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Anisotropic finite element meshes have different mesh sizes in different direc-
tions. Such meshes have a great potential for the approximation of functions
with anisotropic behaviour, as for example near edges or in boundary layers.
The aim of this monograph is to present a mathematical theory of the approxi-
mation properties of finite element spaces over anisotropic meshes. Local error
estimates are derived for the Lagrange interpolation and for modified Scott-
Zhang interpolation operators. Families of anisotropic finite element meshes
are constructed for the numerical solution of model problems with boundary
layers or edge and corner singularities, and the global discretization error is
estimated. Numerical tests show that the asymptotic results are valid for a
moderate number of unknowns already.

The strengths of this investigation are the consideration of two- and three-
dimensional problems in general polygonal/polyhedral domains, and the treat-
ment of lower and higher order finite elements.
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Preface

The solution of elliptic boundary value problems may have anisotropic be-
haviour in parts of the domain. That means that the solution varies signifi-
cantly only in certain directions. Examples include diffusion problems in do-
mains with edges and singularly perturbed convection-diffusion-reaction prob-
lems where boundary or interior layers appear. This anisotropy in the solution
can be reflected in the discretization by using anisotropic meshes with a small
mesh size in the direction of the rapid variation of the solution and a larger
mesh size in the perpendicular direction. Anisotropic meshes can also be ad-
vantageous if surfaces with strongly anisotropic curvature (for example the
front of an airplane wing) or thin layers of different material are to be dis-
cretized.

The aim of this monograph is to establish interpolation and approximation
properties of finite element spaces on anisotropic meshes. Emphasis is placed
on topics to whose development the author himself has contributed: aniso-
tropic local interpolation error estimates for several types of two- and three-
dimensional finite elements and a-priori estimates of the discretization error
for model problems with edge singularities or boundary layers. Several of the
results have not been presented before.

We are restricted here to model problems since detailed knowledge of properties
of the solution is necessary. However, much effort is spent on the treatment of
arbitrary polygonal/polyhedral domains and finite elements of any approxima-
tion order. Future tasks are to apply these results to more complex problems
and to complement them with mathematically founded adaptive strategies and
optimal preconditioning techniques for solving the resulting systems of linear
equations.

The monograph is organized into six chapters:

1. Preliminaries,
2. Lagrange interpolation,
3. Scott-Zhang interpolation,

4. Anisotropic finite element approximations near edges,



6 Preface

5. Anisotropic finite element approximations in boundary layers,
6. Open problems.

A detailed outline is given in Section 1.2.

This work was possible only with the help, stimulation, and encouragement of
many people. Bernd Heinrich (Chemnitz) directed my attention to anisotropic
finite elements about ten years ago, and since then he has given many valuable
comments. Together with Manfred Dobrowolski (Wiirzburg) we set the basis
for deriving anisotropic interpolation error estimates. Anna-Margarete Sandig
(Stuttgart) and Serge Nicaise (Valenciennes, France) answered with patience
many questions about singularities. Gert Lube (G&ttingen) introduced me to
the world of singularly perturbed problems. From all of them and also from
the other co-authors John R. Whiteman (Uxbridge, United Kingdom), Roland
Miicke (Baden, Switzerland), and Frank Milde (Chemnitz) I profited in joint
work on mesh refinement techniques. I also had valuable discussions with many
colleagues at the Fakultdt fiir Mathematik of the Technische Universtdt Chem-
nitz, among them in particular Michael Jung, Gerd Kunert, Michael Lorenz,
Arnd Meyer, and Reinhold Schneider. The computations were carried out
with the help of Michael Jung, Frank Milde, and Uwe Reichel. This work was
supported by Deutsche Forschungsgemeinschaft and Deutscher Akademischer
Austauschdienst. Finally, I want to thank my wife for her encouragement and
patience over the years. All this help and support is gratefully acknowledged.

Chemnitz, June 1998
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1 Preliminaries

1.1  Introduction to anisotropic finite elements

Many physical phenomena and engineering problems can be formulated math-
ematically by boundary value problems for linear, elliptic partial differential
equations. Examples include diffusion and heat conduction problems (some-
times involving convection), the calculation of electrostatic potential distribu-
tions, and the calculation of displacement fields in linear elasticity. The task
of solving linear elliptic boundary value problems can also be encountered as
a repeated ingredient in the solution of nonlinear (after linearization), time-
dependent (after semi-discretization), or inverse problems. The investigation
of particular aspects of the numerical solution of such problems has motivated
the research which is documented in this report.

To develop the main ideas we introduce some basic notation. Assume that the
boundary value problem is given in weak form:

Find u € Vg : a(u,v) = (f,v) Yo eV (1.1)

Here we denote by Vj a subspace of V := W12(Q) where Q C R? (d = 2,3) is
a bounded polygonal /polyhedral domain. The duality pair (.,.) : V' xV — R
characterizes a linear functional (f,.) on V5. Without going into too much
detail here, we demand that the bilinear form a(.,.) : V' xV — R has properties
such that (1.1) has a unique solution u € V4. This framework is general enough
to cover symmetric and non-symmetric bilinear forms, as well as scalar and
vector-valued functions u. In the latter case the definition of V' has to be

modified to V := [Wh2(Q)]".

The basic principle of the numerical solution of problem (1.1) via the Galerkin
finite element method is to replace Vj by a family of finite-dimensional spaces
Von. The finite element solution is then defined by:

Find uy, € Vi, : a(uh,vh) = <f, ’Uh> Yo, € Vo (12)

We remark that also the bilinear and linear forms could be modified to depend
upon the parameter h, but we will keep the explanation as simple as possible
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here. In the h-version of the finite element method, the spaces V;, C V and
Vor C Vi are defined relative to a family F = {7} of meshes T} := {e},

Vi ={vn €V :uvle € Pre VYe€Th}, Vonr:=VoNV. (1.3)

The element type determines the space Py, of shape functions. The meshes
are assumed to satisfy the usual admissibility conditions [63, pages 38, 51]:

1. The domain is covered by the closure of the finite elements e, Q = UeETh e.
2. The finite elements are disjoint, eNe' =0 Ve,e' € Ty, e # €.

3. Any edge (d = 2) or face (d = 3) of any element e € T}, is either a subset of
the boundary 02 or edge/face of another element e’ € Tj,.

Denote by diam (e) the diameter of the finite element e, and by o, the supre-
mum of the diameters of all balls contained in e. Then it is assumed in the
classical finite element theory that

diam (e) < ge. (1.4)

(The notation < means smaller than up to a constant.) The ratio of diam (e)
and o, is called aspect ratio of the element e. In this sense, (1.4) is equivalent
to the assumption of a bounded aspect ratio. Elements which satisfy (1.4)
are called isotropic elements, see, for example, [175]. Triangular elements are
isotropic if they satisfy Zldmal’s minimal angle condition [208].

Consider now boundary value problems with a solution which has anisotropic
behaviour near certain manifolds M C €. That means that the solution varies
significantly only perpendicularly to M. Examples include diffusion problems
in domains with edges M, see Chapter 4, and singularly perturbed convection-
diffusion-reaction problems where M is part of the boundary or an interior
manifold, see Chapter 5. In such cases it is an obvious idea to reflect this
anisotropy in the discretization by using meshes with anisotropic elements
[9, 175] (sometimes also called elongated elements [205]). These elements have
a small mesh size in the direction of the rapid variation of the solution and a
larger mesh size in the perpendicular direction. Examples are given in Figure
1.1. Anisotropic meshes can also be advantageous if surfaces with strongly
anisotropic curvature (the front side of a wing of an airplane, for example
[175, Figure 6]) or thin layers of different material are to be discretized.

Anisotropic elements do not satisfy condition (1.4). Conversely, they are char-
acterized by
diam (e)

Oe

— 00 (1.5)
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Fig. 1.1 Examples of anisotropic meshes. Left: in a boundary layer. Right: near an edge.

where the limit can be considered as h — 0 (near edges) or ¢ — 0 (in layers)
where ¢ is some (small perturbation) parameter of the problem. We note that
the investigation of anisotropic elements also forms a basis for using highly
distorted elements in the meshing of thin slots or layers of different materials,
for example in an electronic motor. Here, the elements are not anisotropic in
the sense of (1.5) but the constant in (1.4) is very large.

First mathematical considerations of anisotropic elements go back to the fifties
[187] and seventies [27, 84, 108] Nevertheless, the majority of papers and books
on the finite element method excludes such elements. Some commercial finite
element codes even prohibit elements with large aspect ratio, for example an
aspect ratio greater than 5.

Since the end of the eighties anisotropic elements are considered more inten-
sively, for example for interpolation tasks [9, 12, 21, 35, 69, 119, 120, 160, 171,
202], in singular perturbation and flow problems [2, 13, 41, 73, 114, 152, 173,
186, 204, 205], for the treatment of edge singularities [9, 19, 21, 153], and in
adaptive procedures [58, 62, 117, 152, 155, 174, 205]. This list is certainly in-
complete, but from the papers we can draw two conclusions. First, anisotropic
mesh refinement offers a great potential for the construction of efficient nu-
merical procedures (interpolation; h-, r-, and hp-version of the finite element
method; boundary element method, finite volume method), more efficient than
it is possible with the restriction to a bounded aspect ratio. So one can expect
a broad utilization of such meshes. Second, there are still challenges to set
all the ingredients of such methods (including a-priori and a-posteriori error
estimates and the solution of the arising system of algebraic equations) on a
solid mathematical basis.
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1.2 Outline

This monograph is an attempt to present a survey of interpolation results
and applications in connection with anisotropic finite element meshes. The
aim is to understand the approximation properties of finite element spaces on
anisotropic meshes. In particular, such topics are chosen where the author
himself contributed to the development:

e anisotropic local interpolation error estimates for several types of two- and
three-dimensional finite elements and

e a-priori estimates of the discretization error for model problems with edge
singularities or boundary layers.

So the reader will find several new results as well.

Thirty sections form six chapters: Preliminaries, Lagrangian interpolation,
Scott-Zhang interpolation, Anisotropic discretizations near edges, Anisotropic
discretizations in boundary layers, and Open problems. We will now motivate
and describe the contents.

A primary task is to investigate the interpolation error since local interpo-
lation error estimates are basic ingredients for deriving a-priori estimates of
the finite element error, for proving the equivalence of error estimators and
the exact error, and for investigating multi-level algorithms. For Lagrangian
finite elements, the Lagrangian interpolant, also called nodal interpolant, is the
simplest one. It is defined by

=Y u(XD)gi(x), (1.6)
iel
where X @ are the nodes and ;(x) are the nodal basis functions:
ei(XD) =6, i,jel (1.7)
Since I, is defined locally on every element the interpolation error u — I,u can
be estimated elementwise.

Let us start with a result of the classical interpolation theory, see, for example,
[63]. For functions u € W*P(e) the interpolation error can be estimated in the
form

lu — Tyu; W™9(e)| < (measqe) /9717 (diam e)’ o™ |u; WP (e)],  (1.8)

where measge is the area/volume of the element e and | . ; W*P(e)| means a
seminorm in the Sobolev space W%P(e). The admissible ranges of the parame-
ters £, m, p, and g depend on the space dimension d and the polynomial degree
k of the shape functions.
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For isotropic elements we can rewrite estimate (1.8) and get
lu — Tou; W™9(e)| < (measge) 717 (diam e)*™|u; WP (e)). (1.9)

For several special cases it was proved that this estimates holds true for certain
classes of anisotropic elements as well. Triangular and tetrahedral elements
were investigated in [27, 108, 119, 120] and, as the oldest reference, [187, pages
209-213]. In all of these papers it is shown that anisotropic elements can be
applied when a maximal angle condition is satisfied. Quadrilateral elements
were investigated similarly in [108, 202]. We summarize these contributions in
more detail in Section 2.7.

These results were rarely exploited for finite element error estimates because
the possible advantage of using elements with independent length scales in
different directions was not extracted; only the diameter appeared in the lo-
cal interpolation error estimates. If we use anisotropic elements in order to
compensate a large directional derivative of the solution by a small element
size in this direction, then we need a sharper interpolation error estimate. We
investigate in this monograph estimates of the type

|u — Tpu; W™ (e)

_ o™y
S (measge) e 37 R b | W) (1.10)
0‘1+"'+ad:>l*m 1 d
g, ,0g 20

where hie, ..., hq. are suitably defined element sizes. We will call estimates
of this type anisotropic, in contrary to the isotropic estimate in (1.9) where
the different element scales hj, ... , hq. are not exploited.

Special cases of estimate (1.10) were proved for triangular and rectangular ele-
ments in [37, 84, 153, 155] and [150, pages 82-84 and page 90], see Section 2.7
for the individual contributions. An intensive study for all types of elements in-
cluding tetrahedra and bricks and also for higher order shape functions started
with the paper [9] and continued in various directions in [5, 12, 14, 19, 20, 21].
Based on [9], some of the results were obtained independently also in [35].

In Chapter 2 we present the whole interpolation theory for anisotropic ele-
ments in a systematic way. The main strategy is fairly standard, namely, to
derive first the estimate on a reference element é and to apply a coordinate
transformation x = F,(&) with e = F,(é). Nevertheless, there are mainly two
obstructions which prevent an obvious solution. We have first to recognize
that sharper estimates on the reference element have to be shown for proving
estimates of type (1.9) or (1.10) for anisotropic elements, sharper than it is
necessary for isotropic elements, see Subsection 2.1.2. We will see in Chapter
2 that these estimates can be derived for all element types on the basis of an
abstract result given in Subsection 2.1.3.
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A second peculiarity of the proof of anisotropic interpolation error estimates
is that the transformation F, has to be investigated very carefully. We obtain
essential assumptions on the geometry of the elements (like the maximal angle
condition) and on the location of the elements in the coordinate system (a
coordinate system condition). These conditions are formulated in Sections
2.2-2.6 for each element type separately.

Triangular elements are considered in Section 2.2. We prove the estimate on
the reference element (Lemma 2.4), formulate the maximal angle condition and
the coordinate system condition, prove estimate (1.10) under the assumptions

1<l<k+1 pell,oo], 0<m<{l-1,
q € [1,00] such that W ™P — L[4(e),
p>2 ifl=1

(Theorem 2.1, k is the polynomial degree), and derive the corresponding es-
timate of type (1.9) (Corollary 2.1). In the discussion, we give examples that
the assumptions m < ¢ — 1 (up to exceptional cases like m = ¢ = 0, p = o0),
and p > 2 if £ =1, as well as the maximal angle condition are necessary.

Tetrahedral elements can be considered in the same way but they need special
care, as investigated in Section 2.3. First, we need at least two reference ele-
ments, one for elements with three long edges, the other for elements with four
long edges. Second, Lemma 2.6 (the counterpart of Lemma 2.4, the estimate
on the reference element) does not hold for p < 2 if m = ¢ — 1 (Example 2.6).
This includes in particular the case m = k, p = 2, which is often used when
k = 1. Third, the proof of the properties of the transformation z = F.() is
more challenging due to the greater variability (Lemma 2.7). Additionally to
the estimates which are analogous to Section 2.2, we prove two more types of
anisotropic interpolation error estimates. At the end of Subsection 2.3.1, we
consider functions with additional smoothness, u € W**%P(¢), as a remedy to
treat the case m = k, p < 2 (Theorem 2.3). Furthermore, we derive in Sub-
section 2.3.2 local interpolation error estimates for functions from weighted
Sobolev spaces (Theorems 2.4 and 2.5). Special cases of these theorems were
proved in [19, 21] to be able to treat edge singularities.

The estimates for triangles extend to affine quadrilateral elements, that are
parallelograms. There is only one small difference in the proof of Lemma 2.10
(estimate on the reference element) where attention is needed. But there are
two more reasons why a whole section is devoted to quadrilateral elements.
First, for rectangular elements we can prove for k& > 2 a slightly sharper
estimate, with less terms on the right hand side (Theorem 2.7 and Remark 2.9).
Second, for more general elements than parallelograms, for example trapezes,
the transformation z = F,(%) is non-linear. This leads not only to a technically
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more complex transformation of the estimate, but also to a non-optimal result
with lower order terms on the right hand side (Lemma 2.17) [5]. Nevertheless,
we were finally able to reproduce the estimates of the affine elements (Theorem
2.8, Corollary 2.4). The section ends with an example showing the necessity
of an assumption on the geometry of the non-affine elements.

In Section 2.5 we formulate all statements for (first affine, then non-affine)
hexahedral elements. It turns out that all ideas for the proofs are already
contained in Sections 2.2-2.4. For the same reason we shortened also the
discussion of pentahedral elements (triangular prisms) in Section 2.6.

The last section of Chapter 2 is devoted to historical remarks and alternative
approaches. We discuss related interpolation results of other authors and ideas
of their proof. These are sometimes really fascinating though they were not
sufficient for our purposes.

For several investigations, the Lagrangian interpolant turns out to be not ap-
propriate. One drawback is that nodal values of u have to be well defined
for the definition of I,u. Even more, it is not sufficient for the proof of local
interpolation error estimates to consider functions u € W*P(e)NC(e). We need
assumptions on ¢ and p which imply the Sobolev embedding W*?(e) < C(e)
(though this embedding is explicitly used only in the case m = 0). Conse-
quently, the Lagrange interpolation is not suited for functions u € W*P((Q)
when pl < d (besides the exceptional case p = 1, £ = d), for example for
u € WH2(Q).

A second drawback is that the anisotropic elements imply further restrictions
on the range of the parameters. In particular, the estimate

%. Wl’p(e)

-1 .Wl,p < hie :
o= Taas W'2(0)] £ 3 hie |5

and even the simplified version
lu — Tpu; WP (e)| < diame |u; WP (e)|

hold only for p > 2 in three dimensions. This restriction leads to a non-optimal
approximation result in our investigation of the anisotropically refined meshes
near edges [19, 20], see Remark 4.2 on page 146.

A remedy (at least for the first drawback) is to mollify u in some neighbourhood
o; of X and to use values of the mollified function for the definition of the
interpolant. Such approaches have been investigated for isotropic meshes by
several authors, see, for example, [64, 170], [150, pages 92-102], [151, pages 15—
19]. In Chapter 3 we investigate first the Scott-Zhang operator [170]. It turns
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out that estimates of type (1.10) can be proved in the Li(e)-norm (m = 0,
Theorem 3.1). But Example 3.1 shows that this approach cannot be applied
for m > 0.

Therefore we suggest in Sections 3.3-3.5 three alternative operators. They
can be viewed as modifications/adaptions of the Scott-Zhang operator. These
operators allow to prove local stability and approximation estimates with dif-
ferent generality, see Theorems 3.2, 3.3, and 3.4 for functions from classical
Sobolev spaces, and Lemmata 3.4 and 3.6 for functions from weighted Sobolev
spaces. But for all three operators the ranges of the parameters ¢, m, p, and
g contain those of the Lagrange interpolation. We compare the operators in
detail in Section 3.7.

The stability and approximation properties are investigated for five types of
two- and three-dimensional finite elements with shape functions of arbitrary
order. However, we restrict ourselves to elements of tensor product type. Such
elements contain certain orthogonal edges/faces, see Section 1.3 for the exact
definition.

As it was the case with the Lagrange interpolation, the proof of the properties
of the Scott-Zhang operator for isotropic elements cannot be applied directly
for anisotropic elements. Some new ideas were necessary. Unfortunately, these
ideas depend on the geometrical conditions on the mesh mentioned above.
That means that the generalization to a broader class of elements will contain
not only a more general coordinate transformation. It is a task for the future
to develop some new ideas.

Chapters 4 and 5 contain anisotropic discretization strategies and global error
estimates for model problems, for example the Poisson problem and the convec-
tion-diffusion-reaction problem. The differential operators in these problems
are simple, the solution is always only a scalar function. Our main interest
is to treat typical peculiarities (typical also for more complex problems) like
boundary layers or edge and corner singularities. We focus on the applicability
of the techniques to general polygonal/polyhedral domains and to piecewise
polynomial trial functions of arbitrary (but fixed) degree k.

For about ten years the author has been interested in elliptic problems, posed
over domains with corners and edges. The latest results are contained in
Chapter 4.

The solution of such problems has both singular and anisotropic behaviour.
The singularity leads to a reduced convergence order of the finite element
method on quasi-uniform meshes. A remedy is local mesh refinement, and it
turns out that the adequate refinement is anisotropic [9, 19, 21]. Note that
isotropic refinement can be applied as well [11, 23], but only for a moderate
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singularity exponent A > 1/3, and computations show that the additional
refinement along the edge is not necessary. Section 4.2 may serve as a more
detailed introduction.

In Section 4.3, we consider the Poisson problem,

ou
—Au=f inQ, u=0 on I 8—:0 on I'y := 00\ I'y,
n
for simplicity over a three-dimensional tensor product domain 2 = G x (0, zp).
We prove for model cases and piecewise linear trial functions the approximation
estimate

lu—uns W@ S B* IS LHQNL, m=0,1,

by using the Scott-Zhang interpolation results (Theorem 4.1 and Corollary
4.1). Using the Lagrange interpolant we needed in former papers more smooth-
ness of the data (f € W4%(Q) in [9]) or a stronger refinement condition [19].

By using trial functions of higher degree k and a corresponding stronger an-
isotropic mesh grading one can prove for model cases (Examples 4.2 and 4.3)
that edge singularities can be approximated according to

o — s WH2(Q)]] < B

The basis for this estimate is set by the global interpolation error estimates in
Theorems 4.2 and 4.3. Of course, the right hand side f has to be sufficiently
smooth.

Note that we present asymptotic estimates always in terms of A,

h := maxdiam e.
e€Th

Since we advocate only strategies where the number of elements is Ng ~ h~¢,
the error can easily be expressed in terms of N, or the number N of unknowns
(degrees of freedom).

For general polyhedral domains or more general differential operators one has
to combine the anisotropic refinement near singular edges with an isotropic re-
finement for treating the additional corner singularities. One of the challenges
has been to describe a family of meshes which is both suited for proving approx-
imation error estimates and for a simple realization in a computer program.
With our proposal [21], see also the summary in Section 4.4, the construction
of such meshes is principally known. The analysis is done, however only in
the case of piecewise linear trial functions, k£ = 1 (Theorem 4.5 and Corollary
4.2). The difficulty for £ > 2 consists in a sufficiently fine description of the
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properties of the solution u. The section is completed with a computation of
the Poisson equation in the Fichera domain.

One of the surprising results is that the anisotropic mesh grading does not
disturb the asymptotics of the condition number « of the stiffness matrix. We
show in Subsection 4.3.3 that k < h™? as in the case of a family of quasi-
uniform meshes and a smooth solution.

In Chapter 5 we consider singularly perturbed problems. The solution of the
model problem

—?Autcu=f inQCR! (d=2,3), u=0 auf 09,

is characterized for 0 < ¢ < 1 by a boundary layer of width O(e|In¢]).
The derivatives normal to the boundary layer include negative powers of &
and are therefore large in comparison with derivatives in tangential direction.
Therefore, as in the case of edge singularities, the natural way to resolve the
boundary layer is to use anisotropic finite elements. As shown in Section 5.2,
isotropic local mesh refinement leads only to an approximation result which is
not uniformly valid with respect to the perturbation parameter €.

Error estimates for the anisotropic discretizations were derived in the energy
norm

- llle ~ el s WH@Q)+ 11 Z2@Q)

in [6, 14] for a class of simplicial meshes (d = 2,3) and in [5] for meshes with
quadrilateral elements. In all these papers the width a of the refinement zone
is O(e| Ine|) and corner/edge singularities were excluded by demanding certain
compatibility conditions on the data.

In Section 5.3 we summarize and extend this analysis (Lemmata 5.3-5.5, The-
orems 5.1 and 5.2). On the one hand we incorporate an additional mesh re-
finement to treat also corner singularities. This is restricted to two dimensions
but the techniques should work also in three dimensions. The critical point is
to obtain a detailed description of the properties of the solution. On the other
hand, results in related literature led to the assumption that for A > ¢ (which
is the interesting case in practice) a numerical layer of width a = O(g|Inh|) is
more appropriate. Therefore we investigate also this case in Section 5.3. The
final result is

llw = unllle S A" min{|Inh|*+1/2 [Inel*H1} 4+ R,

if @ = a,emin{|Inh|; |Ine|} with a suitable constant a, is chosen (Corollary
5.1). The section ends with a discussion of insufficient refinement near the
corners (Lemmata 5.6 and 5.7).
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A more difficult singularly perturbed problem is obtained by including a con-
vection term,

—eAu+b-Vutcu=f inQCR* (d=2,3), wu=0 aufdQ.

In Section 5.4 we present in a uniform notation some approximation results
for a pure (Theorem 5.3) and a stabilized Galerkin finite element method
on anisotropic meshes (Theorem 5.4). These results were mainly derived in
[13, 73, 186]. An approximation error estimate with optimal convergence or-
der which is also uniformly valid with respect to the perturbation parameter
¢ is derived for the stabilized method only in the case of rather small stabi-
lization parameters (Remark 5.11). It needs further investigation whether the
method is stable enough or whether the proof can be extended to a stronger
stabilization.

Chapter 6 (Sections 6.1-6.3) is devoted to some topics which are treated un-
satisfactorily up to now. Section 6.1 serves as an introduction. We comment
on some problems which were left open in Chapters 3-5, and also on a more
complex application.

A-priori estimates of the finite element error form only one of the two legs
of the finite element analysis. The other leg consists in a-posteriori error
estimates. They are the basis for assessing the quality of a particular finite
element solution and for the creation of automatic mesh adapting finite element
strategies. However, the majority of papers on this topic assume a family of
isotropic meshes. In Section 6.2 we review results for anisotropic meshes.

The calculation of a finite element solution w; includes the solution of an
algebraic system of equations for the coefficients of the representation of uy
in a certain basis. Most often the nodal basis, see (1.7), is used but then
the system matrix is ill-conditioned. Therefore a preconditioned system of
equations is solved. Modern preconditioners are optimal in the sense that the
condition number of the preconditioned matrix is independent of the number
of unknowns. But, as with the case of error estimators, most of the theory is
restricted to families of isotropic meshes. In Section 6.3, we summarize some
preliminary results of our ongoing research into preconditioning techniques for
anisotropic finite element discretizations.

Finally, with Section 6.4, a short description of software is appended. The
three software packages were used for the numerical examples throughout the
whole monograph.
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1.3  Notation and analytical background

The main intention of this section is to introduce and to collect notation which
is used uniformly throughout the report. Other notation may have different
meaning in different sections.

General notation

Let us define the following:

d the space dimension, d = 2, 3,
¥ the Euclidean norm in R?,
(1,... ,2q) a global Cartesian coordinate system,
dist (G1, G2) the distance of two points or domains Gy, Gy C R?,
dist (G1,G9) :=  inf -yl
ist (G1, G2) meC}fyGQ |z — y
We identify a point z € R? with its vector of coordinates (1, ... ,74)7.
We denote by N the set of non-negative integers and use a multi-index notation
with a := (aq,... ,aq), ; € N, and define a! := ay!- - !,
d O™ 0%d
al = o, % :i=af---25%, and D := e
| | lz_l: 1 d axcln axsd

The notation a < b and @ ~ b means the existence of positive constants C
and Cy (which are independent of 7, and of the function under consideration)
such that a < Csb and C1b < a < Csb, respectively. When problems with a
perturbation parameter ¢ are considered then C; and Cs are also independent
of €.

Reference elements

Finite elements e C R? are defined via a (finite number of ) reference element(s)
é C R?,

e:={(21,2)T €R?Z:0< 2, <1, 0< 2 <1—2} for triangles,
e :={(Z1,%2)T €R?: 0 < 2,8 < 1} for rectangles,
é:= {(i’l,.@g,iﬁg,)T S R3 :

0<Z1,83<1, 0<Zy<1—21} for pentahedra,

{(%1,29,23)T €R3:0 < &y,29, 43 < 1} for hexahedra.

D>
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For tetrahedra we consider two reference elements. The first is
e = {(21,29,23)T €R®:
0<£i'1<1,0<.@2<1—§71,0<.@3<1—§71—(i’2} (111)

for tetrahedra that have three edges E with meas; E ~ diam (e). The second
is

é = {(21,20,23)" €R*:
0<#1 <1, 0<Z<1l—12y, 0<33<a1} (1.12)

or é := {(&y,%,23)" €R?:
0<21 <1, 0<Z<1l =12y, &1 <3 <1— 2o} (1.13)

for tetrahedra with four edges E with meas; E ~ diam (e). The reason for
having two choices for the second reference element is that the first one is
considered if hy = o(hq) and the second one if hy = o(h3). Depending on the
application it may be more natural to use hy 2 hy 2 hg or hy < hy < hs. The
use of these two variants for a second reference element prevents us from using
a permutation of the axes of the coordinate system. (In the case of five edges
E with meas; E ~ diam (e) we can use either of the reference elements.)

Polynomial spaces

With respect to the type of the reference element é we define polynomial spaces
Pk,éa

Pre D Pl = Z oz, ay €ER, a=(ay,...,aq) 7, (1.14)

o<k

namely Py, := Pg for triangular/tetrahedral elements,

Pk,é = Qz = { Z aaxaa Qo € R}

0<as,a2,a3<k

for quadrilateral /hexahedral elements, and

Pre = Z a,T%, an € R

0<aj+as<k
0<ag<k

for pentahedral elements. For simplicity of notation later on, we define

P, = {0}
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The mapping to the element ¢

Let n. be the number of vertices of é. The nodal shape functions {t;}",
in the case £k = 1 are also used for the mapping = = F.(&) of é onto e.
Let the vertices of e be locally enumerated as ¢« = 1,... ,n. and denoted by

x9 .= (X{zg, XSQ)T Then the subparametric mapping

r = F,(%):= ixgi%(@) € (Pre)? (1.15)
i=1

~

defines e via e = F.(é). If this transformation is affine then the element is
called affine. According to [182, Section 3.3] the element is isoparametric
when the shape functions are used for the polynomial transformation F' from
the reference element é to the element e. The term subparametric indicates
that only a subset of the shape functions is used.

Note that only the vertices of e enter into the transformation (1.15), hence the
shape of e is defined by its vertices. In particular, all edges of e are straight.
More general elements are not considered here. Therefore all triangular and
tetrahedral elements are affine. Other affine elements are parallelograms, par-
allelepipeds, and prismatic pentahedra.

As an alternative to (1.15), an affine mapping can be written as

T = Bet +b,, B.:= (bi,jye)g,jzl € Rdde be := (bi,e)?:l € R
(1.16)

In particular, we say that e is a tensor product element if B, is a diagonal
matrix,

bi,j,e =0 forz 7é ] (117)

In three dimensions, we also define elements of tensor product type by demand-
ing

bl,l,e b1,2,e
b2,1,e b2,2,e

2 2
~ bl,l,e ~ b2,2,e'

(1.18)

b1,3,e = b2,3,e = b3,1,e = b3,2,e = 07 ‘

In three dimensions, tensor product elements are of tensor product type if
biie ~ baa.. Since we do not need this distinction in the two-dimensional
case we will say that tensor product elements are also of tensor product type
there. We introduce these special types of elements here in order to simplify
the mapping for the use in Chapter 3.
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The elements ¢

Let us consider Lagrangian finite elements and define the following;:

N,

{X “)}ii;
{2:(2) }i
{%’,e(?f) i\f:el

Pk,e

the number of nodes of e,

the set of nodes of &, { XM} e = {0, L2 ..., 1Ne,
the shape functions on the reference element,

span {@i(£) 1Y = Pre, @i(XD) = 6,5 (1,5 = 1,..., No),
the shape functions on the element e in local enumeration,
Giel2) = Gi(FT1 @) (i=1,... ,N,),

the linear space of shape functions on the element e,

Pre i= spam {5 ()},

the diameter of e, diam (e) := sup, ,c. | — ¥/,

the supremum of the diameters of all balls contained in e,
element sizes, see Sections 2.2-2.6 and 3.1,

the patch of elements around e,

S, :=int|J{e' : ¢’ € Ty, e’ Ne # 0},

the index set for the nodes X € € in global enumeration.

25

Note that the functions ¢;.(z) are polynomial only in the case of affine ele-
ments e. Since the considerations in Chapters 2 and 3 are local we will often
omit the subscript e in the notation.

We point out that the term finite element means, according to [63, page 78], the
triple (e, Pk.e, Zke). Here, e is a non-empty subdomain of 2 with a Lipschitz
boundary, Py, is the space of shape functions, and ¥y, is a basis in Py .

However, sometimes we simply call e a finite element. In Lagrangian finite

elements the functionals of ¥y . result in the values at the nodes.

The family of meshes

For a mesh 7, we assume the usual admissibility conditions, see Section 1.1,
and define the following:

h

1
{X(i)}iel
{@itier
Vs Von
Nel

A mesh 7T}, is called isotropic iff all elements are isotropic, see (1.4). A family
F = {7} of isotropic meshes is called quasi-uniform iff h ~ diam (e) for all

the maximal element diameter, h := max.c7, diam (e),
the index set for the nodes,

the set of nodes of the mesh,

the set of trial functions in global enumeration,

the spaces of trial functions, see (1.3), V}, := span {; }ier,
the number of elements.
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e € Tp, that means that the length scales of the elements are translation-

invariant.

Approximation operators

We employ the following approximation operators:

I1,, the projection operator L*(0;) — Pk, see Sections 3.2, 3.6,

I, the nodal interpolation operator, see Sections 1.2, 2.1, and 3.7,

I the nodal interpolation operator when applied on the reference
element,

Ch the Clément operator, see Sections 3.6 and 3.7,

Oy, the quasi-interpolation operator introduced by Oswald, see
Sections 3.6, 3.7,

7 the original Scott-Zhang operator, see Sections 3.2 and 3.7,

Sh the modified Scott-Zhang operator using small edges(2D)/
faces(3D), see Section 3.3 and 3.7,

Ly the modified Scott-Zhang operator using large edges(2D)/
faces(3D), see Section 3.4 and 3.7,

Ep, the modified Scott-Zhang operator using long edges (3D), see

Section 3.5 and 3.7.

Function spaces

For a bounded domain G C R? with Lipschitz boundary (the results may
hold true for more general classes of domains such as domains satisfying a
strong cone condition but we will not discuss this here) we denote by C(G)
the space of functions which are continuous on G. C*®(G) means the space of
functions that have continuous derivatives of any order and D’'(G) the space of
distributions. Moreover, we introduce C3°(G) := {v € C*(G) : suppv C G}.

Let W (G), £ € N, p € [1, 0], be the Sobolev spaces with the norm

s WGP = 3 / Do

|| <2

and the seminorms

v WP (G P 1= / DUP, [ W(G / Dty e

la|=£ laf=1
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for p < oo and the usual modification for p = oo. Note that the seminorm
|v; W4P(@G)| contains all derivatives of order ¢ but [v; W*P(G)] only the pure
(“non-mixed”) ones. The special case W?(G) is denoted by LP(G).

By introducing polar/cylindrical coordinates ;1 = rcos¢, xo = rsing, we
define for £ € N, p € [1, 00|, § € R, the weighted Sobolev spaces
ViP(G) = {veD(G): ||lv;VaP(G)|| < oo}, (1.19)
WP(G) = {veD(G): |lv;Ws*(G)| < oo}, (1.20)
where
V@I = 3 [ e, (1.21)
jaj<e” €
|U;V;’p(G)|p = Z/|rﬂD“U|p, (1.22)
la|=t”C
lowier = 3 [ o (123
jal<e” @
o WP (G = ) / r? DvlP. (1.24)
)=’ C

Moreover, let R = R(x) := (22 + 22 + 22)"/? and 6§ := r/R be the distance to
the origin and the “angular distance” to the x3-axis, respectively. We define
for ¢ € N, p € [1,00], 8,0 € R, weighted Sobolev spaces with two weights by

Vs3(G) = {v € D'(G) : |lo; V5 (G)]| < o0}

where
wva@er = 3 / |RP-¢+elgs—t+1al peyp, (1.25)
laj<e” €
v Va2 (@GP o= Z/|Rﬂ051)%|p. (1.26)
laj=¢ 7 €

Note that by this definition
VP (G) = Vi5(G). (1.27)

Embedding and trace theorems

For two Banach spaces X and Y we denote by X — Y the continuous embed-
ding of X into Y; this means X C Y and

30 =C(G): |wY|| < CllwX|| Vue X.



28 1 Preliminaries

If the spaces are defined on a finite element e one has to separate out the
dependence of C' on h by making a transformation to a reference element.

Well known embedding theorems are

p>d, p>1,

£,p - :
Wh(G) — C(G) if { (5d pet (1.28)
W (GQ) — W™P(G) if ¢ >m, (1.29)
W (G) — Wh(G) ifp>q, (1.30)
. [ fp<d t=1_-¢
Wh (G LG f e p A 1.31
(@) = (@) 1{€p:d, 1<¢g< ( )

Let M C G be a manifold of dimension dim(M). If there exists a unique,
continuous, linear trace operator X (G) — Y (M) then we will also write X —
Y. By analogy with the above, this means that

AC=C(G,M):  [wY (M) <Cllu; X(G)]| Vue X(G).

Here we have identified v € X(G) with its trace on M to keep the notation
succinct. An important trace theorem is

lp>d—dim(M), p>1,

¢>d—dim(M), p=1. (1.32)

W(G) — LP(M)  if {

For an introduction and overview about the theory of function spaces see,
for example, [1, 87, 115, 116, 128, 146] or the summaries in finite element
monographes as [57, 63].



2 Lagrange interpolation on anisotropic
elements

This chapter is devoted to anisotropic local interpolation error estimates for
anisotropic Lagrangian finite elements. In Section 2.1, two basic tasks are
elaborated for proving such estimates. Moreover, an abstract error estimate
is established which is used in Sections 2.2-2.6 to derive the estimates for all
element types. Section 2.7 contains results and approaches of other authors
which are related to the topic of this chapter.

Triangles, tetrahedra and quadrilateral elements are considered in separate
sections in order to focus on special difficulties of these element classes.

2.1 General considerations

2.1.1 The aim of this chapter

The aim of this chapter is to prove anisotropic interpolation error estimates
for anisotropic Lagrangian finite elements. The Lagrangian interpolant, also
called nodal interpolant, is defined by

Thu = ZU(X(i))gOi(x), (2.1)

where X are the nodes and ;(z) are the nodal basis functions. Since I, is
defined locally on every element the interpolation error u—I,u can be estimated
elementwise. In Section 1.1, we motivated already that we are interested in
error estimates of the form

| — Thu; W™9(e)| < (measge) /977 >~ ¥ D*u; W™P(e)]. (2.2)

|a|=f—m

The main result of this chapter is that this estimate holds for u € W%P(e),
1<l <Ek+1 pel,],ifme{0,...,0—1}, g € [1,00] are such that
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Wt mP(e) — Li(e) and if the conditions
p>d/l ifm=0and/l=1,...,d—1, (2.3)
p>2 ifd=3andm=¢—-1>0, (2.4)

are fulfilled. Additionally the element e has to satisfy assumptions on the
geometry (like the maximal angle condition) and on the location in the co-
ordinate system (coordinate system condition). We show also that all these
conditions are necessary.

In this chapter we discuss also restrictions of the Lagrange interpolation. These
include the following.

1. The operator I}, cannot be applied to discontinuous functions. Even more,
it is not sufficient for the proof of local interpolation error estimates to consider
functions u € W*?(e) N C(€). We need assumptions on ¢ and p which imply
the embedding

Wh(e) — C(?)

(We remark that this Sobolev embedding theorem is explicitly used only in
the case m = 0, therefore (2.3) is formulated only for m = 0. But for £ > d the
embedding theorem is valid for all p € [1, 00] and in the remaining case d = 3,
m = 1, { = 2 condition (2.4) implies this embedding.) Consequently, the
Lagrange interpolation is not suited for some classes of functions, for example
for u € WH2(Q).

2. The condition (2.4) implies that the estimate

lu — Thu; WhH(e)| < Z h* ‘Do‘u; Wl’p(e)‘
la]=1
is valid only for p > 2 in three dimensions. This restriction leads to a non-

optimal approximation result in our investigation of the anisotropically refined
meshes near edges [19, 20], see Remark 4.2 on page 146.

3. The case m = / is not allowed. This means for example that the estimate
u — Ty WH(e)| S Ju; WP (e)

is not valid even when the Sobolev embedding theorem is fulfilled (p > d). Such
estimates are of interest when finite element functions are to be interpolated
on a coarser mesh.

We note however that the points 1 and 3 are general properties of the La-
grangian interpolation operator and not introduced by the anisotropic meshes.
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One remedy is to consider alternative interpolation operators. We will treat
this in Chapter 3.

For the investigation of the approximation error near edges we have used in
[19, 21] another approach to cope with functions which are not contained
in W?P(e), p > 2. It turns out that the solution of the Poisson problem
in domains with edges and corners can be described favourably in weighted
Sobolev spaces V;,p (Q) or V[f”g (€2), see Section 1.3 for the definition of these
spaces. Therefore we derive in Subsection 2.3.2 estimates of |u — Iu; W™P(e)]
for functions u from such spaces.

The outline of the chapter is as follows. In the next subsection we elaborate
two basic tasks to be solved in order to prove anisotropic interpolation error
estimates. Then we prove in Subsection 2.1.3 an abstract error estimate for
an approximation operator (Lemma 2.2). By verifying the assumptions of
this lemma we derive in the following sections the estimates on the reference
elements for all the element types. Moreover, we investigate in these sections
which elements are admissible for the validity of anisotropic interpolation error
estimates. For such elements we prove properties of the transformation r =
F(z) and conclude the error estimates.

We separate triangles, tetrahedra and quadrilateral elements in order to focus
on special difficulties. We motivate this also in Subsection 2.1.2 and at the
beginning of each section. The final section of this chapter, Section 2.7, con-
tains results and approaches of other authors which are related to anisotropic
elements.

2.1.2 Basic tasks for proving anisotropic interpolation error
estimates

The main strategy to prove anisotropic interpolation error estimates is old,
namely, to derive first the estimate on a reference element é and to apply a
coordinate transformation = = F, (&) with e = F,.(é). This procedure ensures
that the constant in the transformed estimate depends only on é, and not on
(the size of) e.

For proving estimates of type (2.2) for anisotropic elements we have to recog-
nize first that sharper estimates on the reference element have to be shown,
sharper than it is necessary for isotropic elements. We give an example to
elucidate this.

Example 2.1 Consider a triangular element e with linear interpolation. An
estimate on the reference element ¢é := {(Z1,%9)7 €ER?*: 0 < 2; < 1,0 < Zp <
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1 — &} is in this case

o —TosWhP(e)| S |o;W>P(e)], p € [1,00]. (2.5)
This means in particular

IDOV (0 —18); LP() || S 16; WP (€)], p € [1,00]. (2.6)
Note that we omit the index h when the operator is applied on the reference

element.

For the special element e := {x = (z1,22)T € R2: 0 < 21 < 7,0 < 1 <
ha(1 — x1/hq1)} we can directly calculate D0 = h*D*v and

|6; WP ()P = hahy Y hoP||D%v; LP(e)|IP.
|a|=¢

In this way we conclude the estimate
D@D (0 = Tyw); L7 (e) |7
S R IDEVu LP(e)[P + ) AP DY ODu; L7 () 7.
la|=1
If hy = o(hy) we have a term with the bad asymptotics h2h, ! ~ [diam (e)]?0; .

By tracing back the origin of this term we see that we have to prove
IDOV(6 —10); L7 (e)|| < | D*Vo; whe(e)| (2.7)
when we want to show an estimate of the quality (2.2). O

In conclusion of this example we can formulate a first basic task.

Basic task 1: Consider elements é with the polynomial space Py (see Sec-
tion 1.3 for the definition). Let 4 € W%P(é) with some ¢ < k + 1. Derive an
estimate analogous to (2.7) for the interpolation error @ — I% in the norm of

Wwma.
IDY(0 —10); LUe)|| S |[DVo; WE™P(e)| Wy« |y] = m. (2.8)

In particular, derive the ranges of k, ¢, p, m, and ¢ for which (2.8) is true.

We will see in this chapter that such estimates can be derived for all element
types on the basis of the general Lemma 2.2 in Subsection 2.1.3. But the
conditions for (2.8) must be elaborated with care. For example, (2.7) holds for
p € [1,00] in the two-dimensional case, but only for p € (2, c0] in three dimen-
sions, see Sections 2.2 and 2.3. (Note that estimate (2.5) holds for p € (3/2, 0]
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T2

T1

Fig. 2.1 Illustration of the maximal angle condition and the coordinate system condition
(triangle).

for d = 3.) This is one reason why we treat two- and three-dimensional ele-
ments in separate sections.

A second peculiarity of the proof of anisotropic interpolation error estimates
is that the transformation F, has to be investigated very carefully. For ex-
ample, for the proof of estimate (2.2) in the case of triangular elements it is
necessary to formulate conditions on the maximal interior angle v (maximal
angle condition: v < 7, < m) and the angle ¥ between the longest side and the
zq-axis (coordinate system condition: |sin®| < hy/hy), see Figure 2.1 for an
illustration. These conditions become more complicated in three dimensions.
So one can formulate a second basic task.

Basic task 2: Describe classes of finite elements e for which (2.8) can be
transformed (and summed up) to the desired estimate (2.2). In particular,
define the element sizes hq, ... , hq for such elements.

At this point we mention that this task involves more than the discussion of
the transformation z = F,.(é) when the element e is non-affine (for instance
isoparametric). Consider the following example.

Example 2.2 Let us study the simplest isoparametric element, namely a
quadrilateral element e with what are usually called bilinear basis functions.
The reference element is defined by é := {& = (21, 42)T € R? : 0 < &1, 29 < 1}.
Furthermore, denote by &i(:ﬁl, Z9),1=1,...,4, the bilinear nodal shape func-
tions. The transformation F': é — e is given by

T = ZX\‘EZ)@(@) (2.9)

=1
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which is affine only in the case Where e is a parallelogram. (Recall from Section

1.3 that X" = (Xflz,X(l)) =1,...,4, are the coordinates of the vertices
of e.) The consequence is that

DOV 40, j=1,2
in the non-affine case, which yields

DUNG = 37§ DBy DOz PONLE 4§ pay P

lo|=1|8|=1 la]=1

Even in the case of isotropic elements, this is deficient because the second sum
is only of order h due to [DMVz*| < h (usually), while the first term is of the

desired order, A2, due to [D00z| < b and |[DOVzA| < h.

This peculiarity can be circumvented in the case of isotropic elements by show-
ing an estimate without mixed derivatives,

[6 —To; W™(e)| S | D*V0; LP(e)| + | D*o; Lr(e),

m = 0,1, p € [1,00). But, for estimating ||[D©Y (¢ — I9); LP(¢)|| in the an-
isotropic case, we have seen in Example 2.1 that the term ||[D@0%; L2 (¢)||
must also be av01ded on the right hand side. The consequence of the dllemma,
that there cannot be avoided both ||DMV¢; LP(é)|| and ||[DZ%%; LP(é)]|, is that
the transformation from é to e leads to a non-optimal estimate for non-affine
elements. For example for the trapeze

62{(1‘1,1'2) €R2 0<a < h1,0<.'L'2 <h2(2—$1/h1)}

we obtain by transforming (2.8) withp=¢=2,¢=2, m=1,v = (0,1) the
estimate
IDOD (v —Tyv); L2(e) |
< @ a+(0,1),,. 72 (0,1),,. 72
S Y ReD v L(e)|| + || D™V v; L (e) | (2.10)
la|=1

which has no convergence order. If this estimate were sharp then anisotropic
triangles would be preferable to anisotropic quadrilateral elements.

Fortunately, it turns out that this estimate is not sharp. In Theorem 2.8 we
show that an estimate of type (2.1) can be proved for certain classes of non-
affine elements. This is also a reason why we treat simplicial and non-simplicial
elements in separate sections. 0
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2.1.3 Basic lemmata

One of the key ideas for deriving convergence orders in local interpolation error
estimates is the observation that the seminorm | . ; W*%P(¢)| is a norm in the
quotient space WP (e)/Pg |,

inf [|@ —w; W) ~ |a; Wh(&)].

wGPE 1

This is already elaborated in the classical theory, see, for example, [63, Section
3.1]. For anisotropic error estimates we need a generalization of this relation.
Since we use the lemma in the next chapter as well we must formulate it with
quite general assumptions on the domain.

