ratio of the eigenvalues of the matrix of the (approximated)
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Fig. 6.3 Element subdivision strategies: red re�nement (left), blue re�nement (right).
second order partial derivatives of the solution, and the stretching directionis determined by the eigenvector to the largest eigenvalue of that matrix, see[2, 68, 69, 152, 205] and the literature cited there. (If the solution is vector-valued, either a key variable is chosen [205] or the Hessians of the componentsare combined [62].) It is not clear whether this choice is also suitable for higherorder shape functions, k � 2.In other applications the direction can be determined from the data, for exam-ple from the streamlines in convection-di�usion problems [176]. One can alsotry to detect internal layers or shocks by analyzing the gradient (or gradientjump) of some values [205].With this information one can construct the new mesh. There are three mainstrategies.Remeshing. The �rst one demands a complete remeshing on the basis ofsome background information (local mesh sizes, stretching direction); see theoverview article [175] and the literature cited there. Some authors reporton anisotropic meshes which have nearly equilateral elements in a local non-Euclidean metric. In this way standard mesh generating techniques are usedto solve the meshing problem [62].Large angles are either ignored, see the discussion in Remark 2.4 on page 49,or a structured mesh is introduced locally [205].Remeshing is quite expensive but one can produce meshes with a graduallychanging mesh size and arbitrary stretching directions.Subdivision. The second strategy is based on a subdivision of the existingelements (bisection [34, 127], division into 2d elements [33, 46] by red re�ne-ment, see Figure 6.3, left hand side). This approach is inexpensive and �ts verywell into multi-grid/multi-level strategies for the solution of the corresponding�nite element equation system. The subdivision strategy was adapted for an-isotropic re�nement in [114], called blue re�nement, see Figure 6.3, right handside.The disadvantages are that the mesh size does not change as gradually as inthe �rst approach, and, worse, that the initial mesh determines severely thepossible stretching directions of the elements. This can be compensated by