Lemma 2.1 Let G = U;.Izl G; CR? be a connected open set that is the union

of a finite collection of domains G; C R¢ that are star-shaped with respect to
balls B;. Let v be a multi-index with m := |y| and uw € L'(G) be a function
with DYu € W ™P(G), where {,m € N, 0 < m < {, p € [1,00]. Then there
exists a polynomial w € Py | such that

ID7(u = w); W™ (G| S |DTu WP (G)). (2.11)

The constant depends only on d, ¢, diam G; and diam B; (j =1,...,J). The
polynomial w depends only on ¢, u, B; (j=1,...,J), but not on ~.

Proof The lemma was proved in more general form by Dupont and Scott
[76]. By setting A = {« : |a| = £} in [76, Theorem 4.2] we obtain the assertion
for domains that are star-shaped with respect to a balls. The generalization
of the class of domains is discussed in Remark 7.3 of that paper. [ |

Since this short citation of the proof may not be satisfactory let us explain
the main ideas for the proof. Let G C R¢ be a bounded domain that is star-
shaped with respect to a ball B. Let a function ¢ € C§°(B) be given with
Jz¢ = 1, and a function (in the distribution sense) u € D'(G). Then the
Sobolev representation of u is defined by [76]

u = QYWu+ROu, 0>1,
QU@ = Y [ o0 Dy e Py,
la|<t-1
(ROu(x) = €3 [ ka,y) (D*u)( >Md,
E;L; y y) T dy

k(z,y) := /0 s (z + sy —2))ds.
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Q®u is an approximation of v with some nice properties including [76, Theo-
rem 3.1, Remark 3.2, Theorem 3.2]

DQWy = QUlelpay, la] <, (2.12)
1QWuw; Wt (@) < Cllu; LN(B)], (2.13)
lu = QUYu; WHP(G)| < Cluy; WH(G)), (2.14)

where the constant C' depends only on d, ¢, diam G and ¢. Further results in-
clude more general classes of polynomials, estimates in fractional order Sobolev
spaces, and the relaxation of domain constraints.

With (2.12) and (2.14) we can prove Lemma 2.1: If D7u € W*™P(G) then

1D (u = QUWu); W™ (G)| = ||IDTu— Q™D ;W (G|
< |DYwWETR(G)|.

Remark 2.1 We remark that an assertion similar to (2.11) was proved in [9,
Lemmata 1 and 2] by a generalization of the Bramble-Hilbert theory [53]. In
this paper we considered more general Sobolev spaces H (P )P which are defined
via a set of multi-indices P C N¢, a parameter p € [1, 00], and the seminorm

lo; HPY|IP := Y [1D%v; LP(Q)]P.

acP

(Note that H(PJ)P = W4P(Q), d = dimQ.) However, the class of domains is
in that paper not as general as in Lemma 2.1 and the polynomial w depends
on 7.

Second, the reader who is interested in the dependence of the constant in
estimates like (2.11) on the diameters of G; and B; is referred to [104].

We give now a general error estimate for any finite element (€, Py ¢, Xg,¢) con-
sidered in Sections 2.2-2.6. The following lemma and its proof can be found
in a more general setting (non-standard Sobolev spaces, see Remark 2.1), but
restricted to ¢ = p, in [9, Lemma 3].

Lemma 2.2 Let I : C(é) — Pie be a linear operator. Fiz m,{ € N and
p,q € [1,00] such that 0 <m </{<k+1 and

WE™P(8) < L1(é). (2.15)

Consider a multi-index v with |y| = m and define j := dim DV’Pk,é. Assume
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that there are linear functionals F;, 1 = 1,...,7, such that
Fre (WEmr(e))' vi=1,...,j (2.16)
Fi(D"(i — Ta)) = 0
Vi=1,...,5, YaecC(é):DaeWwmre), (2.17)

W€ Pre and Fy(D'd) =0 VYi=1,...,5, = Dw=0. (2.18)
Then, the error can be estimated for all i € C(€) with DVt € W& ™P(&) by

1D7(a —1a); L9(&)|| S |1Das Wh (). (2.19)
Proof For all & € PJ | we have by the triangle inequality

1D (@ — Ta); L4(e)|| < |1D7(@ — 0); L&) || + |1D7 (8 — Ta); L(é)|).
(2.20)

We note that o — It € Py because ¢ < k+ 1 and Prs D 73,‘3. That means
DY(v — Iu) € D'Pye. Since the polynomial spaces are finite-dimensional all
norms are equivalent. Together with (2.18), (2.17), and (2.16) we derive for
any o € Pg ,

j
IDY(0 ~Ta); L&) ~ > |F(D(0 —1a))|
=1

= Y IRD (- )

S D70 —a;wemre)).
Using (2.20) and (2.15) we obtain for any ¢ € Pg ,

1D7(@ — Ta); LY@)|| < [|1D7 (i@ — 0); WP (@)
By Lemma 2.1 we get the desired result. [

It remains to find for any v and for any element (€, Pye, X¢) the functionals
F;,i=1,...,j, that satisfy (2.16)—(2.18). This is done in Sections 2.2-2.6
separately for each element type. It turns out that for the Lagrangian finite
elements considered in this monograph, functionals can be defined for all ~
with |y| < k, such that (2.17) and (2.18) are satisfied. The critical point is
that they are not necessarily continuous for all combinations of k, ¢, p, m, q,
and d.

For other finite elements it is not clear whether such functionals exist. The
following lemma provides a criterion for the existence of linear functionals



38 2 Lagrange interpolation on anisotropic elements

satisfying the conditions (2.17) and (2.18). It was proved in [9], see [108] for
similar considerations.

Lemma 2.3 Let P be an arbitrary polynomial space, and v be a multi-indez.
Define j := dim D"P. Assume that 1 : C*(é) — P is a linear operator with

Iiv = w Yw € P. Then there exist linear functionals F; : C*(é) — R, i =
1,...,7, such that

F(D'(a—1a))=0 Vi=1,...,5, YieC> (), (2.21)
weP and F(D'w)=0 Vi=1,...,5, = Dw=0 (222
if and only if the condition

@eC®@) and D'a=0 = DTa=0 (2.23)
holds.

The application of this lemma is twofold. First, if condition (2.23) is violated,
then an anisotropic interpolation error estimate of type (2.19) does not hold.
This is the case, for example, for elements containing bubble functions [9, Table
2] or certain triangular serendipity elements [108, page 59f.]. (Nevertheless,
such elements may be useful for other types of anisotropic approximation.)
Second, if condition (2.23) is satisfied, one can find functionals F; : C*°(é) — R
satisfying (2.21), (2.22). For the application of Lemma 2.2 it remains to show
that the F; are also continuous with respect to W4 ™P(¢).

Remark 2.2 It has been shown in [19, 20, 21] that Lemma 2.1 remains
true when W4 ™P(G) is replaced by weighted Sobolev spaces V;fm’p (é) or

V/f’gm’p (é), for the definition of these spaces see Section 1.3. The domain is
restricted to é there; the generality as for G in Lemma 2.1 is not elaborated.
Also, the polynomial w depends on 7 there. But on this basis one can prove a
version of Lemma 2.2 with W ™P(¢é) replaced by V;_m’p(é) or V;vgm’p(é). We
will use this in Subsection 2.3.2.

2.2  Triangular elements

In Subsection 2.1.2 we formulated two basic tasks in order to derive anisotropic
interpolation error estimates. The first task, namely to derive a sharpened
interpolation error estimate on the reference element was partially solved by
Lemma 2.2. Tt remains to find functionals with certain properties. We will
discuss this comprehensively in the first part of this section. In Lemma 2.4
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we formulate the assertion. Prior the proof we show that the assumptions
are sharp (Examples 2.3 and 2.4) and we give examples of the functionals in
several cases of . Then the proof for the general v should be understandable.
We will see in the next sections that other element types can be treated with
similar ideas.

In the second part of the section we discuss the affine transformation x = F(z)
and prove the anisotropic interpolation error estimate for the general element
e (Theorem 2.1) and conclude the corresponding isotropic estimate (Corollary
2.1). In the remaining part of the section, we discuss the maximal angle
condition and the coordinate system condition.

Let us consider the simplest Lagrangian finite elements, namely triangles.
They are formally described by (€, Pi.¢, X e) with

é = {(21,22) ER*:0< 2, <1,0< 3y <1—2},
Pre = Pi,
Ske = {fi:C(é) = R such that f;(a):=a(XD)}Ne,

where N, = (k;rz) is the number of nodes and

X o= XYL = {4 DT € RYocinjan = {30 € R}k
is the set of nodes. Here, we identified a multi-index with a vector.

Lemma 2.4 Let v be a multi-index with m = || and @ € C(é) be a function
with DYi € W ™P(é), where £,m € N, p € [1,00] shall be such that 0 < m <
(<k+1and

p=oo if m=0 and{=0,
p>2 ifm=0andl=1, (2.24)
m<{l if vy =0 o0ry =0, and m > 0.

Fiz q € [1,00] such that W ™P (&) — Li(é). Then the estimate
1D7(a —1a); L9(&)|| S |1D7as W m(e)) (2.25)
holds.

Prior to the proof of the lemma we want to discuss the assumptions in (2.24).
Let us mention three points.

First, Example 2.3 shows for p < oo that the case m = ¢ must be excluded for
pure derivatives (7; = 0 or 7, = 0). (Note, however, that ||DY(a—1a); Li(é)|| <
|4; W5P(€)| can be shown for m = £ > 2/p.) Observe that this example works
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both for m > 0 and m = 0. The instance p = oo is not covered by this
example. For m = ¢ = 0 one can even show that estimate (2.25) holds for all
q € [1, 00| because ||Ia; L*(é)|| < [|u; L>(€)||. The case m =€ > 0, p = oo, is
not elaborated.

Second, Example 2.4 shows that p > 2 is necessary in the case m =0, £ = 1.
Third, if £ > k4 1 then (2.25) has to be modified to become

£
IDV(@ —1a); LA@)| S Y |D s WiTmR(e)).
i=k+1

This is useful only, when u € W*"1P(e) is not sufficient. For tetrahedral
elements we use such arguments, see Theorem 2.3 on page 57. One can find
estimates of this type also in [108], see Comments 2.4 and 2.10.

Example 2.3 Let v = (0,m), m > 0, k > 1 arbitrary,
Ue := &',  We(2) := min{1;e|Inzq|}.

Then one can calculate that

N LI :i.gn 1f3%1:0, . Ny s m/! 1f3%1:0,

“0'_?3%“5_{0 if & >0, lﬂ%Duf_{o if & >0,
and [1, page 17|

lim || DYd.; LP(é)]| = || lim DY4; LP(€)|| = 0 for p < oo, (2.26)

e—0 e—0

but
lim || D7a. — D'la; L9(e)|| = | D'ao; L) | = C(k,m) # 0. (2.27)
e—

(The function ug is not continuous but it is defined pointwise. So the inter-

polation operator can be applied formally. In particular there holds Iug =
lim, , IG..) The last conclusion can be proved indirectly. Assume that

|D"Tag; L(é)]| = 0

then D'I4g = 0. Consequently, we have

m—1
Ty = #0p_j(£1) with _; € Pp_,
j=0
m—1 )
(o — Ia0)(0,22) = 25" — > 230,—;(0)
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However, Vm(z/k‘) =0fori=0,...,k (interpolation property) leads to Vi.=0
which is a contradiction. In view of (2.26) and (2.27), the estimate (2.25) does
not hold for v = (0,m), m = ¢, p < occ. O
Example 2.4 Let be k£ > 1 arbitrary, / =1, p < 2,

G ;= min{1;eln|In(7/e)|}, 7 := (22 + 22)"/2

We can calculate that
Ug := lim 4, = {
e—0
and

hm|u5,W1p( )< hm|u67W12( ) =0

(in detail in [3, page 61]) but

lim [|a. —Tag; L()|| = ||Tao; LY (&)]| # 0.

The last conclusion can be proved with similar arguments as in Example 2.3.
Consequently, the estimate (2.25) does not hold for v = (0,0), £ =1, p < 2.
Note that the example does not work for p > 2 because lim, ¢ |t.; WP(é)] =
oo then.

Let us now turn to the proof of Lemma 2.4. In view of Lemma 2.2 we have
to show that linear functionals with the desired properties exist. Before we
do that in the general case we will illustrate the ideas by discussing some
particular cases.

e For k=1, y=(0,0), we have j = dim P, ; = 3. We can use
Fy() = w(X ).

Property (2.16) is shown via the Sobolev embedding theorem W%P(é) — C(é)
(see Section 1.3),

|Fi(w)] < [l; C@)|| < [lo; W (e)]],

which is valid if £ > 2 or p > 2, £ = 1. The proof of the properties (2.17) and
(2.18) is trivial.
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e For k = 1, v = (1,0), we have lA?”Pl,é = P2 and thus j = 1. As the
functional we consider

1
Fl(’lf)):/ ’UA)(JAl'l,O)di'l
0

Denote by E := {& € é : £, = 0} the edge of é which is integrated over. Then
the continuity can be proved by a trace theorem (see Section 1.3):

|[Fu(w)] < [lw; L) S s W (@), (2.28)
where we need the condition 1 = m < . Property (2.17) is valid due to

(1,0)

F/(DMO(4 — 1)) = (4 — Ia) 00

=0.

For showing (2.18) let w = ag + a1Z; + asis, then Fl(lA)VuA)) = D" = ay.
The case v = (0, 1) is treated by analogy.

e For k=2, v =(0,0), we have j = 6. Since also N, = 6 we can proceed as
in the case k =1, v = (0,0).

e In the case k =2, v = (1,0), we need three functionals. For

1/2
Fi(w) = / w(&y,0)dy,
0

1
F(w) = / w(Z1,0)dzy,
1/2
1/2
F3(UA)) = w(:ﬁla%)dila
0
we can show (2.16) and (2.17) as above. To illustrate the general proof below
let us prove (2.18) in this special case in the same way: Let @ € P2 be such
that

F(D'w) =0, i=1,23. (2.29)
Consider now the polynomial
W o= @ —w(1,0) 2(Zy — 3)(da — 1) —
W(3,3) - [—48s(Ea — 1)] —w(0,1) - 25(22 — 5) € Py (2.30)

which has the properties
D" =D'W and W(1,0)=W(L 1) =W(0,1)=0. (2.31)
Consequently, we obtain from (2.29) and (2.31)

0= Fy(D) = Fy(D'W) = W(4, 1) = W(0,4),

D=
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thus W (0, 3) =0,

0= Fy(D"%) = Fp(D'W) = W(1,0) — W(%,0),
thus W(3,0) =0,

0= F (D) = F(D'W) = W(%,0) — W(0,0),

2

thus W (0,0) = 0. Therefore W = 0 and with (2.30) we get & = w(Zs),
D"w = 0.
e For k=2, ~v=(1,1), we have 15773;@7(; = PZ and thus j = 1. Let

/2 p1/2
Fi(w) = / / w(Z1, To) dEdzs,
0 0

which satisfies conditions (2.16)—(2.18). In particular, F; is continuous for all
¢=23andp € [1,00].

e For k=2, v=(2,0), we let

12 p1/2+¢
Fi(i) = / /{ (i1, 0) dide,
0

which also satisfies all conditions. Note that we need the condition m < ¢ to
prove the continuity of Fj.

Proof (Lemma 2.4) Define X, := {X® € ¥ : X + 1y ¢ x}. By
consideration of the Pascal triangle one realizes that the number of elements

in X, is |X,| = (k_g‘ﬁ) = j with j from Lemma 2.2. Let v = Y7 ~),

|7®| = 1, and define the operator ®, for |a| = 1 by

L1

T+pa
(i) (2) = / (€ e,

where the integral is to be understood as a line integral on the straight line
connecting the points z, 2 + %a € R%. We can now set functionals F; by

Fi() == (®ym 0...0 . m)(XD), for X € x,.

We see that F}(D74) is a linear combination of the values of @ at the nodes
X € XN G, where G; C é is the domain of integration in the definition of F}.
Since 4 — It = 0 in these nodes, (2.17) is shown.
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Assume there is a polynomial w € P;; with E(f)"ﬁ)) =0foralli=1,...,jJ.
Then there exists a polynomial W e P with the properties D'W = Db
and W (X) =0 for all X € X\ X,. We show now recursively that W (X) = 0
for all X € X. Indeed, start with an XM e A&, for which G, N X, = X ),
then 0 = F,(DYW) = (—=1)™W (X ™), W(X™) = 0. Set X, := &, \ X and
continue with the next node. Finally we get W(X) = 0 forall X € X, W = 0.
Thus D7 = 0 and (2.18) is proved.

The boundedness of the functionals is shown for ¢ > m via

WEmP(e) — WhP(e) — LY(G;),

|Ex()] < [l; LG S s WH(@)]).
This embedding holds both for one- and two-dimensional G;. For ¢ = m we
need for W*™P(¢) = LP(¢é) — L'(G;) that G; is two-dimensional, that means
v1 # 0 and 7, # 0. n

We note that partial cases of this lemma were proved in a slightly different
way in [35], see Comment 2.8 on page 89.

The transformation of estimate (2.25) from the reference element é to the
element e = F'(é) can be carried out by

r=F(i)=Bi+b B=(b,)?_, €R¥? b= (b)2, cR?
(2.32)

see also (1.16). Since all considerations are local in one element e we omit the
index e here and further on. We will now investigate the sizes of the entries

b; ; and bg;l), i,j = 1,2, of B and B!, respectively.

Let E be the longest edge of e. Then we denote by hy = hy, := meas| E its
length and by hy = ho. := 2measye/hy . the thickness of e perpendicularly
to E, see Figure 2.2. We assume that the element satisfies a mazimal angle
condition and a coordinate system condition.

Maximal angle condition: There is a constant v, < 7 (independent of h
and e € Tp,) such that the maximal interior angle y of any element e is bounded
by Y, ¥ < Y

Coordinate system condition: The angle 9 between the longest side £ and
the x;-axis is bounded by |sind| < ha/hy.

Other formulations of the maximal angle condition are discussed in Comment
2.1 on page 85.
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T2

T2

x&

o ; 8 >
xM P x® w.e po xWM X3 T

Fig. 2.3 Notation and illustration of e in the coordinate system z..

Lemma 2.5 Assume that a triangular element e satisfies the maximal angle
condition and the coordinate system condition. Then the entries of the matriz
B of (2.82) and of its inverse B~! satisfy the following conditions:

bijl < min{hi; by}, i,j=1,2, (2.33)
(-1) R | o
|bl:] | 5 mln{hi 7h] }; 1] = 172 (234)

Proof Enumerate the vertices of e counterclockwise such that X" and X¥
are the vertices of the shortest edge of e. Introduce an element related Carte-
sian coordinate system z. = (1, Z2,) such that XY lies at the origin and

XC(Q) is also located at the x; .-axis. Furthermore, denote by P the foot of the

perpendicular from Xé3) to the z; .-axis. Note that P may lay outside of €, see

Figure 2.3 for an illustration. Split the transformation (2.32) into two parts,
z=BWzg, +0, z. = B@z,

such that the columns of B® are the z.-coordinates of X and Xég), respec-

tively. B() describes a rotation, and b contains the z-coordinates of xO.

Note that B = B B®),

One of the edges XIXP and X2 X has length h, per definition. The other
edge has a length of order h; by using the triangle inequality. Consequently,
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|b§2%| ~ hy, bng = 0. Moreover, we can conclude that |Xe(3) — P| ~ hy because

measye = %hth. The interior angle o at ngl)

is not the smallest interior angle
of e. Therefore, |sina| ~ 1 by the maximal angle condition, and |Xe(3)—Xe(1)| =

X — P|/|sina| ~ hy. That means [b7)] < ha, [b5a| < ho.
Since |Xe(1) - X§2)| ~ |Xe(3) - X§2)| ~ hy we have

B _ ( COSI? sind )

—sind cosd

with 9 € {£9; £¥+B; m+9; 7+ 9+ B}, where § is the interior angle at
X From sin 8 ~ ha/hq we conclude |sin¥| < hy/hy by using the coordinate
system condition, that means (for hy = o(h;), otherwise there is nothing to
prove) (61| ~ [bya] ~ 1 and [B3] ~ B3] S ha/ha.

The matrix multiplication results in |b1,1| ~ hl, |b271| 5 h%/hl S hg, |b1,2| 5 hg,
|bo,2| < ho. The entries of the inverse matrix can be estimated by using the
explicit formula of B~! and | det B| = 2measye = hih,. ]

We note that Lemma 2.5 is implicitly contained in the proofs of Theorem 2 in
[9] and Theorem 6 and Corollary 7 in [35]. We chose this kind of proof for a
better understanding of the proof of the related Lemma 2.7.

Theorem 2.1 Assume that the element e satisfies the maximal angle condi-
tion and the coordinate system condition. Let be u € W5P(e) N C(€) where
(eN, 1<(<k+1,pe[l,o0]. Fixm € {0,...,0 —1} and q € [1,00] such
that W ™P(e) — Li(e). Then the anisotropic interpolation error estimate

lu — Tyu; W™9(e)| < (measye)/971/P Z h*| D%u; W™P (e)]
|a|=0—m
holds provided that p > 2 if £ = 1. The result is also valid for m = ¢ = 0,
p=00,q€[l,00].
Note that W*P(e) < C(€) for all admissible parameter sets except for £ = 0,
p = o0.

Proof From Lemma 2.5 we obtain the relations

9 2 O
< Y minfhy b} |z,
ai,z ~ ;mln{ ]} ‘ax]
ov 2 o0
< E in{hL. pt
axi ~Y j:1 mln{ 1) i }‘8.@] )
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and conclude (in multi-index notation)

D*o| <) kDl

Is|=le|
D] < AP |Dh, (2.35)
It|=I8|
D] <> hPIDRi).
181=11

These estimates and Lemma 2.4 imply for any v with |y| =m
D7 (u — Ipu); L(e)|
< (measye)’? Y hP|DP (i — Ta); L(e)||
|8|=m
S (mease)’t S0 S w8 Do 12(e)]

la|=t—m|B|=m

< (measye) /7P N N AN N BPRY| DY LR (e)|

|a|=€—m |B|=m [t|l=m |s|=f—m
~ (measye)t/71/P Z h?|D*u; W™P(e)|,
|s|=f—m

and the theorem can be concluded by a summation over all v with |y =m. =

This form of the proof was used first in [12] where the case { = k + 1, ¢ = p,
was treated. Special cases were proved with other geometrical arguments in
[9, 35, 84, 150], see also Comments 2.6-2.8 on pages 88-89.

Corollary 2.1 Assume that the element e satisfies the mazximal angle condi-
tion. Let be u € W5 (e) NC(€) where L €N, 1 < (< k+1,p € [1,00]. Fiz
m € {0,...,0 — 1} and q € [1,00] such that W*™P(e) — Li(e). Then the
isotropic interpolation error estimate (sometimes called estimate of Jamet type
or of Synge type)

lu — Tu; W™9(e)| < (measye)/97V/P(diam e) ™ u; WP (e)

holds provided that p > 2 if £ = 1. The result is also valid for m = ¢ = 0,
p =00, q € [1,00].

Proof If we assume the coordinate system condition the assertion follows
immediately from Theorem 2.1. Since the seminorms remain equivalent during
a rotation of the coordinate system, the coordinate system condition can be
omitted. [
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Fig. 2.4 Example meshes containing elements with large angles. Left: Babuska’s and Aziz’
example. Right: Dobrowolski’s example.

We remark that partial cases of this corollary were derived in [27, 108, 119, 187]
without knowing anisotropic estimates, see Comments 2.2-2.5 on pages 85-87.

We point out in particular that the assumptions made here are weaker than
those in [108].

Let us now discuss the maximal angle condition and the coordinate system
condition. We start with an example that shows the necessity of the maximal
angle condition for the validity of the anisotropic error estimate of Theorem
2.1. We note, however, that the maximal angle condition is not necessary in
the case m = 0.

Example 2.5 Consider m = 1, ¢ = 2, the triangle e with the vertices (0, 0),
(h1,0), (3h1,hs), and the function w = z}. One can directly calculate that
Iyu = hizy — 1hihy 'z, and
| DOD (u — Tyu); Li(e)||
(measye)l/a=1/P 3™ ho| Doy; Wie(e)|

|a|=1
h2h; ! (measye)'/a h
(measye)l/7=1/Ph; (measye) /P~ hy

which is divergent for hy = o(hy). Thus the maximal angle condition is neces-
sary. ]

Remark 2.3 An uncontrollable growth of the interpolation error for elements
with large angles gives no information about the approximation error of the
corresponding finite element method. In the literature we can find two ex-
amples where triangles with large angles are considered and the interpolation
error in the Wh2-norm grows to infinity. But while in the paper of Babuska
and Aziz [27] (see Figure 2.4, left-hand side) the finite element error grows
to infinity as well, there is an example given by Dobrowolski in [9] where a
modified interpolant and thus the finite element solution converges.
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Remark 2.4 Anisotropic triangular elements were also extensively investi-
gated in [68, 69, 160]. In these papers, even a maximal angle condition was
not demanded. This is possible only due to assumptions on the function to be
interpolated, for example

|DCOu; L2(e)]| < Col DOV L(e)]| < CIIDO)u; L2 (e, Co < 1.

The results are applied in an a-posteriori context for pure interpolation tasks
[68, 69, 160] and in the finite element method/finite volume method [58, 62].

Example 2.5 shows a dilemma with the maximal angle condition: The element
is strongly refined in a direction where no large derivatives appear. One might
find the example not convincing. But, first, for proving a-priori finite element
error estimates for a class of problems, this situation should be covered by
the theory. Second, the components of vector functions can have different
behaviour, for example a layer in one component while another component
has uniformly bounded derivatives. So it must be possible to approximate a
function on a mesh which was adapted for another function. Therefore we
consider the maximal angle condition as necessary.

Remark 2.5 The coordinate system condition means a suitable alignment of
the mesh with respect to a coordinate system (z1, z3) where the function u can
be described favourably. Though we have seen in Remark 2.3 that a condition
which is necessary for a successful interpolation may not be necessary for a
good finite element approximation, we find in computations that the Galerkin/
Least-squares method looses stability if the mesh is not aligned sufficiently well.
For an illustration consider a convection-diffusion problem in the unit square,

1 .
—eAu + < 0.5 > -Vu = 0 in ),
u =1 on{red:z; =0, 025 <z, <1},

v = 0 elsewhere on 0f).

An interior layer emanates from the discontinuity at (0,0.25) along the man-
ifold My = {z € Q : z3 = 0.5z; + 0.25} and intersects at (1,0.75) with a
boundary layer along M, = [(0,1) x {1}] U [{1} x (0.75,1)]. An anisotropic
mesh is constructed in the neighbourhood of M; and M, similarly to the one
in Section 5.2. The maximal aspect ratio is about hq/hy = 240. The layers
are well resolved for ¢ = 10~* if the coordinate system condition is satisfied
with respect to an orthogonal coordinate system with the z;-axis at M, see
Figure 2.5, left hand side. On the other hand, wiggles occur at M; if the angle
between M; and the z;-axis is 2°, see Figure 2.5, right hand side. Thus the
coordinate system condition should be treated carefully.
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i

Q\\\ “#&

Fig. 2.5 Dependence of the resolution of an internal layer on the satisfaction of the coordi-
nate system condition. Left: Optimal alignment. Right: Insufficient alignment.

Remark 2.6 We note that the maximal angle condition and the coordinate
system condition give us some freedom in the definition of the element pa-
rameters h; and hs, and in the definition of the “stretching direction of the
element”. If hy = o(hy) then there are two edges of e which have a length of
order hy. For example, for triangles with a right angle it can be considered as
more natural to use the lengths of the two perpendicular sides as h; and hs,
rather than the third (longest) one and the length of the height, see Figure 3.2
on page 100.

The maximal angle condition ensures that the diameter of the circle which
contains all vertices of e, is also of order h;. Moreover, we can consider the
directions of both long sides as a stretching direction. The angle 1 between
any of those sides and the z;-axis is bounded by |sin | < hy/h;.

2.3 Tetrahedral elements

2.3.1 Error estimates in classical Sobolev spaces

In this section we investigate tetrahedral elements. We use the same approach
as for triangular elements but we have to be carefully at several places. First,
the embedding theorems depend on the space dimension which leads to a
restriction on the range of the parameter p, see Lemma 2.6 and Example 2.6.
Second, if the transformation x = BZ + b from the reference element é to the
element e shall satisfy conditions as in Lemma 2.5 then two reference elements
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Fig. 2.6 Reference elements for tetrahedral elements and hy 2 ho 2 hs.

have to be considered, one for elements with three long edges, the other for
elements with four long edges, see (2.36) and (2.37).

Additionally to the estimates which are analogous to Section 2.2, we prove
two more types of anisotropic interpolation error estimates. In Theorem 2.3,
we consider functions with additional smoothness, u € W**2?(¢), as a remedy
to treat the case m = k, p < 2, which had to be excluded in Theorem 2.2.
Furthermore, we derive in Subsection 2.3.2 local interpolation error estimates
for functions from weighted Sobolev spaces (Theorems 2.4 and 2.5).

Consider two reference elements é, compare Figure 2.6. We use
é = {(Z1,29,23)T €R®:
0<i’1<1,0<§32<1—§31,0<.7A33<1—3A31—i'2} (236)
when the tetrahedron has three edges E with meas; E ~ diam (e), and
é = {(Z1,20,23)T €R®:
0<Z1<1,0<Za<1—3, 0<23<21} (2.37)
when the tetrahedron has four edges E with meas; E ~ diam (e). In the case
of five edges E with meas; E ~ diam (e) we can use either of the reference
elements. Both reference elements satisfy the following Property (P) which

is sufficient in the proof of Lemma 2.6. Later on, we will occasionally utilize
further reference elements which all satisfy Property (P).

Property (P) For each axis of the coordinate system (&1, Z2,23) there is one
edge of é which has length one and is parallel to this axis.

The finite elements (€, Pke, Xke) are completed by setting

’P]%é = 'Pg
Ske = {fi:C(€) = R such that f;(a):=a(XD)}Ye
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where N, = (k;r?’) is the number of nodes and

X = {X(i)}ﬁv:ﬁ =én {(ia %a %)T € Rg}OSi,j,ngk
is the set of nodes.

Lemma 2.6 Let é be a reference element satisfying Property (P). Consider a
multi-indez v with m = |y| and a function @ € C(€) with DYu € W ™P(¢),
where £ € N, p € [1,00], shall be such that 0 <m </{<k+1 and

p=oo if m=0andl =0,
p>3/0 if m=0andl=1,2, (2.38)
C>m  if y=0o0ry =0 or~vy =0, '
p>2 if ye{((—1,0,0); (0,£—1,0); (0,0,£—1)}.

Fiz q € [1,00] such that W* ™P (&) — Li(¢é). Then the estimate
I1D7(@ —1a); LU(e)|| < |Dva; W (@) (2.39)

holds.

Proof The proof follows the lines of the proof of Lemma 2.4. Due to Property
(P) the functionals can be chosen in the analogous way. The difference is
that for a pure derivative the domains G; are one-dimensional, that means,
two dimensions less than the dimension of é. In that case the embedding
Wt mP(e) — LYG;) holds only if { —m >2o0or { —m=1,p > 2. |

Note that the case m = ¢ is only admitted if 74 # 0, 72 # 0, and 3 #
0. Example 2.3, page 40, can easily be modified to show the necessity of
the condition m < ¢, at least for p < oco: consider 4. := Z3°Z3°W.(Z1) and
proceed as on page 40. Example 2.4, page 41, can be used by defining 7 :=
(22 + 22 + £2)'/2 to show that p > 3 is necessary for m = 0, £ = 1. Let
us finally present an example to show that p > 2 is necessary when v €
{(¢—1,0,0),(0,£—1,0),(0,0, —1)}. Such an example was given in [9, page
283] for m = k =1, £ = 2, and is now modified for general m = ¢ — 1 < k.

Example 2.6 Without loss of generality consider v = (0,0,¢ — 1) and denote
by FE that edge of é which is parallel to the Z3-axis. Let p < 2 and

YW, (%) ;= min{l;e1n |In(?/e)|},

7 = 7(Zy, Ty) := dist (&, E'). We can calculate that

2!
0

ifA=0, . o~
if # >0, lim D¥d, =

g = lim 4, =
0 e—0 € e—0
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Fig. 2.7
Illustration of the definition of the mesh
sizes hi, ha, hs (tetrahedron).

and
lim | DV WP (6)| < lim | DV Wh2(é)| = 0,
e—0 e—0

(in detail in [3, page 61]) but

lim || D4, — D'Tiig; L(8)|| = || D"Tdg; L9(8)|| = C(k, £) # 0.

e—0

The last conclusion can be proved indirectly as in Example 2.3, page 40. Con-
sequently, the estimate (2.39) does not hold for v = (0,0,¢ — 1), p < 2. The

example does not work for p > 2 because lir% |DYi; WhP(é)| = oo then. O
E—

Our next aim is to investigate the transformation

t=F(&)=Bi+b, B= (bi,J-);’jj:1 e R b= (b))}, € R,
(2.40)

compare (1.16). Again, we omit the index e here because the considerations
apply to one (arbitrary) element e only.

Let E be the longest edge of e, and let I'p be the larger of the two faces of e
with £ C I'g. Then we denote the element sizes hy, ho, hs, according to

hy := meas; E, hy:=2measyI'g/hy, hs:= 6measzé/(hihs),

compare Figure 2.7. Note that we have hy > hy > hs and measze = %h1h2h3
by this definition.

Enumerate the vertices of e such that X,gl), X,SZ), and Xe(?’) are the vertices
of I'g, and X and X are the vertices of the shortest edge of I'g. To be
unique we demand that the shortest of the three edges Xél)XeM), Xe(z)XgL), and
XBx® is either XM x Y (Case 1, Figure 2.8) or x®x® (Case 2, Figure
2.9).
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T3e
> X(g4) T2
\
\
h3 ‘\\ngg)
P Tl
oo p) Tt
xM x®  Tle

Fig. 2.8 Notation and illustration of Case 1: tetrahedron with 3 long edges.

mS,E To . Xe(4)
hs &)
el p1)
Xe(l) jled) Xe(2) T1e

Fig. 2.9 Notation and illustration of Case 2: tetrahedron with 4 long edges.

Introduce an element related Cartesian coordinate system . = (1., T2, T3.¢)
such that X " lies at the origin, X% is located at the T .-axis, and X is

contained in the ., zs.-plane. Note that the remaining vertex Xe(4) needs
not to lay in the half space with x3. > 0 as in the figures, but it may also lay
in the half space with z3, < 0.

The three-dimensional counterparts of the maximal angle condition and the
coordinate system condition formulated in Section 2.2 read as follows:

Maximal angle condition: There is a constant v, < 7 (independent of h
and e € T) such that the maximal interior angle vy of the four faces as well
as the maximal angle yg between two faces of any element e are bounded by
Yoy VP S Yoy VB S Yo

Coordinate system condition: The transformation of the element related
coordinate system (zj., 22, 23.) to the discretization independent system
(1,9, 73) can be determined as a translation and three rotations around the
z;-axes by angles ¥; (j = 1,2,3), where

|SiIl’L91| 5h3/h2, |SiIl’l92| Shg/hl, |sin193| ghz/hl (241)

We remark first that alternative formulations of the maximal angle condition
can be found in the literature, see Comment 2.9 on page 90. Moreover, if
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mesh refinement near edges (parallel to the zs-axis) is considered it may be
reasonable to demand h; ~ hs < hg and that one edge of e shall be parallel
to the rs-axis. In that case the coordinate system condition is satisfied, that
means that it needs not to be postulated [21].

The two conditions yield properties of the transformation matrix B from (2.40)

which are sufficient for our anisotropic interpolation error estimates.

Lemma 2.7 Assume that the tetrahedron e satisfies the mazimal angle con-
dition and the coordinate system condition. Then the entries of the matriz B
of (2.40) and of its inverse B! satisfy the following conditions:

bijl < min{hi Ry}, 4,5 =1,2,3, (2.42)
b7 S min{h 5 by i =1,2,3. (2.43)
Proof As in the proof of Lemma 2.5 we split the transformation (2.40) into
two parts
z=BWg, +1b, z. = B?j,
with B = BMB®) | The intermediate coordinate system was introduced above.

The matrix B can be written as a product of three matrices B!, B(1:2)
and B(3), describing rotations:

1 0 0
Bt = 0 cosd; sind; |,
0 —sindy costh

( costs 0 sintds
B = 0o 1 0
—sintdy 0 cost

costts sinds O

BM3) = | —gind; cosds; 0
0 0 1
Using (2.41) and |cos¥;| ~ 1, i =1,2,3, one can compute
ind h:: h.}
o < mindhii Ay} g 2.44
| »J | ~Y maX{hl; h]}) Z’] ) Y ( )

The first two columns of B® are the z.-coordinates of Xe(2) and Xe(?’), respec-
tively. In the same way as in the proof of Lemma 2.5 we obtain

2 2 2
6] ~ By, S =b5) =0, (2.45)
|b§2%| < ha, |b§2§ < hs, b:(f% =0. (2.46)
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The third column of B® is either X¥ — X (Case 1, see Figure 2.8) or

x® - x® (Case 2, see Figure 2.9) if the reference elements (2.36) or (2.37)
are used, respectively. We show now for Case 1 (Case 2 can be treated by

analogy) that |X§4) - X§1)| ~ hgz, which is the desired result, namely
2 2 2
D331 S by 053] S hs, (B3] S s (2.47)

Consider the angles 712, 71,3, and 714 between the faces intersecting at the
edges Xél)XfE?), Xél)Xég), Xe(,l)XeM), respectively. From spherical (Riemannian)
geometry we know that v; 2+71,3+714 > 7. Using the maximal angle condition
we conclude that for at least one of the two angles v;,, n = 2 or n = 3, the
relation |sin<y; ,| ~ 1 holds. (This idea was obtained from [120, Lemma 6].)

Denote by P™) the foot of the perpendicular from X§4) to the ., 2 -plane,
by P® the foot of the perpendicular from P® to the edge XV X™, and by
a the angle between X X* and XV X{™. We obtain (2.47) via
X&) — PO

| sin |
XM — p)
| sin arsin 7y |

h3

| sin avsin 7y | -

X0 - x) =

hs (2.48)

by using the maximal angle condition. (In Case 1, « is not the smallest angle
of the triangle XV X™ X! since |X§1) — Xé4)| < |X§n) — Xé4)| by definition.)

From (2.44)—(2.47) we conclude (2.42). Using | det B| = 6 measse = hihahs
and the explicit formula of B~" we obtain (2.43). n

Theorem 2.2 Assume that the element e satisfies the maximal angle condi-
tion and the coordinate system condition. Let be u € W5P(e) N C(€) where
(eN, 1<(<k+1,pe[l,o0]. Fixm € {0,...,0 —1} and q € [1,00] such
that W& ™P(e) — Li(e). Then the anisotropic interpolation error estimate

[u—Tyu; W™(e)| S (measge) /TPy 7 B DM W (e)|

|a|=—m
holds provided that

p>3/ if m=0andl=1,2,
p>2 if m=0—-1>0.

The result is also valid form = (=0, p =00, q € [1,0].
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The proof is the same as for Theorem 2.1. Special cases were proved also in
[35], see Comment 2.12 on page 91.

Theorem 2.3 Assume that the element e satisfies the maximal angle con-
dition and the coordinate system condition. Let be u € W*+2P(e) N C(e),
p € [l,00], me{0,... ,k}, and q € [1,00]. Then the anisotropic interpolation
error estimate

lu — Thu; W™9(e)| < (measge)'/7 /P Z R D%u; W™P (e

k+1-m<|a|<k+2—m
holds provided that W*t2=mP(e) — Li(e).

Proof The theorem can be proved as Theorem 2.2 by using Lemma 2.7 and
analoga to Lemmata 2.2 and 2.36. Let us discuss the differences.

e Since u € W*+2P(¢) the assumption W*+2=mP(e) < L4(e) replaces now
WtmP(e) — Li(e) from Theorem 2.2.

e The assumption p > 2/¢ if £ = 1,2 is now reduced to p > 2/(k + 2) which
can be neglected since k + 2 > 3.

e The assumption p > 2 if m = ¢ — 1 was necessary to ensure the embedding
Wemp(¢) — LY(G;) in the proof of Lemma 2.6. Because of the additional
smoothness u € WH2P(e) this embedding is now W*2=mr(¢) — LY(G,)
which is satisfied for all p € [1,00] and all m € {0,... ,k}.

e The sum at the right hand side extends over all multi-indices with length
kE+1—m and k 4+ 2 — m because the arguments in the proof of Lemma 2.2
are not valid for & € P, but only for o € P?. Therefore the application of
Lemma 2.1 gives for |y| = m only

inf || D7(@ — 8); WE2 ()|

HEPE

S Dras W (@) 4 |DVa; W ().
|

The idea of using additional smoothness of u (u € W*P(e) with £ > k+ 1) was
already used by Jamet [108].

Corollary 2.2 Assume that the element e satisfies the mazimal angle condi-
tion. Let be u € W*(e) NC(e) where { € N, 1 < (< k+1, p € [l,00]. Fiz
m € {0,... .0 — 1} and q € [1,00] such that W ™P(e) — Li(e). Then the
isotropic interpolation error estimate (sometimes called estimate of Jamet type
or of Synge type)

lu — Tpu; W™9(e)| < (measse)? /P (diam €)™ |u; WP (e)|
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holds provided that

p>3/ if m=0and/l=1,2
p>2 if m=0—-1>0.

If u € WE2P(e) N C(e), p € [1,00], m € {0,... ,k}, and q € [1,00], then the
isotropic interpolation error estimate

k+2
fu = Tnw; W™(e)| S (measse) /17 7 (diam e u; W2 (o)
f=k+1

holds provided that W*t2-mP(e) — Li(e).

Proof If we assumed the coordinate system condition the assertion follows im-
mediately from Theorems 2.2 and 2.3. Since the seminorms remain equivalent
during a rotation of the coordinate system, the coordinate system condition
can be omitted. [

We remark that partial cases of this corollary were derived in [108, 120] without
knowing anisotropic estimates, see Comments 2.10 and 2.11. We point out in
particular that the assumptions made here are weaker than those in [108].

The discussion of the maximal angle condition and the coordinate system
condition in Section 2.2 applies in an analogous way. In particular, Example
2.5 proves that the maximal angle condition for the faces, yr < 74, is necessary.
We show now by Example 2.7 that also the condition on the angles between
the faces, 7y < 7., is necessary. Moreover, Example 2.7 proves that there
are elements with yr < 7, but yg — 7. Also the converse is valid, see [120,
Example 8]. That means, both conditions are independent.

Example 2.7 Consider the tetrahedron with the vertices (0,0,0), (hq,0,0),
(0, h1,0), and (hy/3,h1/3,h3), and the function v = x2. One can directly
calculate that I,u = hyzy — (2/9)h?h; x5 and
DO (w — Tyu); L2 (e) |
(measze)l/a=1/P S~ ho| Doy; Wie(e)|

la|=1
h2h; ' (measze)'/? M
(measge)!/a=1/Phy (measge) /P hy’

which is divergent for hs = o(h;). We remark that the case p = ¢ = oo was
already considered in [120, Examples 8, 9]. O
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2.3.2 Error estimates in weighted Sobolev spaces

For the treatment of edge and corner singularities it is convenient to describe
the solution in weighted Sobolev spaces. So we want to derive in this subsection
anisotropic interpolation error estimates for functions of such weighted spaces.
Let us start with the spaces V;’p (e), the norm was introduced by (1.21) on
page 27. The special case ¢ = 2, k = 1, was already treated in [19, 20].

Lemma 2.8 Let é be a reference element satisfying Property (P). Consider
a multi-indez v with m = |y| € {0,1} and a function @ € C(é) with DV €
V;_m’p(é), where { € N, p € (1,00), B € R shall be such that0 < m < £ < k+1
and

¢—3/p > 0 if m=0,
B < £—1=2/p if m=1, v3=1, (2.49)
p > 2 if m=1, {=2.

Fiz q € [1,00] such that V;_m’p(é) — L%(é). Then the estimate
1D7(a - Ta); LU@)|| < |D7; Vs ™(@)] (2.50)
holds.

Note that we concentrate here on main cases. We did not try to cover all

possible cases as in Lemma 2.6. (The cases p = 1, p = oo, m > 2 were
excluded.)

Proof We want to apply Lemma 2.2, see also Remark 2.2. The functionals F;
(i =1,...,j) are chosen as in the proof of Lemma 2.6 (Lemma 2.4). It remains
to show that the functionals F; are continuous on VﬁZ ~"™P(¢). For proving this
we will need intermediately non-integer (weighted) Sobolev spaces W*P(é)
and V;**(é), s > 0, p € (1,00) which are for s € N identical with the spaces
introduced in Section 1.3. Without going into detail we state that such spaces
exist (see for example [115, Section 8.3] and [163, 164]) and that the following
embeddings hold:

W*P(e) — LP(é) if s >0 (2.51)
follows from definition,

WeP(é) — W 2PP(E) ifs—2/p &N, (2.52)
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where E' is an edge of é, is proved in [115, Section 8.3],

Vo(é) = WP(e) ifs>0 (2.53)
follows from definition,

ViP(e) < Vg ™™P(e) if s> B >0 (2.54)
is proved in [164],

VgPe) = Vyre) ifa>p (2.55)
follows from definition,

b e VyP(e) = o e V' (é) (2.56)

was proved in [163, Section 1.1]. Embedding (2.54) was proved in [164] only
for infinite domains (dihedral angles) but the proof holds true also for bounded
convex domains.

Let us start with the case m = 0. Define o := max{f; 0}. By (2.49) we
have (¢ — a)p > 3 and by (2.53), (2.54), and (2.55), the boundedness of F;
(t=1,...,j) can be proved:
[E@)] < l:C@)ll < loswer(e)]
S osVe “P@I S o Var @l < 11o; VP (@)l

For m = 1 consider first the case 5 < {—1—2/p. Define again o := max{3; 0},
that means with (2.49) that / — 1 —a —2/p > 0. (If 5 > 0 then a = <
¢—1—-2/p. If 3 <0, then & = 0 and we have to show £ — 1 — 2/p > 0. This
follows for ¢ = 2 from p > 2 and for ¢ > 3 from p > 1.) Using the definition
of the F; (i = 1,...,7) as in the proof of Lemma 2.6 (Lemma 2.4) and the
embeddings above we conclude

[F(0)] < lo; NG| S 1oy LP(Gy)|
S oWt e < flo W er(e)||
Syt s R AP Sout-le g
S sV el S s verEl S e v el

with G; being the domain of integration, see the proof of Lemma 2.4.

For v3 = 0 the weight 8 can be larger. Then we have to estimate sharper.
Take any aj,

a€e(l-1/p—el1—1/p), e:=0-3/p—p>0, (2.57)
and set

ag = max{f; ai}. (2.58)
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We obtain from (2.57) that p" (defined by 1/p + 1/p' = 1) satisfies 1/p’ > a4.
Consequently, we get

77 LP (Gy) || ~ 1

because G; is orthogonal to the Z3-axis. Similarly to above, and by using the
Holder inequality and the embeddings (2.51)—(2.56), we conclude that

FO = |fod] < 1952 @) 17626
762Gl S ity e (G|
e OIS T O

lF o Ve, Zh @1 S 10V, @) S 1193V P @)l

ag—ai
Note that £ — 1 — (ag — a1) — 2/p > 0: Indeed, if ay = a4 this follows directly
from (2.49), and if oy = 3 this follows from (2.57) and (2.49), a; > 1—1/p—e =
—(l—1-2/p)+ 8. ]

We will transform now estimate (2.50) from é to e. The only novelty in com-
parison to Subsection 2.3.1 is the term #* in the norm. Consider the following
points.

2

AN IA

e Usually weighted spaces are used if the function under consideration is not
contained in the corresponding space without weight. Therefore we will assume
B8 >0.

e The weight 7 makes no sense if the domain has a positive distance to the
xz-axis. So we will investigate only elements e with at least one vertex at the
T3-axis.

e Since we want to transform 7 := (22 + 22)Y/2 to r := (22 + 22)"/? we will
assume that h; and hy are of the same order, in particular

hi ~ hy < hg (2.59)
because hy ~ hy 2 hs is not useful. Therefore we will choose
e = {(21,20,23)7 €R*:
0<£i'1<1,0<i’2<1—5@1, i’1<i’3<1—ffg} (260)

as the second reference element instead of the one in (2.37), see Figure 2.10.
Note that hg is now the largest element size, in contrast to Subsection 2.3.1.
But the relations (2.42), (2.43), were formulated general enough to remain
true.

e For the transformation we need a relation between 7 and r, namely

F < hi'r (2.61)
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Fig. 2.11 Additional reference elements for error estimates in weighted Sobolev spaces.

which can be concluded if we assume
b1’3 = bg’g =0 and b1 = b2 =0. (262)

So we will require (2.62) from now on. That means that a point z is located at
the x3-axis if and only if Z is located at the Z3-axis. In other words, elements e
with only one vertex at the z3-axis cannot be mapped to one of the reference
elements of Figure 2.10. So we introduce two more reference elements, see
Figure 2.11, which are obtained from the previous ones by a reflection at the
plane z; = 1/2. Note that Property (P), page 51, is satisfied by all four
elements é.

e By Property (P) any reference element é must have one edge parallel to the
z3-axis. Together with (2.62) this yields that e must have one edge parallel to
the z3-axis.

We can summarize as follows: Choose the appropriate reference element by
the number of edges with length of order hs3 (three or four) and the number of
vertices of e laying on in the x3-axis (one or two). Define the mapping é — e
such that points & € é at the #3-axis are mapped to points z € € at the z3-axis,
and that the edge of é which is parallel to the Z3-axis is mapped to the edge of
e which is parallel to the z3-axis. Then (2.42), (2.43) and (2.61) hold provided
that the element e satisfies the maximal angle condition.
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Theorem 2.4 Assume that the element e satisfies the mazximal angle condi-
tion, one edge is parallel to the x3-axis, and at least one vertex is contained
in the x3-axris. Let hy ~ hy < hs, and introduce parameters m € {0; 1},
CeNwithl <l<k+1,pe(l,00), g€ |[l,o0], and weights Bo > 0 for all
multi-indices a with |a| = . Define for each multi-index v with |y| = m the
number

_ ._ MmaX|q|=¢—m ﬂa+7 if v3 =1,
/B B 5(73) o { max|q|=¢ Ba Zf73 = 0.

Assume that the numbers satisfy assumption (2.49) and V;(;S’p(e) — Li(e)

for all v with |y| = m. Consider a function u € C(€) with D*u € V;o"p(e) for
all a with |a| = ¢, and D"u € Véag’p(e) for all v with |y| = m. Then the
anisotropic interpolation error estimate

|u — Lyu; W™ (e)|
< (measge)'/a71/P Z h* Z hy P+ Doy, V;;ﬁ7(6)|
lodl=tom  r=m

holds.

The definition of 5(73;) and the assumptions on/with ((73) are necessary to
be able to apply Lemma 2.8. The distinction between [, and ((73) is made
because the error estimate gives a better asymptotics when the weight can be
chosen smaller for certain derivatives. We will exploit this in Sections 4.3 and
4.4. Of course, the theorem can be written more compact if all weights are
equal.

Proof We can prove this theorem similarly to Theorems 2.1, 2.2, and 2.3.
But we have to be careful with the assumptions on the weights.
From (2.43) we get

u =T W)~ D [D*(u—Tou); L9(e)|

|s|=m
S (measge)'/? Y B DY (a —Ta); (@),
lyl=m
see also (2.35).
For any 7 with |y| = m we apply Lemma 2.8 and obtain
VN ~ ~ SONIN f—m,p/ A s+ . K 5
1D (@ —Ta); LU@)|| S |1D7a; V(@) ~ > 1D a; Vil (@)l

|s|=f—m
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For v = (0,0,1) we notice that (2.62) yields D7t = by 3D"u ~ hsD"u. There-
fore
1D (@ —1a); L2(@)|

< (measge) /P Z Z haﬂhl_ﬁ(l ||D°‘+7u,V50(’f( el

|s|=0—m |a|=£—m

< (measge) VP Z h”‘”hfﬁ"”HDaMU;V;;iy(e)“

|a|=€—m

where we have used h;” ||v ( )N < Ry o Vﬁ " _(e)|| which holds since
Baty < B(1). For v3 =0 we obtaln in a similar way

|D7(a - Ta); Lq< )
S (measze) V7 D Y0 Y AP D Vg o)

|s|=—m |a|=f—m |t|=m

S (measye) 7 37 3T HTIR T DM V32 ()]

~ Bo+t
|a|=0—m |t|=m

All estimates together yield
|u — Tpu; W™ (e)
< (measze) /17PN " BT NN petp Pert DA VIR (e

lvl=m  |a|=t-m |t|=m
~ (measge)'/171/P Z Z hehy P | DYy, Vgo’it( )|l
|a|=€—m |t|=m
which is the desired result. [ ]

When problems with edge and corner singularities are investigated it is con-
venient to describe the solution in Sobolev spaces with two weights, V;’f (e),
see page 27 in Section 1.3. The application of such spaces is reasonable only if
the element e has one vertex at the origin and one edge at the zs-axis. So we
need only one reference element, namely the one described by (2.36). Define
by R = R(z) := (22 + 22+ 22?2, r = r(2) := (22 + 22)"/?, and 0 := /R the
distance to the origin, the distance to the z3-axis, and the “angular distance”
to the x3-axis, respectively. R, 7, and 6 are defined analogously. The following
lemma was proved in [21] for the special case ¢ = 2, k = m = 1, and with
§=0if v =(0,0,1).

Lemma 2.9 Let é be the reference element described by (2.36). Consider a
multi-index v with m := |y| € {0; 1} and a function 4 € C(é) with D4 €
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V/f(;m’p( ), where £ € N, p € (1,00), 5,0 € R shall be such that 0 < m < ¢ <
kE+1 and

B < £—=3/p
¢(—3/p > 0 if m=0
§ < £—=3/p if 3=0 (2.63)
d < L—=1=2/p ifm=1, »3=1
p > 2 if m=1, £ =2.

Fiz q € [1,00] such that V;Jm’p( ) < L9(é). Then the estimate
1D (@ — Ta); LU@)|| < | D7 Vs s (@)] (2.64)
holds.

Proof The lemma can be proved similarly to Lemma 2.8. Let m = 0 and
define o := max{f; J; 0}. By (2.63) we have (£ — a)p > 3. Consequently,

[E @) < [lo:c@l S llo;weere)]

4 «, A A f’ A
S o Voo @l S s Vak@ll < 1l Vg @)l
For m = 1 consider first the case that G; is not contained in the zs3-axis
(0 # 0 on G;). As in the last case of the proof of Lemma 2.8, we take any a; €
(1-1/p—e,1—-1/p) with € :== {—3/p—max{f3; J} > 0, set ap := max{s; J; a1}
and obtain that p’ (defined by 1/p+1/p’ = 1) satisfies 1/p’ > a;. Consequently,
we get

75 1 (Gl = B0 1 (G| ~ 1 (265)

because G; is orthogonal to the Zs-axis (73 = 0) or away from the Z3-axis
(v3 =1,k >2). (For v3 =0, k = 1 we have § = 1 on G, and can admit even
any power of 6 in (2.65).) We conclude

E@) = |8 < 157G Lp( ol
~ s DG S (e W a2 ()|
S e W ermeDr @) S s Vg T ()|
S P8 V2R e @ S 0 VEE2E)
S 16 Vas @l

Note that £ — 1 — (g — a;) — 2/p > 0: Indeed, if oy = a4 this follows
from (2.63), and if oy = max{f3; ¢} this follows from a; > 1 —1/p — ¢ =
—(¢ —1—2/p) + max{B; ¢}, see the definition of .
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If G; is contained in the x3-axis (3 = 1) then (2.65) does not hold. In this case
we proceed as follows: Take any a; € (1—1/p—¢,1—1/p),e:=4—-3/p—[ >
0, set as := max{f; § + a1; «a;} and observe that p' satisfies 1/p’ > ;.
Consequently, we get |[R~*; L¥ (G;)|| ~ 1 and

F@) = |fo] < 1RG5 (Gl
~ RGP S ([Fs Wi -2ee gy |
S R W) < R Vi (@)
S RSV @1 S 155V 0, (@)
S Il Vet @l

Note that £ — 1 — (ag — 1) — 2/p > 0 can be concluded from (2.63) by
distinguishing the three cases for ay: The possibilities s = § and ay = oy
can be proved as above, the instance ay = § + « is direct. [ |

The transformation of (2.64) from é to e can be done in a similar way as above
by using (2.59) and (2.62). We obtain hs'R < R < h{'R and # < hy'r, and
consequently 9 < hsh{'6. This leads to the follovvlng theorem.

Theorem 2.5 Assume that the element e satisfies the maximal angle condi-
tion, one vertex is located at the origin of the coordinate system x = (1, s, x3),
and one edge is contained in the xs3-azxis. Let hy ~ hy < hs, and introduce pa-
rameters m € {0; 1}, £ € N with1 < { < k+1, p € (1,00), ¢ € [1,00],
and weights By > 0, 64 > 0 for all multi-indices o with |a| = €. Define the
numbers f = maxq|—¢ B and

= — MmaX|a|=¢—m 5a+'y if v3 =1,
§=0(y3) : { MaX|q|—¢ Oa if v5 =0

for each multi-index v with |y| = m. Assume that the numbers satisfy assump-
tion (2.63) and V;,;(Tzf)’(e) — Li(e) for all v with |y| = m. Consider a function
u € C(e) with D*u € Vﬁoc’f& (€) for all o with |a| = ¢, and DVu € VZ sty (€) for
all v with |y| = m. Then the anisotropic interpolation error estzmate

lu — Tpu; W™ (e)| < (meas;ge)l/q’l/px

« “MPa 7_511 04 _5(1 Y « )
Yo R Y R TR DA VR ()]

Ba+’¥7 a+y
laj=t—m  |y|=m

holds.
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Fig. 2.12 Illustration of an affine quadrilateral element.

2.4  Quadrilateral elements

2.4.1 Affine elements

In this subsection we show first that the theory of Section 2.2 carries over to
affine quadrilateral elements, that are parallelograms, see Figure 2.12. There is
only one small difference in the proof of Lemma 2.10 (estimate on the reference
element) where attention is needed. But there are two more reasons why
a whole section is devoted to quadrilateral elements. First, for rectangular
elements we can prove for k > 2 a slightly sharper estimate, with less terms
on the right hand side (Theorem 2.7 and Remark 2.9). Second, for more general
elements than parallelograms, for example trapezes, the transformation x =
F.(z) is non-linear and we encounter the difficulties discussed in Example
2.2, page 33. Nevertheless, we were finally able to reproduce the estimates
of the affine elements (Theorem 2.8, Corollary 2.4). The section ends with
an example showing the necessity of an assumption on the geometry of the
non-affine elements.

Consider the Lagrangian finite element (€, Py ¢, X ) with

é = {(21,22) ER*:0< 21,29 < 1}, (2.66)
Pre = OF, (2.67)
She = {fi:C(é) = R such that f;(a):=a(XD)}e, (2.68)

where N, = (k + 1)? is the number of nodes and
X = {X(i) 1N:81 = (%: %)T € R2}0§i,j§k (2.69)

is the set of nodes. Lemma 2.10 contains the estimates of the interpolation
error on the reference element. It is identical with Lemma 2.4.
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Lemma 2.10 Let v be a multi-index with m := |y| and @& € C(é) be a function
with DYt € W ™P(é), where {,m € N, p € [1,00] shall be such that 0 < m <
(<k+1and

p=oo if m=0 and (=0,
p>2 if m=0andl=1, (2.70)
m< Ll if y1=0o0rv =0, andm > 0.

Fiz q € [1,00] such that W* ™P (&) < Li(é). Then the estimate
|1D7(a = 1a); L(@)| < | D W= (e)| (271)
holds.

The assumptions can be discussed as in Section 2.2 for Lemma 2.4. The proof
is also the same. Note that |X,| = j still holds but j = (k—~v1 +1)(k—12+1).
The lemma was proved form =1, { =k +1, ¢ =p, in [9].

The transformation from é to e = F'(é) can be written as

t=F()=Bi+b, B= (bi,j)ij:1 e R¥? b= (b)2, € R?,
(2.72)

compare (1.16). As in the case of triangles we can formulate a maximal angle
condition and a coordinate system condition, and we can prove anisotropic
interpolation error estimates on e.

Maximal angle condition: There is a constant v, < 7 (independent of h
and e € Tp,) such that the maximal interior angle y of any element e is bounded
by e, ¥ < P

Coordinate system condition: The angle 1 between the longer sides and
the zj-axis is bounded by |sind| < hy/hy.

Here, h; denotes the length of the longer edges of e and hy := meass(e)/hq is
the corresponding height. Consequently,

| det B| = meass(e) = hyiho. (2.73)

Lemma 2.11 Assume that an affine quadrilateral element e satisfies the maz-

imal angle condition and the coordinate system condition. Then the entries of

the matriz B of (2.72) and of its inverse B=' satisfy the following conditions:

bij| < min{h;; hj}, i,j=1,2, (2.74)
—1 . _ _ ..

|b£’j )| < min{h; " h'}, di=1,2. (2.75)

~J
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Proof Enumerate the vertices of e counterclockwise such that Xe(l) and Xe(4)
are the vertices of one of the shortest edges of e. Introduce an element related
Cartesian coordinate system z. = (1., Z2.) such that xM = (0,0)T and x?

is also located at the z; .-axis. Proceed as in the proof of Lemma 2.5. [ |

Theorem 2.6 Assume that e is a parallelogram which satisfies the mazximal
angle condition and the coordinate system condition. Let be u € W%P(e)NC(e)
where £ € N, 1 < ¢ < k+1, p € [1,00]. Fizm € {0,...,0 —1} and
q € [1,00] such that W ™P(e) — Li(e). Then the anisotropic interpolation
error estimate

| — Tyu; W™ ()| < (measye) /477 N b D us WP (e)| (2.76)

|a|=€—m

holds provided that p > 2 if £ = 1. The result is valid also for m = £ = 0,
p =00, q € [1,00].

Proof See the proof of Theorem 2.1. [

Corollary 2.3 Assume that the parallelogram e satisfies the mazimal angle
condition. Let be u € W5(e) N C(€) where { € N, 1 < (< k+1,p € [1,00].
Fizm € {0,... £ — 1} and q € [1,00] such that W* ™P(e) — Li(e). Then
the isotropic interpolation error estimate (sometimes called estimate of Jamet
type or of Synge type)

lu — Tou; W™9(e)| < (measye)t/ 71/ (diam €)™ u; WP (e))|

holds provided that p > 2 if £ = 1. The result is valid also for m = £ = 0,
p =00, q € [1,00].

Particular cases of this corollary were derived in [108], see Comment 2.13 on
page 91.

2.4.2 Rectangular elements

For rectangular elements one can prove slightly sharper estimates than for
general affine elements. For the proof we have to replace in all statements
the usual seminorm | . ; WW*P| by the the seminorm [ . ; W*%P] where only pure
derivatives are included. Since we use this improvement in the next subsection
as well, it makes sense to present the whole theory in detail. We follow the
line of Subsections 2.1.3 and 2.4.1 and formulate with Lemmata 2.13, 2.14,
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and 2.15 the counterparts of Lemmata 2.1, 2.2, and 2.10. Theorem 2.7 is then
straightforward. But we start with citing Theorem 1 from from [53], compare
also [192].

Lemma 2.12 Consider a bounded domain G C R which satisfies the strong
cone condition. Let u € W*P(G), £ > 1, p € [1,00). Fiz a set K of multi-
indices such that

{(¢,0,...,0),...,(0,...,0,0)} C K C{a:|a| =1}

Finally, let Py be the set of polynomials w such that D*w = 0 VYo € K. Then
the equivalence

inf [lu—w; WG| ~ 3 D% (G (2.77)

wEPK
lale K

holds.

Lemma 2.13 Consider a bounded domain G C RY which satisfies a strong
cone condition. Let vy be a multi-index with m = |y| and u € L*(G) be a
function with DYu € W ™P(G), where {,m € N, 0 < m < ¢, p € [1,00).
Then there exists a polynomial w € QF | such that

ID7(w — w); WG| S [DVuy WP (G)). (2.78)

The constant depends on G and £ —m. The polynomial w depends on G, ¢, v,
and u.

Proof For v = (0,...,0) we obtain the assertion by setting K = {a = (5 :
|| = 1} in Lemma 2.12. Let now 7 be arbitrary. By using the lemma with
v =(0,...,0) we find a polynomial w; € Q% | such that

ID7u — wi; WP(G)|| S [D7us WE™P(G)).

Since there exists a w € QF ;| with D"w = w; the lemma is proved. ]

Remark 2.7 Let us compare Lemmata 2.1 and 2.13. First we mention that
the strong cone condition is more restrictive than the assumption on the do-
main in Lemma 2.1. Indeed, if a domain G satisfies the strong cone condition
then G = U;-]:1 G; where each of the G is star-shaped with respect to a ball
B; [76, Remark 7.1]. The example of a slit domain shows that the converse is
not valid.



2.4 Quadrilateral elements 71

Second, the constant in (2.11) depends only on diam G; and diam B; (not on
G generally) and the function w is independent of G and 7. These advantages
of Lemma 2.1 are used in Theorem 2.8 and in Lemma 3.1.

We were not able to derive (2.78) from the very general theory in [76] to keep
these advantages, but we obtained only

1D (u — w); W TH(G)|| S [Dus WP (G)]

by setting A = {a : a = £3,|8] = 1} in [76, Theorem 4.2]. However, this
result is not sufficient to derive the following Lemma 2.14.

Lemma 2.14 Assume that é is a square or a cube. Let 1 : C(€) — Pre
be a linear operator. Fiz m,{ € N, p € [1,00), and q € [1,00] such that
0<m<{¢<k+1and (2.15) hold. Consider a multi-index ~y with |y| = m
and define j = dimlA?VPkyé. Assume that there are linear functionals Fj,
i =1,...,J, with properties (2.16)—(2.18). Then the error can be estimated
for all & € C(é) with DYt € W ™P(é) by

1D (@ — Ta); L()|| < [Das W2 (e)].
Proof The proof is the same as that for Lemma 2.2 by using ¢ € Q¢ | instead
of ¥ € P} | and Lemma 2.13 instead of Lemma 2.1. ]

By using Lemma 2.14 instead of Lemma 2.2 we can prove the following lemma
in the same way as Lemma 2.10.

Lemma 2.15 Under the assumptions of Lemma 2.10 the estimate
I1D7(@ — Ta); LA(e)|| < (D7 W ()] (2.79)
holds.

Remark 2.8 It is not clear whether Lemma 2.13 holds for p = oo as well. In
the original source [53, Theorem 1] this case is excluded. The critical point is
whether the Aronszajn-Smith-II’in result

lus WEP @)1 S llus P @) + ) |1 D*u; LP (8)]]

laj=1

holds for p = oo. This estimate can be found in various sources without a
statement about p = oo, see [82, Lemma A.8|, [106], [115, Theorem 8.8.4],
[178], for example. Consequently, we excluded this case in Lemma 2.14.
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In Lemma 2.15, however, we included p = oo for the following reasons. If
m > ¢ — 1, then Lemma 2.15 is identical with Lemma 2.10, and there is
nothing to prove. If m < ¢ — 2, that means in particular ¢ > 2, we can choose
some p' < oo such that the assumptions of Lemma 2.15 are satisfied with p’
instead of p and for arbitrary ¢ € [1, 00]. (Take for example p’ = 2.) Since the
lemma holds for finite p’ and with

[Das WP (@)] S [Dra; W (@)
we get the desired result.

Theorem 2.7 Assume that e is a rectangle with sides parallel to the coordinate
azes. Let vy be a multi-index with m := |y| and u € C(€) be a function with
DYu € WE™P(e), where £,m € N, p € [1,00] shall be such that 0 < m < £ <
k+1 and (2.70) hold. Fiz q € [1,00] such that W* ™P(e) — Li(e). Then the
anisotropic interpolation error estimate

1D (u — Tpu); L(e) ||

< (measye) /97PNy " pltmme | pritmey, Ir(e)| (2.80)
la]=1
holds.
Proof From (2.79) by the transformation x; = h;&; + b;, i = 1,2. [

The theorem was proved for k = 1, £ = 2, p = 2, in [150, page 90] and for
general k, { = k+ 1, m =1, p=2, in [155], see Comments 2.14 and 2.15.

Remark 2.9 One can also prove certain estimates for the case of additional
smoothness of u, see Comment 2.15 on page 92.

2.4.3 Subparametric elements

In this subsection we will consider a special class of non-affine quadrilaterals.
Often isoparametric elements are treated, which means according to [182, Sec-
tion 3.3] that the shape functions are used for the polynomial transformation
F from the reference element € to the element e. The term subparametric indi-
cates that only a subset of the shape functions is used. We will use the shape
functions of the bilinear case which leads to a considerable simplification. But
all quadrilaterals with straight sides fall into this class.

Denote the shape functions of the bilinear case by v = (1 — 21)(1 — &),
o = T1(1 — &), V3 := T1&9, gy = (1 — &1)&9. Then we can define the
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subparametric mapping F' by

4
F(2) =Y XDy(#) € Qf x QF.

=1

We assume that the X form a convex quadrilateral e, then this mapping is
invertible [82, page 105]. In the case of e being a parallelogram the mapping
Fis affine (X" — X + x® — x[* = 0) and the shape functions ;(z) :=
¢:(F~'(z)), i = 1,...,N,, are polynomial. In the general case the ¢; are
rational functions.

In view of the explanations in Example 2.2 at the end of Subsection 2.1.2 we
consider the subparametric mapping as a perturbation of an affine mapping.
Let € be a rectangular element with edges being parallel to the axes of the

coordinate system. The coordinates of the vertices of € are denoted by)z',gi), 1=

1,...,4. The subparametric element e is a perturbation of €, the coordinates
of its vertices are X = X\ + 4@ i =1,... 4. Introduce by
F(z) = XW 4+ Bi, B := diag(hy,hs),

F(z) = F(ff)+za(")1@i(i),

the transformation of ¢ to & and e, respectively, that means é = F(é), e = F(é).
The Jacobi matrix of the transformation F' is
i () O

4 (@)
. dig dig ) “ 9z, M 9z
D — _D xTr) = ’ ’ e B —I— Al Az
(@) < do1 dop ; aéﬂ% a(i)%
I

In order to keep properties like (2.73)—(2.75) we demand the existence of con-
stants ap and a = (a1, az) with

|a§j)| < aihg, 0 < aq; ,5 1, 1= 1>Qa .7 = 1’ s 74’ (281)
1 h
5 h—jal —ay > ag > 0. (2.82)

Remark 2.10 Condition (2.82) is necessary to keep the mapping F invertible,
in particular, to prove relation (2.83) below. To see this, consider é = (0, hy) X
(0,h3), aV) = a® = (ayhy, —ashs)”, and a® = o™ = (—aihy,azhy)”. One

can directly calculate that det D‘(I,O) = 2h1h2(1/2 — aths/h1 — as).
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T2

1

Fig. 2.13 Extreme example for the element e. (€ is bounded by dashed lines, e by solid
lines.)

By taking a; = ap = 1/2 — ¢, hy < hy, we can learn from this example that
the shape of e can be quite different from a rectangle, see Figure 2.13.

Condition (2.82) restricts also the flattening of e which is obtained by taking
aM = a® = (0,a3h2)T, and a® = a® = (0, —ashy)”. Note further that
there is virtually no restriction on a; if ho < hy. The restriction on a, is also
discussed in Remark 2.11 below.

Remark 2.11 The condition on ay can be weakened if the numbers agi),

1 = 1,...,4, satisfy signagl) = signagl) and signagm = sign ag?’). This is
the reason why the affine elements from Subsection 2.4.1 do satisfy (2.81) but
with constants not necessarily satisfying (2.82). As another alternative we
could consider perturbations of parallelograms € satisfying the conditions of
Subsection 2.4.1. The following results would remain true but the angle ¥
from the coordinate system condition would have to be involved in (2.82). We

chose a rectangle to keep our explanations as clear as possible.

Lemma 2.16 The conditions (2.81), (2.82), imply for all & € é the estimates

|dij(#)] S min{hi By}, 4,5 =1,2, (2.84)
;@) S min{h 'Y i =1,2, (2.85)

where dg;l) are the entries of the inverse of the Jacobi matrixz D.

Proof By the calculation of gg’ we obtain with (2.81) and (2.82)
J

ldiy — ba| = |(1 = 29)(al? — al) + #2(al® — )| < 2a1hy

and similarly |d172| S 2a1h2, |d271| S 2a2h2, and (1-2(12)]12 S d2’2 S (1—|—26L2)h2
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Consequently,
det D = dyjdas —diaday > (h1 — 2a1he)(1 — 2az)he — 4ayash;

= hiho(1 — 2a1hy/hy — 2a3) > 2aphyha,

det D < (14 2a1hy/hy)hi(1+ 2az)hy + 4ajash

and (2.83) and (2.84) are proved. The estimate (2.85) is a direct consequence
using the explicit representation of the inverse. [ |

< h1h27

Y

For the second order derivatives of the transformation F' the relations

82£L'i
— 0. {1=1.2 2.86
ai? ) Z’j ) ) ( )
0*x; O @, 6@ 0%
—— =aqa, ' —a, ' +a’ —a; —| < da;hy, 1=1,2,
02102 t ! t k 0T10%o | — 2

(2.87)

hold. This implies that the transformation of a mixed derivative D leads also
to derivatives D? of lower order. In order to avoid mixed derivatives on the
left hand side we restrict the error estimates to m = 0, 1.

Lemma 2.17 Consider a rectangular element é with sides of length hy and
ha, hi > hs, which are parallel to the axes of the x1,xs-coordinate system.

The coordinates of the four vertices are perturbed by vectors a¥) = (agi),agi))T
satisfying (2.81), (2.82). The resulting element is denoted by e. Let be u €
Wh(e) N C(e) where { € N, 2 < ¢ < k+1,p € [l,00]. Fizq € [1,00] such
that W 1P(e) < Li(e). Then the anisotropic interpolation error estimate

| — Thu; WH9(e)| < (measye) V977 N~ h|Du; WhP(e)|  (2.88)

lal<t-1

holds.

Proof We have to transform estimate (2.79) for m = 1. Due to (2.86) we
have for pure derivatives D4 with a =nf (n € N, || = 1)

Di =" M Dou(DP 1) (DPs)™ (2.89)

|s|=n
with some constants c"”). With (2.84) we obtain

D" <Y b Dl (2.90)

|s|=n
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Furthermore, we get from (2.89)
D(l,l*l),&

_ Z 0 peity (01" (0z2\* (Om )" (Om
0%y 02 diy 01,

or \*' " 8%z 0xs\™
(t-1) ps 1 1 2
+ Zlcs “(81 (a@2> 03107 (a@ +
s 81‘1 51 0332 s2-1 (92ZE2
>\ 02 Oy 07,035 |

DMV~ by Y RD T+ hy Y Y R*ID

|s|=t—1 |t|=1 \s|=t—2 |t|=1

< hl hstthu
S oY Y DT

ls|<e—11]¢=1

Similarly we can prove the corresponding estimate for D=1y, Finally we
get

D7 (u — Lyu); L(e) ||
< (measye)'/? Y~ h7P||DP (4 — Ta); L9(e)|
18]=1
< (measye)/® Y " hTP[DPa; W (e)]
18]=1

< (measge)l/q’l/th’fB hP Z h*|DSu; WP (e)|

18]=1 ls]<t-1

We conjecture that we obtain the same result (2.88) when estimate (2.71) is
transformed. However, the transformation of derivatives becomes more in-
volved, see [78] for a general formula for high derivatives of composite func-
tions. We note also that the estimate (2.88) is insufficient: consider m = k = 1,
¢ = 2, then we get no convergence unless a;,as — 0 for hy, ho — 0. This was
investigated in [5] since the following theorem was not seen at that time.

Theorem 2.8 Consider a rectangular element € with sides of length h, and
ha, h1 > hs, which are parallel to the axes of the x1,xs-coordinate system.
The coordinates of the four vertices are perturbed by vectors a¥) = (agi),ag))T
satisfying (2.81), (2.82). The resulting element is denoted by e. Let be u €
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Whe(e) NC(e) where ¢ €N, 1 < ¢ <k+1,pe€[l,00]. Fizm € {0; 1} and
q € [1,00] such that m < € and W* ™P(e) — Li(e). Then the anisotropic
interpolation error estimate

= Tyu; W™ (e)| < (measye) /P N~ WD u; W™P(e)| (2.91)
|a|=0—m
holds provided that p > 2 if £ = 1. The result is valid also for m = £ = 0,
p =00, q € [1,00].

Proof In the case m = 0 we transform (2.79). Since no mixed derivatives
appear at the right hand side of (2.79) we can use (2.90) and obtain the desired
result.

For m = 1 we use Lemma 2.17. The main point is to observe that for ¢/ < k41
Lw=w Yw € P{ .

Indeed, since we investigate only a subparametric mapping F with F; € Q¢ we
have w € Q¢ | C P, this means 1w = I1. Applying Lemma 2.17 tov = u—w
for arbitrary w € Py | we get u — Iu = v — [v and
= Tyu; WH(e)| S (measpe) /27 N~ 1| Dw; WP (e)
a|<e-1
= (measye)/7 /P Z h*| D*(u — w); WP (e)]. (2.92)
lal<t-1

Via the change of variables z; = #;h; we map e to an quadrilateral é. According
to (2.81), (2.82), we realize that ¢é satisfies the assumptions of Lemma 2.1 with
J =1, diam G ~ diam B; ~ 1. So we obtain the existence of w € 7321_1 such
that for all y with |y| = 1 the estimate

1D7(a@ —w); WP (e)|| S [DYas W (e)]

holds. By transforming this estimate to e and summing up over all v with
l7] = 1 we get

Jwe P Y DY u—w);WHP(e)| S Y h*Du; W (e)].

lov|<€-1 |o|=£—1

With (2.92) we have proved the assertion. |

Corollary 2.4 Of course one can set ho < hy =: h and derive
lu = Thu; W™ (e) || S (measge) /4 PR ju; WHP(e)),

which holds under the assumptions of Theorem 2.8.



78 2 Lagrange interpolation on anisotropic elements

We note that |u — Iu; Wh2(e)| < hju; W22(e)| was derived for k = 1 in [202]
with a fully different proof, see Comment 2.16 on page 93.

We end this section by giving an example showing that the assumption |a§i)| <
aihs in (2.81) cannot be weakened.

Example 2.8 Let e be the quadrilateral with the vertices (0,0), (hq,0), (hy —
g,h2), (0, he) where € € [0, h1/2]. One can directly calculate that z; = & (hy —
£&9), Ty = hofy, o = hy 'xa, &1 = x1(hy — h; 'xy) L. For the function u = 22
we get U= i‘%(hg — 8@2)2, Iu = fi'l(h% — 2h18i’2 + EQi'g),
Ihu = x1(hy —ehy'x) (W] — 2hiehy oo + 2R3 ay),

DOV u = —zehyt(hy — ehytas) 2(h? — ehy) ~ —x1ehy .

Consequently, it is
| DOV (u — Tyu); L(e) ||
(measge)l/a=1/p 3~ ho| Doy; Wie(e)|

a|=1
(measqe)/9eh byt £
T (measse)/9-1/p - (measye)/Phy Ry
Thus € < hs is a necessary condition. U

2.5 Hexahedral elements

2.5.1 Affine elements

In this section we extend the results of Section 2.4 to the three-dimensional
case, namely to hexahedral elements. There is mainly one point different
which, however, is already known from Section 2.3: the range of the parameter
p in the estimates is smaller. But in order to help the reader who does not want
to read the whole monograph, the definitions and theorems are formulated
completely.

Consider the Lagrangian finite element (é, Py ¢, X ) with

e = {(i’l,i'g,.%g,) eER:0< Ty, Lo, T3 < 1}, (293)
Pre = A, (2.94)
Sre = {fi:C(é) = R such that f;(a):=a(XD)}Ye, (2.95)

where N, = (k + 1)? is the number of nodes and
Xo= {XNE = {1, 1 )" € RYocijnss (2.96)
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is the set of nodes.

Let I: C(é) — Pie be the Lagrangian interpolation operator on ¢é, defined by
(10)(X®) = (X)), i=1,...,N.. (2.97)

The counterpart of Lemma 2.10 is identical with Lemma 2.6 and reads as
follows.

Lemma 2.18 Let vy be a multi-indez with m := |y| and @ € C(é) be a function
with D74, € WE™P(¢), where £,m € N, p € [1,00] shall be such that 0 < m <
(<k+1and

p=oo if m=0andl =0,
p>3/0 if m=0andl=1,2,

2.
m<{l if y=0o0ry=0o0rvy =0, and m > 0, (2.98)
p>2 if ye{((—1,0,0); (0,£—1,0); (0,0,£—1)}.
Fiz q € [1,00] such that W* ™P (&) — Li(¢é). Then the estimate
|D7 (@ —Ta); LA(@)| < 1D W™ (e)] (2.99)

holds.

The assumptions can be discussed as in Section 2.3 for Lemma 2.6. Note that
the fourth assumption in (2.98) is necessary only in the three-dimensional case.

Consider now a parallelepiped e. The transformation from € to e can be written
as

t=F(%)=Bi+b, B= (bi,j)ijz1 e R¥™3 b= (b))}, € R,
(2.100)

compare (1.16). For clarity, we formulate the definition of the mesh sizes and
the conditions: Let E be one of the longest edges of e, and let 'z be the larger
of the two faces of e with E C T'y. Then we define the element sizes by h; :=
meas; (E), hy := measy(I'g)/h1, and h3 := meass(e)/(h1hs2). For intermediate
use we introduce another Cartesian coordinate system (e, T2, Z3,) such that
(0,0,0) is a vertex of é, E is part of the x, .-axis, and I'g is part of the ¢, g -
plane. Consequently, we have | det B| = meass(e) = hyhahs.

Maximal angle condition: There is a constant 7, < 7 (independent of h
and e € Ty,) such that the maximal interior angle g of the six faces as well as
the maximal angle vg between two faces of any element e are bounded by ~, :
0<% <Y ST—%, 0<% <7 <7 — 7%
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Coordinate system condition: The transformation of the element related
coordinate system (zj.,Z2,23.) to the discretization independent system
(1,9, 23) can be determined as a translation and three rotations around the
z;.-axes by angles ¥; (j = 1,2, 3), where

|sin191| S Chg/hg, |SiIl’L92| S Chg/hl, |SiIl’L93| S Chg/hl

We formulate now the three-dimensional versions of Lemma 2.11, Theorem
2.6, Corollary 2.3 and Remark 2.9 without proof.

Lemma 2.19 Assume that a parallelepiped e satisfies the mazimal angle con-
dition and the coordinate system condition. Then the entries of the matriz B
of (2.100) and of its inverse B~' satisfy the following conditions:

bij min{h;; b}, 0,5 =1,2,3 (2.101)
BV S min{hl b7} 65 =1,2,3. (2.102)

S
S

Theorem 2.9 Assume that e is a parallelepiped which satisfies the mazximal
angle condition and the coordinate system condition. Let be u € W*P(e)NC ()
where { € N, 1 < ¢ < k+1, p € [1l,00]. Fizm € {0,...,0 —1} and
q € [1,00] such that W ™P(e) — Li(e). Then the anisotropic interpolation
error estimate

[u—Tyu; W™(e)| S (measge) /TPy he| DM W (e)|
|a|=—m

(2.103)
holds provided that

p>3/ if m=0andl=1,2,

p>2 ifm=(-1. (2.104)

The result is also valid for m = (=0, p =00, q € [1,0].

Corollary 2.5 Assume that the parallelepiped e satisfies the mazimal angle
condition. Let be u € W5 (e) N C(€) where €N, 1 < ¢ <k+1,pe|l,00].
Fizm € {0,... ,{ — 1} and q € [1,00] such that W ™P(e) — Li(e). Then
the isotropic interpolation error estimate (sometimes called estimate of Jamet
type or of Synge type)

lu — Tpu; W™9(e)| < (measse)? 1/ (diam €)™ |u; WP (e)

holds provided that (2.104) holds. The result is also valid for m = ¢ = 0,
p =00, q € [1,00].
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As in Subsection 2.4.2 we can state that Lemma 2.18 holds even when (2.99)
is replaced by

1D (i — Ta); L(e)|| < [DYi W™ (&)). (2.105)

For brick elements with edges being parallel to the coordinate axes this leads
to the following improved estimate.

Theorem 2.10 Assume that e is a brick element with edges parallel to the
coordinate axes. Let vy be a multi-index with m = |y| and u € C(€) be a
function with DYu € WP (e), where {,m € N, p € [1,00] shall be such that
0<m</{<k+1and (2.98) hold. Fiz q € [1,00] such that W*™?(e) —
Li(e). Then the anisotropic interpolation error estimate
1D (u — Tpu); L(e)||
< (measge)/a71/P Ny " pltmme | pritmey, Ir(e)| (2.106)
la|=1

holds.

Additional smoothness, & € W**2P(¢), is advantageous since the restriction
(2.104) can be omitted. For example, it was proved in [9] that for |y| = 1 the
estimate

D7 (u — Tpu); LP(e) ||
S DS IPe)| + Y D LA (e)]).
|a|=k+1

holds for all p € [1, 00], provided that e is a brick element. For general paral-
lelepipeds we can prove the following theorem in analogy to Theorem 2.3.

Theorem 2.11 Assume that e is a parallelepiped which satisfies the mazximal
angle condition and the coordinate system condition. Let be u € WF+2P(e) N
C(e), p € [1,00]. Fiz m € {0,...,k} and q € [1,00]. Then the anisotropic
interpolation error estimate

lu — Thu; W™9(e)| < (measge)'/71/P Z R D%u; W™P(e)]|

k+1-m<|a|<k+2—m

holds provided that WkT2=mP(e) — Li(e).

2.5.2 Subparametric elements

As in Subsection 2.4.3 we consider the multilinear mapping F as a perturbation
of an affine mapping. Let € be a brick element with edges parallel to the axes
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of the coordinate system. The coordinates of the vertices of € are Xéi), 1=
1,...,8. The subparametric element e is a perturbation of €, the coordinates

of its vertices are X\ +a®, i =1,...,8. Denote by
F(z) = X+ B, B =diag(h,h,hs),

8
F(#) = F(@)+ > a%i(),
i=1
the transformation of é to & and e, respectively, that means é = F(¢), e = F(é).

Recall that ’l,;i, 1 =1,...,8, are the trilinear shape functions. The conditions
(2.81), (2.82), read now

|a§j)| S aihQa 0 S Q; SJ 17 L= 152a3, .7 = 1’ s ’8’ (2107)
1 hg hs

2o — a5 —az > ap > 0. 2.108
5 hlal h2a2 a3 -~ Qg ( )

and Lemma 2.16 is valid for 7,7 = 1,2, 3.

While first and second order derivatives of F' behave as in the two dimensional
case third order derivatives do not vanish here:

O < dahy(1—6;4), 4,5, k=123
a; — Uy ) 1,7, = 1,4,9,
0i;05,| = 3 pk J
03z, 03z,
— < 8zha %:07 '7 '7k:172>37
005,005 — Y 0320y b

where §; ; is the Kronecker delta. However, this does not affect our analysis

since in (2.105) only derivatives D®u appear where a; = 0 for at least one
ie{1,2,3).

Theorem 2.12 Consider a brick element € with sides of length hy, he, and
hs, hi > hy > hs, which are parallel to the azes of the x1, s, x3-coordinate
system. The coordinates of the eight vertices are perturbed by vectors a®¥) =
(agi), agi), agi))T, i=1,...,8, satisfying (2.107), (2.108). The resulting element
is denoted by e. Let be u € W*(e) N C(e) where £ € N, 1 < ¢ < k + 1,
p € [1,00]. Fizm € {0; 1} and q € [1,00] such that W*=™P(e) — Li(e).
Then the anisotropic interpolation error estimate

[u—Tnu; W™(e)| S (measge) 0Py B D u; W (e)|
|o|=£—m
holds provided that

p>3/0 if m=0andl=1,2,
p>2 if m=40-—1.
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The result is also valid for m = ¢ =0, p =00, q € [1,00].

The theorem can be proved with the same ideas as in the two-dimensional
case.

Corollary 2.6 Of course one can set hy < hy < hy =: h and derive
lu — Thu; W™ (e)|| < (measse)'/ 2 PR ju; WP (e)),

which holds under the assumptions of Theorem 2.12.

2.6 Pentahedral elements

Due to the limited interest in pentahedral elements we will discuss this element
type only very briefly. Some results have been derived in [20].

By the term pentahedral element we denote the Lagrangian finite element
(é,lpk’é,zké) with

é = {(21,20,23) ER*:0< 21,83 <1, 0< 2y < 1—2,},(2.109)
Pre = Y aar®, a €Ry, (2.110)
0<aj+as<k
0<a3z<k
Sre = {fi:C(é) = R such that f;(a):=a(XD)}e,  (2.111)

where N, = (k;r2) (k + 1) is the number of nodes and

X o= {XOWWNe = (14 )T ¢ R3}o§;5k (2.112)
is the set of nodes. Let I : C(é) — P be the Lagrangian interpolation
operator on é, defined by

I0)(XD) = 5(X®D), i=1,...,N.. (2.113)

In Section 2.3 we derived estimates on tetrahedral reference elements for func-
tions from classical and weighted Sobolev spaces. These lemmata, namely 2.6,
2.8, and 2.9, can be proven for pentahedral elements with the same arguments.
Note, however, that the proof is not identical since the dimension of DYPy ¢ is
here (k_“;”“) (k — 3+ 1). Observe also that it is sufficient to consider one
reference element only.
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For the transformation F' from é to e we have to distinguish different cases.
The reason is that, in contrast to tetrahedral and hexahedral elements, the
Z3-direction is distinguished from the other two.

Assume first that (i) the element is affine, (ii) the triangular face is described
by mesh sizes h; and hy < hy, and (iii) the distance between the triangular
faces is hy < hy. This situation corresponds completely to Subsection 2.3.1. A
maximal angle condition and a coordinate system condition can be formulated
accordingly, and Theorems 2.2 and 2.3 can be proven.

In a second case assume that (i) the element is affine, (ii) three edges are
parallel to the z3-axis and have length hs, (iii) the quadrilateral faces satisfy a
maximal angle condition, and (iv) the triangular faces are isotropic with size
hy ~ hy < hg. Then Lemma 2.7 is also valid and, consequently, Theorems 2.2
and 2.3 as well. If one edge is contained in the x3-axis, then Theorems 2.4 and
2.5 hold, too.

We can also consider the subparametric case as a perturbation of the affine
case. The notation can be adapted from Subsection 2.5.2. Lemma 2.13 can be
modified by taking w € Py_1 . C Pie such that (2.78) becomes

IDY(u —w); W™ (G)]| S Y. DL (@)

Y

|a|=—m
agz=0Vag=~£-—m

= [DYu; W™ (@Q)].
In analogy to Lemma 2.14 we get
1D7(a —Ta); LY@)|| S [Da; W ™P(e)]
under the assumptions of Lemma 2.18. One can show that

[0;WmP(e)] S Y B D%; LP(e)|

laj=n

(note that this is not true when the left hand side is replaced by |0; W™P(é)|)
and obtains

lu — Thu; W™9(e)| < (measge)'/7 /P Z R D%u; W™ P (e)|
|a|=—m

(2.114)

for m = 0. For m = 1 one can first show an intermediate result as in Lemma
2.17 and conclude (2.114) with the same idea as in the proof of Theorem 2.8.
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2.7 Comments on related work

This final section of Chapter 2 is devoted to historical remarks and alternative
approaches. We discuss related interpolation results of other authors and ideas
of their proof. These are sometimes really fascinating though they were not
sufficient for our purposes.

Triangular elements

Comment 2.1 Other formulations of the maximal angle condition for
triangles. The following conditions have been used in the literature instead
of the maximal angle condition:

1. Let R, be the radius of the circumscribed ball B, of e (that means, all
vertices of e belong to 0B.). Then we demand diam (e) 2> R, [119].

2. Let V3 be the set of the three unit vectors which are parallel to the sides
of e and define 4 (§,7n) € [0, 7] to be the angle between the vectors ¢ and +7.
Then we demand [108]

6 := min max min v) < 0. <
v1,02€V3 €€R? i=1,2 <I(£7 z) = Uy

(2.115)

SE

The first condition is interesting due to its similarity to Zlamal’s minimal
angle condition [208] which is equivalent to diam (e) < o, for g. see Section
1.1. In [119, Theorem 2.1 and Remark 2.2], it was shown that this condition
is equivalent to the maximal angle condition formulated on page 44.

Jamet showed that 6 = % max{a; T —a} where a is the maximal interior angle

in e. Thus this condition is also equivalent to the maximal angle condition
[108, page 55].

Comment 2.2 Synge’s results. Synge [187, pages 209-213] derives for k =
1 and for triangular elements e satisfying the maximal angle condition the
estimate

lu — Tpu; W™ (e)| < (diam (e))* ™ |u; W (e)|, m =0,1. (2.116)

The following points of the proof are remarkable:

e He proves first the case m = 1 and derives the case m = 0 via
|lu — Tpu; L®(e)|] < diam (e)|u — Tyu; Wh™(e)].

Therefore he needs the maximal angle condition for m = 0 as well. (This is
not necessary.)
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e His proof is constructive. He already used (what we do as well) that

O(u —Ipu)
/ET ~0 (2.117)

where E is any edge of e and b is a unit vector parallel to E. In this way he
derives for all edge directions b

w; L>(e) ‘ < diam (e)|u — Iyu; W2 (e)|

= diam (e)|u; W*>*(e)], (2.118)
where he also used that |[I,u; W#*(e)| = 0. (That means that the proof is
fixed to £ = k + 1 and simplicial elements.)

e Estimate (2.116) is concluded from (2.118) via elegant geometrical consid-

erations which show that the constant in (2.116) depends on (cos o)~ where

2
« is the largest interior angle of e.

His method of proof is suited to produce (after slight modification) the aniso-
tropic estimate

u =T W™e(e)| S Y B D W™ (e)], m=0,1.

|a|=2—m

However, it is not clear how to generalize this approach to functions u €
W?%P(e), p < 0o. A generalization to three dimensions is possible, see Comment
2.11 on page 91.

Comment 2.3 The results of Babuska and Aziz. Babuska and Aziz [27]
essentially proved Corollary 2.1 for m =1, p = q¢ =2, { = k+ 1, and arbitrary
k. Essentially means, it was shown for £ = 1 that

252
)
uew?2(e) ||u — Lpu; W12(e)

“ > (diame)™'T'(«)

(note the full norms) where I'(«r) (7/3 < & < 7) is an increasing function and
o is the maximal interior angle of e. The proof uses also that [, D (i — 1a)
vanishes when F is an edge parallel to v, |y| = 1 (7 identified with a vector in
R?). Furthermore, Babuska and Aziz showed how this proof can be adapted for
Lagrangian elements of higher order and for Hermite elements. They gave also
an example showing the necessity of the maximal angle condition, compare
Remark 2.25 on page 39.

Comment 2.4 Jamet’s results for triangles. Jamet [108] considered sev-
eral classes of finite elements, see Comment 2.10 on page 91 and Comment
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2.13 on page 91 for the results for tetrahedra and quadrilaterals, respectively.
He proved [108, Theorem 3.1] for triangles the estimate

lu — Tyu; W™P(e)] < (cos @)™ (diam e)* ™™ |u; WFTEP(e)|,  (2.119)
where 6 is defined in (2.115). The parameters m and p must satisfy

E+1—m > 2/p forp< o,

2.12
Ek+1—m > 0 for p = oo. (2.120)

The proof utilizes an operator Q with DPla = QDP4 for || = m. Roughly
speaking, the operator @) is defined by Qv = DP14, with some 4 that satisfies
DP4 = . To ensure that @& € C(é) (such that I is well-defined) it is demanded
that © € C(é). In this way the quite restrictive condition (2.120) is understand-
able. (For example, for linear elements and m = 1, we obtain the condition
p > 2 which is not necessary, see Corollary 2.1 on page 47 for a larger set of
admissible parameters m and p.)

Estimate (2.119) was proved via
1D7(@ — Ta); LP(e) | < |DYa; WP (e)).