224 6 Open problemsnode relocation techniques, sometimes also called adaptive grid orientation[114] or node relaxation techniques [157].Relocation. In the third strategy one concentrates on the relocation of thenodes, it is also called the r-version of the �nite element method. But in orderto produce a converging method one has to combine this with node insertionor element splitting. In this way there is a relation to strategy 2. In the recentarticle [58] such an algorithm is described which allows anisotropic re�nementon the basis of a local non-Euclidean metric tensor.It is hard to judge these strategies. The main point is that all of them haveto be programmed carefully, in particular in three dimensions. Preferences indi�erent institutions depend probably strongly on the available software andon the aim of the programs (treatable problems, applied discretization andsolution techniques). A common feature of all strategies is that hierarchicalmeshes in the sense of a classical multi-grid or multi-level method are hardlyobtained. The search for a good compromise among the requirements on afamily of meshes (see Section 4.1, page 137) is rarely discussed. Here, we see astrength of a-priori re�ned meshes as investigated in Chapters 4 and 5. Theyare both structured and anisotropic. Of course their applicability is limited.A good compromise could be to use locally structured meshes [176, 205]. Afurther discussion of the maximum e�ciency mesh problem can be found in[175].
Let us �nally review some experiments from [18]. The initial situation was thefollowing.� We know from a-priori error analysis that anisotropic mesh re�nement issuited for compensating the inuence of an edge singularity on the approxi-mation order, see also Sections 4.2, 4.3, and 4.4. We know qualitatively howthese re�ned meshes must be constructed. But it is not completely clear howlarge the re�nement neighbourhood has to be.� A-posteriori error analysis is suited to detect re�nement regions. However,it is not straightforward how to realize an adaptive algorithm with anisotropicmesh re�nement, see the discussion above.� The test examples for validating the a-priori error estimates were realizedusing a coordinate transformation.� We wanted to use a graded initial mesh for the adaptive procedure in orderto exploit a-priori information.Therefore we tested the following adaptive strategy. Repeat the steps coordi-nate transformation (grading), calculation of the approximate solution, errorestimation (possibly termination of the loop), marking elements for re�ne-
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Fig. 6.4 Cross-cuts through �nal meshes at x3 = 1=3: a-priori grading (left), adaptivewithout grading (middle), adaptive with grading (right).
ment, coordinate transformation (\ungrading"), re�nement (2d elements fromeach marked element, \green closure"). In this way we combined the advan-tages of a-priori and a-posteriori re�nement. In two test examples, see alsoExample 6.4, we obtained the desired discretization error with less degrees offreedom and in particular less re�nement cycles than in an classical (isotropic)adaptive procedure. The drawback of this strategy is the coordinate trans-formation which had been programmed especially for the test examples (two-and three-dimensional). It is not clear how to do this in the general case.Example 6.4 The three-dimensional example was the one from Example 4.1.In Figure 6.4 we illustrate the di�erent behaviour of the algorithms by showingcross-cuts through the �nal meshes at x3 = 1=3. The development of the �niteelement error is shown in Figure 6.5 where the aim was to reach a relativeerror of 3%. For details see [15, 17]. �
6.3 Solution of the arising system of linear equations
Choosing an appropriate discretization is only one part of the numerical so-lution of a boundary value problem. Additionally, one has to solve a (pre-conditioned) algebraic system of equations for the coe�cients of the repre-sentation of uh in a certain basis. Let us focus here on symmetric, posi-tive de�nite problems. In modern techniques the number of operations forthe solution is proportional to the number of unknowns. Such techniquesinclude multi-grid methods [52, 92, 95, 185], the method of conjugate gradi-ents (CG) [102] with preconditioning (for example multi-level preconditioners[24, 25, 26, 50, 55, 65, 85, 109, 151, 197, 198, 199, 200, 203] and domain decom-position preconditioners [54, 74, 188, 136, 143, 142, 177]) and combinations of
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Fig. 6.5 Example 4.1: error in the energy norm for adaptive mesh re�nement strategies,grading parameter � = 0:6, �nal relative error " = 0:03 kuhkE .
these ideas.Multi-level preconditioners work with a sequence of discretizations which is(in the h-version of the �nite element method) based on a sequence of �niteelement meshes. One of these preconditioners, called BPX, was proposed in[55, 197]. Interestingly, the BPX preconditioner can be analyzed in the additiveSchwarz context [203] which gives on the one hand the optimal estimate forthe condition number of the preconditioned system. (For other proofs, see[151, 65].) On the other hand, it leads to a variant of this preconditioner,called multi-level diagonal scaling (MDS), which has advantages especiallyfor problems with variable (including piecewise constant) coe�cients, see also[50, 151].Typically, the solution methods are analyzed �rst for a discretization of theDirichlet problem for the Poisson equation over the unit square, in general witha �ve-point �nite di�erence method or a �rst order �nite element discretizationon uniform meshes. Later the results are extended to more general di�eren-tial operators, more general domains, other discretizations, and higher spacedimensions. Eventually one �nds that the methods cannot be understood as



6.3 Solution of the arising system of linear equations 227Tab. 6.1 Numbers of iterations for Example 6.5 with di�erent N and �.N � = 1:0 � = 0:8 � = 0:6 � = 0:4225 21 22 23 261377 31 34 40 549537 36 41 54 8870785 40 48 73 140545025 42 55 97 217
�xed algorithms but they have to be adapted (at least in some components) tothe problem under consideration. Of course, methods are preferable which areapplicable without change for a fairly large class of problems/discretizations.Then they are called robust. Let us consider now the two introductory ex-amples (see Sections 4.2 and 5.2) and look at the robustness of the BPXpreconditioner with respect to anisotropic discretizations.Example 6.5 Consider the Poisson problem��u = 0 in 
; u = (10 + x3) r2=3 sin 23� on @
;see Example 4.1 on page 146. The problem was calculated with the �niteelement package SPC-PMPo 3D (see Comment 6.3 on page 237 for a shortdescription) on sequences of unre�ned (� = 1:0) and anisotropically re�ned(� = 0:8; 0:6; 0:4) �nite element meshes. The arising systems of linear equa-tions were solved using the CG method with BPX preconditioning and a coarsegrid solver [16]. Table 6.1 shows the numbers of iterations for di�erent num-bers N of nodal points and di�erent mesh grading parameters �. We canobserve for the non-optimal discretization with � = 1:0 that the number ofiterations becomes constant for N ! 1. However, this optimal property ofthe BPX preconditioner gets lost when anisotropic re�nement is introduced. Asimilar behaviour is obtained in other examples, including the Lam�e system ofelasticity in the same domain. Therefore we omit the tables with these resultshere. �Example 6.6 Consider two singularly perturbed reaction di�usion problemsas introduced in Section 5.2. The �rst test problem is the one from example5.1 on page 183 which was originally calculated in [167]:�"2�u+ u = 0 in 
 = (0; 1)2;u = e�x1=" + e�x2=" on @
: (6.7)
Since the results are sometimes quite di�erent we document also a second test