This means that anisotropic estimates could have been derived by a more
detailed look at the mapping F': é — e.

Jamet derived that § = Jmax{o; ™ —a} < max{ja; 37} where a is the
maximal interior angle of e. That means that (cosf) ™ < 1 if and only if the

maximal angle condition is satisfied. He also formulated a condition like (2.23)
as essential for interpolation on anisotropic elements.

To circumvent the restrictions imposed by (2.120) the following estimate was
derived for u € W%P(e), £ > k + 1, namely

l
[u =Ty W™ (e)| < (cos8) ™ Y (diame)” s WP (e)
r=k+1

which holds when ¢ —m > 2/p.

Jamet type estimates are discussed for elements of Hermite type in [201].
Comment 2.5 Kiizek’s results for triangles. Kiizek [119] proved Lemma
24form=0,1,{=2,k=1,qg=p € (1,00). The technique is similar to ours

by using that [, DY(i—1a) =0, |y| = 1, where E is an edge of é parallel to .
Then he used only an “isotropic mapping” and derives Corollary 2.1 with the
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parameters above. The progress in comparison to previous work [27, 108, 187]
was that he covers the case 1 < p < 2.

It is interesting to note that he related the maximum angle condition to the
radius R, of the ball circumscribed to e, see Comment 2.1 on page 85. The
paper contains also a numerical example where Q2 = (0, 1) is covered by equiv-
alent elements e with hy ~ h2. (Two triangles are equivalent if their edges
have pairwise the same length.)

Comment 2.6 The results of Barnhill and Gregory. In a series of papers
including [36, 37] Barnhill and Gregory investigated Sard kernel theorems and
apply them to Lagrangian interpolation on triangles and rectangles. The proofs
are constructive and have some similarities to the proof of interpolation results
by Oganesyan and Rukhovets, see Comment 2.7 on page 89. This approach
allowed them to give bounds for the constants in the Sobolev norm estimates
which we will review next.

Let e be a triangle with the vertices (0,0)%, (hy,0)T, and (0, hy)T, then for
k=1,ue€ W??(e), and ¢ < p < co the estimate [37, estimate (2.22)]
1D (u — Tyu); L(e) |
< (measye)! /1P 3 OO DT L2(e)|
|a|=1

holds where the expressions for C(p, q), Ca2(p, q), are quite complex (including
the Beta function). For p = ¢ = 2 the constants are [37, equations (2.23)]

1/1 1
4 ( —) ~ 0.642 and Co =1+ ~ 1.56.

1 1
2\2" 22 26

In a further paper [84] Gregory obtained even Cy = 1.03 and
|u — Lyu; L2(é)|| < 0.17]D®%u; L2(e)| +
0.38 || DS Yy L2(8)|| + 0.17 || DODu; L2(€)]).
In the same paper he also considered the triangle é with the vertices (0,0)7,
(1,0)T, and (a,b)T with a and b being such that the angle v at (a,b)” is max-
imal and the angle 3 at (1,0)7 is minimal, see Figure 2.14 for an illustration.

The dependence of the constants in the interpolation error estimate on a and
b is given in detail. Some further calculation leads to

lu — Thu; WH2(€)| < (Cy + Cy cot ) |u; W2(€)].

In this way the maximal angle condition is derived as well. (The maximal angle
condition is equivalent to a lower bound for the angle o when § < a < 7.)



2.7 Comments on related work 89

z2
(a,0)"
Y
é
Fig. 2.14
Notation and illustration of the triangle @ /
€ from Barnhill and Gregory. 0,0)T (1,0)T 1

Comment 2.7 The results of Oganesyan and Rukhovets for triangles.
Oganesyan and Rukhovets [150, pages 82-84] considered the triangle e with
the vertices (0,0)7, (hy,0)T, and (0, h2)T, and proved for k=1 and m = 0,1

u— T W2 (e)| S > h*[Du; W™ (e')].
|a|=2—m
Note that the seminorm on the right hand side is measured with respect to
the rectangle ¢’ = (0, hq) x (0, hy). Remarkable is:
e The proof is constructive. Observation (2.117) was also used.

e No attempt is made to exploit the different hq, hs, further, and no maximal
angle condition is derived.

e The appearance of €’ instead of e on the right hand side is due to some crude
estimations. This can be avoided, see [3, pages 57-59].

It is not obvious whether this approach can be generalized to higher dimen-
sions.

Comment 2.8 Bansch’s results for triangles. Lemma 2.4 and Theorem
2.1 were also proved by Bénsch [35] for the case f = k+ 1,1 <m <k, qg=p
(therefore without investigating condition (2.24)). His paper appeared about
two years after [9] but nearly at the same time as [12]. Bénsch used in his
proof of Lemma 2.4 the following interesting result.

Lemma 2.20 Let vy be a multi-index, m := |y| > 0, and @ € C(é) be a function
with D4, € W ™P(¢), where { € N, p € [1,00] shall be such that {—m > 2/p.
Then the estimate

|D71a; L2 ()| S 157 W=(e)]
holds.

Proof See the proof of Lemma 4 in [35]. The slightly stronger assumption
u € W%P(¢) in this paper was used only in the sense D74 € W ™P(¢). |
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From this lemma one can immediately conclude
1D7(8 = Ta); L9(&)| < 1D7(6 — a); W ()|

which was derived in the proof of Lemma 2.2 via the functionals f;. However,
Bansch’s proof of Lemma 2.20 is based on three further lemmata which es-
sentially contain the same ideas as needed in our proof of Lemmata 2.2 and
2.4.

Tetrahedral elements

Comment 2.9 Alternative formulations of the maximal angle condi-
tion for tetrahedra. The following conditions have been used in the litera-
ture instead of the maximal angle condition on page 54.

1. All angles of all triangular faces of e are bounded away from 7. Moreover,
for any face F' of e there is at least one edge of e such that the angle between
this edge and the plane spanned by F' is bounded away from 0 [35].

2. Let Vg be the set of the 6 unit vectors which are parallel to the sides of e
and let 9 (&,m) € [0,7/2] be the angle between the vectors £ and +7. Then
we demand that [108]

f:= min max min J(&v;) <0, <
v1,v2,v3€Ve £ER3 1=1,2,3

o] 3

(2.121)

3. Let e; (¢ = 1,...,3) denote the i-th unit vector of the coordinate system
and v; (j = 1,...,6) are the directions of edges of the tetrahedron e. Then
we assume [9]

‘min  max

i=1,...,3j=1,..,6 (v, €)= Co > 0.

Formulation 1 is quite similar to our maximal angle condition. We see that
Lemma 2.7 can be proved in the same way, relation (2.48) is even direct.

Formulations 2 and 3 are similar to each other. It is not clear whether they
are equivalent to the maximal angle condition. At least they are sufficient for
the proof of anisotropic interpolation error estimates. They say that one can
choose a basis of R by vy, vy, v3 € Vi such that the transformation from this
system to the element related coordinate system (1., %2, Z3,) is uniformly
bounded. On the other hand, the transformation from the reference coordi-
nate system (2., Za.,%3e) to the system (v, v, v3) is affine with a diagonal
transformation matrix when the following rule is applied: If the three edges
which are parallel to vy, v, v3, form a polygonal line with the longest edge



2.7 Comments on related work 91

in the middle then use é from (2.37) as the reference element. In all other
cases use € from (2.36). We do not want to go into more detail here, since this
formulations seem to be more difficult to understand and to check than our
maximal angle condition or formulation 1 from above.

Comment 2.10 Jamet’s results for tetrahedra. Jamet [108] derived the
results extracted in Comment 2.4 for d = 2,3. That means, we have for
u € Wh(e), £ >k + 1,

l
fu—Tyu; W (e)] S (cos8) ™ Y (diame)” ™ u; W (e)
r=k+1

when ¢ —m > 3/p. The angle 0 is defined in (2.121). All the discussion in
Comment 2.4 applies as well, except that the condition § < 6, < /2 is not
reformulated in geometrical terms, for example as maximal angle condition,
see also Comment 2.9.

Comment 2.11 Kiizek’s results for tetrahedra. Kiizek [120] proved
Corollary 2.2 for k = 1, £ = 2, m = 0,1, ¢ = p = oo. The technique is
similar to Synge’s proof of the same result in two dimensions, see Comment
2.2 on page 85. The maximal angle condition was introduced as on page 54.
This is remarkable because K#izek [119] had chosen a different formulation in
two dimensions, see Comment 2.1 on page 85.

Comment 2.12 Bansch’s results for tetrahedra. Lemma 2.6 and Theo-
rem 2.2 were also proved by Bénsch [35] for the case { =k + 1, 1 < m < k,
qg=p>2/(k+1—m) (and therefore without investigating condition (2.38)),
see also Comment 2.8 on page 89. The transformation from é to e was sketched
in an elegant way (similarly to [9]) without mentioning that two reference el-
ements are necessary.

Quadrilateral elements

Comment 2.13 Jamet’s results for quadrilaterals. In [108, Example 2]
Jamet stated that his general result, see Comment 2.4 on page 86 and Com-
ment 2.10 on page 91 for simplicial elements, is true also for parallelepipeds.
For a discussion of quadratic serendipity elements see [108, Example 4].

Comment 2.14 The results of Oganesyan and Rukhovets for quadri-
laterals. Oganesyan and Rukhovets [150, page 90| considered the rectangle
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e with sides parallel to the coordinate axes and of length h; and hs. They
proved for k =1 and m =0,1

u =T W™ (e)| S > hD u; W™ (e).

|a|=2—m

For further remarks see Comment 2.7 on page 89. The constants can be traced
back, for example it is shown, that
1D (u — Tyu); L2(e) |*
< 2h1[|D®Vu; L2 (e) || + 8h3[ DU Du; L (e) 2.
Comment 2.15 The results of von Petersdorff and Rachowicz. Von

Petersdorff investigated bilinear interpolation (k = 1) and derived for rectan-
gular elements e and for u € W32 (e) the estimates [153, pages T1ff.]

1D (w — Tyu); L(e)|

< mllD®Vu; L2(e) || + B3| DD us L2 (e, (2.122)
DO (u — Lyu); L3(e) |

S BID®Vus L2(e) || + hal DOPus L2 (e)]. (2.123)

The proof exploits the tensor product character of the bilinear interpolation.
We elucidate this by the following sketch.

Proof Let be
(Ilﬁ)(i'l, i’g) = (]_ — 3%1)11(0, 5%2) —I— .’2‘1’0/(1, 5%2),
(1211)(@1, i’g) = (1 — i’g)ﬂ(.@l, 0) +

then we observe that

~ ~

Ia = 1112u = IgIlu,

1,DOYg = DOV g, LDWOg = DAOL,g, (2.124)
By using interpolation results from one space dimension we get
1D (@ - La); (@) = / 1DV (@, #2) — Lyl 22)); (0, 1)|* di
/ 1DEOa(.,5); L0, 1)|2 iy = [|D@V4; 1@, (2.125)

I(DMOTya) — I,(D™ O)Ilu) @) < 1IDOP(DMOa); L2 @)
= ||IDEO1, DOV 28| < |IDMDa; L2 (€)]. (2.126)
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T2 T2

X§4) X(2)

x

Ty 1

Fig. 2.15 Tllustration of the quadrilaterals treated by Zenisek and Vanmaele.

The last equality follows from (2.124). The last estimate is a consequence of

A

1
DOOLian,d2) = 0(1,2) = 00,2) = | DIOi(@r, dz)dn.
0

From (2.125) and (2.126) we obtain (2.122) by using the triangle inequality
and again (2.124). |

Rachowicz [155] extended this approach to arbitrary k. He obtains for u €
W2 =k k+1
1D (u — Tyu); L2 (e)|
S hIDEHOu; L2 (e) || + hy || DMYu; L2 (e) |,
1D (u — Tyu); L2(e)|
S W DYus L (e)|| + hy|| DO Vu; L2 (e) |-
An extension to parallelograms is also made but in a non-orthogonal coordinate
system determined by the directions of the sides of e.

Comment 2.16 The results of Zenisek and Vanmaele. Zenisek and Van-
maele [202] considered anisotropic, convex, quadrilateral, isoparametric finite
elements e with “bilinear” shape functions (k = 1). They derived isotropic in-
terpolation error estimates (in the sense of Corollaries 2.3 and 2.4) and treated
the constants in the estimates carefully. Therefore we present here the main
results.

Lemma 2.21 [202, Theorem 7.1] Consider first trapezoids as illustrated in
Figure 2.15 (left hand side) with

diame = [ XV — x|,

|X(2) _ X(3)| < |X(1) _ X(4)| < i|X(1) B X(2)| (2.127)
e e - e e — 12 e e .
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Then we have for u € W%2(e)

X — x)
diam e - sin 8

Ju —Tu; Z2(e)| < (mcz )(diame>2|u;w2’2<e>|

. W2,2
) S o)

sin 3
with Cl ~ 550, 02 ~ 217, 03 ~ 128, and 04 ~ 19.5.

u — T Wh2(e)| < <o3+ Ca )dlame

For the case that the factor 1/12 in (2.127) is substituted by 1/(2n), n > 6,
expressions for the constants are given in dependence of n [202, Remark 7.4]

The proof of Lemma 2.21 uses the following ideas.

e The bilinear interpolation is considered as a perturbation of the linear inter-

polation I;zL) with respect to the vertices Xél), Xe(2), and Xé?’). (Therefore the
enumeration plays an important role, see (2.127).) By the triangle inequality
we have [202, Estimate (8)]

= Tows - || < Jlw = TP ||+ 1w — Taus | (2.128)
and one can show that
(I — L) (z) = (IPu — w)(XD) - o0 (2) (2.129)

where cpgl)(a:) is the shape function with respect to X

e The first term in (2.128) is estimated using the results in [119] for linear
(triangular) elements (Comment 2.5 on page 87). The modification is that
e is mapped by a linear transformation to a family of reference elements é
depending on a parameter.

e The second term in (2.128) is treated via (2.129) where both factors are
estimated separately. In particular it is shown that [202, Section 6]

L
(X)) — P u(x®)]
|X§1) _ X§2)|1/2|Xe(1) _ Xe(4)|1/2

< 21.7 W22 (e)],
- sin 8 (sin ) 1/2 o (€]l
le®; L2 < |1X = XP2IXD — XV (sin )2,
Xél) _ Xc@) 1/2
|<,0£4); Wh?(e)| < 0.90 | |

XM — x 12 (sin @) 1/2

Now let e be an arbitrary convex quadrilateral. Then there exists a paral-
lelogram €’ D e which has three vertices in common with e, see Figure 2.15

(right hand side). Denote these three vertices by Xél), Xe(2), and XE’) such
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that XV XP and XX are sides of e with [ X — X&) < | x{P — x|,
Denote by G the straight line through XY and X2,

Lemma 2.22 [202, Theorem 8.1] Assume that e is a quadrilateral with the
notation as described above. Let the inequalities

IX® - x®) < 1 XM - x@)

e e 2n e e )

X0 - X0 < X0 - XD,
n

dist (X*, @)
2 dist (X, @)
be fulfilled with some n > 6. Then we have for u € W%2(e)
C2|Xe(1) _ X§4)|1/2|X§2) _ X§3)|1/2
O _ @ x
| Xe — Xe|(sinasin 3)1/2
XD = XPP fu; W2 (e)],
1 4
u — Tyu; W2(e)| < [ Gy + - C4|)f3e() ) _ x{ )|1/2 y
| Xe” — Xe”|V/2(sin asin 3)1/2
xe? - x|
sin (3
where the coefficients C; = Ci(n), i = 1,...,4, are decreasing when n is
INCTeasing.

<

lu = Tnu; L*(e)]| < <01+

Jus W22 (e),

Comment 2.17 Anisotropic local error estimates for the hp-version
of the finite element method. The existence of derivatives of any desired
order is one of the basic assumptions for the hAp-version. The point is merely
to describe the size of the derivatives in terms of their order and to ensure
integrability, if necessary, by introducing appropriate weight functions. This
leads to countably normed spaces. The corresponding local interpolation er-
ror estimates are studied, for example, in [126] and, from a slightly different
point of view, in [135]. The proofs exploit the tensor product character of the
(reference) element as already mentioned in Comment 2.15 on page 92. How-
ever, there are also differences to the techniques developed in this monograph,
starting with the point that the hp-version is not based on Lagrangian finite
elements in the sense of (2.66)—(2.69). Therefore we will not discuss these
estimates further.
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3 Scott-Zhang interpolation on anisotropic
elements

In this chapter, the Scott-Zhang interpolation operator and several modifica-
tions of it are discussed. All these operators are defined under weaker regular-
ity assumptions than the Lagrange interpolation operator. Anisotropic local
stability and error estimates are proved. In the final section, Section 3.7, we
compare the operators. These results are originally published in [7].

3.1 General considerations

3.1.1 The aim of this chapter

The Lagrangian (nodal) interpolation operator I, investigated in the previous
chapter is the simplest approximation operator for Lagrangian finite elements.
However, it is not appropriate for several investigations. Drawbacks are that
it can be applied only to continuous functions and that there are restrictions
in the range of the parameters m, ¢, ¢, and p of the anisotropic interpolation
error estimate (2.2), see for example (2.3) and (2.4). We discussed this already
in Section 1.2 and Subsection 2.1.1.

In this chapter we investigate the operator Z; which was introduced by Scott
and Zhang. We also introduce and study certain modifications of Z;. All these
operators are defined not only for continuous functions but also for certain
classes of discontinuous ones.

Scott and Zhang investigated stability and approximation properties of Zj, for
isotropic meshes. In the next section we study whether these properties extend
to anisotropic meshes. It turns out that anisotropic estimates of the error in
the L?(e)-norm can be proved (Theorem 3.1) but there is a counterexample
for derivatives of the interpolation error (Example 3.1).

From the example we can learn, however, how to modify the operator Z; in
order to have a chance to get the desired estimates for derivatives. We define
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T2 T2

r1 Tl

Fig. 3.1 Meshes of tensor product type in two dimensions. Left: rectangular elements.
Right: triangular elements.

three operators Sy, Ly, and E, with differences in the applicability concerning
the types of elements and the ability to satisfy Dirichlet boundary conditions.

e The operator S; is applicable for two-dimensional elements and for three-
dimensional elements with hy ~ hy < h3 (“needle elements”). Dirichlet bound-
ary conditions are preserved on parts of the boundary which are parallel to
the zy-axis/xq, zo-plane.

e The operator Lj is applicable for two-dimensional elements and for three-
dimensional elements with hy; ~ hy = h3 (“flat elements”). Dirichlet boundary
conditions are preserved also on parts of the boundary which are parallel to
the zy-axis/xq, zo-plane.

e The operator E; is defined only for three-dimensional elements with the
general assumption hy < hy < hs. But we discuss also the case hy ~ hy < hs,
where we can relax the condition on the mesh. Dirichlet boundary conditions
are preserved on parts of the boundary which are orthogonal to the zq, xs-
plane.

These operators allow stability and approximation estimates for different rang-
es of m and ¢ and for anisotropic meshes, see Theorems 3.2, 3.3, and 3.4 for
functions from classical Sobolev spaces, and Lemmata 3.4 and 3.6 for functions
from weighted Sobolev spaces. We will summarize and compare the results in
more detail in Section 3.7.

In this chapter, we restrict ourselves to a certain class of domains, namely
domains of tensor product type. In two dimensions this means that the domain
is the union of rectangles with sides parallel to the coordinate axes. In three
dimensions we treat domains which are a union of prismatic domains with a
basis face parallel to the z, zo-plane. In such domains it is possible to treat
meshes of tensor product type, see Subsection 3.1.2 for the definition. Examples
are given in Figure 3.1. Note that also the mesh in Figure 4.3 (right hand side)
on page 145 is of tensor product type. The advantage of this class of meshes is
not only that the coordinate transformation is simplified but also that certain
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edges/faces of the elements are orthogonal/parallel to coordinate axes. We
will exploit this in the proofs in Sections 3.3-3.5.

Later, in Section 4.3, we shall apply the operators S, and E;, and derive finite
element error estimates for the Poisson problem in certain domains with edges.
The result can not be obtained by using the nodal interpolation operator I, or
the original Scott-Zhang operator Z,. This underlines the importance of this
study.

Nevertheless, some questions need further research. First, the investigation in
this chapter is limited to domains of tensor product type. It is not straight-
forward how to drop this assumption. Second, estimates with m = ¢ =1 are
derived only for Lj. This means, such an estimate is not available for three-
dimensional “needle elements” (h; ~ hy < hsy). Note that the case £ = 1 is
of particular interest in the investigation of a-posteriori error estimators and
multi-level techniques.

Finally, we remark that Clément [64] and Oswald [151], for example, defined
similar interpolation operators and investigated them for isotropic meshes. We
comment on this in Section 3.6.

3.1.2 Definition of the element sizes and two auxiliary results

We consider meshes which consist of affine elements of tensor product type.
That means the transformation of a reference element é to the element e shall
have (block) diagonal form,

It . :thl,e 0 :2‘1 —
(m) = ( 0 ihg,e><i‘2>+be for d = 2, (3.1)

71 B.: 0 2
i) = | ..... 0. .fi'g + be for d = 3, (32)
I3 0 :I:h/d,e fi'?’

where b, € R? and B, € R**2? with
|det Be| ~ B3 ., ||Bell ~ hae, [IB'|| ~ hig. (3-3)

In this way the element sizes hj,... , hq are implicitly defined. This defi-
nition is not identical with the definitions in Chapter 2 but the orders of the
resulting mesh sizes h; . (i = 1,... ,d) are the same in both chapters, see Figure
3.2 for an illustration. Note that (3.3) yields hy . ~ hy. for three-dimensional
elements.

In this definition we did not assume a relation between h;. and hg.. In
Sections 3.3 and 3.5 we will consider the case hy . < hg. (interesting is hy . =
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Fig. 3.2 Definitions of the mesh sizes for triangles in Chapters 2 (left) and 3 (right).

0(ha4e)) and in Section 3.4 we will examine hq, < hy.. Note further that under
these assumptions the triangles/tetrahedra can be grouped into pairs/triples
which form a rectangle/pentahedron of tensor product type. We will use this
property in Section 3.3.

We demand further that there is no abrupt change in the element sizes, that
means, the relation

hie ~ hie foralle’ with ene #0 (3.4)
holds for 7 = 1,... ,d. In view this relation and since all considerations in this
chapter are local, we will omit the second subscript henceforth.

We will see that the values of the Scott-Zhang interpolant in one single element
e, Zpule, is defined in general not only by the values of u in €. Values at certain
domains o;, ¢ € I, are used. So it is convenient to introduce the patch S, of
elements around e,

Se=int| J{e': ¢’ € Th, e Ne # 0}, (3.5)
see also the illustration in Figure 3.3, since we obtain then o; € S, for all

1 € 1.

We end this section with a lemma and a corollary which will be widely used
in this chapter. The isotropic version of Lemma 3.1 was proved in [170] using
results from [76] (see Lemma 2.1) and can easily be generalized to our case.

Lemma 3.1 For any u € WF(S,) there exists a polynomial w € PL | such
that

> DM w—w) WS S Y hD s WP(SL)|, (3.6)

loe|<l—m |a|=t—m

forallm=0,... /.
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N
‘mgf&
e

Fig. 3.3
Tllustration of S, in a two-dimensional example.

Proof By the change of variables x; = Z;h; we transform S, to 5'6. According
to (3.4) and the tensor product character of our mesh we realize that S, satisfies
the assumptions of Lemma 2.1 with diam G; ~ diam B; ~ 1. So we obtain the
existence of @ € P&, such that for all y with |y| =m, 0 <m < ¢,

1D (@ —@); WP (S)|| < |DVa; W (S,).

By transforming this estimate to S, and summing up over all v we conclude

(3.6). |

Corollary 3.1 Let mi + mg = m < {. For any u € W“’(Se) there exists a
polynomial w € P¢_, such that

Z Z ha+ﬁ|Da+ﬁ(u _ w), Wml,p(se)|

|| <ma |B]<L—m

< Z Z ha+5|Da+ﬁu; WmP(S,))|.

loe|=mz |B|<l—m
Proof We reformulate the left hand side and split it in two terms.
Z Z RO D (u — w); W™P(S, )|
la|<my |B|<t—m
~ Z RO\ D% (u — w); W™P(S,)|
|6|<l—my
= ) RID(u—w); W™P(S,)]
6] <ma
+ Z h| D% (u — w); W™ P(S,)|
m2<|5\§Z7m1

In view of my = m — my, the first term can be estimated via Lemma 3.1. The
second term contains only derivatives of order higher than m, that means that
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w plays no role. Consequently, w can be chosen such that
Do D WD —w) (S,
la|<my |B|<t—m

S Y WD wwmrS) + S B u WS,
[6]=m2 ma<|8|<l—my

S Y WDt Wr(s,)|
lor|=m2
+ Z Z ha+ﬁ|Da+ﬁu; WwmP(S,)],

la|=mz 1<|B|<l—m

and the corollary is proved. [

3.2  The original Scott-Zhang operator 7,

In this section we will recall the operator Z;, defined by Scott and Zhang
[170] and examine to what extent anisotropic error estimates can be derived
by simply carrying out the transformations more carefully. We will see that
anisotropic interpolation error estimates are valid for m = 0, but modifications
of the operator are necessary for estimates of derivatives of the approximation
error.

Denote by ¢; € V3, @ € I, the nodal basis functions in the finite element space
Vi, and define

(Znu)(z) == a; pi(x) (3.7)
el
with real numbers q; still to be specified. Note that the Lagrange interpolant
was defined by choosing a; = u(X®) for all i € I.

In orger to treat non-smooth functions the idea is to consider subdomains
o; C € and to choose

a; = (I,,u)(X®) (3.8)

where T, : L?(0;) — Ph.o, is the L:-projection operator. The subdomains o;
are chosen by the following rules (see also Figure 3.4 for the case of triangles).

If the node X @ is an interior point of an element e C 75, then o; := e.

Otherwise X@ is a boundary point of one or more elements e C Ty, and o; is
chosen as some (d — 1)-dimensional edge/face ¢ of one of these elements:
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°
°
(a) (b)
)
(c) (d)

Fig. 3.4 Choice of o; in dependence on X for the definition of Zj,. (a) X is an interior
point of an element. (b) X (V) is an interior point of an edge. (c) X is a vertex
within the domain (here: 6 possibilities for ;). (d) X is a vertex at the boundary
(2 possibilities for o;).

If there is an edge/face ¢ so that X is an interior point of ¢, then o; is
uniquely determined by o; := .

If not, then o; is taken as one of the edges/faces with X ¢ . However, we
restrict this choice in the case X € 9Q by demanding o; C 9 then.

Let us derive now an equivalent definition of Z,u. The L?(o;)-projection
II,;u € Pro, = Vilo, is defined by

lu — Tyyu; L2 (03)|l = min [Ju —v; L*(o3) |- (3.9)

vE€EPk, o,

An explicit representation of (II,,u)(X®) can be given by introducing the
(unique) function v¢; € V4|,, with

/ VYip; =0;; foralljel. (3.10)
Then one finds easily that
(M) (X)) = / u. (3.11)

To see this recall that a projection operator P : X — Y C X can be defined via
Pu =3 (u,¥;)x pj where {p;} is a basis in ¥ and {¢;} is the corresponding
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biorthogonal basis with respect to the scalar product (.,.)x in X. By inserting
(3.11) into (3.7) and (3.8), we obtain the equivalent definition

2= (M (X0) = 3 ([ | i) . (3.12)

i€l el

Though II,, is defined by (3.9) for u € L?(0;), this approach can be extended
to functions u € L'(o;) because the polynomial function ; is from L*(o;)
such that the integral in (3.11) is finite. This means that the approximation
operator Zy, : W% (Q) — V}, is defined for

1
¢>1 forp=1, ¢ > — otherwise. (3.13)
p

The restrictions to ¢ and p in (3.13) follow from a trace theorem and guarantee
that u|,, € L'(0;) also for (d — 1)-dimensional ¢;. We consider only integer ¢,
therefore (3.13) is equivalent to

¢>1, pe|l o0l

Note further that the approximation operator Z; does not only preserve ho-
mogeneous Dirichlet boundary conditions but also inhomogeneous conditions
u = g on 99 (at least in the sense of L'(9Q)) if g € Vi|sq-

Recall the definition of S, in (3.5) and note that o; C S, for all i with X € e.
For isotropic simplicial elements e (hy ~ ... ~ hg) Scott and Zhang proved
the following stability and approximation result [170]: If 1 < ¢ < k+ 1 and
p € [1,00] then the estimates
¢
Zhu; W™(e)| S (measqge) /TPy "R ™ u; WP(S,)| (3.14)
=0

lu — Zpu; W™P(e)] < RST™u; WHP(S,)) (3.15)

~J

hold for 0 < m < ¢. Recall that k corresponds to the degree of the polynomials,
see (1.14) on page 23. The anisotropic estimate corresponding to (3.15) would
be

u— Zhu; WP(e)| S Y B D WP(S,)]. (3.16)

|at|=€—m
We prove now that this estimate is valid for m = 0. This result is restricted

here to meshes of tensor product type but it is not restricted to simplicial
elements.
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Theorem 3.1 On anisotropic meshes of tensor product type the Scott-Zhang
approximation operator Zy satisfies the stability and approrimation error esti-
mates

|Zpu; Li(e)]] < (measde)l/q_l/pZhaHDau;L”(Se)H, (3.17)

laf<t

lu—Znu; L9(e)|| S (measqe) /57> " h%||D%u; LP(S.)|],  (3.18)
|a|=£

¢=1,...,k+1, provided that w € W*P(S,). For (3.18) the numbers p,q €
[1,00] and ¢ € N must be such that W*P(e) — L(e).

Eroof We start with an estimate for the maximum norm of v;, i € I.. Let
¥? be the corresponding dual basis function on the reference element & of the
(d — 1)-dimensional finite element ;. So we have

12/@@ 2/ ©ithF (measgim¢;03) " Z/ ©ii,

and, consequently,
i = ¥} (measdime;03) ™'
With
155 L= (6)| = llbf5 L (o)) ~ 1
we obtain
1955 L= (03)|| ~ (measaime,0i) " (3.19)
Using the definition of Z,u we find with (3.19) that

Zas Lol < Y i [ wisLie)

icl,
o;

< (measde)l/qz
icl,
< (measde)l/qZ(measdimaﬂi)_lnu;Ll(ai)H,
icl,

where I, is the index set of the nodes contained in €. If o; has the same
dimension as e (that means X @ is an inner node of e and o; = €) then we use
the Holder inequality and find
lus L' (o)l < (measqge)'™"Plu; L (o) |
< measqo; (measge)  YP||u; LP(S.)). (3.20)
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ha

X(J) 0

/I/ ha

0i X (@)

Fig. 3.5 Illustration of Example 3.1.

If o; has lower dimension we use the trace theorem W%P(S,) — W (') —
L'(o;) (¢/ C S, is an element with o; C €’) in the form

lu; L' (o) || S measq_10;(measge) /7 Y~ h*||Du; LP(S)|| - (3.21)
o <e

which holds for ¢ > 1. Combining the last three estimates we obtain the
stability estimate (3.17). From this we derive for any w € P¢ , C P¢

lu—=Zpu; L(e) | < [Ju—w; L(e)|| + 1Zn(u — w); Le)]]
S (measge) /7Py R D (u — w); LP(S.)]|
lal<t

where we used the embedding W%?(e) — Li(e). With Lemma 3.1 we conclude
(3.18). n

By the following example we show that Estimate (3.16) does not hold for
m > 1 in the general setting of o; as introduced above.

Example 3.1 In this example we will show that (3.16) is in general not satis-
fied in the case m = k = 1 and the whole range of ¢, namely ¢ = 1,2. Consider
the situation as illustrated in Figure 3.5, and let v = u(z;) be any function
which is independent of the variable z,. This leads in general to a; # a;, where
a; and a; are independent of h,, that means

Z
OZn = hglf(uvmlvhl)
81‘2 e
with a certain function f. In view of du/0zy = 0 we obtain
Z _
lu — Zpu; WHP(e)| > ‘8 hu,L”(e) = h21+1/pF(u,h1),
3:(;2
al nHa 1 -1 0‘u 1/p
> hDw; WP(S.)| = B oo V(Se)|| = hGu, )
Ty

|a|=£-1
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Consequently, for f(u,z1,h1) # 0 (which is the case in general) and hy = h{
with sufficiently large s (depending on u) estimate (3.16) can not be satisfied.
U

For this example the following points were essential:
1. Long edges are chosen for o;.

2. X, and X; have the same z-coordinate but the projections of o; and o; on
the xq-axis are different.

Since we have some freedom in the choice of o; we will investigate in the next
two sections the operator in the cases where one of these points is avoided. In
Section 3.3 we will use short edges (2D) or small faces (3D) as o;. Large sides
with identical projection are chosen in Section 3.4. The resulting operators
will be denoted by S, (small sides) and Lj (large sides).

Having now an idea which choice of o; could work, we want to point out
that the desired error estimate cannot be obtained with the original proof of
[170]. We encounter problems similar to those discussed in Subsection 2.1.2,
in particular Example 2.1. By similar arguments we find for example for the
operator S, that we must prove

|D"Spu; L9(e)|| S (mease)'/s7/7 N~ h|Du; WHP(S,))|

o <l—[v|

if we want to derive the error estimate by using the stability estimate as in
the proof of Theorem 3.1. We will develop such refined proofs for general £,
¢, m, in the next sections. However, we need in all cases that all ;, i € I, are
parallel. Therefore we are restricted to meshes of tensor product type. The
proof for more general meshes is still open.

3.3  The operator S;,: choosing small sides

3.3.1 Stability and approximation in classical Sobolev spaces

In this section we will investigate the operator S;, which was motivated at the
end of the previous section. Since the definition of the o; is different from
that in Section 3.2 we will clarify this here: o; is (not necessarily uniquely)
determined according to the following three properties, compare Figure 3.6.

(P1) o; is parallel to the zq-axis/zy, zo-plane.
(P2) X €7,
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T2 T2

T T

Fig. 3.6 Choice of o; in dependence of X(?) in the case of operator Sy, k = 3. Left: Points
where o; is uniquely determined. Right: Points where o; can be chosen (here one
choice).

(P3) There exists an edge/face ¢ of some element e such that the projection
of ¢ on the zq-axis/xy, zo-plane is identical with the projection of o;.

In connection with (P3) we have to note that o; is not necessary an edge/face
of one element, see also Figure 3.6. Nevertheless, o; together with 73,‘:_1 or
Q‘,j_l is a Lagrangian finite element of dimension d — 1, which follows from
the tensor-product character of the elements e. For simplicity, we will use the
terminology “o; is an edge/face”. We remark in particular that in the case of
simplicial elements and k& > 2 there is no d-dimensional finite element ¢’ C S,
such that o; C €/. This implies that Pr.o; # Vilo, and in general I1,, v, # vplo,
for v, € V. That means that S, does not reproduce piecewise polynomials,
but only global polynomials. However, we need in the proofs only II, w = w
for w € Py, which is of course satisfied.

Since o; is said to be a small edge/face this implies
hj <hg inS. (j=1,...,d). (3.22)

Note that in three dimensions and according to (3.2), (3.3), only elements with
hi ~ hy < hg can be treated. But this is sufficient to handle edge singularities,
see Section 4.3.

We will see that for the operator S, anisotropic interpolation error estimates
can be derived when m < ¢ < k+1. The main difficulty is to prove the stability
estimate. The approximation property follows then easily using Lemma 3.1
from page 100. To elucidate the different techniques for derivatives in x;- and
xgq-direction we first formulate and prove two lemmata. Then we establish the
main theorem of this section. Finally, we give an example which shows that
the estimate is not valid for m=/¢,1 <m < k + 1.
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Lemma 3.2 Consider an element e of a mesh of tensor product type and
assume that (3.22) is valid. Then the derivative of Spu in x4-direction satisfies
the relation

0
q
amdShu L ( )

foru e WHP(S,) and all p,q € [1,0].

< (measge) 7P ju; WhHP(S,)|

Proof Using the definition of the operator S; (in analogy to (3.12) on page
104), the Hoélder inequality, estimate (3.19), and the trace theorem (3.21) for
¢ = 1, we obtain for all w € Pg

0
- q - _ q
‘ axdshu L ‘adeh u L ( )
0p;
< I — )
< 2; sene)| | [ (=)

S hy'(measge) /"y Jlu—w; L (o0)|| [[s; L(00)|

icl.
< hg'(measge)'/? Z(measd_lai)(measde)_l/p X
icl.
S B0 (- w); I7(S) | (measy 10;)

o<1

< hy'(measge)'/a71/P Z h*||D*(u — w); LP(Se)||.
o<1

Using Lemma 3.1 with m = 0, £ = 1, and relying on (3.22) we obtain the
assertion. m

Lemma 3.3 Consider an element e of a mesh of tensor product type and
assume that (3.22) is valid. Then the derivative of Spu in x1-direction satisfies
the relation

0
Lq
a IShU ( )

< (measge)/971/P Z h*| D%*u; WP (S,)|

lof<1

foru e W?P(S,) and all p,q € [1,0].

Proof Let w = w(xy) € Pi. Then we get in analogy to the proof of Lemma
3.2

aixlshu Li(e)|| < hy'(measgze)'/ Z(measd_lai)_lﬂu —w; L' (o).

i€l
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Denote by o the smallest of the domains o;, ¢ € I.. Introduce now k + 1
(simply connected, plane) (d — 1)-dimensional domains (; C S, such that for
all o; (¢ € I.) there exists a (; D 0;. Note that, due to (3.4), §; (j =0,... k)
is isotropic with a diameter of order h;, and therefore meas; j0; ~ meas(; ~
measy 10 for all ¢ and j. Consequently, we obtain

H—Shu Lq )

< hyY(measqge)'/!(measqy_10)” ZHu—w LYG)|]

< hyY(measqe)/!(measqy_10)” Z Z h*||D*(u — w); L*(&)|-

=0 \a|<1
adf

Observe now that w = w; = const. on (;. On the other hand, since the (; have
different x4-coordinate, we can define w from given w; (j = 0,... ,k). So we
can use Lemma 3.1 for dimension d — 1 to choose w; € P¢~"! such that

Z h*||D*(u — w;); L' (¢5) Z h*||D%u; L1 ()]

Jo| <1 lal=1
ag=0 ag=0
~ by |ID%u LG
|a|=1
ag=0

and to conclude with the trace theorem (3.21) (applied with ¢ = 1 for each ()

d
_S L4
| s
< (measge)/9(measq_10)” Z > 1D u; LGl (3.23)
=0 =
< (measqge) /PN "N " BB Dy 12 (S,) . (3.24)
=1 |5|<1
ag=0
Thus the proposition is proved. [

By analogy we can treat the derivative with respect to x5 in the three-dime-
sional case.

Theorem 3.2 Assume that (3.22) is valid. Then the modified Scott-Zhang
operator Sy, satisfies on anisotropic meshes of tensor-product type the following
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estimates:
|Snu; W™4(e))
< (measge)/I7VP N B DY WP(S, )], (3.25)
a]<t-m
|u — Spu; W™ (e)]
< (measge)/7VP N B2 DY WTP(S, )], (3.26)
a]=t-m

0<m < {—1<k, provided that u € W*P(S,). For (3.26) the numbers
p,q € [1,00] must be such that WP(e) — W™(e). For m > 2 we exclude
triangular and tetrahedral elements.

Proof Consider first the stability estimate (3.25). For m = 0, (3.25) can
be proved as (3.17). For m = 1, (3.25) is proved in Lemmata 3.2 and 3.3.
Let m > 2. Consider a multi-index v with |y| = m and define my = ~,,
my = m — my. For arbitrary wy = wy1(21,... ,24-1)w12(Ta), w11 € ’Pd1 1
w12 € Pj, (that is why we exclude simplicial elements) and wy € P%_; we
obtain in analogy to the proof of Lemma 3.3

IIDVShu Li(e)|
= |ID7Sa((u — wz) —wi); L(e) ||

< h77(measge)9(measy_10)” ZHu—wg —wy; LY (ay)||

i€l

A

h~ (measqe) '/ (measq_10) ! x

Z Z A D*(u — wa — w1); LN(G)-

J=0 |a|<mq
ag=0

Then we determine w; € Pm

—1 (7 =0,...,k) such that

Y BD w—ws —wp); LGNS Y WD (w = wa); LG
[oe|<my la|=my

ag=0 ag=0

Note that the w; depend on (u—ws) and ws is still to be chosen. The polynomial
wy is now determined by the w; (7 =0,...,k) such that the estimate can be
continued by

|DYSpu; L(e)|| < hy™ (measqe)'/9(measy 10) ! x

Y > D (u—w); LG (3.27)

7=0 |aj=my
ag=0
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Thus the factor h; ™" is eliminated. We proceed now as in the proof of Lemma
3.2. Using the trace theorem (3.21) for all j,a and with £ —m; > /¢ —m > 1
instead of ¢ we conclude

| DYSpu; L(e)|
S hg"(measae)' 1T Y S WD (u = wn); (S0

~J

Ig;;;l |8]<e—my
< hy™ (measqe) /TP N "N " RPIDPT (1 — wy); WP(S, ).
6] <f—m |B|<ma
Using Corollary 3.1 (page 101) we obtain
1D7Spu; L (e)|
< hy™ (measge)'/971/P Z Z RAHS| DAy WP (S, )|
|6]|<€—m |B|=m2
< (measge) /TP N " B Dou; WTP(S,)].
o] <t—m

Here we used h? < b1 for || = my which follows from (3.22). Thus (3.25) is
proved.

For proving estimate (3.26) we need (3.25) and the assumptions on p and g.
Since these parameters were chosen such that W%P(e) — W™4(e), we have
also W* ™P(e) — L9(e), this means

lv; L%(e)|| S (measqe) /77 he||D%; LP(e)|

| <t—m

for all v € W* ™P(e). Applying this estimate for all derivatives D* with
|a| = m and summing up the resulting inequalities, we obtain for v € WP (e)

o; W™ (e)| < (measge) /7PN " D0 W (e)].

] <t—m

Together with (3.25) we conclude that for all w € Py ; the following estimate
holds,

|lu — Spu; W™4(e)|
< u—w; W™ (e)| + [Sn(u — w); W™ (e)|
< (measge) /7P N B D (w — w); WP(S,).
o] <b—m

With Lemma 3.1 the proposition is proved. [
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T2
1
€
Fig. 3.7 ®
Tllustration of Example 3.2. —h 0 h T
Finally, we want to give an example which shows that
[Shu; WH(e)| S llus WH(S) | (3.28)

does not hold for any u € W2(S,).

Example 3.2 Consider k = 1 and a triangle with the vertices X" = (0,0)7,
X® = (h,0)T, and X® = (0,1)7, and let 0; = (—h,0) x{0}, o2 = (0, h) x {0},
compare Figure 3.7. For u = r®sin % (r, ¢ are here polar coordinates) we obtain

h
6xr 4
oy =l = )X = [ (_ﬁJrE)NhE,
0
Uy =0 = (u)(X) = 0.

Consequently,

8Shu

5 ~ heL Spu; Wh(e)| 2 h‘gfl(measde)l/2 =h1? 5 0
I

e

forh—>0,5<%. But
1 T
|u; VVI’Q(SC)|2 < / / [(er®1sin %)2 + (%T‘E*l cos %)2] rd¢dr
o Jo
1

~ /r2(6_1)+1d7" < o0
0

for € > 0. Thus (3.28) does not hold. O

3.3.2 Stability in weighted Sobolev spaces

We have seen in Example 3.2 that S,u does not satisfy an estimate with
m = { = 1. However, S;, can be applied in some situations where u & W??(S,)
for some p we are interested in. For this we consider weighted Sobolev spaces
Vﬁl’p(e), CeN, pell,o0], B € R, which were defined by (1.19), (1.21), on page
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27. For our application in Section 4.3 we need the stability of the modified
Scott-Zhang operator in these weighted spaces.

Lemma 3.4 Consider an element e of a mesh of tensor product type and
assume that (3.22) is valid. Let m be an integer and [3,p,q be real numbers
with 0 < m <k, f<2— %, B <1, pq € [l,0], and assume that S, has

zero distance to the xs-axis. Then for u € W™P(S,) N Vﬁmﬂ’p(Se) the stability
estimate

[Shu; W™4(e)| < (measqe) /PR N "N R D* T us VP (S|
|a|]=m—1 |t|=1

(3.29)

holds. For m > 2 we exclude tetrahedral elements.

Proof We start with estimate (3.27) which was obtained in the proof of
Theorem 3.2. Let v be a multi-index with |y| = m and w, € P2_,. Then
there holds

|DYSpu; L(e)|| < hy"* (measge)?(measq_10) ™ x

D> D% = wa); L) (3.30)

J=0 |a|=m—y3
az=0

Let 3 > 0, then we can continue, similar to the proof of Theorem 3.2, with
the trace theorem because we assumed u € W™P(S,).

|1D7Sku; L (e)|

< 3" (measge)/T71/P Z Z R || D (u — ws); LP(S.)]|.
al=m=7y3 |§|<vs
az=0

Using Corollary 3.1 we obtain

1D7Spu; L (e)|
< hy™(measqe) /TP N N 0| D u; LP(S,)||

~J

lal=m=13 |3|=vs
ag3=0

< (measge)/T7P Ny || Du; LP(Se) | (3.31)

laj=m

We estimate the right hand side via the trivial embeddings

ViP(Se) = Vi (Se) < LP(Se), B <1,
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which leads with (3.22) to

DDA IS~ Y Y ID s LP(S.)|

|a|=m la]=m—1 Jt|=1

WY D LP(S,)|

|a|l=m—1|t|=1

< BT YT ) RHID s VP (S|, (3.32)

|a|l=m—1|t|=1

AN

which is the desired result.

For 13 = 0 we use (3.30) with wy = 0 and estimate the L'(¢;)-norms against
weighted norms via the Holder inequality:

los LG < W25 L2 ()] - [lrPos LP(G) | (3.33)

with p' from 1/p+ 1/p' = 1. The L”(¢;)-norm of r—¥ is finite if and only if
p'8 < 2 which is equivalent to § < 2 — 2/p. Using measy 10 ~ meas(; ~ h?
for all j, and r < hy we get

I~ 2G| S B~ (measga0)! TP (3:34)
The application of WP(S,) < LP((;) to rPv implies the trace theorem
VT (Se) = Vg?(G)

which leads to

[ (|
< (measy 10)"/P(measqe) /P Z hi s || B4l D3y LP(SL)]).
|s|<1
Combining these estimates we obtain
lv; LHG)|
< measy_ 10 (measqe) /PP Z hillps || 8140 Doy LP(S,))|
|s|<1

and thus with (3.30)

| DYSpu; L(e)|| < (measqge)'/?(measy_10)~ Z Z | D%u; L' (¢)||

i= 0‘a|
< (measqe)TVPRTP %

ST 3 ATtk Dty 12(S,) . (3.35)

laf=m |s|<1
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The last step to derive (3.29) is done by a rearrangement of the terms at the
right hand side, namely

SN by Flhe |t Dty (S|

jt=1 [s]<1
= D> WD Tu LP(S )| + ) hallr?T Dhu; LP(S,) |
jt=1 s/ =1 1
< Z Z e || DM ou; LP(S,)|| + Z he ||~ Dow; LP(S,)||
lt/=1 |s|=1 =
~ DBl VP (Sl
|s|=1
Together with (3.35) we conclude (3.29) in the case v3 = 0. |

3.4  The operator L;: choosing large sides

In contrast to Section 3.3 we will now employ large edges/faces and denote the
resulting operator by L;. The notation is used as follows: We keep Properties
(P1), (P2), and (P3) from page 107 and simply turn the relation (3.22):

hi>hy inS. (j=1,...,d). (3.36)

But in correspondence with Item 2 at the end of Section 3.2, we do not have
so much freedom for the choice of the o; as in the case of S,. We must assume
the following projection property (P4), compare also Figure 3.8.

(P4) If the projections of any two points X and X©) on the zj-axis/zy, zo-
plane coincide then so do the projections of o; and o;.

We can prove the results of Theorem 3.2 for this case as well. Moreover, these
results extend to the case m = ¢. But in contrast to the needle elements of
Section 3.3 the three-dimensional elements are now flat, hy ~ hy 2 hs. The
idea for this choice of o; was found in [41, Chapter 5] where the special case of
rectangular and brick elements was considered for k = 1, p = ¢ = 2. We extend
this theory to further types of element and to general k& € N, p,q € [1, 0]
Our proof differs from that in [41].