228 6 Open problemscase, �"2�u+ u = 1 in 
 = (0; 1)2;u = 0 on �1 := fx 2 @
 : x1 = 0 _ x2 = 0g;@u@n = 0 on �2 := @
 n �1: (6.8)
In both problems boundary layers appear at fx 2 @
 : x1 = 0 _ x2 = 0g. Sowe use the same family of meshes as described in example 5.1 on page 183. InTables 6.2{6.4 we present the numbers of iterations when the CG method isapplied(a) with diagonal (Jacobi) preconditioning (CG-D),(b) with the BPX with multi-level diagonal scaling (BPX-MDS).In all cases we terminated the CG method when a relative error of 10�6 wasreached. One can draw the following conclusions:� For large " the behaviour of the system matrix A = "2K +M is dominatedby the sti�ness matrix K. The iteration number behaves as h�1 � N1=2 forCG-D. For uniform meshes BPX-MDS converges with a constant number ofiterations, but this behaviour is not robust with respect to a distortion of themesh towards anisotropic re�nement in the layers.� For small " (in comparison with h) the system matrix is dominated by themass matrix M . For uniform meshes the iteration numbers of BPX �MDSremain almost the same as for large " (robustness with respect to "). Howeverthe system can be solved cheaper by CG-D which has also constant iterationnumbers.If we use a better discretization method, namely anisotropic mesh re�nementin the layers, we �nd that these good properties of the two solvers get lost.First, we observe a di�erent behaviour in the two quite similar examples,especially with BPX-MDS. For problem (6.7) there is no hint that BPX-MDShas constant iteration numbers. Second, we see in the case CG-D that the smalliteration numbers obtained with uniform meshes, are not preserved (CG-D isnot robust with respect to a distortion of the mesh). �
From both examples, 6.5 and 6.6, we �nd that well-known solution techniqueshave to be modi�ed in order to cope with anisotropic mesh re�nement. Let usnow review some results connected with anisotropy and found in the literature.Some authors investigate the robustness of their methods with respect to thecoe�cients in the di�erential operator. A typical example is the anisotropic
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Tab. 6.2 Numbers of iterations for Example 6.6 with " = 10�1 and methods CG-D andBPX-MDS. a = 0:5 (uniform) a = 2"j log10 "j (anisotropic)CG-D BPX-MDS CG-D BPX-MDSN (6.7) (6.8) (6.7) (6.8) (6.7) (6.8) (6.7) (6.8)81 13 14 11 11 17 17 16 15289 26 27 15 15 37 37 29 251089 50 55 17 18 71 74 41 344225 95 111 19 21 134 147 49 4216641 182 222 20 23 252 293 57 48
Tab. 6.3 Numbers of iterations for Example 6.6 with " = 10�3 and methods CG-D andBPX-MDS. a = 0:5 (uniform) a = 2"j log10 "j (anisotropic)CG-D BPX-MDS CG-D BPX-MDSN (6.7) (6.8) (6.7) (6.8) (6.7) (6.8) (6.7) (6.8)81 11 10 13 11 12 8 15 10289 12 10 18 16 22 15 28 171089 12 10 21 19 39 27 55 294225 11 9 24 21 69 52 111 4616641 10 8 25 22 121 101 214 58
Tab. 6.4 Numbers of iterations for Example 6.6 with " = 10�5 and methods CG-D andBPX-MDS. a = 0:5 (uniform) a = 2"j log10 "j (anisotropic)CG-D BPX-MDS CG-D BPX-MDSN (6.7) (6.8) (6.7) (6.8) (6.7) (6.8) (6.7) (6.8)81 11 10 13 11 12 6 14 6289 12 10 18 16 18 8 24 81089 12 10 22 19 32 12 46 104225 12 10 25 21 54 20 101 1316641 12 9 27 23 86 37 161 16



230 6 Open problemsequation
�a@2u@x21 � b@2u@x22 = f in 
 = (0; 1)2; u = 0 on @
: (6.9)

In [92, Subsection 10.1] the problem is �rst considered for a = " � 1, b = 1.The discretization with a �ve-point scheme on a uniform grid gives the matrixentries
h�2 24 0 �1 0�" 2 + 2" �"0 �1 0