We start as in Section 3.3 with the separate consideration of the stability of
first derivatives of Lpu. This time the derivative in x;-direction is the simpler
one.
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T2
z
(a)
T2
T1
T2
T
(b)

Fig. 3.8 Choice of o; in dependence of X in the case of operator L. (a) Points where o;
is uniquely determined. (b) Two choices for o; for points on vertical mesh lines.

Lemma 3.5 Consider an element e of a mesh of tensor product type and
assume that (3.36) is valid. Then the estimate

0
‘ 8—Lhu Li(e)| < (measqe) VPl WHP(S,)|, n=1,...,d,
Tn
(3.37)
holds for u € WHP(S,) and all p,q € [1, 00].
Proof For n = 1,...,d — 1 the proof can be carried out with the same

arguments as the proof of Lemma 3.2. The only difference is that the role of
x4 and hg is now played by z, and h,,.

For the case n = d we will reformulate Lyu. For this consider first a one-
dimensional situation, that means a single finite element formed by an interval

(&,m). Let ¢, i =0,...,k, be the nodal basis functions in (£,7n). We change
now to a new basis

Xi=» ¢, i=0,... k.
j=0

Consequently,
k-1
Zaz¢z = Z — Qiy1)Xi + ks
i=0

where we also used that Zf:o ¢; = 1. Note further that
s L€l S 10 g Z2(E Il S In— €17 (3.38)
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We use this kind of a new basis in the case of a rectangular element e =
(&1,m) X (&2,m2). The nodal basis functions are (for simplicity with a double
index)

@i,j(xl,xz) = ¢i(x1)¢j($2)> Za] = Oa s ,ka (339)

where ¢ and ¢; are the nodal basis functions with respect to (&;,71) and
(&,1m2), respectively. Thus

Liw = Y > ai;¢(21)¢;(22)

i=0 j=0
k k—1
= Z¢Z(x1 <Z az] a1]+1 X]($2) + a; k> )
P k—
8—x2Lhu = Z(b I Z Q; 5 —ai’j+1)X;(l’2). (340)
7=0

Because of Property (P4) the subdomains o;; belonging to the node (i, )
depend only on . We can write

a;; = / %(%)U(xl,yj)dl‘b

Yitlt Ju
Qjj — Qijq1 = —/ ¢i(l’1)/ %(xl,y) dydz;,  (3.41)
04,5 Yj 2
St < [
. ] la]+1 — 7‘81,2 ?
7=0

where y; is the value of the xs-coordinate of points X&),

The proof of (3.37) is now standard:

0
_L Lq
|t o
kok—1
S DD aig —aijial - 16°(@)x(22); L) |
i=0 j=0
< hy'(measge l/qZ/ wza%
i ou
< hgl(measde)l/q“_l/pZ(measd_lai)_l ‘ By’ L*(S.)

1=0
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x2

N2 1+

§2 1
Fig. 3.9 , i
Illustration of the case of a triangle with k = 3. & m T1

For pentahedral and hexahedral elements the proof is similar. We only replace
(3.39) by

SDi,j(xla 55'2,1'3) = ¢i(x17x2)¢j(x3)v 1= 07 cee 7K7 ] = 07 ce 7k7
with appropriate basis functions ¢*(zy, xs) and

K = (k+1)>—1 for hexahedra, (3.42)
K = (’“;2) —1 for pentahedra. '

In the case of simplicial elements we have to modify these considerations
slightly. We will explain it in the two-dimensional case. Consider an element
e with nodes X' ’])

e = {(.%'1,.7}2) 26 < <y,
§ < xp <o — (21 51)772 52}
—&
X0 = (61 + %(771 — &), 6+ 5 ( 52))

and nodal basis functions ¢; ;, ¢ =0,... ,k, 7 =0,... ,k — 1, as illustrated in
Figure 3.9. The new basis functions are

J
Xi’]':zgpi,s, ZZO?’k’jZO,,k—Z

We get

>~
L

M-
[

Lhu = Qi P

—i—1
: : al:] a'L ]+1 Xl,j + alk ’LXZ k—1 )
7=0

<.
o
<.
i
o

I
o
I = |
o
/\
E



120 3 Scott-Zhang interpolation on anisotropic elements

k—i—1

2ot o) 53 (32 o - ol | 2255 0
Oz’ ~ i=0 \ j=0 v N PO
OXi ki
—|—|ai,ki|‘ i;;; ;Lq(e) ‘)

To conclude (3.37) with the same arguments as above it remains to show that

aXi,k:fi
81‘2

=0 foralli=0,...,k. (3.43)

For this we observe that x;x—; is uniquely determined by

1 fors=1, j=0,...,k—1,

S X(SJ) —
Xk ) {0 else.

Thus x;x i = ¢'(z1) with ¢ in the sense of (3.39), and (3.43) is proved.

The proof for tetrahedral elements is analogous. [

Theorem 3.3 Assume that (3.36) is valid. On anisotropic meshes of tensor-
product type the modified Scott-Zhang operator L, satisfies the following esti-
mates:

L W)
< (measqe) VP lu; WMP(S,)], (3.44)
|u — Lpu; W™ (e)|
< (measqe)/971/P Z h®| D%u; W™P(S,)|, (3.45)

|a|=€—m

0<m<{ 1<{<k+1, provided that u € W*P(S,). For (3.45) the numbers
p,q € [1,00] must be such that W5P(e) — W™(e).

Proof Estimate (3.45) follows from (3.44) via Lemma 3.1 as it was done for
Sy in the proof of Theorem 3.2. So the main point is to prove (3.44). For
m = 0, this can be done as in the proof of (3.17). The case m = 1 is treated
in Lemma 3.5.

Let m > 2. Consider a multi-index v with |y| = m and define my = 74,
my1 := m — my. In the proof of Lemma 3.5, we made for the case my = 1
a transformation of the nodal basis ¢;; to a basis x;; in order to obtain
differences of first order:
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This process is repeated until differences of order ms are created: For simplicity
consider again the one-dimensional situation. We define recursively coefficients

a§") and functions XE"), i=0,...,k—n,n=0,...,ms, by
a) = a;, az(”*l) = ag") — al(:?l, i=0,...,k—mn, (3.46)
X? = Piy n+1) ZXS ) i=0,...k, (347)
and obtain
k k—mo
o o™ (m3) ()
Oxm2 Zaivi - Oxm2 Z a X - (348)
i—0 i—0

We get this by induction in analogy to the proof of Lemma 3.5. The only point
is to prove that

8n+1

St =0 forn=0,.. my—1 (3.49)
xn

This can be shown for any fixed n via XEHH) =3, () X (proof by

induction) which yields """ = =3 e, A (x ) = (*7), r =
0,...,k, x (nt1) ¢ Pl. From XE"H) = XETILI) — Xz( +)1 we conclude by induction
XEnH € Plfori =k k- ,k —n. Thus 8";;11 XE"H) =0fori=Fk—

Ny...,k.

Consider now rectangular elements (d = 2) and transfer this basis transforma-
tion to the zs-direction. We derive (again by induction) from (3.48)

8m2 om2 k k—ma m
E:E: ¢%u=5ga§:§: D). (3.50)
=0

=0 7=0 7=0

The so created differences a( ntl) _ a(") az(z)ﬂ

integral representation; compare (3. 41)

are used now to establish an

S du
= —/ wi(xl)/ C(,7(951,%’‘1‘771)(51771dl‘1>
Tij 0 d
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0 = yj+1 — y; is assumed to be independent of j. We continue recursively and

obtain
o) = = [ wlen
03,5

s 1)
8’& 8u
|:/ a—xd(xlay] +771) dnl - / a—xd(l'l,yj_i_l —|—771) d771 d[L'l

0 0

9 § 4 aQu
— (_1) / ¢l(x1)/ / W(xl,y] +771 —|_772) dnldn2dx1,
Oi,j 0 Jo Ty
af) = (0" [ ) %

04,5
/ / —(x1,y5 +m A+ A ) dyg - - - digpday.

n tlmes

Using (3.19) and 0 ~ hy we get

< (measd,lai,j)’lhg’l

Replace now measqg_10;; by meass_;0 := min; j measy_10;; and u by v — w,
w € P2 _, arbitrary. Together with (3.50) we conclude that

| D" Lyu; L(e) |
= [ID"La(u — w); L(e)]]

k k—mgo
S 20D DTG (e
i=0 j=0
k k—mo
< h‘”(measde)l/qz Z |ag;'.b2)|
i=0 j=0
om?
< h77(measqe)/?(measy_ o) " hT D (u — w); LY(S,)
Lq
om?
< ATThT2 (measge) /7P py (u—w); LP(S,) (3.51)
Zq
om?
< hy™ (measqe)t/17 /P Z h* D"‘8 iy (U —w); LP(S,)
Lq

|| <m—ma
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In order to derive (3.51) we have used that hy meas; 10 ~ measgze. Via Corol-
lary 3.1, (3.36), and m = m; + my we obtain

1D Lyu; L4 (e) |

—m — a aam2u
< h{™ (measqe)/1/P Z he || D axZM;Lp(Se)
|a|=m—ma2
< (measge)/a1/P Z D~ 0™ LP(S,)
- ox?’ c

|a|=m—ma
< (measqe) 1/‘1_1/”|u; Wm™P(S,)|

and (3.44) is proved for rectangular elements. The proof for all other types of
elements is similar using the ideas explained in the proof of Lemma 3.5. [ |

3.5  The operator E;: choosing long edges in the three-
dimensional case

3.5.1 Stability and approximation in classical Sobolev spaces

In Sections 3.3 and 3.4 we assumed h; ~ hs in the three-dimensional case. We
will now investigate the general three-dimensional situation of independent
element sizes hy, ho, and hs. In order to obtain in Subsection 3.5.2 a notation
which is compatible with that in Subsection 3.3.2 we let

hy < hy < hs. (3.52)

Assume, for simplicity, tensor product meshes in the sense that transformation
(3.2) is reduced to

The investigation of the operators S;, and L, was based on taking o; as isotropic
faces, that means that hs is of the same order as hy or hsg. In [41] it was
suggested to overcome this restriction by taking one-dimensional o; but this
was not elaborated thoroughly. We will now investigate which estimates can be
obtained in this case. We assume the following properties which are analogous
to those in Section 3.4.

(P1") o; is parallel to the z3-axis.
(P2) X € 7.
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(P3’) There exists an edge ¢ of some element e such that the projection of ¢
on the z3-axis is identical with the projection of ;.

(P4") If the projections of any two points X ® and X on the z3-axis coincide
then so do the projections of o; and o;.

The corresponding operator is denoted by Ej, : W (Q) — V;,. Note that it is
defined only for u € W%P(Q) with

2
(>2 forp=1, ¢ > — otherwise, (3.54)
p

to guarantee that u|,, € L*(0;). Condition (3.54) can be reformulated to

(>2 pellyoo] or £=1, pe (2, 00]. (3.55)

We will prove now stability an approximation properties in classical Sobolev
spaces. Then, we discuss in Remark 3.1 that the result is also valid for meshes
of tensor product type. Of course, we can apply in that case also the operator
S;, which is defined for a larger class of functions. But the operators S, and
E,, differ in the part of the boundary where Dirichlet boundary conditions are
preserved, see also the comparison in Section 3.7. As we already did for S,
in Subsection 3.3.2 we prove a stability estimate for functions from weighted
Sobolev spaces V;’p (Se) in Subsection 3.5.2.

Theorem 3.4 Consider an element e of a tensor product mesh and assume
that (3.52) and (3.53) are fulfilled. Then the operator E, satisfies for all q €
[1,00] the following estimates:

|Enu; W™(e)| S (measse) /917~ h*| D% u; W™(S, )| (3.56)

o<1
ifm>1orp>2 and

[Enus; L9(e)|| < (measse)/* /Py~ h|| D*u; LP(S.) | (3.57)
o<t
with ¢ and p satisfying (3.55). The approzimation error estimate
u — Epu; W™(e)| S (measze) /s Y " B Du; WP(S,)|

|a|=f—m

(3.58)

holds if 0 < m < (—1 < k, p satisfies (3.55), q is such that WP (e) — W™1(e),
and u € W4(S,).
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We will see in the proof that for certain derivatives DYE,u the stability esti-
mate (3.56) can still be improved.

Proof We prove the theorem for brick elements. Other element types are
treated similarly, see the discussion in the proof of Lemma 3.5. We have to
consider different cases separately.

First, let v be a multi-index with |y| = m and 7; # 0, 72 # 0. We use the
difference technique developed in the proof of Theorem 3.3 for both directions
z; and z,. In analogy to (3.51) we obtain for all w € P3_,

| D7 Enu; L (e
= [ID"En(u — w); L7(e)|

< BYRVLR22 1/q-1/p on o P
< h 7h]'h)? (measse) 8??187;2@ —w); LP(S,)
< hy™(measse)/I7VP N " R DY WNEIP(S, )

la/<vys

Using Corollary 3.1 and (3.52) we conclude
ID"Epu; LUe)|| < hy ™ (measge) /9P Y " B D W(S,))|

lal=73

< (measse)/TVP|u; WM™P(S,)).

In a second case we assume 7, # 0,n = 1orn =2, but y3_, =0, y3 # 0. Then
we can use the difference technique only within some faces f; (i = 0,... k)

which are parallel to the z,, x3-plane. Defining f := Uf:o fi; we find as above
that for all w € P3_,

|D7Enu; L(e)]|
= [ID"En(u — w); L(e)]|

< h7Yh)"(measse)'/?(meas, f) /P

~J

I = w): Lp(f)H . (3.59)

oz
Using the trace theorem WP(S,) — LP(f) and again Corollary 3.1 as well
as (3.52) we obtain

|DYEpu; L(e) ||
< hg”(measge)l/q_l/” Z h*| D (u — w); WP (S,)]

oo <3
< hy " (measge)/7 /P Z h®|D%u; WP (S,)|
o =3

< (measge)/T Py WMP(S,)).
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Consider now the remaining pure derivatives. Let first be v, =m # 0, n =1
or n =2, 73 = 0. Estimate (3.59) holds in this case as well. By using p =1
and w = 0 it reads now

|D"Epu; L(e)|| < (measse)'?(measy f) || DVu; L(f)]]. (3.60)
With the trace theorem W'P(S,) < L'(f) for all p € [1,00] we conclude the
assertion (3.56).

Finally, for v3 = m # 0, 71 = 72 = 0, the proof of the stability is completely
analogous to the proof of Lemma 3.2. We have for all w € P3|

|DYEpu; L9(e)|| S hy™ (measze)'/?» ~(measio;) ™ |lu — w; L' (7).
icl,
The trace theorem W™1P(S,) < L!(q;) (which is the reason for the assump-
tion m > 1 or p > 2) and Corollary 3.1 yield
| D7 Enu; L(e)|
< hg™(measse) /TP Y "N hA B DO (u — w); LP(S.)||

~J
la|<m |B|<1

< hg™(measge) /TP Y "N " he P DRy, LP(S,)||

laj=m|B|<1

< (measge) /7PN " WP DPus W (S,)).
1BI<1

Note that in this last case (y3 = m) for m > 2 and for m = 1, p > 2, it can
even be proved that

ID"Epu; L(e)|| S (measse)/* /Plu; WP(S,)|
because then W™?(S,) < L'(o;) holds.

Estimate (3.57) is trivial since

[Enu; L9(e)|| < (measse)'/*> " (measyo7) " ||u; L (o),

i€le

and the embedding W*P(S,) — L!(a;) holds just for ¢, p satisfying (3.55).

Estimate (3.58) is concluded from (3.56) and (3.57) as in the proof of Theorem
3.2. |

It is interesting to point out that the proof shows that
|D"Epu; L(e)|| < (measge) /9P u; W™P(S,)] (3.61)
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holds for v with |y| = m if at most one of the numbers 71, 72, 73 vanishes. Our
way of proof does not work for pure derivatives. Consider for example the case
v = (1,0,0). To prove (3.61) with p > 2 (Eju is defined only for u € W?(Q)
with p > 2.) one would have to skip the trace on f and to use a trace theorem
in the form (3.21). But this leads to

1D Equ; LU(e)|| S byt (measge) /TPy b Dus; LP(S. )|

jal<1

with some diverging terms at the right hand side. The case v = (1,0, 0) could
be treated only if

|DVEpu; L9(e)|| S (measse) V4=/#)| D7 L(S,) |
was valid. It is not clear whether this estimate holds.

Remark 3.1 Our motivation for introducing the operator E; was to be able
to treat the general case of three independent mesh sizes h; < hy < hs. Of
course this includes the special case h;y ~ hy. We point out that in this
case the transformation (3.53) can be generalized to (3.2), (3.3). To see that
then the statement of Theorem 3.4 remains true consider an arbitrary element
e € T, and denote its projection into the zq,zo-plane by (. Since T is of
tensor product type, and since all o; are perpendicular to the x, zo-plane, it
suffices to choose S, such that its projection to the z1, xo-plane is again ¢ (and
o; C S.), compare Figure 3.10. Via the transformation

T -1 : T z

1 hi "B, :0 1 ~ 1
T2 =1 ... T2 =B ) ,
x3 0 -1 T3 T3

B, from (3.2), the domains e and S, can be mapped to é and S. = S: which
satisfy (locally) the assumptions made at the beginning of this section. That
means that Theorem 3.4 holds true with respect to the coordinate system
Z1,T9,T3. By observing that

detB~1, [B|~1, [IB|~1

we find that Theorem 3.4 extends to the meshes described above.

3.5.2 Stability in weighted Sobolev spaces

As in Subsection 3.3.2 we do not have an estimate with m = ¢ = 1 for E,.
Therefore we consider a stability estimate for functions from weighted Sobolev
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Fig. 3.10 Tllustration of the possible choice of a smaller S, in the case of Ej, (three element
types).
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spaces V[f’p(Se). These spaces were introduced in (1.19), (1.21). To be able to
apply the transformation (3.53) to the weight we will restrict the consideration
to the case h; ~ he. However, we can then relax (3.53) to (3.2), see Remark
3.1 above.

Lemma 3.6 Consider an element e of a tensor product mesh and assume
that (3.52) and (3.53) are fulfilled. Let m be an integer and [3,p,q be real
numbers with 0 < m < k, p,q € [1,00], 8 < 2 — %, B < 1. Then for

ue Wmr(S,)N Vﬁm“’p(Se) the stability estimate

|Enu; W™ (e)| < (measze) /" P hy® "N " bYID* oy VP (S,
|a)|=m—1 |t|=1

(3.62)
holds if m > 1 or p > 2.
Proof Observe that the relations

lo; LY (S| < |Ir?5 LP(Se) || - [|rP0; LP(S.) |, (3.63)
||T’B;Lp'(56)|| < (measg,Se)l’l/phf’B (3.64)
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(compare (3.33), (3.34)) lead to the embedding

2
VP (Se) = Vgt hi(Se) — WmHhL(S,), B<2-— 5

that means u € W™H1(S,). Therefore we can apply Theorem 3.4 (see also
Remark 3.1) with p = 1:

|Epu; W™9(e)| < (measge)t/? Z h*| D%u; W™(S,)] (3.65)

o<1

Notice further that (3.63), (3.64) lead to the estimate

2
lo; LM(Se) | S (measySe)tPhy P ||rPv; LP(S,), B <2~ .

So we get
Y > B D> LS|
lo <1t|=1
< (measyS) 7m0 3T K rd Dty (S, |+
la|=1 [t|=1
+ Y b7 Dtu; LP(S, ) |
|t|=1
< (meassSe)' TVPhi? Y TR Dou; VIP(SL)]].
[s|=1
Together with (3.65) the assertion (3.62) is concluded. |

3.6 Comments on related work

Comment 3.1 The operators of Clément and Oswald. The well-known
Clément operator [64] fits perfectly in the framework developed in Section 3.2.
We have just to replace the definition of the domains o; by 7; := (J.5 ) € and
to use 73,‘3 instead of Py ,,. The resulting operator C,

(Cru)(z) =) _(Lyu)(X D) - i),

el
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is even defined for u € L'(2) and allows the estimate
lu — Chu; W™9(e)| < (measge)I " VPRE™ 0 WEP(S,)],
0<m < /{¢<k+1, on isotropic meshes.

The operator Cy in this original form does not reproduce the piecewise poly-
nomials v, € V3, Cpvp = vy, is in general not satisfied for v, € Vj. But this
can be corrected by defining I1,. : L*(a;) — V},

(o

A modification of the Clément operator is discussed by Oswald [151]. He fixed
just one (arbitrary) element e =: o; with X € @. The resulting operator Oy,
allows the same estimates as Cj, and we have V|, = Py, -

For C, and Oj one can verify easily that all estimates in Section 3.2 remain
true. Condition (3.13) can even be omitted; the operator is defined for all
u € L'(Q). Therefore, estimates (3.14), (3.15), (3.17), and (3.18) hold for
¢ = 0 as well. Example 3.1 can be modified in the obvious way. (Of course,
Zp, has to be substituted by Cp or Oy, in all relations.) Note that we need in
the proof only Cpw = w for w € P¢ |, which is satisfied, no matter whether
I1,, is acting into P,‘f or Vj,

g;*

The disadvantage of both C; and Oy, is that they do not preserve Dirichlet
boundary conditions. To satisfy such boundary conditions one has to consider
a modification of C, near the boundary which is small enough to keep the
approximation order [64, 117, 174].

Comment 3.2 The operators of Clément and Scott/Zhang for non-
simplicial elements. In the original papers by Clément [64] and Scott/Zhang
[170], only affine, isotropic, simplicial elements were considered. It turns out
that the theory can easily be extended to affine, isotropic elements of other
types (quadrilaterals, hexahedra, pentahedra). For a study of isoparametric
elements, see [44, 145].

Comment 3.3 Results of Siebert and Kunert. Siebert [174] and Kunert
[117] derived also some results for the operator Cj for anisotropic meshes.
However, they considered only the case £ = 1, p = 2, and only subsets
HZ(2) ¢ W2(Q2) of so-called mesh adapted functions. This allows them
to prove global results of the form

Yool =Cu L) S o WHAQ),

O (1~ Co)); I%(e)

oz, < JuyWH(Q)|, i=1,...,d,

Y

Z hi,ege_l
e

where g, ~ min;_; _4h;.. Using these estimates they prove asymptotic prop-
erties of a-posteriori error estimators. For v they insert the (exact) finite
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Tab. 3.1 Comparison of the operators: Treated finite elements.

| d=2 d=3
Zp, Cp, Op tensor product meshes meshes of tensor product type
hl, hg arbitrary hl ~ h2 5 h3 or hl ~ h2 Z h3

tensor product meshes
h1, hs, h3 independent

Sh tensor product meshes meshes of tensor product type
hi < ho hi ~h2 S h3

Ly tensor product meshes meshes of tensor product type
hi 2 ho hi ~ha 2 h3

E; meshes of tensor product type
hi ~ ha < hg

tensor product meshes

h1 < ha < hg

I tensor product meshes meshes of tensor product type
hl, hg arbitrary hl ~ h2 S h3 or hl ~ h2 z h3
tensor product meshes

h1, ha, h3 independent

even for more general meshes, | even for more general meshes,
see Sections 2.2 and 2.4 see Sections 2.3, 2.5 and 2.6

element error u — uy,. Unfortunately, the condition u — uj, € H(2) can not
be proved/tested in general, see also the discussion of anisotropic a-posteriori
error estimators in Section 6.2.

3.7  Comparison of the operators

The starting point of our investigation was the interpolation operator Zj intro-
duced by Scott and Zhang [170]. We have seen in Section 3.2 that anisotropic
estimates are valid for m = 0 but in general not for m > 1. Therefore we in-
troduced three modifications and investigated the resulting operators Sy, Ly,
and Ej, for the definitions see pages 107, 116, and 123. In order to summa-
rize and to compare the different Scott-Zhang type interpolation operators we
give a tabular overview. For comparison we add also the results for the nodal
interpolant I;, and for the operators Cp, (Clément) and O, (Oswald).

In Table 3.1 we find the element types which the operator is applicable for.
Note the slight difference of tensor product type and tensor product elements
in three dimensions. Tensor product type corresponds to transformation (3.2),
(3.3), and tensor product means the restriction to transformation (3.53), see
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Tab. 3.2 Comparison of the operators: Conditions for the stability and error estimates.

Ch, Op, m=0,0<¢<k+1,p,q€l,o0]

Zp, m=0,1<{<k+1,p,q€]ll, o0

Sh 0<m<L€-1,1<0<k+1,pqe[l,x]
for m > 2 triangles and tetrahedra are excluded

Ly 0<m<L1<l<k+1,pqec][l o]

E, 1<m<l-1,1<¢<Ek+1,p,q€e[l,00]
m=0,2<{<k+1,p,q€l,00]
m=0,0=1,p€ (2,00], q € [1,00]

In 0<m<{l-1,1<0<k+1,qg€]l,00],
p>d/eif ¢ <dand m =0,
p>2ifd=3andm=/¢—-1>0
m=0,0=0,p=o00,q€ [l,00]

Tab. 3.3 Comparison of the operators: Conditions for the stability in weighted Sobolev

spaces.
Chn, Opn, Zp, not treated
Sh 0<m<k pqgelloo, 8<2-2/p,B<1
for m > 2 triangles and tetrahedra are excluded
L, not treated
Ej 1<m<kpqgell,o,<2-2/pf<1
m=0,p€(2,0],qge[l,o],8<2-2/p, <1
1 not treated in this form

also (1.16)—(1.18).

Table 3.2 compares the conditions for which the stability estimate

(3.66)

|Qut; W™9(e)| S (measqe)/* PN B Du; W™P(S,)]

ol <t—m

holds, Qp € {Cp, Op, Zp, Sk, L, Ep, I }. In the case of S;, and E; we addition-
ally proved stability in weighted Sobolev spaces. The estimate

(Quus W™9(e)| < (measge) 7R Y N R DM s VyP(Se)|
|a|=m—1 |t|=1
holds under the conditions given in Table 3.3.
The approximation error estimate
= Quu; W™ (e)| S (measqe) /1P Y~ WD u; WTP(S,))|

|a|=0—m

(3.67)
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Tab. 3.4 Comparison of the operators: Restrictions in the applicability.

Chn, Opn, Zy, only m =0

Sk m = { excluded, only m = 0,1 for simplices, in 3D only needle
elements

Lp in 3D only flat elements

Epn m = { excluded, restrictions on p when m =0, ¢ =1

I, m = £ excluded, restrictions on p whenm =0,/ <dorm =£—1>0

holds if the conditions of Table 3.2 are satisfied and the parameters ¢, p, m, q are
such that the embedding W*P(e) < W™9(e) holds. The operator I, plays an
exceptional role here, because estimate (3.67) is proved directly. The stability
in the sense of (3.66) can be concluded via |[I,u| < |u| 4+ |u — I u|. Moreover,
anisotropic interpolation error estimates are derived also for functions from
weighted Sobolev spaces, see Subsection 2.3.2.

Some shortcomings of the operators are given in Table 3.4. Additionally,
we state that Dirichlet boundary conditions u = g € Vj|r, on I'; can be
satisfied on any part of 0€) for Z; and I, on parts of the boundary which are
parallel to the zj-axis/zq, ze-plane for S, and Lj, and on parts of 92 which
are perpendicular to the x1, zo-plane for Ej.

Finally, we mention that S;, and E; have been successfully applied in the study
of the Poisson problem in a domain with an edge where the singularity was
treated with anisotropic mesh refinement, see Section 4.3. The operator L;
was applied by Becker [41] to show the stability and an approximation error
estimate of the stabilized Q)1/Qq-element pair in the context of the Stokes
equation. The anisotropic estimates for I, have been applied in the study
of diffusion problems in domains with corners and edges [9, 19, 20, 21, 153],
see also Sections 4.3 and 4.4, as well as for singularly perturbed convection-
diffusion-reaction problems with anisotropic refinement in boundary layers [5,
13, 14, 73], see also Sections 5.3 and 5.4.
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4 Anisotropic finite element approximations
near edges

This chapter is concerned with a specific finite element strategy for solving
elliptic boundary value problems in domains with edges. A class of anisotrop-
ically graded meshes is introduced and the optimal convergence rate of the
finite element error is proved. Numerical tests are presented.

4.1  The aim of this chapter

Chapters 4 and 5 contain anisotropic discretization strategies and global er-
ror estimates for model problems, for example the Poisson problem and the
convection-diffusion-reaction problem. The differential operators in these prob-
lems are simple, the solution is always only a scalar function. Our main interest
is to treat typical peculiarities (typical also for more complex problems) like
boundary layers or edge and corner singularities. We focus on the applicability
of the techniques to general polygonal/polyhedral domains and to piecewise
polynomial trial functions of arbitrary (but fixed) degree k.

In this chapter we study elliptic problems posed over three-dimensional do-
mains with corners and edges. As discussed in Subsection 4.2.1 the solution
of such problems has both singular and anisotropic behaviour. The singu-
larity leads to a reduced convergence order of the finite element method on
quasi-uniform meshes. Two-dimensional problems with corner singularities
can be treated with local mesh grading in order to improve the approximation
order, see Subsection 4.2.2. This approach can be generalized to the three-
dimensional case in two ways; we introduce them in Subsection 4.2.3. It turns
out that the adequate refinement is anisotropic [9, 19, 21].

In Section 4.3, we consider the Poisson problem,

0
—Au=f inQ, u=0 on I 8—220 on I'y := 00\ I'y,
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for simplicity over a three-dimensional tensor product domain Q2 = G x (0, zp).
We prove in Subsection 4.3.1 (Theorem 4.1 and Corollary 4.1) for model cases
and piecewise (multi-)linear trial functions the approximation estimate

lu—uns W@ S R LHQ)NL, m=0,1,

by using the Scott-Zhang interpolation results.
The principal difficulties are the following:

First, the solution u is contained in W??2(S,) if the neighbourhood S, of the
element e has positive distance to the edge. Thus we can estimate the inter-
polation error by

u— Epu; W2 (e)| S ) h2|Du; WH(Se)). (4.1)

laf=1

The norm at the right hand side grows, however, to infinity for some deriva-
tives D if the distance of S, to the edge F tends to zero. So we have to find a
suitable description in oder to compensate the large norms with small element
sizes h; .. Second, the solution u is not contained in W%?(S,) if the neighbour-
hood S, of the element e has zero distance to the edge. In this case we used
local estimates for functions from weighted Sobolev spaces V; 2(S,). Third,
the estimate (4.1) does not hold if Ej, is replaced by the Lagrange interpolant
I;. In this case we need at the right hand side the space W'P(e) with some
p > 2, see Section 2.1. Nevertheless, one can prove

lu = Thus WH(Q)]| < h

but we needed more smoothness of the data (f € W*2(2) in [9]) or a stronger
refinement condition [19].

By using trial functions of higher degree k and a corresponding stronger an-
isotropic mesh grading one can prove for model cases (Examples 4.2 and 4.3)
that solutions with edge singularities can be approximated according to

lu — uns WH(Q)]| S R

The basis for this estimate is set by the global interpolation error estimates
in Theorems 4.2 (for the Lagrange interpolant and a singularity exponent
A > 1/2) and 4.3 (for the modified Scott-Zhang interpolants S;, and E, and
A < 1). Of course, the right hand side f has to be sufficiently smooth.

For general polyhedral domains or more general differential operators one has
to combine the anisotropic refinement near singular edges with an isotropic re-
finement for treating the additional corner singularities. One of the challenges
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has been to describe a family of meshes which is both suited for the approxi-
mation theory and for a simple realization in a computer program. With our
proposal [21], see also the summary in Section 4.4, the construction of such
meshes is principally known. The analysis is done, however only in the case of
piecewise linear trial functions, k = 1 (Theorem 4.5 and Corollary 4.2). The
difficulty for £ > 2 consists in a sufficiently fine description of the properties
of the solution u. Section 4.4 is completed with a computation of the Poisson
equation in the Fichera domain.

One of the surprising results is that the anisotropic mesh grading does not
disturb the asymptotics of the condition number r of the stiffness matrix. We
show in Subsection 4.3.3 that k < h™? as in the case of a family of quasi-
uniform meshes and a smooth solution. However, this does not imply that
optimal preconditioning techniques for families of isotropic meshes can be used
for anisotropic meshes. We analyze this in Section 6.3.

Note that we present asymptotic estimates always in terms of

h := maxdiam e.
e€Th

Since we advocate only strategies where the number of elements is Ng ~ h™¢,
the error can easily be expressed in terms of N, or the number N of unknowns
(degrees of freedom).

We end the current section with a philosophical comment. The performance
of the h-version of the finite element method is strongly determined by the
family of meshes. Therefore the choice of an appropriate family of meshes T,
has to be made carefully. It should satisfy the following requirements, or it
should at least be a good compromise between them.

First, in order to allow an optimal decrease of the finite element error as the
parameter h describing the family tends to zero, the meshes must be refined
in certain parts of the domain. This can be done a-priori by incorporating
analytic knowledge of the problem into the design of the meshes, see Sections
4.2-5.4. Alternatively, the family can be defined in an a-posteriori (adaptive)
strategy, this means that a new mesh is defined by exploiting the information
given by the approximate solution uy, on the previous mesh(es), see Section 6.2.

Second, determining a finite element solution involves the solution of an al-
gebraic system of equations. If the usual nodal basis functions are used to
assemble this system then the resulting matrix (sometimes called the stiffness
matriz) is ill-conditioned. Solution techniques/preconditioners that are based
on a hierarchy of meshes (multi-grid, BPX) turn out to overcome this problem
effectively.
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Third, the meshing strategy should be general enough to handle domains of
arbitrary shape. However, it should be simple enough to allow an effective
implementation on serial and parallel computers.

In the examples of Chapters 4 and 5, the families of meshes are defined accord-
ing to Item 1 above, namely, to establish optimal a-priori error estimates with
only O(h~9) finite elements. It is still a challenge to improve this approach
by formulating a corresponding adaptive refinement strategy; we comment on
this in Section 6.2. We remark further that the example families of meshes
can be constructed in a hierarchical way. However, the foundation of optimal
solution techniques is still in its infancy, see Section 6.3. Finally, both types of
mesh can be defined in a subdomain approach, see Sections 4.4, 5.3 and 5.4.
This makes them suitable in the sense of the third requirement.

4.2  The Poisson problem in domains with edges: an
introduction

4.2.1 Statement of the problem

In this section, we give an overview over the mathematical problem we want
to treat in this chapter. First we introduce analytical properties of the Pois-
son problem in a domain with edges. We will see then that the finite element
method on quasi-uniform meshes suffers in general from a reduced order of con-
vergence. Two-dimensional problems with corner singularities can be treated
with local mesh grading in order to improve the approximation order, see Sub-
section 4.2.2. This approach can be generalized to the three-dimensional case
in two ways; we discuss this in Subsection 4.2.3. Before, at the end of this
subsection, we mention several other ways to cope with edge singularities.

Consider the Dirichlet problem for the Poisson equation,
—Au=f in Q, u=0 on 0, (4.2)

over a bounded polyhedral domain 2 C R?. For simplicity, let  be a prismatic
domain,

Q=G x Z, (4.3)

where G C R? is a polygonal domain and Z = (0, zp) C R! is an interval. The
domain G shall have one corner C' with interior angle w > 7. The other interior
angles of G shall be smaller than 7, see Figure 4.1. Denote by £ = C' x Z the
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Fig. 4.1
Tllustration of a prismatic domain with a singular
edge.

edge with the large interior angle.

It is well known that the (variational) solution u of (4.2) has, in general,
singular behaviour near F. The solution u can be decomposed into a singular
part ug and a regular part u, € W?%(Q), u = ug + u,, where

us = E(r)y(@)r'@(¢), A= (4.4)

€15

Here we denote by r, ¢ the polar coordinates in a plane perpendicular to the
edge (r :=dist (z, E), ¢ € (0,w)), £(r) is a smooth cut-off function g{(r) =1
for 7 < Ry, £(r) = 0 for r > 2Ry, Ry is a constant), y(z) € W;*() is a
coefficient function, and ®(¢) = sin A¢ [116].

Remark 4.1 Note that v depends on all three spatial coordinates unless the
right hand side f is sufficiently smooth (D) f ¢ L?(Q), j = 1,2). The
coefficient function v, sometimes called stress intensity distribution, can be
represented explicitly by a convolution integral,

T r2+52q

1 r
) =+ [ T ate =) ds,
R
where the smoothness of ¢ can be characterized in Besov spaces depending on
A [88].

We remark also that in the two-dimensional case the coefficient « is a constant
(sometimes called the stress intensity coefficient). Furthermore, the singular
part us may consist of a sum of several singular functions,

e = £(1) 3 (@) bi(o),

for example in the case of mixed boundary conditions. For more general opera-
tors the situation becomes more complicated because the exponents \; are not
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explicitly known. They correspond to eigenvalues of a related operator eigen-
value problem where ®;(¢) are the eigenfunctions. Moreover, there are special
angles w where logarithmic terms have to be included in the representation.
For an overview see, for example, the monographs [66, 87, 116].

For our purposes it is sufficient to know integrability properties of derivatives
of the solution. That means that we do not need to know the terms of the
representation formula. So we get by integration

u g W>(Q) (4.5)
even in the case of smooth data f € C°°(Q). Furthermore, one can prove that
u€ WH2(Q) for s < A (4.6)

for f € L*().

Nevertheless, second order (generalized) derivatives of u exist. They are inte-
grable in the following sense:

rﬁ% ceWh2(Q) forp>1-X i=1,2, (4.7)
ou
8_5C3 € W1’2(Q), (48)

see Lemma 4.1. We mention here an anisotropic feature of the solution; only
the derivatives in directions perpendicular to the edge are singular.

Finishing the description of the analytic properties of u we would like to point
out that the domain was chosen such that the example is as simple as possible.

e The domain €2 has one “singular edge”. The case of more than one singular
edge can be treated similarly because the singularities are of local nature.

e For general polyhedral domains one has to consider not only edge singu-
larities but also corner singularities. However, these do not contribute to the
anisotropic character of the solution which is the interest here. Prismatic do-
mains have the advantage that no corner singularities appear [181, 191], see
Comment 4.2 on page 173.

Consider now the solution of Problem (4.2) with a finite element method. For
simplicity let us use tetrahedral elements and piecewise linear basis functions.
If the mesh is quasi-uniform, h := max.c7, diam (e) ~ min.c7, 0, then the
poor regularity of u as given by (4.6) leads to the finite element error estimates

lu—uns W@ < B (4.9)
lu —un; 2@ S B9, (4.10)
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with arbitrarily small ¢ > 0 [3, page 82], [165]. Using regularity results in
Besov spaces instead of Sobolev-Slobodetskii spaces it is possible to prove
these estimates even for ¢ = 0 [72]. One can also give an example that shows
that estimate (4.9) is sharp in the sense ||u — up; W2(Q)|| = h* [3, page 85].

In view of this loss of accuracy of the standard finite element method, many
specially adapted numerical methods have been developed which yield error
estimates of the same quality as for problems with a regular solution. In
this monograph we shall focus on a-priori local mesh grading techniques. We
introduce this approach in Subsections 4.2.2 and 4.2.3. In the remainder of
this subsection we shortly review other methods.

A well-known technique is the singular function method [49, 71], [182, Section
8.2], also called Fiz method [181], augmenting technique [194], or additive sep-
aration of the singularities [150, pages 267-272]. In the two-dimensional case,
the basic idea is to augment the finite element space Vj, by singular functions
E(r)rti®;(4). Note that us = £(r) >, %ir*®;(¢), v € R, in two dimensions,
see Remark 4.1 above. The proof of finite element error estimates is then sim-
ple because the coefficients of these functions are real numbers. The extension
to three dimensions is not straightforward, however. Edge singularities con-
tain a coefficient function v = 7(z) which has to be approximated [181]. If,
additionally, corner singularities appear, then the coefficients of these singular
functions are constant. However, the exponents ); and the eigenfunctions ®;
have to be determined numerically [38] and approximate (non-exact) singular
functions have to be used [39].

A similar approach is to calculate the singular part of the solution explicitly. In
addition to the solution of the eigenvalue problem mentioned in Remark 4.1,
this includes the computation of the corresponding coefficient, the so-called
stress intensity factor [30, 51].

If the solution u and the right hand side f can be represented by a Fourier
series, as in Problem (4.2), (4.3),

o0 . o0 .
Rz .
U= Zui(x1,x2) Sl —1I3, f= Z fi(z1, z2) sin —us,
i=0 20 P 2o

then the coefficients u; satisfy the boundary value problem

N
—Au; + <T> u; = f; in G, u; =0 on 0G,

20

recall that Q = G x (0, 29). The coefficients u;, ¢ = 1,... , N, can be determined
approximately by a finite element method over G. The error in this method
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consists of the finite element error and a truncation error because only a finite
number of coefficients can be calculated. This approach, the Fourier finite
element method, was analyzed for problems in rotationally symmetric domains
in [99, 147, 193]. The functions u; have singular behaviour near the corners of
G which can be treated by mesh refinement [100, 101, 193] or by the singular
function method [122, 124].

The idea of windowing [11], [59, Section 2.5.3.], [150, pages 286-287] or local
defect correction techniques [48, 91], [92, pages 293-302], is to solve the problem
on an unrefined mesh covering the whole domain and to improve the solution
by solving (a) problem(s) in some window(s) in the neighbourhood of the
corners or edges.

Other methods include the hp-version of the finite element method and the
boundary element method, both with anisotropic mesh refinement, see for
example [89, 153, 168], and the finite volume method on graded meshes [132].

4.2.2 Local mesh grading in two dimensions

Local mesh grading near geometrical singularities was first investigated in the
two dimensions [28, 158] [150, page 274f.]. Therefore it is convenient for the
motivation to discuss first this case.

As pointed out in Remark 4.1, the singular part ug of the solution v may be
represented by

Us = ")/5(7’)7)\‘1)(@25), S Ra

in the two-dimensional case. We now follow an idea of Oganesyan and Rukho-
vets [149] and consider the coordinate transformation

This means that the neighbourhood
U={zecR:dist(z,C) < Ry}

of the corner C' = (X3, X») is transformed into itself, but ug is now
us = us(0,¢) = 7€(0) 0 ®(9).

The advantage is that the derivatives 0**'u,/0o**! (k = 1,2,...) are, in
contrast to % lu,/drk+! square-integrable for sufficiently small values of p
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W

Fig. 4.2 Quasi-uniform mesh in the transformed plane (g, @) (left) and graded meshes in the
original (7, #) plane: g = 0.7 (middle) and p = 0.4 (right).

(u < A/k). So we can suppose that us(o, @) can be approximated on a quasi-
uniform mesh of element size h with optimal order (depending on the degree
of the shape functions).

Trying to avoid this coordinate transformation for practical calculations (for
example one would also have to transform the input data) has led to the idea
of creating the mesh only in the transformed domain, of transforming back
immediately and of computing the finite element solution on the transformed
mesh but in the original coordinate system. (Actually, we transform only the
coordinates of the nodes and connect them again by straight lines.) Two ex-
amples of transformed meshes are given in Figure 4.2. In the following, we
derive another description of the graded mesh so constructed, in the origi-
nal coordinates. We try to find a relation between the diameter diam (e) of
an element e and its distance dist (e, C') from the corner point. (Instead of
dist (e,C) := minge. |xr — C| we can use the more easily computed quantity
x9 - C|, where {Xéi)}?:el is the set of vertices of the element e.)

min;—1,... ,n,

Elements with a vertex at the corner of the domain are contained in the trans-
formed domain in a circle of radius ¢ = h, which means in the original domain

diam (e) ~ RY*  if dist (e, C') = 0.

For elements without a vertex at the corner we find a circular annulus that
contains the element and has an inner radius p; and an outer radius g, such
that 0, — 0; ~ h. In the same way we can write for the original domain
# = p;. Consequently, we have

ro — ;i ~ diam (e), r# = g,, 1t

h rh —rk

diam (e)  r,—1m;

for some r, € (r;,7,). This relation can be rewritten in the form diam (e) ~
hrl=i. Since r; < ry < 1o = 03" < (20;)1/" = 2V/1r; we get 1, ~ dist (e, C).
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We can summarize and state that within a refinement neighbourhood U around
the corner C := (X, X5) the elements e should have a size according to

Rk if C € e,

diam (e) ~ (4.12)
hdist (e, C)'=* if C €€,

where h is the parameter of the family 7, and pu is the refinement parameter.
Note that such meshes have O(h~2) elements. It has been proved in [28, 158]
[150, page 274f.] that the error estimates

lu—uns W@ < A, (4.13)
lu—un; LX) S A7, (4.14)

hold provided that p is chosen according to
<A (4.15)

and that piecewise linear trial functions are used. This type of mesh, with
p = A/2, is also optimal in the sense of ||u — uy; L®(€2)|| [166], [190, Section
14].

The easiest way to construct such a mesh is as described by the motivation
above: generate a quasi-uniform (ungraded) mesh and move the nodes from U
via the coordinate transformation (4.11). This transformation can be written
in a programmer’s style by

r = [(1'1 — X1)2 + (CEQ — X2)2]1/2,
z1 = X1+ (21— X1)(r/Ro) 1H/H, (4.16)
To = Xo+ (ZL‘2 — Xg)(’l“/Ro)_H_l/”.

Note that the number of elements and nodes remains unchanged and that
condition (1.4) (bounded aspect ratio, the bound depends on p) is still fulfilled
after the transformation.

Another variant to construct such meshes is the method of dyadic partitioning
[80]: starting with a coarse mesh the elements are divided until condition (4.12)
is fulfilled.

4.2.3 Isotropic and anisotropic local mesh grading in three
dimensions

When the approach of Subsection 4.2.2 is extended to our example with a
three-dimensional domain we have to distinguish between two types of mesh
which can be generated.



4.2 The Poisson problem in domains with edges: an introduction 145

Fig. 4.3 Comparison of isotropic (left) and anisotropic (right) mesh grading: meshes.

1. By describing the meshes via condition (4.12) it is possible to construct
a family of isotropic meshes (bounded aspect ratio) and to prove the error
estimates (4.13), (4.14), for all f € L?*() if the parameter u satisfies (4.15)
[11, 23, 123]. We suggest that these isotropic meshes should be constructed
using the method of dyadic partitioning [80], see Figure 4.3 (left).

The disadvantage of such meshes is that for y < 1/3 the asymptotic number of
elements N as well as the condition number k of the stiffness matrix increase,

N~ h73|Inh|, A= Inh| <k S h72° for p = %,

4.17

N ~ h=n, Ve <k S ATYRTE for < L (4.17)
£ > 0 is an arbitrary small number, see [11, 23]. This means that this type of
mesh is not optimal for p < 1/3.

2. When we consider a neighbourhood of the edge and employ the transforma-
tion (4.16) to the nodes of quasi-uniform meshes, we get an anisotropic mesh,
see Figure 4.3 (right). Under a maximal angle condition, see page 54, to the
elements e, the estimates (4.13), (4.14), have been proved for u < X\ as well,
see Remark 4.2 below. The asymptotic number of elements N as well as the
condition number k of the stiffness matrix are in this case optimal for all p,

Na~h3 k~h? forall e (0,1]. (4.18)

The first statement follows by construction. The estimate of the condition
number was originally proved in the preprint version of [19, 20]. Since this
version was never published the proof is included in Subsection 4.3.3.

One can compare both approaches from a theoretical point of view. The
conclusions are that the first strategy does not exploit property (4.8), and it
has deficiencies for small u, ;1 < 1/3. The choice p < 1/3 becomes necessary
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for highly singular solutions of problems with mixed boundary conditions.
But all these considerations are in an asymptotic sense where most of the
constants are unknown. Therefore we will now compare the strategies in a
computational example [15, 18] which was calculated with the finite element
package FEMPS3D. For a short description of the code see Comment 6.2 on
page 236.