35 � h�2 24 �12�1
35 :

If a multi-grid method is applied for the solution of the resulting algebraicsystem of equations one �nds that the y-line Gau�-Seidel iteration Sy is anappropriate smoother but not red-black Gau�-Seidel or x-line Gau�-Seidel.What can we learn from this example?1. In the example, the connection between adjacent nodes is anisotropic, thismeans, the connection to some neighbours is more tight than to others, theo�-diagonal elements in one row are of di�erent order of magnitude. Then itis vital to pay attention to the tight connections. We come back to this lateron.2. The method used above is not really robust with respect to the size of thecoe�cients. As soon as a � b, an x-line Gau�-Seidel smoother Sx has to beused. One could think that a smoother Sy �Sx based on alternating directionsis suited but this is not true any more if a di�erential operator like
�12 � @@x1 + @@x2�2 � "2 � @@x1 � @@x2�2

is considered where a diagonal-line Gau�-Seidel smoother has to be applied.The remedy proposed in [92] is to use an ILU (incomplete LU decomposition)or ILLU (incomplete line LU decomposition) smoother. Later, the same authorproposes to use the frequency decomposition multi-grid method [93]. In thismethod, multiple coarse grid corrections are used together with particularlyassociated prolongations and restrictions.Other authors argue that a-priori information can be used in the solver, sothe coe�cients of the di�erential operator [86]. These authors investigated theproblem
� dXi=1 ci@2u@x2i + c0u = f in 
 = (0; 1)d; u = 0 on @
;



6.3 Solution of the arising system of linear equations 231for c0 � 0, ci > 0, i = 1; : : : ; d, and any space dimension d. Their multi-leveliterative method with tensor product subspace splitting shows convergencerates independent of h and the coe�cients ci, i = 1; : : : ; d.3. In [92, Subsection 10.5] it is mentioned that the approximation of the Pois-son problem on an anisotropic mesh (like in Example 6.5) results in an an-isotropic discrete problem. Using the ideas of Item 1 we conjecture that amulti-grid method with a Gau�-Seidel smoother is appropriate which treatsall points with the same x3-coordinate together. Unfortunately, the subsys-tems are not tri-diagonal here. A further investigation has still to be done.The argument of Item 3 is also turned around in [92, Subsection 10.5]: an-isotropic problems produce isotropic discrete equations if one succeeds in con-structing a suitable grid. This approach is followed in [144]. The basic idea isthat the problem
�"2@2u@x21 � @2u@x22 = f(x1; x2) in 
 = (0; 1)2; u = 0 on @
;(6.10)is equivalent to the problem��u = f("�1x1; x2) in ~
 = (0; "�1)� (0; 1); u = 0 on @ ~
:If ~
 is discretized with a family of quasi-uniform meshes then the discreteequations are isotropic. The drawback of this approach is that the number Nof nodes grows with "�1, N � "�1h�2.We conclude that problem (6.9) has been considered in the literature occa-sionally in order to investigate robust solver techniques, see also [56, 112] andthe references cited there. But the author does not know about a referencewhere the problem is discretized in an adequate way. Problem (6.10) is ofsingularly perturbed type. For " = 0 we obtain a parameter dependent one-dimensional problem where it is possible to satisfy the boundary conditionsgiven for x2 = 0 and x2 = 1 but not for x1 = 0 and x1 = 1. One can ex-pect layers of width O("j ln "j) at these two sides if 0 � " � 1 is considered[43, 83]. With the ideas of Section 5.3 it should be possible to prove optimal"-independent approximation error estimates for a family of meshes which areanisotropically re�ned in the two layer regions, 
1 and 
2, and isotropic inthe remainder of the domain, 
0. For the solution of the resulting algebraicsystem of equations we have then to combine the ideas cited above. In 
0, wehave an isotropic, quasi-uniform discretization as investigated in [86, 92, 93],whereas in 
1 and 
2 we have almost (up to the j ln "j-term) isotropic discreteequations as investigated in [144]. A comprehensive analysis has still to bedone.