Example 4.1 Consider the Laplace equation with essential boundary condi-
tions,

—Au=0 in €, u=g¢g on 0f,

in the three-dimensional domain Q = {(z1,z2,73) = (rcos¢,rsing,z) € R :
r<1,0<¢<3m/2,0< 2z < 1}. The right hand side g is taken such that

u=(10+2)r**sin2¢
is the exact solution of the problem. It has the typical singular behaviour at the
edge. We constructed the three types of mesh discussed above (quasi-uniform,
isotropically refined with x4 = 0.5, anisotropically refined with p = 0.5) with
different numbers N of unknowns. From the numerical solution and the known
exact solution, the energy norm |u — uy; WH(Q)| of the finite element error
was computed. The relative norms

_ .WI,Q(Q)|
_ . 1,2 Q = |U Up;
|U Uh,W ( )|% |'U/h;W1’2(Q)|

are arranged in a double logarithmic scale in Figure 4.4. The example verifies
the theoretical results (4.9) and (4.13). The anisotropic strategy gives a slightly
smaller error. This can be taken as an indication that the isotropic strategy
leads to overrefinement near the edge, and that anisotropic meshes are more
appropriate to treat edge singularities. O

We end this section with two remarks motivating the extensive treatment of
local interpolation error estimates in this monograph.

Remark 4.2 The investigation of the anisotropic mesh refinement strategy
led to the development of a basic theory about anisotropic local error estimates
for the Lagrange interpolant, see [9]. With these estimates it was possible to
prove estimate (4.13) under rather high assumptions on the regularity of the
right hand side f. These assumptions were relaxed in [19, 20] where local
interpolation error estimates were also proven for functions from weighted
Sobolev spaces, see also Subsection 2.3.2. However, the most interesting case
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u — up; WH(Q)]g
20
[ N . .
15 4 S~ e quasi-uniform
TSSol p = 0.5, isotropic
" .\\:.‘\\ ——— 1 = 0.5, anisotropic
5 2
3 ]
2 ]
T T T T T T T T T
3-10% 102 3-102 10® 3-10® 10* 3-10* 10° N

Fig. 4.4 Comparison of isotropic and anisotropic mesh grading: diagram.

f € L*(Q) could still not be treated. This is deficient because Nitsche’s method
for obtaining an L?(Q)-estimate of the finite element error is not applicable.
Moreover, the refinement condition in [19, 20] is slightly stronger than (4.15).
Only after proving anisotropic local estimates for modifications of the Scott-
Zhang operator, see Chapter 3, was it possible to prove the estimates (4.13)
and (4.14) for f € L*(Q2) and under the refinement condition (4.15) [7]. We
present this proof in Subsection 4.3.1.

Remark 4.3 The introductory example (4.2), (4.3), is the simplest one pos-
sible for the illustration in this section. It is usually the starting point for
the investigation of new methods. A broader class of problems includes ar-
bitrary self-adjoint elliptic operators of second order, mixed boundary condi-
tions, and general polyhedral domains. In [23], the isotropic mesh refinement
strategy is investigated comprehensively for such problems. One of the diffi-
culties that arise is that the regularity of the solution v can become so poor
that u € W*2(Q) for any s > 3/2, which causes the Lagrangian interpolation
theory to fail. In this case another approximation operator must be employed.
The one chosen in [23] was the Scott-Zhang operator [170]. This example
further motivates the investigation in Chapter 3.
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4.3  The Poisson problem with edge singularities

4.3.1 The case of (multi-)linear trial functions

Consider the Poisson problem

0
—Au=f inQ, u=0 onlYy, Ty on I’y := 00\ T'y,

on
(4.19)

over a bounded polyhedral domain Q C R®. For simplicity, let Q be a prismatic
domain,

0=Gx Z, (4.20)

where G C R? is a polygonal domain and Z = (0,%) C R' is an interval.
This restriction is made because we want to focus on edge singularities in this
section. More general domains are considered in Section 4.4.

In the previous section we summarized already some facts about the pure
Dirichlet problem, I'y = (). We discussed the singular behaviour near edges
for f € L*(9), see (4.4)—(4.8) and Remark 4.1. Furthermore, we motivated in
Subsection 4.2.3 the utilization of anisotropic finite element meshes by theo-
retical considerations and by a numerical test example. Finally, we reviewed
previous contributions of the author to the numerical analysis of (isotropic and
anisotropic) mesh refinement techniques [3, 7, 9, 11, 15, 18, 19, 20, 23], see,
for example, Remarks 4.2 and 4.3, and we pointed to related literature.

In all previous papers, the investigation of anisotropic mesh refinement near
edges is restricted to the case k = 1, (multi-)linear elements. The final result
was derived in [7] as an application of the modified Scott-Zhang operators S
and E,. We present this estimate next. In Subsection 4.3.2 we discuss how
the case k > 2 can be treated.

Counsider the model situation that
I ={ze€0Q:0<x3< 2} (4.21)

We assume that the cross-section G' has only one corner with interior angle
w > 7 at the origin. Thus 2 has only one “singular edge” E which is part of
the x3-axis. The case of several singular edges parallel to the z3-axis does not
introduce additional difficulties because the singularities are of local nature.

Let Vo € W'2(Q) be the space of all W'?(Q)-functions which vanish at the
Dirichlet part of the boundary, and introduce the bilinear form a(.,.) : V X
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Vo = R by a(u,v) := [, Vu- Vv. Then the variational form of problem (4.19)
is given by:

Find uw € Vg : a(u,v) = (f,v)a Yv e V. (4.22)

The existence of a unique variational solution u follows from the Lax-Milgram
lemma. The properties of the solution v can be described favourably using the
weighted Sobolev spaces Vﬁe’p (2) introduced in Section 1.3.

Lemma 4.1 Assume that (4.20) and (4.21) are satisfied. Then the solution
u of (4.22) satisfies fori=1,2, and B3 >1— X\, A =7/w,

ou

ou 19

mevr@, |guvr@|sisz (1.23
ou ou
v, | gL s szl (421

The index of 3, indicates that the weight 7?2 belongs to second order deriva-
tives, compare Assumption 4.1 in Subsection 4.3.2.

Proof The singularity of the edge at the xzs-axis can be described by (4.23),
(4.24), see for example [116, Sections 26 and 30], Comment 4.3 on page 174 or
[19, Section 2]. One can show by mirror techniques that the corners and edges
at the bottom and the top face do not introduce singularities, see also Comment
4.2 on page 173. Finally, the remaining edges parallel to x3-axis were assumed
to have an opening angle smaller than 7 such that no singularity occurs. =

We define now a family of meshes of tensor product type, 75, see Sections
1.3 and 3.1 for a definition of this type. Such a mesh can be constructed
by introducing in G the standard graded mesh for two-dimensional corner
problems, see the end of Subsection 4.2.2, which is then extended in the third
direction using a uniform mesh size h. In this way we obtain a pentahedral
or, by dividing each pentahedron, a tetrahedral triangulation of €2, see Figure
4.3 on page 145 for an illustration. The grading near the singular edge F is
described by a parameter p € (0, 1] such that the elements of the mesh 7y,
satisfy the following relations:

Rl/k if dist (e, E) = 0,

hie ~ hye ~ ¢ h(dist(e, E))'* if0<dist(e, E) <1, (4.25)
h if dist (e, E) ~ 1.

hse ~ h. (4.26)

VE)h = {’Uh & Vb : ’Uh|e € Pl,e Ve € 771}
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we define the standard finite element space Vo, C C(Q) over T,. We derive
now an interpolation result for the solution of (4.22).

Theorem 4.1 Let u be the solution of (4.22) and k = 1 (multi-linear trial
functions). Then the estimate

u — Epu; WH(Q)] S A1 f; L2(Q)]]
holds if u < A. The operator E;, was defined in Section 3.5.

Proof We reduce the estimation of the global error to the evaluation of the
local errors and distinguish between the elements far from the edge F and the
elements close to E. Moreover, we write shortly r. for dist (e, E).

For all elements e with S, N E = () we can use Theorem 3.4 with m = k =1
and l=p=gq=2:
lu — Epu; W (e))|
S D heDMuWHA(S,)|
8u 1.2
. V ) Se
a$z7 62 ( )

2
< hie —p2 'V1’2 S,
~ ; y Te axgﬂ 0 ( )

for any B > 1 — A. Here, we have used the fact that r, < dist (S, F) holds,
which follows from

+ h3,e (427)

re < dist (S., E) + hy o ~ dist (Se, E) + h [dist (S,, E)]' *

for sufficiently small A, compare also Figure 3.3 on page 101 for an illustration.
We apply now the assumption (4.25) and obtain for r. < 1 and S =1 —p
the relation h;r;#2 ~ hrl=#=F2 = | (i = 1,2). The choice f; = 1 — p is
admissible due to the refinement condition p < A. In the case r. ~ 1 we have
also h; .r;% < h. Combining this with (4.27) we obtain

2

lu — Epu; WhH2(e)| < hz

~J

ou
— Va2 (Se)| +

. Ou
8@-’

1,2
axg"/o (Se) .

(4.28)

4

i=1
Consider now the elements e with S. N E # (. We use the triangle inequality
and Lemma 3.6 withm=k=1,p=q¢=2, f € (1 =\, 1):
lu — Epu; Wh2(e))|
Sy W (e)| + [Epus WH(e))|
S DI, L) + hig? Y he|IDu, Va (S| (4.29)

laf=1 laf=1
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For the first term we use that r < hy . in e and 1 — 5, > 0 and obtain

> 1D, L*(e)

la]=1

< 2 hl B2 Vo2 h ou Voz

s> B21<>+1,683 )

< hz Ou, VE2(e)|| + b || V2 (e) (4.30)
~ i=1 81'3 ' '

We also used that hi;ﬁZ ~ h(1=82)/ — ], for B = 1 — p. The second term is
treated with similar arguments:

hy 22 Z he(| D%u, V2 (Se)|

Ia\

< Zhl P V”( +h1ﬁ2hH— V(S
< hz Ou VE2(S,) |+ h 0 \i2g) (4.31)
~ i—1 8 61'3 0

The last term was estimated using r? < hf?e.

Inserting (4.30) and (4.31) in (4.29) we find that (4.28) (with full norms instead
of seminorms at the right hand side) holds for elements with S. N E # ) as
well. Summing up over all elements we obtain

Po=1—p € (1 — A 1). Here we used that any patch S, overlaps only with a
finite number (independent of h) of patches S.. By applying Lemma 4.1 the
theorem is proved. [

ou

1,2
i Vo (@)

g“ V”(Q)H +hH

lu — Epu; WH(Q)| < hz
i=1

The finite element solution wu; is determined by:
Find uy, € Vo, : a(uh,vh) = (f, Uh)Q Yo, € Vop. (432)

Corollary 4.1 Let u be the solution of (4.22) and let uy, be the finite element
solution defined by (4.32). Assume that the mesh is refined according to pn < A.
Then the finite element error can be estimated by

u—u WHQ)| S RIIFLAQ)],
lu—uns LA S A% L2(Q)])-

Y
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Proof The first estimate follows from Theorem 4.1 via the projection property
of the finite element method. Note that E,u € Vg, due to (4.21). The L?*()-
estimate is obtained by Nitsche’s method. [

Remark 4.4 By analogy one can prove for A < p < 1 that
u —uns WHQ)] S RV £ LA(9Q)])
lu—up; 2(Q)II S RN fLAQ),

[l

for arbitrary small ¢ > 0. That means that we get for the unrefined mesh
(u = 1) only an approximation order A —¢& (W2(Q2)-norm) or 2(A—¢) (L*(Q)-
norm). We conjecture that the € can be omitted. But this needs another way
of proof, for example using the theory of interpolation spaces, compare [28] for
the two-dimensional case. However, one can show by an example that these
estimates cannot be improved further [3]. Numerical tests support the results,
see Example 4.1 and [9, 15, 20].

Remark 4.5 Consider other variants of boundary conditions.

L. IUT, C{z€dQ: 23 =0V z3 =2}, then Syu € Vp, and the whole theory
can be applied as well, provided that (4.23) and (4.24) can be shown for this

case as well. (This situation is not covered by the theory reviewed in Comment
4.3 on page 174.)

Note that we used in the proof of Theorem 4.1 only the following properties
of Ehi

lu — Epu; Wh2(e)| < Z he| D%u; Wh2(S,)|,

|a|=1
[Enu; WH2(e)| S h1§2 Z | D%, Vﬁg Sell-
|er|=1

Both estimates hold true for S, as well, see Theorem 3.2 and Lemma 3.4.

We point out that in particular the first of these two estimates, the anisotropic
local interpolation estimate, is an essential ingredient of the proof of the op-
timal global error estimate. This estimate is neither satisfied for E, replaced
by I, (see Sections 2.1 and 2.3) nor for Z, Cp, or Oy (see the discussion in
Section 3.6).

2. Conditions of third kind can be treated like Neumann boundary conditions.

3. If the type of the boundary condition changes at the edge E we can proceed
in the same way as described by Lemma 4.1 (see also Comment 4.3 on page
174), Theorem 4.1 and Corollary 4.1. We have only to set A = 7/(2w).

Note that in this case edges produce a singularity if w > 7/2. Therefore it is
very likely that more than one singular edge has to be treated.
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4. If Dirichlet boundary conditions are given on (parts of) both {z € 99 :
0 < x3 < 2z} and {z € 00 : z3 = 0V x3 = z} then neither Spu € Vp,
nor Epu € V. In such cases we have to modify S, or E; near the Dirichlet
boundary, as it was done by Clément for C;, [64]. But we will not develop this
here.

4.3.2 Higher order trial functions

We will now discuss the case of higher order trial functions, £ > 2. On the one
hand, this case simpler than k£ = 1 since we can use the Lagrange interpolant I
(when A > 1/2) to obtain optimal interpolation error estimates. The difficulty
with I, mentioned in Remarks 4.2 and 4.5 (Item 1) do not occur. However, the
critical point for the case k > 2 is the description of all singularities appearing.
Therefore, let us focus on edge singularities and assume for the moment the
following property of u which is a straightforward generalization of (4.23),
(4.24). For a discussion of this assumption see Examples 4.2 and 4.3 at the
end of this subsection, and Comment 4.3 on page 174.

Assumption 4.1 The function u has only one singularity at E = {z € 09 :
xy = x2 = 0}. There holds

ou oFu
k+1,2 k2 1,2
u e Vﬁk+1 (Q), 8—:(;3 S Vﬁk (Q), e 8—1'I§ S V51 (Q),

where B, = max{n + B,; 0}, B« > =\ — 1. Reformulated, this means for all
with |of < k+1

D*u e Vy*(Q), Bo=max{as+az+ B 0}, B>—-A—1.
(4.33)

Then we obtain the following interpolation error estimate.

Theorem 4.2 Let u satisfy Assumption 4.1 with some X > 1/2. Assume
that the mesh is constructed as described in Subsection 4.3.1. For k > 2 the
interpolation error estimate

fu—Las W@ S h* Y 1D Ve ()] (4.34)
|a|=k+1

holds provided that the grading parameter p satisfies

A
M<E if A <k, w=1 if \>k. (4.35)
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Proof The assertion is clear for A > k£ because we have a quasi-uniform mesh
and u € WHT12(Q) in this case.

Let now A < k and consider all elements e which do not touch the edge E. We
use Theorem 2.2, (4.25), (4.26), and Assumption 4.1 in order to get

lu — Thu; W2 (e))|
< D0 Do mIDu L) (4.36)
laf =k |y|=1
S RF Z Z (dist (e, E))(I*/‘)(a1+a2)||Da+7u; L*(e)||
lal=Fk |v|=1
S R D ID VR ran (@) (4.37)
la|=Fk |y|=1

We show now

(1 - :LL) (al + aQ) > Ba—i—'y (4'38)

with Bq4 as introduced in (4.33). From pu < A\/k we get —\ —1 < —kp — 1.
Hence we can choose . € (—\ — 1, —ku — 1] such that

_6*+12
]

k (4.39)

and conclude oy +ag < k < —(Be+1)/u < —(Batm1+72) /1ty (1—p) (01 +an) >
Bs + a1 + s +71 + 2. Since p < 1 we obtain also (1 — u)(a; +az) > 0. These
estimates together give (4.38). With (4.37) we get

u— L W) S 1Y D V)] (4.40)
|a|=k+1

If the element touches the edge F, E Ne # 0, we use Theorem 2.4 and As-
sumption 4.1 in order to obtain

u— T W2e)| § 30 SRR IDT V() (441)

laf=Fk |v|=1

This estimate is valid for 8,4, < k& — 1/2 only, see the assumption in (2.63),
which means for « = (£,0,0), v = (1,0,0) that . + (k+ 1) < k — 1/2,
B« < —3/2. Together with 8, > —A — 1 this yields the assumption made,
A > 1/2. Now we simplify,

hehy T = he S

e
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if Ba-l—’y = 07

hig**w*wh;ﬁ 5 ha37(5*+71+72)/u

if Baty = B« + a1 + a2 + ¥1 + 72. The last exponent can be simplified further
by using (4.39) and |y| = 1, namely as — (B + 71 +72)/10 > —(B + 1) /10 > k.
By inserting this into (4.41) we obtain that (4.40) holds also in this case. By
summing up all the elementwise estimates we get (4.34). [

The case A < 1/2 was excluded in Theorem 4.2 since the Lagrangian inter-
polation operator can be applied only for continuous functions. For mixed
boundary value problems, where A = 7/(2w), this means w < 7. We cannot
treat concave edges in this way. This restriction can be overcome when a mod-
ified Scott-Zhang interpolant is used instead of the Lagrange interpolant, as
in Theorem 4.1.

Theorem 4.3 Let u satisfy Assumption 4.1 with some X < 1. Assume that
the mesh is constructed as described in Subsection 4.3.1 and that the grading
parameter | satisfies (4.35). Then the estimates

u—Suus WH(Q)] < BF Y D VEAQ)|

la =k+1
u-Eas W(Q) S B Y 10w VRR(@)]
|a|=k+1

hold for all k > 1.

Proof For k = 1 the theorem was verfied in Subsection 4.3.1. The ideas to
prove this theorem for £ > 2 are contained in the proofs of Theorems 4.1 and
4.2. Elements e with S, N E = () can be treated as in the proof of Theorem
4.2, and the remaining elements as in the proof of Theorem 4.1. Note that we
have assumed A < 1 in order to obtain Ay, ~ hY/k < pk/* < Rh¥ in front of the

term ||Ou/dzs; V, 2 (Q)]]. |
Let us discuss now applications of the last two theorems.

Example 4.2 Assumption 4.1 covers the typical behaviour of the solution of
(4.22) near an edge, at least for Dirichlet and mixed boundary conditions.
This can be derived from the study of such problems in a dihedral angle {x =
(rcosg,rsing,x3) € R3: 0 < r < 00,0 < ¢ < w,r3 € R}, see Comment 4.3
on page 174 and also Item 4.5 in Remark 4.5. This means, if supp f C (QUE)
then one concludes

= WHQ)] SR,
lu—uns Q)] < A
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The first estimate is obtained for £ > 2, A > 1/2, from Theorem 4.2, and for
E>1, A <1, from Theorem 4.3. The second estimate is proved by Nitsche’s
method. O

Example 4.3 Consider k = 2, general f € V;"*(Q) (the weight has to be
taken with respect to all singular edges), and assume (4.21). Then all edges
E; which are parallel to the zj-axis and with interior angle w; > 7/2 are
singular edges. The behaviour of the solution near these edges is described by
Assumption 4.1, see Comment 4.3 on page 174. All edges which are orthogonal
to the xs-axis are non-singular since the leading terms of the decomposition
are rsing = y and r¥Inr ®(¢) € W*=2(Q). The corner singularities are
included in the edge singularities described above, see Comment 4.2 on page
173. Consequently, the only singularities are near the singular edges. We can
apply the mesh refinement as described above and obtain

u—up WH(Q)] <R,
lu—un; LX@Q)] S A

Y

from Theorem 4.2. O

In the general case we have to treat edge and corner singularities where the
singular edges can also intersect. A suitable refinement strategy is described
for kK = 1 in the next section. We conjecture that this strategy is also adequate
for k > 2 (with u depending on k as in (4.35)). For A > 1/2 the convergence
can be proved by using the Lagrange interpolation operator, see [21, Proof of
Theorem 5.1] for K = 1. For & > 2 the proof is even simpler than for k£ = 1
since the Holder technique [21, Proof of Theorem 5.1] can be avoided, see
the proof of Theorem 4.2. The critical part is the proof of the corresponding
anisotropic regularity results.

For A < 1/2 the Lagrangian interpolation operator cannot be applied. Since
the modified Scott-Zhang operators are investigated for meshes of tensor prod-
uct type only, it is not clear how to prove convergence in this case.

4.3.3 Condition number of the stiffness matrix

Consider the nodal basis {¢;(z)}Y, with ¢;(XW) = &, in V;, (or Vop, re-
spectively), with N being the number of degrees of freedom. Thus each
function vy, € Vj, (or Vo) can be represented by vj(x) = Zf\il v;pi(z), with
V; = Uh(X(l))

The stiffness matrix K := (a;;);;—, has the entries a;; = a(¢;, ;). We want
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to estimate the condition number  of this matrix,

o )\max(K)

= 7)\min(K) (4.42)

where A\.x and A, are the maximal and minimal eigenvalues of K, respec-
tively.

Lemma 4.2 The condition number of the stiffness matriz A which is related
to problem (4.19) is bounded by

k< h 2 (4.43)
That means, the order of the condition number is the same as in the case of
smooth solutions and isotropic meshes.
Proof Due to the boundedness and the ellipticity of the bilinear form we get
a(vn, o) ~ llows WH(Q)]I* - Vop € Vi (Von).

Denoting by ( ., . ) the Euclidean scalar product in RV and by v := (v;)¥,
the grid function related to vy, we obtain the identity a(vp,v,) = (Kv,v) and
get by using the Rayleigh quotient

[[on; WH2(Q)]]
<
Amax S ;1611%;5 v, ) )
- lon WHA(Q)]
>
Amin 2 ;2111%% w0 .

We are now looking for an upper and a lower bound of ||[v,; W?(Q)||? in terms

of (v,v).
Using the inverse inequality we have
lon; WH2(Q)1P = [los W2 (e)|IP £ Y hilllons L2(e)|*. (4.44)
e€Th ecTh
On the reference element é we have
[on; L2(@)[1* ~ > 07, (4.45)
]ele

since norms in N.-dimensional spaces are equivalent. I, is the set of numbers
of the nodes belonging to e. Transforming (4.45) to e we get

lon; L*(e) |* ~ meas(e) > v?. (4.46)

Jele
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Inserting (4.46) into (4.44) and using meas(e) ~ hi h and that each node
belongs only to a bounded number of elements we get

low; WH(Q)II* S hlv,v)
Amax S h (4.47)
For the lower estimate of ||v,; W2(Q)||? we use the embedding
W) o W () < W30)
which holds for 0 < § < 1 [116, Subsection 0.11]. Consequently, we have
Jows WH2(Q)? 2 [lrom; L) (1.49)

Denoting R, := max,e. (), and using (4.46) we get from (4.48)

lon; WHQ)IP 2 ) RPNlons L2e)IP 2 ) RI¥hihy o}

iel iel jel,

Using hy. = hR:# (which follows from (4.25) and holds for all e € I) and
choosing § = 1 — p, we obtain

lo; WH(Q)[? 2 2P (v, v)
Amin > 3 (4.49)

o

independent of the choice of p.
From (4.47) and (4.49) we get the estimate (4.43). |

In the proof we used some ideas of the proof for the case of mesh grading
in two dimensions [150]. With analogous arguments we had investigated in
[11] the case of isotropic mesh grading near edges. In contrast to Lemma 4.2
we get Amin =, h3 for isotropic elements only in the case u > 1/3, see [11].
For yu < 1/3 we obtain Ay, = AY/#*¢ and thus k > h'~Y/#+2 ¢ > 0 arbitrarily
small. But we stress that Lemma 4.2 is related to anisotropic mesh refinement.
The author is not aware of a similar result for such meshes.
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4.4  Diffusion problems in domains with corners and
edges

In Sections 4.2 and 4.3 we considered the Poisson problem in a prismatic
polyhedral domain  C R3. There, we focused on the approximation of edge
singularities by using anisotropic finite element meshes. The aim of this section
is to treat a general diffusion problem,

’ 0%u
— Z amm = f in Q, u=0 on (9(2, (450)
7,7=1
where Q C R? is an arbitrary polyhedral domain. The coefficients a; ; = a;; are
assumed to be constant. The operator shall be elliptic, Zijzl a; ;&€ > Cy >0
for all &;,&,& € R such that & + & + & = 1. If Q is not convex then the
solution has in general singular behaviour near the edges and the corners. We
summarize here the results which are published in [21]. Therefore we restrict

ourselves to tetrahedral meshes and to linear shape functions (k = 1).

The idea is quite obvious, we want to combine anisotropic mesh refinement
near singular edges with isotropic refinement near corners. One difficulty is
to describe and to construct the meshes in the transition from anisotropy to
isotropy. A complication is that corner singularities can be stronger or weaker
than edge singularities. In [23], where isotropic mesh refinement was consid-
ered, this was circumvented by controlling the refinement with the strongest
singularity appearing in the problem under consideration. We try to avoid this
by allowing different refinement parameters in different regions. Moreover, in
Section 4.3 the tensor product character of prismatic domains was used to
describe the mesh. But these orthogonalities are no longer available because
we want to treat general polyhedral domains.

A second difficulty is the choice of an approximation operator.

e For linear shape functions we have applied in Section 4.3 the operators S,
and Ej,. This allowed us to prove the desired error estimate under the optimal
grading condition (4.35). But these operators were investigated in Chapter
3 for meshes of tensor product type only. It is not clear how to extend this
theory to treat the more general meshes which are necessary here.

e When we use the Lagrangian interpolation operator I, then one of the key
estimates,

u— Tyu; W2 (e)| S (measge)'> 717 " h¥|Du; W'P(e)],  (4.51)

la|=1
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is not valid for p = 2 but for p > 2 only. Therefore we need the regularity
theory in Banach spaces W%P(2) with p > 2. In particular, the regular part u,
of the solution must satisfy u, € W??(Q). For this we assume that the right
hand side f of problem (4.50) satisfies

feLr(Q) for somep > 2. (4.52)

The drawback is that we obtain the optimal convergence order only with a
grading condition which is slightly too strong.

In any a-priori technique for coping with edge and corner singularities we
assume some knowledge about the singular exponents. In particular, for mesh
refinement techniques a lower bound of the leading exponent is needed. For
edges these exponents can in general be given analytically, but for corners
an eigenvalue problem for the Laplace-Beltrami operator has to be solved
numerically, see Comment 4.1 on page 173. An edge F or a corner C' is called
singular if the leading singularity exponent Ag or A¢ satisfies A\p < 2 —2/p or
A¢ < 2 — 3/p, respectively.

The plan of this section is as follows. We discuss the construction of a suitable
family of finite element meshes as extensive as in [21]. Then we state the reg-
ularity and the approximation result without proofs. They are very technical
and can be found in [21]. After some discussion we present a numerical test
example. We end the section with a discussion of shape functions of higher
degree and possible extensions to more general boundary value problems.

In order to explain our approach we subdivide €2 into a finite number of disjoint
tetrahedral subdomains, = U;.Izl Q;, such that each subdomain contains at
most one singular edge and at most one singular corner. In this way we
localize the problem and reduce all considerations to few standard cases. Here
we exploit that the singularities are of local nature only.

The freedom in the choice of the finite element mesh is restricted by the fol-
lowing three needs:

A. general admissibility conditions arising from the finite element theory and
the subdomain approach,

B. refinement conditions, such that the global error estimates can be proven,
C. geometrical conditions on the elements such that anisotropic local interpo-

lation error estimates can be proven.

We will now elaborate a set of conditions that satisfies all the needs. After-
wards we give simple examples how one can construct such a mesh. We point
out that we do not attempt to give a minimal set of conditions. Rather, we
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want to describe a set of conditions that is both sufficient for our error esti-
mates and simple to be verified for our examples. We also admit (but do not
request) overrefinement in certain regions if the mesh generation algorithm can
be kept simple then.

The general conditions on the triangulation 7, = {e} are the following.

A1. The domain is covered by the closure of the finite elements e, Q = Ueer, &

A2. The triangulation is such that the subdomains €2; are resolved exactly: if
enQ; # 0 then e C ;.

A3. The elements are disjoint, eNe' =0 Ve,e' € Tp, e # €.

A4. Any face of any element e is either a subset of the boundary 02 or face
of another element e’ € Tj,.

A5. The number N of elements is related to the global mesh parameter h by
Ny ~ h=3.

To describe the refinement conditions we need some further notation. First,
define in each subdomain Q; (j = 1,...,J) a Cartesian coordinate system
(2, 25 2)) with the following properties:

e One corner of ; is located at the origin. In particular, if €2; possesses a
refinement corner, then this one is chosen.

e One edge of ); is contained in the :Egj )
refinement edge, then this one is used.

-axis. In particular, if {2; possesses a

We use here the term refinement edge/corner instead of singular edge/corner
since we want to allow refinement near edges/corners which are not singular.
This can be advantageous for a simpler construction of the meshes or just since
only a lower estimate of the singular exponent is known.

Next, we denote for each finite element e C €); by

. . 1/2
re = inf @2+ @)

. . . 1/2
Re = inf |@)+ @)+ ()]

the distances of e to the xéj )_axis and the origin. Note that R, > r.. Moreover,
we introduce in each Q; refinement parameters p;, v; € (0, 1] corresponding to
the refinement edge/corner, respectively. If there is no refinement edge/corner

we let u; = 1 or v; = 1, respectively.
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As mentioned above we want to admit overrefinement. Therefore we distin-
guish between size parameters Hy ., Hs. (e € Tp),

e ifr, =0
H. = .y ¢ ’
! { hre " ifr, >0,

RYvi if 0 < R, < Vi,
H3,e = 1-v; . o 17;,,

hR. if Re 2 h'/Vi
and actual mesh sizes iLLe, Bg,e, l~13,e which are defined as the lengths of the
projections of e C 2; on the xgj)—, xgj)—, or J:é])—axis, respectively. (The tilde is
used because this definition is different from the mesh sizes hy ., hoe, h3. as
used in Section 2.3.) Note that h'/% ~ hRe “ for R, ~ h'/¥i.
The relation between these sizes is given by condition B1:
B1. If ;1; < 1 then ;LLe ~ il27e ~ Hi., il37e < Hs,e (e € Tp). But in particular
we demand that hs, ~ Hs, if . = 0.
If uj =1 then hj. < Hs. (e € T, j = 1,2,3) and in particular h;. ~ Hj, if
R.=0.
Note that Assumption A5 is indeed a condition but not a consequence of B1.

That was different in Section 4.3 where overrefinement was not allowed. In
this sense we will also demand two similar conditions:

B2. The number of elements e C §; with r, = 0 is of order A~
B3. The number of elements e C €2; such that 0 < R, < h/%i is bounded by

h?#i/vi=2 In particular, there is only one element e with R, = 0.

Though further conditions on the parameters p; and v; are imposed in Theo-
rem 4.5, we want to ensure a priori that Hy . S Hs, for p; < 1:

B4. If pj < 1then p; <v; (j=1,...,J).

The next set of conditions is imposed such that the anisotropic local interpo-
lation error estimates of Section 2.3 hold.

C1. The finite elements e must satisfy the maximal angle condition, see page
54.

C2. If(); contains a refinement edge then all elements e C (2; have two vertices
such that the straight line through them is parallel to the xéj )_axis.
C3. If Q; does not contain a refinement edge then all elements are isotropic,

that means, they have bounded aspect ratio.

Note that we used in Section 2.3 the maximal angle condition C1 and a co-
ordinate system condition which is very technical. Tt is possible to avoid the
latter condition by imposing C2 and hj e ~ hg..
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3 3
2 2
0 0’
1 1
Case 1 Case 2
3 3
2 2
\ \
0 0
1 1
Case 3 Case 4

Fig. 4.5 Tllustration of the meshing of the subdomains (n = 4). Case 1: Equidistant mesh.
Case 2: Refinement towards a corner (v; = 0.67). Case 3: Refinement towards an
edge (u; = 0.5). Case 4: Refinement towards a corner and an edge (v; = 0.67,

i = 05)

Lemma 4.3 For any polyhedral domain Q C R3 it is possible to generate
meshes which satisfy all the Assumptions A1-C3.

Proof We start with the meshing of one subdomain 2; and then we discuss
the satisfaction of Condition A4 after gluing together the meshes of the sub-
domains. Let us distinguish four cases: 1) Q; contains neither a refinement
corner nor a refinement edge, 2) Q; contains a refinement corner but no refine-
ment edge, 3) ; contains a refinement edge but no refinement corner, 4) Q;
contains both a refinement corner and a refinement edge.

The meshing in these four situations is illustrated in Figure 4.5. A mathe-
matical description of this mesh generation procedure can be given as follows:
Introduce barycentric coordinates )\(()j), . ,Agj) ()\Z(»j) >0,30, )\Ej) =1)in Q;
such that the refinement corner has the coordinate )\(()j ) = 1 and the refine-

ment edge is described by )\gj ) = )\gj )= 0. Let n € N be an integer such that

h~n~t
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Case 1: The vertices P,, @ = (a1, as, a3), have the coordinates

N =,

N = A = 0<o <n
The tetrahedra are described as quadruples of vertices; they are

Pos Poy(1,0,0), Pat(0,1,0), Pa+(001)) 0<|a|<n—1,
1(1,0,0)5 a+(0,1,0),Pa+ 0,0,1)5 a+(101 , 0<|a| <n—-2,
Paro11)), 0< |af <n—2,

)

+(0,1,0); a+(00 1) Pat (1,01 ))
a+(101)), 0<|a|<n—2,

)

)

( (
( ) (1,0,1),
+(1,0,0)> a+(0,1,0), Pa+(1,1 0)»
+(0,1,0) a+(1,1,0)7 Poy(1,00) a+(0 1,1
+(1,1,0)> Pat(1,0,1), Pat(0,1,1), P

) 0§|a|§n—2,
, 0<]a|<n-3.

(
(
(
(
(
(

20 20 g0 5T ;T

a+(1,1,1

Case 2: The topology is as in Case 1 but the coordinates of the vertices P,

change to
)\EJ) _ % <| ‘) 1+1/l/j, )\gj) _ <|n‘) 1+1/l/j, )\gj) _ <|n‘) 1+1/l/j,

n

:|9
:|w

0<|a| <n.
Case 3: We introduce here a larger set of nodes P,
0<ar+ax<n, 0<a3<n if a;+ay <n,
az =0 if a;+ay =n,
with the coordinates

A = (o)
A = o (o) T

)\gj) — %(1 . )\gj) . )\gj)).
The tetrahedra are described in three cases:

Subdivision of pentahedra:

(Pas Pt ( 100) Poy(0,1,0), Pa+(001)) 0<ar+a<n-—2,
(Pat(1,0,0)s Pat(0,1,0)s Pat(0,0,1) a+(1 o), 0<ar+ay<n—2,
(Pat(0,1,0), P, a+(0 0,1)s Pat(1,0,1) a+(0 1), 0< o +ay<n—2,
(Part(1,0,0)s Pat(0,1,0)5 Pat(1,1,0)5 a+(1 01)), 0< o +ay <n—3,
(Pat(0,1,0), P, a+(1,1,0), Patr,01), Pat011)), 0< a1+ <n-—3,
(Pa+(1 1,0)s a+(1 0,1)9 Pa+(0,1,1) a+(1,1,1)), 0<a+a<n-3,

0 < a3 <n—11n all cases.
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Subdivision of pyramads:

L(L0), 1ty =n—2,
+(1,1,0)), ap+oay =n—2,

(Pat(1,0,0)5 Pat(0,1,0)> Pat(1,0,1)
(Pat(0,1,0) Pat(1,0,1), Pat(0,1,1),

0 < a3 <n—11in both cases.

Pa
Pa

Remaining tetrahedra:

(Pon Pa—}—(O,O,l)a Pa+(1,0,0), Pa—l—(O,l,O))a ay+ay=n— 1,
0<a3<n-—1.
Case 4: The topology is as in Case 3 but the )\éj )_coordinate of the points P,
changes to
' az\ /v ' '
)\gj) — (73) (1 o /\gj) _ /\gj))

We have now to prove that such a mesh satisfies all conditions: A1, A2, A3, and
A5 are obvious. Assumption A4 is equivalent to the necessity that the faces
Q; N are meshed in the same way. This leads in general to some cascade
effect: let M C 02 be a connected set of refinement edges and vertices (edges
are here considered as closed sets), then we have to choose

p; =v; =y forall j:Q;NM#D0.

That means that the refinement is determined by the strongest singularity in
this region. An exception is the case when the face )\ = 0 is part of the
boundary 0. Then v; can be chosen larger than p;. We remark that the
cascade effect could be avoided by using mortar elements [45].

The coordinate transformation A(()j ) )\(’ 2 (] ) is independent of
h. Therefore, Assumption B1 can easﬂy be verlﬁed by notlng that

(s + h)l/uj — st~ pstTH
AD LA A0 ~ R, forall e with R, > 0,
AD LAY~ re for all e with R, > 0.

Indeed, in Case 2 all elements are isotropic, that means Ei’e is of the size of
the distance of the two planes /\Z(f) = (MTH)V”J' and /\Z(f) = (‘%')1/”3',

B~ (My/uj - (|a\) MURRT (= 1,2,3).

’ n n

In cases 3 and 4, the projection of the element into the )\gj),)\gj)—plane is
isotropic, that means

ilie ~ (a1+a2+1)1/ﬂj . (al—i-az)l/ﬂj ~ h’f’flg_”j (Z — 1’2)

) n n
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Fig. 4.6
1 Modification of Case 4 for u; =v; < 1.

Finally, we see in Case 4 that

hse < AP, asi1) = AN (Poag) + (hie + Do)

R}

(22)"7 = (4" 4 e

h(x:gj))l_l/]‘ + hT‘i_Vj
hR! ™",

ARTANRIA

because v; > p;.

Condition B2 is satisfied by construction. B3 is checked by realizing that the
number of elements is of order i where i satisfies (i/n)'/* < (1/n)Y%, that
means i < n'~#/¥i. Condition B4 is independent of our meshing strategy.
Conditions C1-C3 are also satisfied by construction. Note that overrefinement
is accepted in Cases 3 and 4 near the edge /\(()j ) = )\flj) = 0 and due to the
cascade effect described above. [

Remark 4.6 Note that the number of elements is n? for Cases 1 and 2, and
3n® — 3n? + n for Cases 3 and 4. We introduced the richer topology in the
latter cases to ensure the maximal angle condition C1. However, we can use
the topology of Cases 1/2 if p; = v; < 1, compare Figure 4.6. The vertices P,
have then the coordinates

)\gj) = @ (%)*Hl/w’

)\gj) - @ (@)*IH/M,

O <|%)1/’” _ AW 0,
0<|a| <n.

We point out that also simpler meshing strategies can be applied where over-
refinement takes place in more regions. Figure 4.8 shows an example where
artificial refinement edges are introduced. Moreover, we introduced the As-
sumptions A1-C3 in order to allow other refinement strategies which are not
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Fig. 4.7
Tensor product domain with mesh refinement near
the singular edge and the corners.
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based on the domain decomposition approach, see Figure 4.7 for an example
with a coordinate transformation.

We introduce now the finite element space V}, of all continuous functions whose
restriction to any e (e € 7) is a polynomial of first degree. Furthermore, we
let Vo, be defined by Vyp, := {vn, € Vj, @ vp]aa = 0}. Note that V;, € H'(Q) and
Vo C Vp. The variational formulation of problem (4.50) reads as follows.

Find u € Vy : a(u,v) = (f,v)a Yo €V, (4.53)
where the bilinear form af(.,.) is defined by
’ ou Ov
a(u,v) = /Q”z_:lawa—xzﬁ—:c]

Furthermore, the finite element solution is defined by

Find Up € Vbh : a(uh,vh) = (f, ’Uh)Q V’Uh € Vbh- (454)
Let )\g,)n and )\g,)n, n = 1,2,..., be the singularity exponents with respect
to the singular edge and the singular corner of €2;, j = 1,...,J. Define in
particular the leading singular exponents by )\(EJ) = Ag?l, )\(C]) = )‘(CJ‘,)I' Note

that these exponents are defined by €2 (and the differential operator) and not
only by €;, compare Comment 4.1 on page 173. If no edge/corner of Q; is

edge/corner of 2 then we define )\g) = 00, )\g) := 00, respectively.

The regularity of derivatives of u can be described by means of the weighted
Sobolev spaces Vﬂé”g (€2;), see Section 1.3, page 27, for the definition.

Theorem 4.4 [21, Theorem 2.10] Assume that 2 < p < 6, )\g,)n # 2 —2/p,
/\(c]*)n #2-3/p, foralln=1,2,...,5=1,...,J, and)\g) > 1—2/p. Then the
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solution u of the general problem (4.50) admits the following decomposition in
Qj N

u = u, + ug, (4.55)

where u, € WP(§;) and
ou,

@ € Vﬁljg)(ﬂj)v 1= 1, 2, (456)

aus 1,p

S e ViF(@), (457)
3

for any 3,6 > 0 satisfying 5 >2—3/p — )\g) and § >2—2/p— /\g).

In the following, we investigate first the global interpolation error for the family
of anisotropically graded meshes introduced above. Then we obtain the global
finite element error estimate via the Céa lemma.

Theorem 4.5 [21, Theorem 5.1] Let u be the solution of the boundary value
problem (4.53) with f € L,(Q), 2 < p < py,

2 1
P+ = min < 6; ~; ~ 5. 4.58
oo ) e

In addition to the condition B4, assume that the refinement parameters p;,v;
satisfy the following conditions for all j:

G _ P
; 4.
; 1 2p
< (A9 42 4.60
V] < C + 2) 5p _ 6’ ( )
1 /5 3 1 ; 3
—<———>+—<Ag)—2+—>>1. (4.61)
vi\2 p/) W p
Then for the interpolation error u — Inu the following estimate holds:
[ — T WH(Q)] S R ILF LP(Q)]]. (4.62)

Proof The theorem can be proved by distinguishing the four cases as men-
tioned in the proof of Lemma 4.3 and by using the local interpolation error
estimates for functions from (weighted) Sobolev spaces, see [21, Section 5].
Before, one has to ensure that Theorems 2.2, 2.4, and 2.5 can be proved if
hie, hae, hs are replaced by hie, ho e, h3., as defined above. This was done in
[21, Section 4]. |
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Corollary 4.2 Let u be the solution of the boundary value problem (4.53)
with f € L,(), 2 < p < py, py from (4.58), and let uy be the finite element
solution of (4.54). Then the error estimate

lu — uns WHQ)I S R (15 ZP(Q)]

holds if all refinement parameters p; and v;, j = 1,...,J, satisfy the condi-

tions (4.59)—(4.61).

Let us discuss the assumptions of this approximation result. First, we note that
the restriction p < p, is not essential for this estimate, because f € LP(Q2)
yields f € L%(Q) for ¢ < p and |[f;LY(Q)|| < [[f;L7(Q)]l. We can apply
Theorem 4.5 for ¢ < p,. Nevertheless, we have to replace p in the conditions
of the Theorem 4.5 by min{p; p; — k}, £ > 0 arbitrarily small.

In order to use meshes which are not too much refined, the estimates are most
favourable for p close to 2. For p = 246 (¢ is an arbitrarily small real number),
the refinement conditions reduce to

| G (1_ 9
i < AE( 2+25>’
a1 30
. )\(J) _ 1—-— —
i< (03) ().

LR e Sy ERA
Vj /,Lj ¢ 2 4+2(5 /.Lj Vj

On the other hand it is not clear in which way the constant in the local
interpolation error estimate depends on p; we suspect that it grows to infinity
for p — 2.

The conditions (4.59) and (4.60) are the edge and corner refinement conditions,
respectively. They are expected because they balance the edge and corner
singularities (compare with [19, 23, 123]). On the contrary, the condition
(4.61) seems to be artificial but actually it comes from the anisotropy of the
mesh near the corner. Indeed, (4.61) follows from (4.60) and p > 2 in the case
p; = v;. In the case pu; # v;, it imposes a condition between p; and v;, this
means that the mesh cannot be too much anisotropic. For the Fichera domain
treated in Example 4.4, we have A\¢ ~ 0.45 and Ag = 2/3. We then see that
for p close to 2, the condition (4.61) holds for y; = 0.6 and v; = 0.9.

Example 4.4 We consider the Poisson equation with a specific right hand
side, together with homogeneous Dirichlet boundary conditions:

—Au = R7! inQ,
u = 0 on 0.
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The domain 2 := (—1,1)*\ [0, 1]* has three edges with interior angle wy = 3,
which meet in the center of coordinates; we denote by R the distance to this
point. Sometimes such a corner is called Fichera corner. Note that the right
hand side is contained in L,(€2) for p < 3.

In order to determine the regularity of the solution, we consider first the corner
singularity and find that Ao ~ 0.45 [168]. The edge singularities are described
by )\E = 7T/(U0 = 2/3

This problem was solved first with ungraded meshes and mesh sizes h; = 1/,
1 =2,3,...,48. We compare this with three refinement strategies. The first
one is obtained by a simple coordinate transformation

— /e
T = - | i 5 =1,2,3,

for all vertices (xy,z2,x3). It leads to overrefinement near the coordinate
planes, see Figure 4.8. The second one was described by our constructive
proof of Lemma 4.3, see pages 163—-166. The corresponding mesh is illustrated
in Figure 4.9. The optically bad elements near the diagonals can be avoided
by using the strategy of Case 4a instead of Case 4, compare Remark 4.6 and
Figure 4.10. For all j we used the parameters p; = v; = 0.6.

The calculations were done using the code FEMPS3D which is described
shortly in Comment 6.2 on page 236. We remark only that the energy of
the finite element error was estimated with an error estimator of residual type
which was tuned for treating anisotropic meshes, see also Section 6.2. The
norms are given in form of a diagram in Figure 4.11.

We see that the theoretical approximation order A ~ N~/3 N is the number
of nodes, can be verified in the practical calculation for all three refinement
strategies. The error is the smallest in the third refinement strategy, however,
the difference between the strategies is small. U

Remark 4.7 We believe that the approach to mesh refinement as introduced
in this section is applicable to a larger class of problems since the singularities
can be characterized in a similar way for general second order boundary value
problems including systems of equations. For isotropic mesh refinement the
approximation theory was given in [23] in this generality. For anisotropic mesh
refinement, however, there are some remaining tasks.

1. We conjecture that Theorem 4.4 can be proved also for other boundary
conditions (Neumann, Robin, mixed). Then Theorem 4.5 is valid as long
as )\g) > 1/2 for all j. (Otherwise (4.58) yields p, < 2 which contradicts

another assumption of Theorem 4.5.) For )\g) < 1/2 there is no £ > 0 such
that u € W3/2+%2(Q). Therefore the Lagrangian interpolation operator is not
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Fig. 4.8 Example 4.4: First strategy, a simple coordinate transformation. Left: perspective
view. Right: cut at z3 = 0.
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Fig. 4.9 Example 4.4: Second strategy, refinement according to Cases 1-4. Left: perspective
view. Right: cut at z3 = 0.
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Fig. 4.10 Example 4.4: Third strategy, refinement with Case 4a instead of Case 4. Left:
perspective view. Right: cut at 3 = 0.
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Fig. 4.11 Example 4.4: Estimated error 7 in the energy norm for various mesh sizes.

applicable. It is an open problem to extend the Scott-Zhang interpolation
theory to non-tensor product meshes.

2. For more general boundary value problems like the Lamé system of elasticity
we do not know about an anisotropic regularity theory in the sense of Theorem
4.4. In particular, the theory must be developed in non-Hilbert spaces since
we need p > 2.

3. For k > 2 the regularity theory in Hilbert spaces (p = 2) can be applied,
compare Theorem 4.2 on page 153. If the regularity result of Theorem 4.4 can
be extended to higher order derivatives like in Assumption 4.1, then the proof
of the approximation result is straightforward.
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4.5  Three comments on the analytical properties of u

In this section we present some analytical background which was omitted in
Sections 4.2-4.4 since we wanted to focus on the numerical part of the theory.

Comment 4.1 Calculation of the singularity exponents. Consider first
the Poisson problem. For homogeneous Dirichlet or Neumann boundary con-
ditions the singularity exponents with respect to an edge E are given by
Apn = nm/wg > 1/2, n = 1,2,..., where wg is the angle between the two
faces of € containing E. In the case of mixed Dirichlet/Neumann boundary
conditions we have A\g,, = (n — 1/2)7/wgp > 1/4,n=1,2,....