232 6 Open problemsLet us come back to Poisson type problems which are equivalent to��u = f in 
; u = 0 on @
:In [155] an adaptive procedure is described which results in anisotropic meshes,see Section 6.2. This author had in mind examples like such with an exactsolution u = (1 � x21)2(1 � x22)2 which has a layer near the sides x1 = 1 andx2 = 1. He develops in the subsequent paper [156] an overlapping domain de-composition preconditioner for this type of discretization. Following the ideaof [75] it is stated that the ratio Hj=�j of the diameter Hj of the subdomain
j and the minimal thickness �j of the overlap between 
j and Si 6=j 
i, inu-ences the condition number of the preconditioned system. The (probably notastonishing) consequence is that� isotropic subdomains with an overlap of width of the order of the diameterof the subdomain should be used,� the local problems in the subdomain should be easily solvable.Note that this is in agreement with Item 1 above, namely that the nodes witha tight connection should be treated together.If we combine these conclusions with the idea that the BPX-MDS precondi-tioner can be viewed as an additive Schwarz method with one-dimensionalsubspaces [203], we suggest the following preconditioner for the reaction di�u-sion problem in Example 6.6.Let 'j;i, i = 1; : : : ; Nj , be the nodal basis functions of level j, j = 1; : : : ; J .De�ne for all j a decomposition 
 = Snji=1
j;i such that the following condi-tions are satis�ed.(i) 
j;i is a union of �nite elements of level j. (Finite elements are consideredhere as closed sets.)(ii) Each element of level j is contained in at most Nc subdomains 
j;i whereNc is independent of j.(iii) For all 
j;i there is at least one 'j;i0 such that supp'j;i0 � 
j;i.(iv) The subdomains 
j;i, i = 1; : : : ; nj , j = 1; : : : ; J , are isotropic.(v) The minimal thickness �j;i of the overlap between 
j;i and Sj0 6=jSi0 6=i
j0;i0is of order diam
j;i.An example for this domain decomposition is illustrated in Figure 6.6, lefthand side. The subdomains with nodes on one line do not introduce di�-culties. The corresponding local problems have tridiagonal system matriceswhich can be solved directly with optimal performance. The only di�culty isthe subdomain in the lower left corner. In a �rst test we avoided this two-dimensional arrangement of nodes and used only one-dimensional subspaces



6.3 Solution of the arising system of linear equations 233

Fig. 6.6 Left: Illustration of the subdomains for a modi�ed BPX-like preconditioner. Right:Lines of clustered points in the preconditioner BPX-3.
in this corner. Hence the resulting preconditioner BPX-3 (3 for 3-dimensionalsubsystems) is di�erent from BPX-MDS only in the common consideration ofpoints at the lines illustrated in Figure 6.6, right hand side. It does not satisfyconditions (iv) and (v) for a small number of points.Example 6.7 We continue example 6.6 by displaying the iteration numbersfor the CG with preconditioner BPX-3. Additionally, we used the three-diag-onal matrix of the �nest level as a simple preconditioner, CG-3. This can beconsidered as some kind of Jacobi preconditioning. The results are given inTables 6.5{6.7. We �nd that BPX-3 is a preconditioner with a very similarbehaviour for both test examples and for all ". In particular, the iterationnumbers are nearly the same as for BPX-MDS and uniform mesh re�nement.The simpler preconditioner CG-3 has its strength for small " where it couldbe used instead of CG-D when a multi-level algorithm is not implemented. �We remark that a preconditioner corresponding to (i){(v) above can be de�nedwithout di�culty in other model situations. In [169], problems with bad pa-rameters were considered. As a motivation, the Poisson problem was treatedin a strip domain 
 = (0; 1)�(0; "). For h > " the quadrilateral mesh had onlyone element in x2-direction. Every pair of nodes with the same x1-coordinatewas considered together. In this way one can satisfy conditions (i){(iii) and(v). Condition (iv) can be ful�lled only for h . ". In [169], another approachwas used: the pairs of nodes de�ned a block diagonal matrix with 2� 2 blockswhich was used within the Jacobi smoother of a multi-grid method. As aconsequence, the smoother behaved "-independent (but h-dependent).From all the literature, tests and remarks in this section we can conclude thatit is not satisfactorily clear how to solve the algebraic systems arising from the
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Tab. 6.5 Numbers of iterations for Example 6.6 with " = 10�1 and methods CG-3 andBPX-3. a = 2"j log10 "j (anisotropic)CG-3 BPX-3N (6.7) (6.8) (6.7) (6.8)81 10 11 11 11289 23 23 16 161089 44 47 19 204225 84 97 21 2316641 164 198 22 26
Tab. 6.6 Numbers of iterations for Example 6.6 with " = 10�3 and methods CG-3 andBPX-3. a = 2"j log10 "j (anisotropic)CG-3 BPX-3N (6.7) (6.8) (6.7) (6.8)81 11 7 13 8289 16 12 16 101089 28 21 19 144225 49 36 22 1716641 89 64 27 22
Tab. 6.7 Numbers of iterations for Example 6.6 with " = 10�5 and methods CG-3 andBPX-3. a = 2"j log10 "j (anisotropic)CG-3 BPX-3N (6.7) (6.8) (6.7) (6.8)81 { 5 { 5289 14 6 18 61089 24 8 21 74225 40 11 23 916641 61 8 24 10



6.4 Short description of utilized software 235�nite element discretization with (locally) anisotropic �nite element meshes,even in the case of a symmetric, positive de�nite system matrix. From thematerial developed in this section we think that it is worth to investigatefurther the following ideas.� For the Poisson problem in domains with edges:{ multi-grid methods with clustering nodes,{ the CG method with BPX-like preconditioners derived by clustering nodes.It is not clear whether one can cluster together all nodes with the same x3-coordinate (in Example 6.5) where one does not satisfy condition (iv), or ifone has to cluster smaller portions in order to satisfy condition (iv). Possiblyone can use ideas from the algebraic multi-grid approach to �nd appropriatesubspaces.� The same ideas could be explored for the singularly perturbed problem ofExample 6.6. A promising �rst test was described in Example 6.7. Open isthe treatment of the corner regions. Additional ideas are:{ using multi-grid methods with an ILU smoother, and{ using a classical domain decomposition approach with 4 subdomains. Thesubdomain solvers could be constructed with the ideas above since they aremeshed in a uniform way. But it is not clear which Schur complement precon-ditioner and which basis transformation has to be used.It is a task of future research to give a mathematical foundation for the algo-rithms and to extend the class of treatable problems.
6.4 Short description of utilized software
At several places in this monograph we presented numerical test examples.They were calculated with software which was developed mainly at the Fakult�atf�ur Mathematik of the Technische Universit�at Chemnitz. In this �nal sectionwe want to describe these packages. (We remark that this section does notnecessarily belong to the topic of this chapter although, of course, any softwarehas its open problems.)Comment 6.1 The sequential �nite element package FEMGPM. TheFinite Element Multi-Grid Package Mechanics FEMGPM [180] is a memberof the FEMGP family which has been implemented by B. Heise, M. Jung,W. Queck, T. Steidten and others since 1985. With FEMGPM the user cansolve linear elliptic problems (including the heat equation, plane stress andplane strain problems), linear and non-linear parabolic problems and coupledthermo-elasticity problems. In all problems the spatial dimension is two which



236 6 Open problemsincludes also rotationally symmetric three-dimensional domains (Fourier �niteelement method [99, 147, 193]).Main features are the following.� A user mesh must be provided in a �le. FEMGPM works with linear orquadratic shape functions on triangles. Coe�cients and the right hand sidemust be programmed and linked.� After reading the �le, the user mesh is hierarchically re�ned. This re�nementcan be controlled with several options, for example, to adapt the mesh tomaterial boundaries or to singular points.� The �nite element system of equations can be solved with multi-grid meth-ods or with preconditioned conjugate gradient methods. Preconditioners in-clude multi-grid and methods based on hierarchical bases (Yserentant [199],BPX [55, 197]).� Various information (including CPU times, error norms, pointwise solutions)can be printed. There is also graphical output for meshes, isolines and de-formed domains. Other postprocessing includes the calculation of derivatives(stresses) using superconvergence e�ects.
Comment 6.2 The sequential �nite element package FEMPS3D. Thepackage FEMPS3D is a �nite element code for solving the Poisson equationwith (in general inhomogeneous, mixed) boundary conditions of Dirichlet, Neu-mann or Newton (Robin) type. The �rst version was developed in 1987-1989by the author at a VAX workstation. In 1993 it was ported by G. Hanke tothe UNIX operating system. The main features are the following:� The mesh can consist of tetrahedra, hexahedra, and pentahedra. Linear andquadratic shape functions can be used.� The code does not contain a general mesh generator. It is possible to readmesh data from a �le generated by any code, eventually after adapting thedata structure. Later, we developed also some special routines to triangulateour test domains.� The problem data are given in general by function subroutines. For Dirichletdata we developed the additional feature to interpolate some pointwise valuesover the surface.� For the assembly of the equation system many di�erent integration rules areprogrammed. Only the non zero elements of the upper right triangle of thematrix are stored. The system is solved with a conjugate gradient method, pre-conditioned with di�erent types of incomplete Cholesky factorization (IC(0),IC(1), MIC), see [161].