Let Cc C R? be the infinite polyhedral cone which coincides with  in a
neighbourhood of a corner C' of 2, and let S% be the unit sphere centered at
C. Set Go := Co N S% and denote by A\, > 0, n = 1,2,..., the eigenvalues
(in increasing order) of the Laplace-Beltrami operator on G¢ (with Dirichlet
boundary conditions). Then the singular exponents related to C' are given by
Aom = (An +1/4)Y2 —1/2, n = 1,2,.... Papers on a numerical calculation
of the singular exponents A¢, include [40, 121, 168]. In some cases these
exponents can be calculated analytically, see Comment 4.2.

In Section 4.4 we considered a more general differential operator, see (4.50).
Since we assumed constant coefficients, there exists a linear change of variables
y = Bz which transforms the problem (4.50) into the Poisson problem with
homogeneous Dirichlet boundary conditions in another polyhedral domain €)'.
The singularity exponents can then be calculated as described above but with
respect to the transformed domain.

Comment 4.2 Corner singularities in tensor product domains. Tensor
product domains in the sense of Section 4.3 have the advantage that the corner
singularities can be described explicitly. Consider a corner C' at the origin of
the coordinate system. A neighbourhood U(C) C Q can be described in
spherical coordinates by U(C) = {x = (Rcos¢siné, Rsin¢sinf, Rcosf) :
O<R<Ry0< ¢ <w,0<80 < m/2}. The singular functions have the form
[181, 191]

N\ 1
uc; = R\ Fy(¢,0), Aoy = <)\i + Z) — 5

where \;, F; are the eigenvalues/eigensolutions of the eigenvalue problem for
the Laplace-Beltrami operator,

Fgg + Fg cot @ + F¢¢(Sil’l 9)72 = —/\1F in G,
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G = {z = (cos¢sinf,singsinf,cosf) : 0 < ¢ < w,0 < § < 7/2}, and
boundary conditions corresponding to the original problem. Separation of

variables, F(¢,0) = ®(¢)O(0), leads to
" +25,;® = 0 in(0,w),
©" 4+ 0 cosf + (A — AL ,(sinf) *)© = 0 in <0, g) :
For the Dirichlet problem we get the solution

™

>\E,1 = ;, ¢1(¢) = sin >\E,i¢a
M =Ag1+1)(Ap1+2), ©1(8) = (sin §) e cos 6,
Acg = Ag1 + 1,

see also [191]. This means that the leading corner singularity is
Ucqn = RM1tlgin Ap,1¢(sin 6?)’\E’1 cos
= (Rsin#)*#1(Rcosf)sin \g ¢
= 237 Flsin AE10,
which has precisely the structure of the leading edge singularity function.

In the case of the mixed boundary value problem with © = 0 for ¢ = 0,w, and
Ou/On = 0 for § = /2 we obtain [191]

™

>\E,1 = ;, @1(@ = sin >\E,i¢7
/\1 = )\E,I(AE,I + 1), @1(9) = (sin@))‘E’l,
AC’,l = AE,la

that means

Uc,y = R sin g ¢(sin 0)*21 = r B2 sin A\p 1 6.

In the case u = 0 for ¢ = 0, and du/On = 0 for p = w and @ = 7/2 the same
results are valid with Ag; = 7/(2w).

Comment 4.3 Regularity of the solution u of the Poisson problem in
a domain with one single edge. The regularity theory for elliptic boundary
value problems in non-smooth domains with corners and edges is well devel-
oped, especially in the framework of weighted Sobolev spaces. Boundary value
problems in domains with non-intersecting edges are treated in [113, 129, 131],
and in polyhedral domains in [66, 130, 154], see also the monograph [116] and
the summary of results in [23, Section 2].
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Let us formulate here a regularity result for domains €2 with one single edge £
with constant internal angle (either 2 is a dihedral angle and f is assumed to
have bounded support, or €2 is a bounded domain with only one closed edge).
The result was originally proved in [129] in more general form. We use here
the formulation of [116, Theorem 26.3] where we have set specifically m = 1,
p=p1 =2

The critical point is hidden in two assumptions.

A1 Let u € V;17*(Q) be a solution of (4.19) with right hand side f € V37%(2)
where 0 — 1 is not a singularity exponent.

This assumption is essential since we investigate the regularity in the scale
Vﬁl’p (Q) of weighted Sobolev spaces. But we have existence and uniqueness
of the solution u of (4.19) in the space V; C V = WH*(Q) which does not
belong to this scale. Note that ¢ can be an arbitrary integer, see [116, Lemma
27.2(ii)]. Spaces with negative ¢ are defined by V;’Z(Q) = (V:;’Q(Q))’ [116,
Subsection 0.8].

The investigation of the regularity is done by applying a Fourier transform to
(4.19) and a further change of variables, see [116, Subsections 22.4 and 26.1].
The resulting operator pencil is denoted by A((,0), ¢ € E, § = £1.

A2 For all ( € E and 0 € {£+1} both kerA((,0) and cokerA((, #) are trivial.

Both conditions, A1 and A2, are satisfied for the Dirichlet problem for the
Poisson equation where ¢ = —1, § = 1 [116, Subsection 28.1], and for mixed
boundary conditions, where ¢ = —1,0, § = 1 [116, Subsection 32.2], see also
[165, Lemma 4].

Theorem 4.6 [116, Theorem 26.3] Let Assumptions A1 and A2 be valid and

assume that [ € Vﬁefg(ﬂ) N V;llfgl(Q) with —\ < By —1 < X where X is the

leading (smallest positive) singularity exponent. Then u € V;jjﬁf(ﬂ) and

s VRS2 Q) S 5 Va2, ()]

The application of this theorem for f € L*(Q) leads to

s Voo, oy DN S 15 Vg, oy DN S IF L2 B> 1=,

max{3; 0} max{g; 0}
(4.63)
in particular
o 2—|a 72
Do V2R L @IS AN, ol <2, B>1-A

(4.64)
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Theorem 4.6 does not give the optimal regularity for derivatives of v in tan-
gential direction. Therefore we state another theorem in the formulation of
[116]. This one was originally proved in [131].

Theorem 4.7 [116, Theorem 30.1(iii)] Let Assumptions A1 and A2 be valid
and assume that f € V;fg(ﬂ) V;;H (Q) with€>0and —A—1< [ —1<A\.
Then Ou/dz3 € Vﬁzljfél (Q) and

Ou z+12 Y
oz, Ve (4 )| S5 Vs, 2 (-

The application of this theorem for f € L*(Q) leads to
ou
V@) S IO S 1P

BE (_>‘a1+)‘)7 or

For the Dirichlet problem we can now apply both theorems recursively. We
change the notation slightly in order to be in accordance with Assumption 4.1.
For f € L?(Q2) we obtain from Theorems 4.6 and 4.7

ou
81’3

B, = max{f+n; 0}, > —1—\. Let now f € V;"*(Q) € L*(Q). We conclude
with Ou/0z3 = 0 on 02 that Ou/0x; is the weak solution of

ou
) B TR (1.65)

u € VyA(Q), € V32 (9), (4.66)

L*(Q Q — =0 0f.
81’3 61'3 < ( ) S 8-773 o
The theorems give now
6“ 2.9 82u 1.2
— e V5 — € V().
eV, G Vi)

Since f € V;"(Q) implies f € VBIS’Q(Q) we get also u € V;S’Z(Q), B3 as in (4.66).
Proceeding that way for f € Vi "?(Q) gives

ou k2 k+1,2
V Q — V Q
axg ( )7 ) 0373 e ( )7

with (3, from (4.66). This is just what we stated in Assumption 4.1.

k
ue V2 (Q), Ou

Br+1



5 Anisotropic finite element approximations
in boundary layers

This chapter deals with singularly perturbed reaction-diffusion and convection-
diffusion-reaction problems. Special anisotropic meshes of Shishkin type are
investigated in order to derive finite element error estimates which are uni-
formly valid with respect to the perturbation parameter.

5.1 The aim of this chapter

In this chapter we consider singularly perturbed problems. We are mainly
interested in a resolution of boundary layers. The main results include the
following.

In Section 5.2 we discuss several approximation strategies for the model prob-
lem

—?Autcu=f inQCR! (d=2,3), u =0 auf 0.

The solution u is characterized for 0 < € < 1 by a boundary layer of width
O(e|lne|). We show that the finite element method both on quasi-uniform
meshes and on meshes with isotropic refinement in the boundary layer does
not lead to error estimates which are quasi-uniform with respect to the per-
turbation parameter ¢ < 1 (Lemmata 5.1 and 5.2). As our favorite variant we
propose to use in the layer anisotropic elements with size hy = h in tangential
direction and hs = ah normal to the boundary. The parameter a describes
the width of the refinement zone. In [5, 6, 14] we proved for a ~ ¢|ln¢| the
uniform error estimate

Ilw—up o < hk€1/2| In a€|k+1/2 + pktt (5.1)

in the energy norm || . |[|q ~ | . ; WH2(Q)] + || . ; L2(Q)||. We note, however,
that in these papers corner/edge singularities were excluded by demanding
certain compatibility conditions on the data. We postpone the proof of (5.1)
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to Section 5.3 but we confirm the result by a numerical test example. With
some remarks (Remarks 5.1, 5.2, 5.3, and 5.4) we refer also to related literature.

The error analysis for the anisotropic mesh refinement strategy is presented in
Section 5.3. Additionally to [5, 6, 14|, we focus on two new points.

1. We incorporate an additional mesh refinement to treat also corner singu-
larities. This is restricted to two dimensions but the techniques should work
also in three dimensions.

2. Results in related literature led to the assumption that for A > & (which is
the interesting case in practice) a numerical layer of width a = O(¢|Inh|) is
more appropriate. Therefore we investigate also this case in Section 5.3.

We mention here that the two cases in Item 2 look similar but they need
different strategies for the proof.

e In the case a = a.e|lne| we get for dist (x,0Q) > a the a-priori estimate
|Du(z)| < e*~1ol for the solution u. That means we can use the standard
interpolation theory for the large elements in the interior of the domain if only
a, is sufficiently large such that |[D*u| is bounded uniformly in e.

e In the case a = a.e|Ilnh| we get for dist (z,00Q) > a the a-priori estimate
|Du(z)| < h*e~l2l. Therefore we must use low derivatives (if possible no
derivative) of u in order to get a bound uniform in e. Fortunately, the powers
of h can be extracted due to the h%-term in the a-priori estimate above.

The final result is
I —unlo < hkel/2 min{|In h|k+1/2; |Ing|FT1} + AR

if @ = a,e min{|Inh|; |lne|} with a suitable constant a, (Corollary 5.1). The
section ends with a discussion of insufficient refinement near the corners.

We mention again that we present the asymptotic estimates in general in terms
of h := max.c7; diame. Since we advocate only strategies where the number
of elements is Ny ~ h™%, the error can easily be expressed in terms of N, or
the number N of unknowns (degrees of freedom).

The reaction-diffusion problem (5.2) was chosen as one of the simplest singu-
larly perturbed problems to motivate the usefulness of anisotropic meshes. In
Section 5.4 we consider a slightly different example as well. In the convection-
diffusion-reaction problem

—eAu+b-Vu+cu=f inQ=(0,1) u=0 on 0,

three types of boundary have to be distinguished. At the inflow boundary
(b-n < 0, n is the outer normal on 9Q) there is no layer. At the outflow
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boundary (b-n > 0) there is an ordinary (or outflow) layer of width O(g|lnel).
Parts of the boundary with b-n = 0 are called characteristic. There will appear
a parabolic layer of width O(e'/?|In¢|) in these regions.

In Subsection 5.4.2 and 5.4.3 we summarize some approximation results for
a pure and a stabilized Galerkin finite element method on anisotropic meshes
(Theorem 5.4). The surprising point is that one can even for the pure Galerkin
method prove uniform convergence (with respect to ¢ < 1) in an £'/2-weighted
WhH2(Q)-norm [73, 186]. However, as reported in [162], practical calculations
with linear and bilinear elements show that these estimates are very sensitive to
the choice of a certain mesh parameter. Such non-robust behaviour reduces the
practical importance of the pure Galerkin method. Therefore we consider also a
stabilized Galerkin method and summarize and reformulate results which were
obtained in [13]. For our proposed choice of the stabilization parameters we
were able to prove, under some assumptions on u, that the finite element error
converges in an energy type norm with the optimal order almost uniformly
with respect to € (Theorem 5.4),

I = unlllos < A*|nel* 2.

Here, we used refinement zones of the width of the boundary layers.

5.2  Discretization techniques for a reaction-diffusion
problem: state of the art

Let us study the reaction-diffusion model problem
Lou:=—*Autcu=f inQCRY u=0 on 0, (5.2)

where ¢ € (0,1] is the diffusion parameter, ¢ and f are sufficiently smooth
functions, ¢ > ¢y > 0, and d = 2,3. We introduce in this section the specific
difficulties of boundary layers and refer to relevant literature. In particular, we
will see that the numerical approximation of functions with boundary layers
leads naturally to anisotropic finite elements.

For d = 2 the boundary value problem (5.2)) describes, for example, a tem-
perature distribution in a thin domain © x (0, z9), 2o < 1, where the temper-
ature can be considered as constant in the zs-direction. Heat transfer across
the boundary parts x3 = 0 and z3 = 2y enters the model by the term cu.
In addition, problem (5.2) appears within a Newton iteration of nonlinear
reaction-diffusion problems,

—?Au+ g(z,u) = f inQ, u=0 on 09,
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Fig. 5.1 Tllustration of boundary layers: solution of Problem (5.4) for different values of .

or in an implicit semi-discretization of a time-dependent partial differential
equation

ou ~

with 7 = £2 being the step size.

In the singularly perturbed case ¢ < 1 the solution of (5.2) is characterized
by a boundary layer of width O(e|lne¢|), see, for example, [96]. This is caused
by the fact that the solution ug of the algebraic limit equation

c(x)up(z) = f(z) in Q (5.3)

in general cannot satisfy the given boundary condition. The effect is illustrated
in Figure 5.1 for the one-dimensional example

2.1

—*u"+u=1 1in (0,1), u(0) =u(1) =0, (5.4)
where the exact solution can be given analytically,

(e~ 1)(ee 1) — (eI~ 1)(eVe 1)
el/s _ e*l/s '

u(z) =
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In higher space dimensions, the boundary layer is of the same nature. The
consequence is that one cannot expect an a-priori estimate of the solution
better than

lu; WEA(Q)| < V278 0> 1. (5.5)

For this estimate we excluded additional effects of higher space dimensions like
corner and edge singularities.

We investigate now error estimates for the finite element solution w; deter-
mined by:

Find Up € Vbh : a(uh,vh) = (f, ’Uh)Q V’Uh - Vbh- (56)

Here, a(u,v) := £*(Vu, Vv)q + (cu,v)q is the bilinear form which defines the
energy norm

vl = (a(v,0))"* ~ elo; W Q)] + [lo; LA(Q)]]. (5.7)

The finite element space Vg, C C(€2) is defined by
Vor :={vn, € Vo : vple € Pre Ve € Tp}. (5.8)

Lemma 5.1 Consider problem (5.2) and assume that the solution u satisfies
the estimate (5.5). Then the finite element error satisfies the error estimate

llu—unllo S Ret/2* (5.9)
when a family of quasi-uniform meshes is used.

Proof Due to the Galerkin orthogonality, the error in the energy norm can
be estimated via

lu —unlle < llu—vnlle Vor € Vor (5.10)

Therefore we need only to bound the interpolation error ||| u — Ipu|||q-
Since the mesh is quasi-uniform we obtain
o =Thulle S elu—Twu WHQ)] + [lu — T LA(Q)

S ehflus WE(Q)] + b us WE2(Q)].
With (5.5) and (5.10) we obtain (5.9). In the case k = 1 the estimate

lu = Thu; LX(Q)|] S hlus WH(Q)]
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(which was used above) does not hold for the Lagrangian interpolation oper-
ator. Instead, one has to use another interpolation operator, for example Cy,
Oy, or Sy, see Chapter 3. [
Due to the factor ¢'/27% in (5.9) we must expect that the convergence order h*
can be observed only for small A, when the boundary layer is resolved. This
can be seen in the test described below, see Table 5.1 in Example 5.1.

Remark 5.1 Schatz and Wahlbin [167] analyzed carefully two- (and one-)
dimensional problems. They derived L?(Q)-, L>®(Q)-, and pointwise error
estimates for quasi-uniform meshes with linear finite elements. Also the case
of rough data is addressed. We cite two estimates which hold uniformly in e.
For convex Q and ¢, f € H/?2*(Q) (in the sense of interpolation spaces) the
estimate

lu — s Q) S min(V, B2 #2)

holds. Moreover, uniform estimates in the sense

Ju—uns LXQ))| S minh, %)

Y

llu —unll < min(h,e)

hold if f € Wo1 ’Q(Q), that means, if f satisfies homogeneous Dirichlet boundary
conditions.

An improvement to the approximation on quasi-uniform meshes is to use lo-
cally refined meshes in the boundary layer Q, := {z € Q : dist (z,09Q) < a},
a~¢llnel.

Lemma 5.2 Let T, contain (isotropic) elements of diameter e'=Y/ 2R h, in the
boundary layer but elements of diameter h outside (where the solution has no
large derivatives). Under the assumption that

lu; Wh2(Qp)| < &Y% 1>1, (5.11)
lu; W\ Q)| < 1, (5.12)

we obtain
lu—up o S A* (5.13)

However, the number of elements increases to O(e'~4t% k)| Ing|h=%) in the
layer (for d =2,3).
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Proof We proceed as in the proof of Lemma 5.1. Using (5.11) and (5.12) we
derive

= Tulla, S (VM) (s W) + s WH2(02)])
< RReRU2(g L2 | 12 ky gk
o —Talloe, S B* (el WH2(Q0\ Q)] + [us W2\ 2,)])
< hE(e+1).

With the projection property (5.10) we conclude (5.13). The number of ele-
ments is obtained by dividing the area/volume of the layer by the area/volume
of the elements in the layer. [

A closer look at the structure of the boundary layer demonstrates that large
derivatives only occur perpendicularly to the boundary and not in the tangen-
tial direction. Hence, anisotropic refinement, with elements of diameter h in
the tangential direction and with thickness of order ¢|Ine|h in the normal di-
rection, is much more efficient in the layer. While using only O(h~?) elements
one can prove, under some assumptions on the solution, that the error behaves

like
llw—unllo S BE(EYV>70 + h) (5.14)

with § > 0 arbitrarily small, see [5, 6, 14]. We will discuss this for the two-
dimensional case extensively in Section 5.3. Before, we will present a numerical
test and some remarks.

The a-priori error analysis is valuable especially in cases when the asymptoti-
cal approximation order can be confirmed by numerical tests with a moderate
number of elements. Therefore we document now a test example which was
computed with the finite element multi-grid package FEMGPM, which is de-
scribed briefly in Comment 6.1 on page 235.

Example 5.1 As a numerical example we took the boundary value problem
from [167, Example 11.3]:

—&?Au+u=0 in Q= (0,1)? u=e "% 4 7™/ on 9N,

A boundary layer appears only at M = {z € Q2 : x; = 0V x5 = 0}. We
introduce a parameter a describing the width of the numerical boundary layer
and use a partition of the domain into four rectangles (0,a)?, (0,a) x (a, 1),
(a,1)x(0,a), and (a, 1)®. The rectangles were uniformly hierarchically refined,
see Figure 5.2. We varied the number of elements N, and computed numerical
solutions with piecewise linear trial functions for different values of ¢ and a
[14]. From these solutions we calculated the energy norm ||u — wy || of the
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Fig. 5.2
Anisotropically refined mesh for the numerical test,
o Na=2
Tab. 5.1 Error norm for a = 0.5. Tab. 5.2 Error norm for a = ¢|log;, ¢|.

Ng | e=10"" =107 ¢=10"° Na| e=101 =102 =107
27 1 0.114 e+0 0.278 e+0 0.282 e+0 27 | 0.747T e—1 0.894 e—2 0.130 e—2
29 1 0570 e—1 0.189 e+0 0.195 e+0 29 | 0.387 e—1 0.518 e—2 0.657 e—3
211 | 0.285 e—1 0.128 e+0 0.136 e+0 211 1 0.196 e—1 0.362 e—2 0.330 e—3
213 1 0.143e—1 0.856 e—1 0.955 e—1 213 1 0.980 e—2 0.298 e—2 0.167 e—3
215 | 0.713 e—2 0.543 e—1 0.674 e—1 215 | 0.490 e—2 0.256 e—2 0.877 e—4

Tab. 5.3 Error norm for a = 2¢|log,, €. Tab. 5.4 Error norm for a = 4¢|log;, £|.

Ng| e=10"t e=10°% e=10° Ng| e=10"! e£=10"°% =105
27 | 0.511e—1 0.134e—1 0.218 e—2 27 10.912e—1 0.257 e—1 0.395 e—2
29 | 0.257T e—1 0.681 e—2 0.112 e—2 29 |1 0.456 e—1 0.134 e—2 0.217 e—2
211 1 0.129 e—1 0.342 e—2 0.568 e—3 211 | 0.228 e—1 0.680 e—2 0.112 e—3
213 1 0.644 e—2 0.171 e—2 0.285 e—3 213 | 0.114 e—1 0.342e—2 0.568 e—3
215 |1 0.322e—2 0.864 e—3 0.143 e—3 215 | 0571 e—2 0.171e—2 0.285 e—3

finite element error by a numerical integration formula which was determined
such that the integration error was independent of N, (but dependent on u(e)
and a). The error is given in Tables 5.1-5.4.

We can draw three conclusions. In Table 5.1 the error is displayed when a
quasi-uniform mesh is used. We see the asymptotic behaviour of the error
in the case of a large value of ¢, but the error is far from this asymptotic
behaviour in case of small €. For a = a.c|log;, | we obtain the expected order
of the approximation error for small £ as well. That means the a-priori error
estimates in (5.9) and (5.14) are confirmed.

Second, The error estimate (5.14) indicates that the error should diminish with
decreasing €. This effect can be seen in Tables 5.2-5.4.

Third, by comparing Tables 5.2-5.4 we see that the performance depends upon
the scaling factor a,. The error analysis demands only a lower bound on this
parameter but obviously it should be chosen carefully. 0]
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We end this section with remarks on related results from other authors, on
interior layers, and on stabilized Galerkin methods.

Remark 5.2 Mesh refinement near the boundary is not new. An obvious
idea to mesh a rectangular/cuboidal domain is to use the cross product of
adapted one-dimensional meshes. This leads naturally to anisotropic elements
in the boundary layer. The main difference between approaches is how they
refine in one dimension. Bakhvalov [32] used a gradually refined mesh which
is optimally adapted to the exponential character of the functions describing
the layer,

q . .
X(l) _ %11’1 —qu/N’ 1 = 0, ,7/0,
a+ B, i=ig+1,...,N,

with two parameters ¢y and ¢ € (0, 1) which determine the remaining constants
a, 5 and dp. Shishkin [139, 173] simplified this mesh and uses piecewise uniform
meshes,

X(i):{a%, iZO,...,N,

a+(1-a)=&, i=N+1,...,2N,

with a parameter a ~ eln V.

Previous results concerning the resolution of boundary layers for the model
problem (5.2) are due to Shishkin [172, 173] in the context of finite difference
methods in two and three dimensions, due to Blatov [47] in the context of
the h-version of the finite element method (bilinear elements), and due to
Melenk/Schwab [135] and Xenophontos [196] for the hp-version of the finite
element method, both in two dimensions only. In [47, 172] the authors used
meshes of Bakhvalov type, and in [173] Shishkin meshes. The error estimates
were derived in the maximum norm [47, 172, 173], see also [139], or in the
energy norm [135, 196].

A critical review of decompositions of the solution, approximations on locally
refined meshes, and error estimates for one- and two-dimensional problems is
given in [162].

Remark 5.3 In the case that ¢ and f are not sufficiently regular, for example
piecewise constant, we find a discrepancy in the properties of the solutions
and ug of (5.2) and (5.3), respectively. While u is at least contained in W12(Q),
this can be violated for ug. It can be interpreted as a smoothing property of
the diffusion term —e2Awu. The result is that « can also have interior layers.
They have similar properties to boundary layers, for example a thickness of
O(e|Ine|). However, the geometry of these layers can be arbitrarily compli-
cated. Therefore,
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1. we have to approximate curved manifolds, and

2. we cannot assume that certain sides of the finite elements are always parallel
to the coordinate axes.

Algorithmic ideas about how to do the approximation have been proposed in
[125], see, for example, Figures 9, 10, and 12 of this paper, and in [176]. A
numerical localization procedure for interior layers is also described in [205]
in the context of compressible (viscous and inviscid) flow problems. All the
computational results are promising.

We remark that it is much easier to approximate a curved interior manifold by
anisotropic elements, than it is to approximate a curved boundary. The reason
for this is that in the latter case only one side of the curved manifold belongs
to the domain €2. The other side should not be covered by the triangulation.

We will not study such problems in this report. But we underline that for the
treatment of them it is necessary to investigate not only elements where the
longest side is parallel to an axis of the coordinate system. (Here we mean a
well chosen coordinate system which is adapted to the boundary or interior
layer.) Therefore we discussed in Chapter 2 the coordinate system condition
quite extensively.

Remark 5.4 In the literature one can find a number of variants to stabilize
the Galerkin finite element method, see for example [31, 79, 105]. The basic
idea is to modify the bilinear and linear forms to become

a(u,v) := Z(LEU,U—}—&LU)@,

e€Th

(f,v) = D (fiv+dLo),
e€Th
where L = L. (Galerkin/Least-squares method [105]) or L = —L.* (unusual
stabilized finite element method [31]). For the self-adjoint differential operator
L., asin (5.2), the optimization (with respect to minimizing the energy norm)
of the choice of the set of numerical diffusion parameters ¢, > 0 leads to §, = 0
for all e, that is the pure Galerkin method (Galerkin orthogonality). The result
may be different for other norms.

In the case of a constant coefficient ¢ Franca and Farhat [79] choose L = —L.*
and §, = [diam (e)]?/[c(diam (e))? + €?] and obtain a diminution of the error
in the maximum norm. This, however, was demonstrated only in a compu-
tational example (“picture norm”), but not analytically. The explanation is
that for piecewise linear trial functions this method is equivalent to a pure
Galerkin method with an enriched trial space (piecewise linears plus cubic
element bubble functions) [79].
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The approximation error of this method was analyzed in [14] for higher order
trial functions and with respect to anisotropic meshes. It turned out that there
is a range of values from which J. can be chosen such that the error estimate
(5.14) is preserved. This freedom can then be used to control the error in some
other norm. But this was not pursued further.

5.3  Boundary layers and corner singularities in a reac-
tion-diffusion problem

5.3.1 Properties of the exact solution

In the previous section we summarized results on the numerical treatment of
the reaction-diffusion model problem

Lou:=—e’Au+cu=f inQ, u=0 on 09, (5.15)
0<e<kl,ec=c(z)>cy>0).

In this section we will continue this discussion with two additional points.
First, we discuss the analytical properties of u in general polygonal domains,
and we treat the arising corner singularities. Second, we investigate two
slightly different versions of anisotropic mesh refinement. The difference is in
the width a of the refinement layer, see the illustration in Figure 5.2 on page
184: the original Shishkin meshes [139, 173] are characterized by a ~ ¢|Inh|
whereas for the Shishkin type meshes in [14] the relation a ~ ¢|lne| was as-
sumed.

The plan is to introduce some notation and to discuss the analytical properties
of u in this subsection. In the other two subsections we derive estimates for
the interpolation error and the finite element error, respectively.

We begin with a parameter dependent partition of ) as illustrated in Figure
5.3. The subdomains are obtained by introducing lines with a distance a (this is
the parameter), e < a < 1, to the boundary and eventually, near corners with
large angles, some more lines perpendicularly to them. The interior domain
is denoted by (2;, the union of the small subdomains €2, ; near the corners
C; by Q, = szl (25 ;, and the union if boundary strips by Q3 := U;Zl Q3.
Furthermore, we define by €25 := Uj:l (25 ; the union of corner regions {2, ; :=
{z € Q:dist (z,C}) < e} and note that Q, ; C Qy ;.

The parameter a will later be chosen as the thickness of the refinement layer
(a = ase|lne| or a = min{ag; a.c|Inh|} with suitably chosen constants a,
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Fig. 5.3 Ilustration of the partition of €2 for a reaction-diffusion problem.

and aqg) but here it is essential that we can define in Q3 a boundary fitted
coordinate system (x1,zs) with xo = dist (x,09). Derivatives D* are to be
understood with respect to this coordinate system. Points in 2; U 25 can be
considered in any Cartesian coordinate system. Moreover, for points in ) we
define by r the distance to the set of corners {C;}7_,. Note that we have in
particular r = dist (z, C;) for z € Qs ;.

Assumption 5.1 Let u be the solution of (5.15) where f and c are sufficiently
smooth functions, 0 < e < 1, and ¢ > ¢y > 0. For given k,n e N, n > k+1,
the solution u can be decomposed into a smooth term us, a boundary layer term
uy, a corner singularity u., and a remainder u,, u = ug + up + U + u.. There
1s a constant g > 0 such that the terms satisfy the following estimates for all
aeN?:|a| <k+1:

D%ug| < 1 inQ, 5.16
| N
a gm2e0e2/e 4 c—lalg=wor/ejp Qg
|D ub| 5 { 67|a\€770dist (z,00) /e in Q \ Qg, (517)
e XipAi—lelg—or/e m Q2_,j when \; < k+1,
D < 5*\a|| In(r/e)| e~/ in Qz_,j when \j =k + 1, (5.18)
~ 0 in 5 when A\; >k + 1,

0 in Q\ Qg
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and
Jur; WE(Q)|| S e™7F, <k +3, (5.19)

where \; = m/w; and w; is the interior angle at the corner C;.

We underline that the constants hidden in < and ~ are always independent of
¢ (and h) but they can depend on . Note further that the term e~l*le=0r/¢
in (5.17) contains for z € Q3 ; also the influence of layer terms with respect to
other boundary sides and of so-called corner layers. Since the boundary layer
has the same structure on the whole boundary 02 we can use the compact
notation uy,. This is not any longer possible if convection-diffusion-reaction
problems are considered, see the more involved notation in Assumption 5.2. We
remark also that the decomposition of u is usually made much more detailed
than here. In particular, the smaller we want to make the remainder u,,
this means, the larger we want to make n, the more terms of the detailed
decomposition we have to include into ug, uy,, and wu.. This is possible if the
data f and c are sufficiently smooth. It is also clear that a large k, this means
the existence of high derivatives of ug, uy, u., and u,, requires more smoothness
of the data than a small k.

Remark 5.5 If we replaced ay in (5.17) by |a| we could prove Assumption
5.1; the estimates could then be extracted from [110, 111].

This is not a convincing result, since we want to use the original form of
Assumption 5.1. But for the sake of completeness we will prove the statement
of the remark.

Proof Set ug = ijl S0 €tuj,. From [110, (3.6)] we obtain

ujo = fiole, win = fale, uie = (fji+ Aujig)/e, i=2,3,...,
where f?; is defined in [110, (4.4)] by
Xjf: le = 0,
0.0 ifi=1,35,...,
=30 o2V Vo + w0 Ay if i =2,46,..
where x; is a smooth cut-off function. From |D*f| < 1 we get |[D%ujom| S
ca(mﬂ) <1, m=0,1,.... Since ugy,+1 = 0 we obtain (5.16).

In w, we collect the boundary layer terms f/j,gn, W]”gn, and Z; o, v, as well as

that terms of Ué:}),,mn,M that are not contained in (5.18). With [110, (3.26)
and (3.38)] we obtain the estimate for z;;:

D] S e lelemwr/e S gl

e 0 dist (2,002) /e
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For the other terms let us distinguish two cases, z € Q\ Q5 and z € Q5.

In the first case we have

J 2n J 2n+M
Up = Z Zslgj(r/e) (vj,i + wj,i) + Z Z 6123',1',
j=1 i=0 j=1 =0

where (; is a smooth cut-off function with ((z) =0 for z < 1/2 and ((z) =1
for z > 1, see [110, page 132]. From [110, (3.13) and (3.16)] we obtain for
T e Qg

|D%v; ;| < e7lolemwe2/e | Dy | < e lelem0m2/e (5.20)
since 7© = rf/e ~ r(sinf)/e = z2/c and

Dow| S Y DR D] S Y e re  clalemore
181=lo] 181=la

for w = v;;. (Even if the transformation (r,0) — (z1, z2) is done more carefully
the author was not able to replace |a| by ay in (5.20): since f}, = 0, see [110,

page 141], we have v = Ce V@9/¢ and

~ | qoc e V™ /(9 cos 6 + sin 0)| ~ g le0e2/e

D

for # ~ 1.) A similar argument can be applied for w;;. For z ¢ (3 it remains
to show that r6 = dist (z,02). Indeed, if § > 1 this is obvious, and for § < 1
we find that 70 ~ rsinf which is the distance to the boundary edge with
6 =0.

Consider now the case z € ,. Then we can use [110, Theorem 6.2] to prove
(5.17), (5.18), in that case. Note that u. contains only the singular terms of

asy.j.on. v and they vanish outside Q, .
Finally, [110, Theorem 6.1] yields (5.19) where n and ¢ have a different meaning

here and in [110].

We remark that there is a revised version [111] of [110] where instead of polar
coordinates (r,#) an in general non-orthogonal coordinate system (e, y) is used
to describe the terms v;; and w;;. With this additional material one can prove
Assumption 5.1 for w = 7/2 and w = 37/2 but it is not clear how to do this
for general w. [

Writing a» in (5.17), however, makes sense since it is well known that layer
terms have a behaviour as e~70dist (z:.09/¢  The difficulty with Kellogg’s result
is that he used polar coordinates (r,0) centered at the vertices of © which
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seems to be not suited in regions with ¢ < < 1, ¢ < 6 S 1. The problems
remain also in the revised version [111] of [110]. In the former paper [96],
Han and Kellogg treated the case when €2 is the unit square. They derived a
slightly different splitting with boundary layer terms uy, in Cartesian coordi-
nates and with an estimate as given by (5.17). But in that paper, it was not
obtained that the corner singularities (5.18) restrict to an e-neighbourhood
of C;. Nevertheless, Assumption 5.1 seems to be correct, a proof will appear
elsewhere [67].

5.3.2 Interpolation error estimates on locally refined meshes

For applying the finite element method, the inner domain §2; is meshed in
general (see Remark 5.6 for the exception) using O(h~?) isotropic triangles or
quadrilaterals e with mesh size diame ~ h. The boundary layer strips {23 ;,
j =1,...,J, are subdivided into O(h~!) x O(h~!) trapezoids of comparable
size. If desired each trapezoid can be divided into two triangles. Thus we get

hl,e ~ h and hg’e ~ ah in Q3’j.

The subdomains Q,;, j = 1,...,J, are split into O(h~2) (possibly isotropic)
elements satisfying the maximal angle condition. If A; > k + 1 (recall that k
corresponds to the degree of the polynomial trial functions) then all elements
have the same size, otherwise we demand

diame ~ ehl/m if C; €€,
diame ~ eh(r/e)t"# ifeCQyy, 0<dist(Cje) Se, (5.21)
diame < ah if e C Qy;, € S dist (Cy,e).

The parameters j; are chosen such that
Ajo .
py < ? if >‘j < k, Ui = 1 if )‘j > k. (522)

We explain the construction near corners by the example of an isotropic trian-
gle with edges of length O(a) and one vertex in C;. A subtriangle with edges
of length O(e) and one vertex in C; (shaded in Figure 5.4) can be covered by
a refined mesh as explained in Section 4.2. The remaining quadrilateral can
be divided into O(h™!) x O(h~!) quadrilateral elements which can (but do not
have to) be split into two triangles each. If the quadrilaterals are obtained by
a uniform splitting we get elements with an aspect ratio a/e. This is allowed
but it can be avoided by some transition layer where the element size eh is
doubled until ah is reached.
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~ ah

~ Ehl/p‘j ~ Eh

Fig. 5.4 Tllustration of the mesh refinement near corners.

Remark 5.6 For compatibility reasons, elements e with diame ~ h and g, ~
ah must be used in regions €, ; C €2; close to corners C; with large interior
angles. Observe that these regions are small, measy{}; ; ~ ah.

The finite element space Vp, C C(£2) is defined again by (5.8). In the remaining
part of this subsection we derive interpolation error estimates for u on the
family of meshes just described. We distinguish two different choices of the
parameter a.

Lemma 5.3 Let u. satisfy (5.18), and let Ty, be as described above. Then the
interpolation error can be estimated by

lue — Tpue; Wm’2(Q)| < sl_mth_M, m=0,]1,
if
)\j ‘|‘ 1 —m
Wi < Goiom TNER g (5.23)
pi = 1 for \; >k,

Moreover, the estimate
lue — Tyue; L=(Q)|] < A

holds if u; satisfies

A\
uj<k4f1 for\i <k+1, j=1,...,J. (5.24)
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The parameter k corresponds to the degree of the polynomials, see (5.8) and
(1.14).

In the case € ~ 1 the result is classical, see [28], [150, pages 274f.] and [158]
for k = 1, and [81] for general k. However, in these references the construction
of the mesh is more restrictive than here. Note that (5.22) is the stronger of
the conditions (for m = 0 and m = 1) mentioned in the lemma.

Proof We estimate the error in , ; with arbitrary j € {1,...,J} and dis-
tinguish two cases. Note that we can assume that A\; < k + 1 since otherwise
u. = 0 in QQ_, i

First, let C; € e. By (5.18) and (5.21) we obtain with ||Iyuc; L®(e)|| <
||ue; L= (e)|| that

lue = Tnue; L®(e)|| S [lue; LX(e)|| S e (eht/Hi) ~ pAi/Hi < Rk
(5.25)

for pu; from (5.24). By analogy we get
lue — Tnue; L¥(e)l| S (measse) 2 |Juc; L=(e) |
< 5—>\j(5h1/w)/\j+1 ~ ehPit D/ < pRAL
for p; < min{(A\; + 1)/(k + 1); 1}. For the estimate of the derivative of

the interpolation error we have to modify this proof slightly since we cannot
assume that u. € W1 (e). But we have u. € W1?(e). By integration we get

diame
lue; Wh2(e)|? < e / rPi=2e dr < e (diam e)®N ~ hPNi/k
0

and hence by using the inverse inequality and (5.25)
ue — Tpue; Wh2(e)|
< ue; Wh2(e)| + (diam e) ~* (measqe) 2| Thue; L (e) ]|
S /M SRk (5.26)
for p; < min{\;/k; 1}. Note that we have to add a logarithmic term for

=1

Lo ) . diame 712

luc; WH(e)|” < e In —

0 9

e [CUEI

. 1 diam e
2 2 4],
< hYHi(lnh)?,

but for p; < 1/k the result remains the same.

rdr
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Let now r. := dist (e, C;) > 0. In this case we can use the interpolation error
estimates. We get with (5.21) and for m = 0,1

Jue — Tnuc; W™ (e)

< (diam e)2FHm)| g L2 ()2
< [eh(refe)t ] PhFLm) =2 /r2(>\jk1)
< eQWﬂkH_m)_Mh2(k+1_m)/r2[(1—u1)(k+1—m)+kj—k—1]

~ 62[,u,j(k+1m))\j}hZ(kJrlm)/TQ[)\jm,u,j(k:+1m)]

since r. < r in e. Hence

D Jue = Thue; W™ (e)
eCQ;,j
Cj¢e

€
< 62[p.j(k+1m))\j}h2(k+1m)/ T2[)\jfm7,u.j(k+lfm)]+1 dr
0

~ 82[,u.j (k+1—m)—A;] h2(k+17m) Aj—m—pj(k+1—m)]+2

el
~  g2(=m)p2(k+1-m) (5.27)
if \; —m — pj(k+1—m) > —1 which follows from (5.23). For \; = k+1
we have to include the logarithmic term as above but the result remains the
same. The L*°-estimate is derived via
e — Thue; L2 (e)|| < (diame)* ™ ue; WFHL(e)|
5 [Eh(re/g)lfuj]kJrlEf)\]—r)\jfkfl

e
i (k+1)=Xj 1 k41, Xj—pj (k+1) k+1
ghi ThET el < h

since A\; — pj(k+1)>0and r. Se.

Y

Together, the estimates (5.26)—(5.27) give the desired result since u. = 0 in
Q\Q,. |

Lemma 5.4 Let w, satisfy (5.17) and let T, be as described above with a =
a.e|lne|, a, > (k+ 1)/v. Then the interpolation error estimates

lup — Lyup; WHQ)| < e¥/27™ | Ing|FH2RE, m=0,1, (5.28)
lup — Tyup; L2(Q)| S |Inel*H R4 (5.29)
hold.

Proof In Q; we have |D%uy| < e~l2lem0a-lInel — ck+1=lel Hence the desired
estimates are satisfied when restricted to €.
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In Qy we have |D%uy,| < e 71 for |a] = k + 1. Hence we get for m =0, 1

lup — Lnup; W™2H(Qy)| < (measy Q)2 (ah)® uy; WHEH™(Qy)]
5 ak+1hk€7k:fm ~ 817m| ln€|k+1hk’
lup = Tyup; L ()| S (ah) ™ fup; WEH(Qy))
5 | 1n8|k+lhk+1.
Finally, in Q3 we have |D%uy| < 792 4 g7lelemmwalInel < c=e2 - By ysing

Theorem 2.1 or 2.8 we get
[Jup, — Tpun; L*(Qs)
< (meas;Q3)"? D b (ah)®?|| Dup; L(Qs)]|

|a|=k
< (measyQ3)Y/? Z ht (ah)*?e™*?
|a|=k
~ (measyQs3)'/2R* Z | In g]*?
|a|=k

~ hk€1/2| 1n€|k+1/2
|Ub — Ihub; W1’2(93)|

S (measyQ3)2 > " B (ah)*2 | Dup; W (Q3)]

|a|=k
< (mea52Q3)1/2hk Z a®2gmo2!
|a|=k

~ hk€_1/2| 1Il€|k+1/2
[, — Tnun; L(S2s)]|
S Y h(ah)®|[Dup; Lo(Qs)

~J

|o|=k+1
< hk+1| 1Il€|k+1.

~J

Summing up these estimates we get the assertion. [

Lemma 5.5 Let w, satisfy assumption (5.17) and let Ty, be as described above
with a = min{aq; a.&|Inhl|}, a. > (k+ 1)/, aq suitably chosen. Then the
interpolation error estimates

lup — Tnun; L2Q)| S A" (A +e!*[Inh[**Y), (5.30)
lup — Lyup; WH2(Q)| < e 20k In h|FH, (5.31)
lup = Thun; L=(Q) S A Inh*, (5.32)

hold.
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Some ideas for the following proof were taken from [73].

Proof We prove the lemma first for the case a = a.e|Inh|. In Q; we have
|D%up,(z)] S eleleodist@IN/e - Gince [ e 2072/ dgy ~ g 209/° ~ gp?k )
we obtain

||D°‘ub; LZ(QI)H 5 8—|a\+1/2hk+1’

ID%uy; ()] S e 1ML,
Consequently, we derive by using the triangle inequality

lup = Tnun; L) || S (meassS1)Y2|luy; L2(0)]| S RHH

Jup, — Tpup; WH2(Q0)] S Jups WH2(Q0)] + A7 | Tyun; L2(Q0) |

< 671/2hk+1 + hk: < 871/2hk’

lup = Tyup; L) S fluw; L)l S A

The W'2-norm estimate has to modified slightly in the exceptional subregions

24 ; close to corners C; with large interior angles, see the remark at the end
of the description of the mesh. With g, ~ ah and measy(?; ; ~ ah we obtain

ub — Lyup; W) S Juw; WH2(Qu,)| + (ah) ™ [Thuw; L2 () |

e V2R 4 (ah) 7Y (ah) V2R
8_1/2hk

AR AN

that means, the result above is valid.
In Q, we have |D%uy| < e *71 for |a| = k + 1 and we get by analogy to the
proof of Lemma 5.4
|up, — Tyup; W2 ()]
[[un — Tnup; L7 ()|

glfmhk| In h|k+1’

N
< RFInh|M

In 23 we evaluate the terms separately. Let u, =: uy + us with
|D%uy| < g2 M022/e N
|Dau2| 5 €—|a\€—’yor/£ 5 6—\a|e—'yoa*|lnh| 5 6_‘a|hk+l.

The first term can be treated as uy, in the proof of Lemma 5.4. We get
lur — Tyuy; W™2(Q3)] < hFel/27™|In p|FH/2
||u1 - Ihul; LOO(Q?’)H < hk+1| 1nh|k+1.

o

The second term can be bounded as uy, in €2;. One has only to mention that
the inverse inequality in the TW2-estimate leads to a factor (ah)™! < (eh)~!
instead of h='. This, however, does not influence the result since (meas;Q3)'/?
produces another a'/2. Summing up the estimates we get the assertion for
a = a.e|Inhl.
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Tab. 5.5 Example 5.1: Scaled error norm ||u — up, [|o/(£/?|logy €|h) for a = 2¢|logy, €|

Al |le=10" =103 e£=10"°
4 0.648 0.564 0.552
8 0.650 0.574 0.566
16 0.653 0.576 0.574
32 0.653 0.576 0.576
64 0.653 0.583 0.578

In the remaining case a = aq # a(e) the mesh is quasi-uniform. We get

i, — Tyun; W™ (Q)] S hF|uy; WH2(Q)] < e!/2Rmpk,
||Ub_IhUb;LOO(Q2)|| S; hk+1|ub;Wk+l,oo(Q)| SJ 87k:71hk+1.

(The factor £'/2 is obtained by integration of (5.17).) With ¢ < aq/(a,|In h|) ~
|In k|~ we obtain the desired result. |

Remark 5.7 We mention that the quality of the interpolation error estimates
for w, can be improved. First, the L%-estimate can be made of order A**! in
both lemmata but this is not exploited further.

Second, it is possible to diminish the exponent of the logarithmic term in
(5.28) from k + 1/2 to k, see the preprint version of [14], but this refined
proof does not extend to three dimensions when k£ = 1. Therefore we do
not pursue this further. We conclude from a computational argument that
the result is optimal with this modification. Table 5.5 displays the scaled error
norm ||| u—up |||/ (€'/?|log,, €|h) for calculations of Example 5.1 with different
values of h and €. It becomes constant for decreasing € and h.

Theorem 5.1 Let u satisfy Assumption 5.1 and consider T, as described
above with p satisfying (5.22). For a = a.e|lne|, a. > (k+ 1)/v, we ob-
tain
lu —Thu; LAH(Q)| < e/?InelFH/2pk 4 phHL

lu — Lau; WH(Q)| < eV Ine|F1/2pk

lu —Thu; L°(Q)|| < |Ing|/FTpktt
For a = min{aq; a.c|lnh|}, a. > (k+1)/7v0, aq suitably chosen, we get

lu = Thu; Q)] S R*(h+ e[ Inh[*),

lu — Ty, WH(Q)| < e V2RF|In h|FHL,

Ju— Ty L@ S A In b,
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Proof For u;, and u. use Lemmata 5.3-5.5, for us and u, use that
|(Us + Ur) - Ih(us + Ur); Wm’q(Q)|

< R ug A g WETH(Q)) (5.33)
RFH1=m [(meas,Q) /2 + £2] if ¢ = 2

<

~ { pEHL=m 1 4 1] if ¢ = oc. (5.:34)

In order to bound u, we take n > k 4+ 3 in Assumption 5.1. In the case
q = oo we use apply the embedding W*32(Q) — WktL>(Q) which gives
[t WHE Q)] S [Jug; WH2(Q)]] S 1. u

5.3.3 Finite element error estimates

We conclude now the error estimate in the energy norm (5.7) for the finite
element solution u; determined by (5.6).

Theorem 5.2 Let u satisfy Assumption 5.1 and let uy be the finite element
solution on a family of meshes as described in Subsection 5.3.2 where u satisfies
(5.22). For a = a.e|lnel|, a, > (k+ 1)/v, we obtain

llu—unlla S h* (% Inel**V/? + h), (5.35)
whereas for a = min{agq; a.c|Inhl|}, a. > (k + 1)/v0, the estimate

Il — un |la < RF(EV? InhFTL + h), (5.36)
holds.