6.4 Short description of utilized software 237� The resulting solution can be interpreted with tables of values in subdomainsand with a representation of isolines. When the exact solution is known inacademic examples, the table of values and the isolines can be given for theerror as well. Additionally the error norms in H1(
), L2(
) and in a discretemaximum norm are calculated.In 1993/94 the code was extended by F. Milde and the author, but only forlinear tetrahedral elements:� In Version 2 we included an error estimator of residual type and an adaptivemesh re�nement procedure, see details in [17] and in the preprint version of[15].� For Version 3, parts of the package were reprogrammed. Moreover, theisotropic a-priori mesh grading by dyadic partition (see Section 4.2) was in-cluded.� In the expectation of an optimization of the meshes two nodal relaxationprocedures were included: the standard Laplace smoothing and the improvedversion introduced in [157] for graded meshes.� An interface to the visualization package GRAPE [195] was developed.In 1997 the meshing strategies of Section 4.4 were included with the help ofU. Reichel.Comment 6.3 The parallel �nite element package SPC-PMPo3D,Version 2. At present time much e�ort is being spent in both developing andimplementing parallel algorithms. The experimental package SPC-PMPo 3Dis part of the ongoing research of the Chemnitz research group Scienti�c Par-allel Computing (SPC) into �nite element methods for problems over three-dimensional domains. Special emphasis is paid to choose �nite element mesheswhich exhibit an optimal order of the discretization error, to develop precon-ditioners for the arising �nite element system based on domain decompositionand multilevel techniques, and to treat problems in complicated domains asthey arise in practice.� In Version 2 [4, 16] the program can solve the Poisson equation and theLam�e system of linear elasticity with in general mixed boundary conditionsof Dirichlet and Neumann type. The domain 
 � R 3 can be an arbitrarybounded polyhedron.� The input is a coarse mesh, a description of the data and some controlparameters. The program distributes the elements of the coarse mesh to theprocessors, re�nes the elements, generates the system of equations using linearor quadratic shape functions, solves this system and o�ers graphical tools todisplay the solution.



238 6 Open problems� Further, the behavior of the algorithms can be monitored: arithmetic andcommunication time is measured, the discretization error is measured, di�erentpreconditioners can be compared.� The program has been developed for MIMD computers; it has been tested onParsytec machines (GCPowerPlus{128 with Motorola Power PC601 processorsand GCel{192 on transputer basis) and on workstation clusters using PVM.The special case of only one processor is included, that means the package canbe compiled for single processor machines without any change in the source�les.We point out that the implementation is based on a special data structurewhich allows that all components of the program run with almost optimalperformance (O(N) or O(N lnN)).The package SPC-PMPo 3D is based on a set of libraries which are still underdevelopment. They are documented in the Programmer's Manual [16] and inother separate papers [90, 133, 137, 138]. An overview over the program, itscapabilities, its installation, and handling is provided in the User's Manual [4].Test examples are included in [4, 10, 22, 159].The historical roots of the program are at one hand in several parallel pro-grams for solving problems over two-dimensional domains using domain de-composition techniques. These codes have been developed since about 1988by A. Meyer, M. Pester, and other collaborators. On the other hand, the au-thor developed 1987{89 a sequential program for the solution of the Poissonequation over three-dimensional domains which was extended 1993{94 togetherwith F. Milde (Comment 6.2 on page 236). SPC-PMPo 3D, Version 2 [4, 16],was developed in 1995{1996 under the supervision of A. Meyer and the au-thor. Other main contributors are D. Lohse, M. Meyer, F. Milde, M. Pester,and M. The�. Meanwhile the package is being extended to include a multi-grid solver (M. Jung), adaptivity (F. Milde), the solution of the Navier-Stokesequations (St. Meinel) and a plasticity model (D. Michael).The research group SPC (Scienti�c Parallel Computing) is located at theFakult�at f�ur Mathematik of the Technische Universit�at Chemnitz. It is part ofthe DFG-Sonderforschungsbereich 393
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