Proof Use Theorem 5.1 and the projection property of the finite element
method with respect to the energy norm. [ |

Remark 5.8 We proved error estimates for the Galerkin solution on two types
of anisotropically refined finite element meshes. Let us compare both ap-
proaches. In Shishkin type meshes we use a = a.¢|lne|, a. > (k+1)/7v. That
means that the refined mesh covers the layer. Indeed, we have D7) 022/s <
ek+1=J in ;. With Shishkin meshes, @ = min{agq; a.c|Inh|}, we resolve only
part of the layer as long as h > ¢. Is this “more economical” [186]7 We obtain
with N? elements

N7k 2| Ing|k+1/2 4 N=(k+1)if g = g,e|In €|,

— <
Il =wnllla = { N2 In N 4 N+ if g = a,e|In N,
(5.37)
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If the constants in these two estimates (hidden in <) are equal (which is not
clear) then the error is smaller for Shishkin meshes.

The difference in (5.37) is much more essential in convection-diffusion-reaction
problems, where the term £'/2 does not appear in estimates like (5.37), see
Section 5.4. In this case we get even lim. g ||| u — up [||o = oo for fixed h and
Shishkin type meshes.

We would like to propose another definition for a, namely
a = a,emin{|Inhl; |Ine|}, (5.38)
resulting in a slightly sharper estimate than both (5.35) and (5.36).

Corollary 5.1 Let u satisfy Assumption 5.1 and let uy, be the finite element
solution of problem (5.15) on a family of meshes as described above where
satisfies (5.22). For a as in (5.38) we obtain

Ilw—upla S hkel/2 min{|In h|k+1/2; |In 5|k+1} + hFHL

Remark 5.9 As we have seen in Sections 2.3, 2.5, and 2.6, the validity of
the local interpolation error estimates for anisotropic finite elements depends
critically on the dimension of the domain. For some cases of the parameters
k, m, and g, more regularity has to be assumed in three dimensions. But in
the proofs of Lemmata 5.4 and 5.5 we used only that w, € Wk+1:2°(Q;) such
that the anisotropic error estimates hold in three dimensions as well. However,
estimate (5.33) in the proof of Theorem 5.1 is not valid in the single instance
d=3,k=1 m =1, g =2. The way out is to use additional smoothness
ug + u, € WF22(Q) and an interpolation error estimate as in the second part
of Corollary 2.2. With these arguments we see that the results of Lemmata
5.4 and 5.5 can be extended to three dimensions provided that an assumption
like 5.1 is given.

The critical part in the investigation of the three-dimensional problem is that
the singular part u. contains not only corner singularities but also edge singu-
larities. They have to be approximated, for example, by refined meshes similar
to them discussed in Section 4.4.

An analysis for the case = (0,1)® and without corner and edge singularities
(as it is possible under some compatibility conditions on the data) can be
found in [14].

Let us discuss the implications of an insufficient treatment of the corner sin-
gularity u..



200 5 Anisotropic finite element approximations in boundary layers

Example 5.2 Consider an integer j € {1,...,J} such that \; < k. Let u,
satisfy (5.18). Assume that 7}, is constructed as described at the beginning
of Subsection 5.3.2, with the exception that 75 is quasi-uniform in €, ;. The
element size in this subdomain is denoted by h.

Lemma 5.6 In the situation of Example 5.2 the interpolation error can be
estimated by

||uc - Ihuc; L2(Q2_7])|| S h(s—lh)/\j—(s’
ue — Thue WH(Qy,)] S (e th)M
e — Tnue; L2 S (e AN,

Before we prove the lemma we formulate a corollary which follows due to the
projection property of the finite element method.

Corollary 5.2 In the situation of Example 5.2 the finite element error can be
estimated by

llu—unlle S (e+h)(ER)N
1 if uj =1, that means h ~ €h,
< ehd 0.8 |InelN 0 if h ~ah and a ~ | Ine|,
|Inh|}=% if h ~ah and a ~ €| Inhl.

Proof (Lemma 5.6) By analogy to the proof of Lemma 5.3 we obtain for
elements e with C; € € (that means r, := dist (e, C;) = 0) the estimates

Jue — Tnue; L=(e) | S lue; L®(e)|| S e MhY,
|ue — Ipue; L2(e)|| (meaSQe)1/2||uc; L>(e)| < =M ptN
ue — Tpue; Wh2(e)| e MM,

For elements with r. > 0 we use that » < 7. S in e and A; < k to obtain for
m = 0,1 and arbitrary 6 € (0,k — )

|Uc o Ihuc; Wm’2(€)|2 < h2(k+17m)|uc; Wk+1,2(e)|2

R2(1-m-X;—8) p,2(k—Xj+8) .~ 2X /rz(,\jkl)

e

S
N

AN 2

AN

h2(1—m+>\j—5)€—2/\j /TQ(—1+5)

e

and similarly

||Uc o Ihuc;L‘x’(e)HQ 5 h2k|uc; Wk:+1,2(e)|2 SJ h2()\j75)872>\j /7‘2(1+5).

e
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Summing up these estimates we get

lue — Tnue; L (7)1
< a2 P2EA) | 20 2142 0) /‘E P21 g,
0
< 62(7)\j+5)h2(1+)\j75)
|ue — Tnue; W1’2(§22_’]-)|2
€
S22 1 o=2A 20 —0) / P21+ g
0
< 2N+0) p205).

lue = Tnue; L%(Q,) I

&€
< max {52>\jh2/\j; 525h2(>\15)/ p2(-1+0)+1 dr}

0

AN

< 2N ) 20 —0)

~J

We conjecture that § = 0 can be achieved by a more involved proof, see
[150, page 275] for a proof with a more special finite element mesh. In that
monograph we find also an example [150, page 265] which can be modified
slightly to show that these estimates are sharp in the following sense.

Lemma 5.7 For v = ¢ *r*sin\¢ (r := dist (z,C;)) we get in general no
better result than

1 if pj =1, that means h ~ €h,
min [|v— vy |la 2 eh*-<{ |Inel* if h~ah and a ~ e|lne|,
oneVon |Inh* if h ~ah and a ~ €| Inh|,
(5.39)

if the mesh is chosen as described in Example 5.2.

Proof Without loss of generality assume that C; = (0,0). Let e be a triangle
with the vertices (0,0), (b,0) on the boundary of Q2 and (0,b) in the interior.
Since any v, € Vj, satisfies the boundary condition we get via v,(0,0) =
va(b,0) = 0 the relation D9y, = 0. Consequently, we obtain by a direct
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calculation

v — v W (e) |

/2 pb/\V2
> ||D(1’O)U;L2(e)||22/ / (D(l’o)v)2rdrd¢
0 0

/2 pb/V2
= / / (e Ar* Lsin(\ — 1)@)?rdrde
0 0

w/2
= 2220 (b V2P / sin2(A — 1)¢ dg ~ (==15)2.
0
Consequently,
2 if h~ ch
; _ a7 L2 > TARA )
B, o= o WHHE)| 2 7R {(ah/s)A itheah 040
|

This function v can also be considered in our example since the leading singu-

larity is e *r*sin A@ [110]. Such a term is in general contained in the solution

when the data do not satisfy certain compatibility conditions. Consequently,
we cannot expect a better approximation order for the finite element solution
than that given in (5.39) when no mesh grading near the corners is applied.

5.4 A convection-diffusion-reaction problem

5.4.1 Statement of the problem

This section is concerned with the finite element solution of the linear(ized)
diffusion-convection-reaction model problem

Lou:=—Au+b-Vu+cu=f inQ, u=0 ond, (5.41)

where 2 C R? is a bounded polygonal domain, ¢ € (0,1] is the perturbation
parameter, and b, ¢, and f are sufficiently smooth functions satisfying

V-b=0, ¢>0 almosteverywhere in €. (5.42)
Problem (5.41) is of singularly perturbed type when
e~ Mb(x)] > 1 and/or e '|c(x)| > 1. (5.43)

The solution u has in general sharp boundary or interior layers, as introduced
in Sections 5.2 and 5.3 for the special case b = 0 but with a much greater
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mmmm  ordinary layer = parabolic layer

Fig. 5.5 Illustration of the location of ordinary and parabolic boundary layers.

variety, see Example 5.3 for an introduction. The resolution of such layers is
again a typical application of anisotropic meshes.

Example 5.3 The location of boundary layers is well known. To get an ex-
ample we consider problem (5.41) in the unit square 2 = (0,1). Assume that
b = (cosa,sina)’. In the case a € (0,7/2) there occur only ordinary (or
outflow) boundary layers of thickness O(e|lne|) at the two sides z; = 1 and
x5 = 1. For a = 0 parabolic (or characteristic) layers of thickness O(c'/?|In¢|)
are located at o = 0 and xo = 1. At the outflow part of the boundary layer,
x1 = 1, again an ordinary boundary layer occurs. In all cases there is no layer
at the inflow part of the boundary, see also Figure 5.5. In the case b = 0
there is a layer along the whole boundary 02, see Sections 5.2 and 5.3. U

The investigation of properties of the analytical solution and of methods for
the numerical solution of (5.41) are topics of extensive current research. A
good review of the state of the art in January 1997 is given in [162]. So we
restrict pointers to related literature to a minimum and present only some
results for the finite element method on anisotropic meshes. But before we
can do that we have to introduce some notation and to discuss assumptions
on the analytical solution.

Denote by I'_, ', , and I'y the inflow, outflow and characteristic parts of the
boundary I' = 012; the index denotes the sign of b - n where n is the outward
unit normal on I'. Note that corners cannot be classified by this definition, so
they do not belong to I' , I',, or I'y. For simplicity we assume that the type
of the boundary does not change at corners with interior angle greater than
or equal to m. We discuss the additional difficulties with concave corners in
Remark 5.12 at the end of this section.
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Fig. 5.6 Illustration of the partition for a convection dominated problem.

The parameter dependent partition of €2 is obtained by introducing lines with a
distance a, to I'y and ag to Ty, and eventually (near corners with large angles)
some more lines perpendicularly to the parallel lines, see the illustration in Fig-
ure 5.6. The parameters a; and ag will later be chosen as the thickness of the
refinement layer (a,. ~ ¢|Ing|, ap ~ €/?|In¢|, or ay. ~ |Inh|, ag ~ £/3|In h).
Again, the interior domain is denoted by €2;, the union of the small subdo-
mains )y ; near corners C; by Qy := |J k (2 j, and the union of all boundary
strips (23 ; near I'y and I'y by Q3 = Uj (23;. Note that there are no such

) . 3
subdomains near I'_. Moreover, we introduce Q. = Uiy U}.00, .Ar, 20 Qi
= “U3dd, g5 ?
3
and Qo := Ui, Uj:ani,]-mro;ﬁ@ Qi

In Q3 we can define a boundary fitted Cartesian coordinate system (z1, z2) with
zo = dist (z,T"). Particular (in general non-orthogonal) coordinate systems are
also considered near (r < e'/2|In¢|) corners C; € T NT. Then C; is assumed
to be the origin, 'y N 9€)y ; is part of the zy-axis, and I'g N 0<%y ; is part of the
ro-axis. Derivatives (D“u)(x) for z in these subdomains are to be understood
with respect to these coordinate systems. Points in the remaining subdomains
can be considered in any Cartesian coordinate system. Finally, we define by r
the distance to the set of corners {C;}7_;.
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Assumption 5.2 Let u be the solution of problem (5.41) where b, ¢, and f
are sufficiently smooth functions satisfying (5.42) and certain compatibility
conditions. Define index sets

J++ = {] : (6@2’]- N F) C_F—+}, J+ = {] : (8034' N F) C F+},
JOO = {_] . (OQQJQF)EFO}, J() = {_] . (893,]‘ N F) C Fo},
Joy = {j : Cj el'y, N Fo)}
Then the solution u can be split into a smooth term ug, boundary layer terms
upj, J € J1 Uy, and corner layer terms uc;, j € Joqp U Joo U Jog,

U= us+ E Up,j + E: Ue,j

J€J+UJg J€J++UJooUJo+
such that
|D%ug| <1 in Q,
( 67&267'7@%2/6 ln Q3,j, jG J+,
—la] ,—odist (z,"'NQ3 ;) /e in O\ Qa . i
g~ %e m eJ
IDuy;| <0 in Q\ Qa5 j € Ty,
L) gmee/2e 02/ VE in Q3;, j € J,
L g—lal/2p—odist (2,0'NQs,5)/v/e iTLQ\Q3,j, j e Jo,
( 6—\a|€—'yodist (z,Cj) /e ij c J++,
N < g~ lal/2 g—odist (2,C5)/v/E if 5 € Joo,
|D ,U/Cyj| ~ €—a1/2€—’yoz1/\/gg—aze—’yo.rg/&‘ ij c JO+7 r < 81/2| 1Il€|,
L 87‘a|/26770di5t (:t,C])/\/E /Lf‘] E J0+, r Z 61/2| ln €|’

with some constant vy > 0.

This assumption covers the typical behaviour of the solution within (ordinary
and parabolic) boundary layers, see also Example 5.4. However, problems with
corner singularities and interior layers are excluded. The treatment of corner
singularities is not completely clear since they may, due to the convection,
influence not only a neighbourhood of the corners. The treatment of interior
layers was already discussed in Remark 5.3. They do not appear in so-called
problems of channel type [13, 141] if the right hand side f and the inflow
boundary are sufficiently smooth [141, Theorem 2.3]. We admit also that the
description of the behaviour near C; € T, UT, is speculative. We did not
exclude parabolic layers, as it is done in Example 5.4, because we wanted to
stress that there is no approximation problem with the terms wy, ;, j € Jp.

Example 5.4 Consider

Q=(0,1)? ¢c=0, b(z)<—-27<0, bzr)<—-27<0.
(5.44)
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Then we have only ordinary boundary layers at the sides z; = 0 and zo = 0. It
is proved in [73] that the solution w fulfills Assumption 5.2 for |a| < 2 provided
that the right hand side satisfies the compatibility conditions

FC) =0, j=1,....4,  (D'f)(L,1)=0, |s| <2. (5.45)

In particular, condition (5.45) guarantees that no interior layer emanates from
the corner (1,1) in the inflow boundary layer. O

Let us discuss now the finite element solution of (5.41). The variational for-
mulation of (5.41) reads:

Find v € Vg : a(u,v) = (f,v)q Yo € Vj, (5.46)

where
1
a(u,v) := e(Vu, Vu)q + 5{(b -Vu,v)q — (b- Vu,u)a} + (cu, v)q.

For a family 7, of admissible triangulations we can define a finite element
space V},, see Section 1.3. We consider the following stabilized finite element
method of Galerkin/Least-squares type [105].

Find uy, € Vi, : ah(uh,vh) = <f, Uh>h Y, € ‘/oh, (547)

with
ap(u,v) = a(u,v)+ Z e (Leu, Lev)e,

<f7 U>h = (fa U)Q + Z 56 (fa LEU)Ea
and a set {d.} of non-negative numerical diffusion parameters.

Remark 5.10 Method (5.47) is of Galerkin-Petrov type. This can be seen
easily by rewriting ax(.,.) and (f, .)p,

ap(u,v) = Z(Lsu, U+ 0 Lev)e,
(frodn = D _(f,v+0. Lev)..
Other methods of stabilization can be obtained, for example, by replacing
+d. Lev by —6. Liv in the expressions above, see also the explanation in Re-
mark 5.4, page 186.
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5.4.2 Error estimates for the pure Galerkin method

With d. = 0 Ve € Tj, we obtain by (5.47) the standard Galerkin method. At
least on isotropic meshes the Galerkin solution may suffer from non-physical
oscillations (wiggles) unless the elementwise numbers

P, = Mdiame [ [L¥(@)], Te =& (diame)e; ()]
(5.48)

are sufficiently small. As a remedy, stabilized variants have been developed,
for example (5.47) with é. > 0 [105]. Practical calculations on quasi-uniform
(isotropic) meshes show that wiggles occur globally in  for the standard
Galerkin method, but they are restricted to a numerical layer region of width
O(h**|1In h|) for method (5.47) with suitable chosen parameters é.. The nu-
merical layers are in general larger than the boundary and interior layers which
have a width O(e"|Ine|). The size of x; depends on the problem and char-
acterizes the layer, see Example 5.3, whereas k5 depends on the discretization
and is not known in general.

One can try to resolve the layers by means of anisotropic mesh refinement. For
the construction of the finite element mesh we use ideas from Sections 5.2 and
5.3. The boundary strips 23 ; are subdivided into O(h ') x O(h™ ') trapezoids
which can be divided further into two triangles. Each of the subdomains
and o ; is split into O(h~?) elements e satisfying the maximal angle condition.
In each subdomain the elements shall have comparable size.

The Galerkin finite element method on such meshes is analyzed for bilinear
rectangular elements in [186]. The problem is like the one described in Example
5.4, but with ¢ > ¢¢ > 0,

Q=(0,1)? ¢c>co>0, bi(z)<—2y<0, byr)<—-27<0.
(5.49)

For a; = min{1/2; (2/70)e|Inh|} these authors prove the interpolation error
estimates

lu = Thus L=(Q)]| < 47,
lu = Ty L2(Q\ Q)| S B[ Inh?,
llu—Tulla < hllnhl, (5.50)

[186, Theorems 4.2 and 4.3] where
v 1§ = elo; WHA(Q) + [lo; L*(Q)1*.

Theorem 5.3 Let u be the solution of (5.41) and assume that (5.42), (5.43),
(5.45), and (5.49) are valid. Assume that up € Vo, is the Galerkin solution
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(6 = 0 for all e in (5.47)) on a Shishkin mesh with bilinear rectangular ele-
ments and ay = min{1/2; (2/70)e|Ilnh|}. Then the error estimate

llw—=wunllo S hlnh| (5.51)
holds.
Proof With
v —un e
S e =Thufle + (Z min {h2_2||u — Lyus L(e) 1%
e€Ty
1/2
e 'measye ||u — Inu; L°°(e)||2})
S llw—=Thulle + A Hlu — Tyu; L2(Qu)
+e7 2 (measy (2 \ 0)Y2|lu — Tyu; L°(Q\ Q)]
and (5.50) the result (5.51) is obtained [186]. |

Moreover, the pointwise error estimate

max |(u — up)(X®)| < A2 In 32, XO e\ Q, (5.52)

in the refinement layer is proved in [186] by using the discrete Green function.
But this estimate is not optimal.

We remark also that the estimate (5.50) was proved later in a simpler, more
specific (term by term) way in [73]: these authors obtained for triangular and
rectangular elements with k =1

lu — Ly L) < 21+ V2| Inh)?), (5.53)
eV2u — Thu; Wh2(Qy)] < b, (5.54)
eV 2y — Lu; WH2(Q\ )| < hllnhl, (5.55)

by using the anisotropic interpolation error estimates of Theorems 2.1 and 2.6.
Since these local estimates are now available also for trapezoidal elements, see
Theorem 2.8, these results extend to more general domains, provided that
Assumption 5.2 can be proved.

From the theoretical point of view, estimates (5.51) and (5.52) show that the
pure Galerkin method converges uniformly with respect to ¢ < 1. However, as
reported in [162], practical calculations with linear and bilinear elements show
that these estimates are very sensitive to the choice of the parameter a, . Such
non-robust behaviour reduces the practical importance of the pure Galerkin
method.
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5.4.3 Error estimates for a stabilized Galerkin method

Let us consider from now on the stabilized Galerkin method of Galerkin/Least-
squares type as given by (5.47) with §. > 0. The potential of this method,
when combined with anisotropic finite element meshes, was first investigated
theoretically in [14] and numerically in [176]. Let us recall some results of [14].

One can prove existence and uniqueness of the solution u;, € Vg, of (5.47) on a
general admissible mesh (including anisotropic refinement) [14, Theorem 3.4].
The bilinear form ay(.,.) induces a norm in V,

ll v [l[8,5 := an(v,v)
= clo; WQP + |20 QN + ) el Lev; L (€)1, (5.56)
eCQ

The finite element error can be estimated in this norm via interpolation error
estimates by [14, estimate (3.28)]

llu—unllgs < inf <2||| u—vnlgs + Y ZENu—va; L2(6)II2>

v, EVon
e€Th

(5.57)

with Z, := min{e7"|b;[L>°(e)]¢||?; 26-'}. (By using the technique of [186,
(5.2)—(5.3)] one can improve Z, to

Ze = min{e b5 L) 20, by Be(min o(z) )

which is helpful for ¢(z) > ¢y > 0 and the treatment of Shishkin meshes.)
Inserting the local interpolation error estimates (Theorems 2.1 and 2.6) and
the assumptions on the analytical solution u, and equilibrating some terms
leads to a suitable choice of 9.,

b = e 'h} (1+P2+T2)1/2 if P} > 1+ P?+T2 (5.58)
5 (e hi 14 P?4T,
e = min< —s; —
B2 ¢ 1+P2+T12
with P, := e 'hy B, Be := ||b;[L>=(€)]?||, Te := 5_1h§’e(]e, Ce :=||e; L= (e)||,
hae < hi.. With this choice we get for a slightly different mesh than intro-
duced above (hy. = ¢h in the ordinary boundary layer and hy . = £'/2h in the

characteristic boundary layer which leads to a number of elements of order
N ~ h™?|Ine|?) the error estimate

llu—unllos < A mel2(1+ (o [L=( QPR + lle; L ()]|h*)"

~J

~ N2 Ine|F12, (5.60)

if P* <14 P?+T2(5.59)
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We will give now an error estimate for the Shishkin type meshes introduced
before in this section (a, ~ ¢|In¢|, ag ~ €'/?|In¢e|). We comment on Shishkin
meshes (a, ~ ¢|lnh|, ag ~ £'?|Inh|) im Remark 5.11 at the end of this
section. Since we did not include the dependence of u(x) on b(z) and c(z) in
Assumption 5.2 we simplify further by assuming

e K1, b(z)| ~ 1, le(z)] <1 in Q, (5.61)
which results in (5.58) as the proper choice of d.,
8 = h3 (e® + B3 B2 + h3 ,C2) 12, (5.62)

2,e e 2,e~e

Theorem 5.4 Let u satisfy Assumption 5.2 and let Ty, be as described above
with ay = a.e|Ine|, ag = (a,/2)e"/?|Ine|, a, > (k+1)/7y. Choose 6, as given
by (5.62) and assume (5.61). Then the error estimate

v —un o
S R e (el + (16 [L2(Q)P][h + [le; L2 (Q)[1R?)? (5.63)
< B InelFt? ~ NI Inelkt1/? (5.64)

18 valid.

Proof We follow the steps of the proof of the related result (5.60) in [14].
From (5.57) we obtain by using the anisotropic interpolation error estimates

I3
< Y [l T WP 4l — Ty L) +
e€Th

+0elleA(u — Thu) +b- V(u — Tyu) + c(u — Tyu); L2(e)||* +

37 = Ty L2 (e) 2 (5.65)

< ¥ [5266|u — Ty W22(e)[2 + (2 + 8. B)|u — Lyw; Wh2(e) 2 +

e€Th

+(Ce +0:C2 + 0.1 )llu — Tyu; L(e)

S D D DD Bep D L) P (5.66)
e€Th lal=k—1|B|=1 |1|=1
with
Eepn = €20.h720) 4 (e 4 6.BHI;? + (C. + 6.0 + 6.

eh;® + C. + 0.(eh ;2P  B2h72 + C2) + 6
ehy? + Behyt + C,
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where we have used (5.62), such that

Il —un 5,
S ) (ehgl 4 Behyt+Co) > h2®||Du; L (e) ||
e€Th |a|=k+1
5 Z(ghiihl,e + Behl,e + Cehl,ehQ,e) X
e€Th
> h2|Du; L ()| (5.67)
|a|=k+1

We show now that

> h2|Du Lo ()| < R I gD (5.68)
|o|=k+1

for all e € T, by distinguishing several cases.

First, let e C €. From Assumption 5.2 we obtain for |a| =k + 1

|D%uy ;| < g (k+1) ,—0a+/e
S g (kD) g—(k+1)[Ine] — 1 for j € J,,
|D%uy ;| < g~ (k+1)/2 ,—v0a0/VeE
< kD)2 (k4 D)nel/2 — 1 for j € Jy,
|D%u;| < e @1/2¢—0a0/VE a2 ,—y0a+ /e
< k)2 for j € Joy,r < eV/?|ne|,
ID%uc;| < em(bH1/2g=000/VE < 1 for j € Joy,r > e'/?|Ine|.

We can treat u.; with j € Jyy and j € Jy like up,; with j € Jy and j € Jy,
respectively. That means ||D%u; L>(e)|| < 1. With Ay S h, hoe S h, we

Y ~J

obtain (5.68) where the logarithmic term is even avoided.

The case e C €)y; can be treated with equal ideas for j € J,, and j € Jy.
Therefore we introduce the parameter x by

1
k=1 forjeJ,, k=3 for j € Jyo.
We have

1D (ttej + wnj 1+ upy); L2(e)]| S e o,

all other terms can be treated as in ;. Consequently, we get || Du; L= (e)|| <
e~*lel and with h; . ~ hg. ~ " Ine|h we obtain (5.68).
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In corner domains €, ; with j € Jy; we have

|D%ucj; L2(e)|| S em/?7e,
|D%up 13 L2(e)|| S e /2,
[ D%upj; L=(e)|]| S e

Consequently, it is |[[D%u; L=(e)|| < e™®/27%2 and with h;, ~ £Y/2|In¢lh,
hae ~ ¢llnelh, we find again that (5.68) is valid. Note that we did not
distinguish here between the non-orthogonal coordinate system introduced
in the paragraph before Assumption 5.2, and a Cartesian coordinate system
(21,1, 22,1 ) suited for the anisotropic interpolation error estimates, for exam-
ple, 1 | = z1, 2| = 7j cosw; + Tasinw;, where w; < 7 is the interior angle
at C;. The exposition is to be understood that we have transformed between
the two systems whenever necessary. Since this transformation is independent
of € and h and since 0/0xy = 0/0x2_, this approach is admissible.

In the subdomains Q3 ; we proceed similarly. Set k =1if j € J; and k = 1/2
if 7 € Jy. Then we have

[1D%up g L=(e)]| S e ™,
o f ellemoere <1 VWijie
~ 87\a|/267"/0040/\/§ 5 1 Vi 7é ],7/ S JO:
g lelewar/e <1 Vie J, n{jj+1},
6—\oz|/2e—’yoao/\/E 5 1

Vi € (Joo U Jos) N {J,7 + 1},
c—lalg=0/vE < 1Viég{jj+1}.
Consequently, it is ||[D%; L>¥(e)|| < e and we get (5.68) with hi.
hoe S €| lnelh.

Finally, we have proved (5.68) for all e. By inserting (5.68) into (5.67) we
obtain

D%, i5 L™ (e)|

1 D%ue 5 L(e)]

AN

< h,

~J

||| U — Up |||?2,6 5 h2(k+1)| 1Il‘c;|2(k+1) Z(ghiihl,e + Behl,e + Cehl,ehZ,e)

e€Th,

which is the desired result since the number of elements is of order Ah~2 and
8h£ih176 <|lne|™ h1e S hyhoe ShiforaleeT,. n

[

Remark 5.11 Consider now the analysis of the stabilized method for Shishkin
meshes (a; ~ ¢|Inh|, ag ~ £'/?|Inh|). Estimate (5.65) indicates that a term
Se|u — Tnu; Wh2(e)|? has to be treated. From the estimates (5.54), (5.55), we
conjecture that J. cannot be chosen larger than O(g),

0. = min{e; h3 (* +h3 B2 + h3 C2)"'/2}. (5.69)
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Fig. 5.7 Proposed mesh near a concave corner.

The remaining analysis for proving (5.51) can be done for (bi-)linear elements
(k = 1) as discussed above for the pure Galerkin method. It is the task of
further tests whether a stabilization with . ~ € in 2y and Qs ;, 7 € Joo, helps.
Recall that this is much less than the stabilization suggested in [14], see (5.58),
(5.59), or (5.62). It is not clear whether a result like (5.51) can be shown for
Jde larger than that given by (5.69).

For a comparison of Shishkin and Shishkin type meshes we refer to Remark 5.22
which is essentially applicable also for convection-diffusion-reaction problems.

Remark 5.12 In this section we assumed for simplicity that the type of the
boundary (inflow, outflow or characteristic) does not change at concave cor-
ners. The reason is that near such corners different types of mesh refinement
have to overlap in a way which is not clear. In Figure 5.7 we give an example of
a corner C; € ', NTy with our proposal how the mesh should be constructed
in the refinement layers. One can observe the transition between mesh sizes
ayh and agh. A similar layer has to be added for the transition to elements
with mesh size h.
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6 Open problems

The main part of this chapter (Sections 6.1-6.3) is devoted to some topics
which are treated unsatisfactorily up to now. They include a-priori and a-
posteriori error analysis as well as the solution of the arising system of linear
equations.

Finally, with Section 6.4, a short description of software is appended. The
three software packages were used for the numerical examples throughout the
whole monograph.

6.1  A-priori error analysis and further applications

Anisotropic mesh refinement offers a great potential for the effective numerical
solution of all kinds of boundary value problems from science and engineering
where the solution has different behaviour in different space directions. This
includes in particular boundary layers in viscous flow problems and in various
plate and shell models, shock phenomena in flow problems, and singularities
near edges in Poisson type problems like diffusion and linear elasticity.

We are on the way of the understanding of the finite element method on
meshes without a minimal angle condition. The beginning of this development
goes back to the fifties and seventies. A large heuristic and experimental
contribution has been made in particular by scientists and engineers from
the field of computational fluid dynamics. This monograph complements this
with an attempt to summarize numerical-analytical results in this field and to
contribute to the mathematical foundation.

In Chapters 4 and 5 we studied simple model problems and focused on a careful
a-priori error analysis. The strengths of this investigation are the considera-
tion of two- and three-dimensional problems in general polygonal/polyhedral
domains, and the treatment of lower and higher order finite elements. We
have seen that we needed a large amount of local interpolation error analysis.
We have also seen that the problems are difficult to treat since very accurate



216 6 Open problems

information on the behaviour of the solution is necessary. This results in open
questions even for these simple problems.

1. In Chapters 2 and 3 we developed a quite extensive machinery of anisotropic
local interpolation error estimates. Remaining tasks include

e the development of an interpolation theory for non-smooth functions on
non-tensor product meshes, and

e the definition and investigation of an interpolation operator Q, which is
applicable for three-dimensional needle elements (hy, ~ h2 < h3.) and which
has the following properties:

[ — Quu; WH(e)| S fus WH(Se)|
lu = Quus ()l S Y hellDu; LA(S.)]|-
|a]=1

These estimates are needed for the investigation of reliability and efficiency of
a-posteriori error estimates using the ideas of [189].

2. Refinement strategies for the treatment of corner and edge singularities were
considered in Chapter 4 for diffusion problems. For isotropic mesh refinement
it is shown in [23] that the theory extends straightforward to general boundary
value problems of second order including systems of differential equations. An
important application is the Lamé system of linear elasticity. However, the
results of Sections 4.3 and 4.4 are not sufficient for this generalization in the
case of anisotropic refinement.

First, we cannot exclude corner singularities as in Section 4.3 since this was
possible only due to the simplicity of the Poisson equation.

Second, for the proof of Theorem 4.5 we proved the anisotropic regularity in
Banach spaces V;f(ﬂ) with p > 2. It is not clear how to do this for the
Lamé system. It would be desirable to have an approximation theory for
p = 2, compare Remark 4.7. This would be a basis for an extension to general
problems.

Finally, we mention that there were some open questions in the treatment of
the boundary conditions, see Remark 4.5. Pointwise finite error estimates have
also not been considered yet for anisotropically refined meshes.

3. In Chapter 5 we considered singularly perturbed problems. The main
drawback is the lack in the analysis of the solution of such problems, for
example, in order to put Assumption 5.2 on a solid mathematical basis. In
particular, the influence of corner and edge singularities and their appropriate
numerical treatment is far from being satisfactorily solved. For convection-
diffusion-reaction problems there is also not much theory for L>°(2)-estimates
of the finite element error [162].
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Regardless of these unsolved problems we will mention other challenges:

e the construction of reliable and efficient a-posteriori error estimators and
automatic mesh adapting procedures,

e the investigation of the influence of anisotropic mesh refinement on the linear
algebra part of the finite element calculation, in particular the development of
robust and efficient solution techniques, and

e the application and extension of the results from Chapters 2-5 to real ap-
plication problems.

In two separate sections, 6.2 and 6.3, we review some literature and report on
our ongoing research into the first two topics. Concerning the third point we
mention in particular flow problems where first results on the resolution (with
anisotropic meshes) of all kinds of layers, shock fronts and other anisotropic
peculiarities can be found in the literature [42, 41, 97, 114, 134, 140, 152, 205].
(This list is certainly incomplete.) We illustrate the utilization of anisotropic
meshes by one example from [134].

Example 6.1 Viscous, compressible flow problems were discretized in [134] by
an implicit finite volume method. We reproduce here one of the examples given
there which was used to test the efficiency and reliability of this discretization.
The example in [134, Subsection 4.2.2] describes a laminar flow where two
shock waves and a solid body (a cylinder) interact and produce all types of
peculiarities (a contact discontinuity, a shock wave, an expansion wave, and a
boundary layer). The reference values of the Reynolds number and the Mach
number were given by Re,, = 193.75 and Ma,, = 8.03 at the inflow boundary.
Figure 6.1 shows a triangulation of part of the domain (left hand side) and
the isolines of the Mach number (right hand side). In Figure 6.2 we zoom into
the mesh in a boundary layer region at the lower side of the cylinder. We see
that elements with high aspect ratio were used. O

We will end this section by pointing to a further anisotropic approximation
problem.

Example 6.2 Consider the numerical solution of the Euler equations by a
finite volume method on triangular meshes [77, 94, 98, 103, 107]. In order
to obtain values at the nodes of the mesh we use a dual mesh and call its
elements cells. The simplest numerical solution is piecewise constant. This
constant value in each cell can be interpreted as an average value. In order
to increase accuracy, polynomials of a higher degree (> 1) are reconstructed
from the cell averages, for example by a TVD (Total Variation Diminishing)
or ENO (Essentially Non-Oscillatory) technique, see [179] and the literature
cited there. These techniques are well developed for isotropic meshes but
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Fig. 6.1 Example 6.1: triangulation of part of the domain (left) and isolines of the Mach
number (right).

Fig. 6.2 Example 6.1: window with a small part of the triangulation.
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they produce non-physical solutions on anisotropic meshes unless heuristic
(up to now) modifications are introduced. The mathematical theory for a
reconstruction which is robust with respect to anisotropic cells, is still in its
infancy. U

6.2  A-posteriori error estimates and adaptive mesh
refinement

A-priori analysis considers only the asymptotic behaviour of the finite element
solution as the number of degrees of freedom tends to infinity. This is impor-
tant because it can demonstrate that a certain family of meshes is optimal in
this sense. However, for detailed knowledge of the errors in a particular finite
element approximation and for assessing its acceptability, an a-posteriori error
estimator has to be provided.

Usually, the a-posteriori error estimator is calculated locally and can thus serve
as an indicator for regions with large and small errors, respectively, as the qual-
ity of the finite element approximation in general varies over the computational
domain. So-called automatic mesh adapting finite element strategies consist in
repeating the three steps

1. calculating an approximate solution,
2a. estimating the error locally (and globally),
3. generating an improved mesh,

until the error is within a desired tolerance. If the adaptive procedure takes
account of an anisotropic solution, then more information has to be extracted
from the approximate solution. This includes at least

2b. determining an appropriate aspect ratio and the stretching direction of
the finite elements.

The aim of this section is not to give an overview over error estimators and
refinement strategies in general. For this, see, for example, [148, 183, 184,
189]. Rather, we will discuss some aspects and point to difficulties and open
problems in the context of anisotropic discretizations.

Let us start with error estimation. The estimator is an expression which can be
calculated from the data of the problem and its numerical solution. Usually,
the error ist estimated elementwise by some quantity 1. which can then be
accumulated to a global error estimate 7, for example, n = (>, 773)1/ 2 Tt is
desired that the following two properties can be proved.
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Reliability. The error estimator should not underestimate the true error in
the norm of a space X (e), for example X = L? or X = W2,

Me 2 |lu— un; X (e)]-
Often, this property can be ensured only globally and modulo a constant,

n > Cillu — up; X (Q)]]. (6.1)
Efficiency. The error estimator should not overestimate the true error,

Ne < [lu —un; X(e)],

in order to avoid unnecessary refinement. This property can often be ensured
locally, but up to a constant Cy (in some cases Co = 1) and with respect to
some domain of influence w, O e at the right hand side,

Ne < Collu — up; X (we)]|- (6.2)

The ratio of estimated error and true error is called effectivity index, 0 =
n/l|u —up; X (Q)]]. Clearly, if (6.2) can be proved, then the effectivity index is
bounded. In particular, it is desired that the effectivity index approaches one,
f# — 1, as the exact error tends to zero. Then the estimator 7 is said to be
asymptotically exact. Note that this property includes reliability, at least for
h < hy.

In the literature the estimators are often evaluated with respect to these prop-
erties: can reliability and efficiency be proved (analytically, sometimes only
by numerical evidence), and if yes, how large are the constants? Can asymp-
totical exactness be proved? Let us add here another point. If we can say
nothing about the constants we may have a bad error estimate. However, the
estimator can be a good error indicator, this means, an indicator where to
refine or coarsen the mesh. For this it is desirable that the error estimator
behaves uniformly in the whole domain and for any mesh size. The expression
Ne/|lu — up; X (e)|| should not depend on e, and in particular not on h.. A
consequence would be that

n=n(up) ~ h* if ||u —up; X(Q)|| ~ h*. (6.3)

Example 6.3 Let us consider the Poisson problem with homogeneous Dirich-
let boundary conditions,

—Au=f in Q, u=0 on Of.
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The frequently used residual type error estimator [29] for estimating the energy
norm of the error reads

Mie(un) = ciblllre(un); L (©)|* + ez Y hallre(un); L*(E)|°
EC0e\oQ
(6.4)

where the element residual r. and the edge residual rg (gradient jump) are

defined by

re(up) == f+ Aup
re(up) = tLlIJIrIO %uh(x—l—tnE)—%uh(x—tnE) , r€FE.

Here, E denotes a face of e and ng is any of the two unitary normal vectors to
E. For a detailed analysis one has to modify the element residual by replacing
f by some projection into a finite-dimensional space [189] but we will not go
into these details here. There is not much known about the constants ¢; and
¢ in (6.4); see [60, 61] for latest attempts to compute these constants for
isotropic meshes.

While the actual choice of h, and hg is of less importance for isotropic meshes
this is problematic in the anisotropic case. The elements are no longer char-
acterized by one single size parameter. In particular, we point out that an
inappropriate choice may give misleading results. For the tests in [18] we
experimented with hp := (measyE)Y/? and hp := (measse)’/® and obtained
inaccurate approximation orders; (6.3) was not satisfied. Later, better choices
were proposed in [174]

he= min {hic},  hp . (6.5)

i=1, measg_1 E’
and in [117]

, measqg_1 E
e .

he = mind{hiye}, hgp i=h

i=1,

(6.6)

measge

Both authors analyzed their choices and were able to prove results concerning
reliability and efficiency.

Efficiency is not critical, but the constant Cy in (6.2) depends on wuy and 7Ty,
for the estimator (6.4), (6.5), Co = Ca(up, Tp) [174]. For adequately refined
meshes we get an uniform bound for Cy(uy, Tr). The expression Cs(up, Tp,) can
also be monitored during the finite element calculation. Estimator (6.4), (6.6)
is proved to be efficient without this dependence on Co(up, 7).
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The critical point for both estimators is reliability. The “constant” C; in (6.1)
depends in both papers on V(u — uy) and T, at least can the assumptions
be reformulated in this way, see [118]. It turns out again that we obtain
C1(V(u — up), Tn) < 1 for adequately refined meshes. But what happens in
the general case? In [118] it is proposed to approximate

C1(Vu — Vup, Tn) = CL(VEuy, — Vg, Tr)

where V%uy, is a recovered gradient. First numerical results show that this
works well. O

In Example 6.3 we discussed only the simplest model problem. Even for this it
is not clear at present time which one of the following two hypotheses is true.

H1. It is possible to define h. and Ar in a way such that efficiency and re-
liability can be proved without any assumptions or expressions like C;(Vu —

VUh, 777,)7 02(uh7 777,)

H2. There is no choice of h. and hg such that the corresponding error esti-
mator is both reliable and efficient for any u and 7.

Current insight is supporting the second hypothesis [70]. In [117] and sub-
sequent work of this author the theory of error estimators for discretizations
with anisotropic meshes is extended in various directions:

e further error estimators for the Poisson equation (a residual based estimator
for the L?-norm of the error, local Dirichlet problem error estimators for the
energy norm and the L2-norm, a Zienkiewicz-Zhu [206, 207] like error estima-
tor),

e further boundary conditions (Neumann conditions du/0n = g» and Robin
conditions u/dn = o(g2 — u)),

e a residual error estimator for the reaction-diffusion problem —e2Au-+cu = f
in 2, u =0 on 0.

Care is taken that the error estimator works uniformly well for o € (0, 00)
in the case of Robin conditions and for ¢ € (0,1) in the reaction-diffusion
problem. In all cases we find that the reliability can only be proved up to the
factor C1(V(u — up), Tr).

Finally, we remark that there are other error estimators/indicators for aniso-
tropic discretizations [42, 152, 155] but the analytical foundation in the above
sense is less well developed.

Let us focus now on the generation of an improved mesh. Several authors use
the heuristic argument that (in two dimensions) the local aspect ratio should
correspond to the ratio of the eigenvalues of the matrix of the (approximated)
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Fig. 6.3 Element subdivision strategies: red refinement (left), blue refinement (right).

second order partial derivatives of the solution, and the stretching direction
is determined by the eigenvector to the largest eigenvalue of that matrix, see
[2, 68, 69, 152, 205] and the literature cited there. (If the solution is vector-
valued, either a key variable is chosen [205] or the Hessians of the components
are combined [62].) It is not clear whether this choice is also suitable for higher
order shape functions, k > 2.

In other applications the direction can be determined from the data, for exam-
ple from the streamlines in convection-diffusion problems [176]. One can also
try to detect internal layers or shocks by analyzing the gradient (or gradient
jump) of some values [205].

With this information one can construct the new mesh. There are three main
strategies.

Remeshing. The first one demands a complete remeshing on the basis of
some background information (local mesh sizes, stretching direction); see the
overview article [175] and the literature cited there. Some authors report
on anisotropic meshes which have nearly equilateral elements in a local non-
Euclidean metric. In this way standard mesh generating techniques are used
to solve the meshing problem [62].

Large angles are either ignored, see the discussion in Remark 2.4 on page 49,
or a structured mesh is introduced locally [205].

Remeshing is quite expensive but one can produce meshes with a gradually
changing mesh size and arbitrary stretching directions.

Subdivision. The second strategy is based on a subdivision of the existing
elements (bisection [34, 127], division into 2¢ elements [33, 46] by red refine-
ment, see Figure 6.3, left hand side). This approach is inexpensive and fits very
well into multi-grid /multi-level strategies for the solution of the corresponding
finite element equation system. The subdivision strategy was adapted for an-
isotropic refinement in [114], called blue refinement, see Figure 6.3, right hand
side.

The disadvantages are that the mesh size does not change as gradually as in
the first approach, and, worse, that the initial mesh determines severely the
possible stretching directions of the elements. This can be compensated by
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node relocation techniques, sometimes also called adaptive grid orientation
[114] or node relaxation techniques [157].

Relocation. In the third strategy one concentrates on the relocation of the
nodes, it is also called the r-version of the finite element method. But in order
to produce a converging method one has to combine this with node insertion
or element splitting. In this way there is a relation to strategy 2. In the recent
article [58] such an algorithm is described which allows anisotropic refinement
on the basis of a local non-Euclidean metric tensor.

It is hard to judge these strategies. The main point is that all of them have
to be programmed carefully, in particular in three dimensions. Preferences in
different institutions depend probably strongly on the available software and
on the aim of the programs (treatable problems, applied discretization and
solution techniques). A common feature of all strategies is that hierarchical
meshes in the sense of a classical multi-grid or multi-level method are hardly
obtained. The search for a good compromise among the requirements on a
family of meshes (see Section 4.1, page 137) is rarely discussed. Here, we see a
strength of a-priori refined meshes as investigated in Chapters 4 and 5. They
are both structured and anisotropic. Of course their applicability is limited.
A good compromise could be to use locally structured meshes [176, 205]. A
further discussion of the mazimum efficiency mesh problem can be found in
[175].

Let us finally review some experiments from [18]. The initial situation was the
following.

e We know from a-priori error analysis that anisotropic mesh refinement is
suited for compensating the influence of an edge singularity on the approxi-
mation order, see also Sections 4.2, 4.3, and 4.4. We know qualitatively how
these refined meshes must be constructed. But it is not completely clear how
large the refinement neighbourhood has to be.

e A-posteriori error analysis is suited to detect refinement regions. However,
it is not straightforward how to realize an adaptive algorithm with anisotropic
mesh refinement, see the discussion above.

e The test examples for validating the a-priori error estimates were realized
using a coordinate transformation.

e We wanted to use a graded initial mesh for the adaptive procedure in order
to exploit a-priori information.

Therefore we tested the following adaptive strategy. Repeat the steps coordi-
nate transformation (grading), calculation of the approximate solution, error
estimation (possibly termination of the loop), marking elements for refine-
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Fig. 6.4 Cross-cuts through final meshes at z3 = 1/3: a-priori grading (left), adaptive
without grading (middle), adaptive with grading (right).

ment, coordinate transformation (“ungrading”), refinement (2¢ elements from
each marked element, “green closure”). In this way we combined the advan-
tages of a-priori and a-posteriori refinement. In two test examples, see also
Example 6.4, we obtained the desired discretization error with less degrees of
freedom and in particular less refinement cycles than in an classical (isotropic)
adaptive procedure. The drawback of this strategy is the coordinate trans-
formation which had been programmed especially for the test examples (two-
and three-dimensional). It is not clear how to do this in the general case.

Example 6.4 The three-dimensional example was the one from Example 4.1.
In Figure 6.4 we illustrate the different behaviour of the algorithms by showing
cross-cuts through the final meshes at 3 = 1/3. The development of the finite
element error is shown in Figure 6.5 where the aim was to reach a relative
error of 3%. For details see [15, 17]. O

6.3  Solution of the arising system of linear equations

Choosing an appropriate discretization is only one part of the numerical so-
lution of a boundary value problem. Additionally, one has to solve a (pre-
conditioned) algebraic system of equations for the coefficients of the repre-
sentation of u, in a certain basis. Let us focus here on symmetric, posi-
tive definite problems. In modern techniques the number of operations for
the solution is proportional to the number of unknowns. Such techniques
include multi-grid methods [52, 92, 95, 185], the method of conjugate gradi-
ents (CG) [102] with preconditioning (for example multi-level preconditioners
[24, 25, 26, 50, 55, 65, 85, 109, 151, 197, 198, 199, 200, 203] and domain decom-
position preconditioners [54, 74, 188, 136, 143, 142, 177]) and combinations of
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e
lello «—— adaptive, without mesh grading
= with anisotropic grading for all meshes, ;. = 0.6
50 i s+ a-priori mesh grading, u = 0.6 (for comparison)

3-10' 10% 3-10% 10® 3-10% 10* 3-10* 10° N

Fig. 6.5 Example 4.1: error in the energy norm for adaptive mesh refinement strategies,
grading parameter p = 0.6, final relative error ¢ = 0.03 ||up|| g.

these ideas.

Multi-level preconditioners work with a sequence of discretizations which is
(in the h-version of the finite element method) based on a sequence of finite
element meshes. One of these preconditioners, called BPX, was proposed in
[55, 197]. Interestingly, the BPX preconditioner can be analyzed in the additive
Schwarz context [203] which gives on the one hand the optimal estimate for
the condition number of the preconditioned system. (For other proofs, see
[151, 65].) On the other hand, it leads to a variant of this preconditioner,
called multi-level diagonal scaling (MDS), which has advantages especially
for problems with variable (including piecewise constant) coefficients, see also
[50, 151].

Typically, the solution methods are analyzed first for a discretization of the
Dirichlet problem for the Poisson equation over the unit square, in general with
a five-point finite difference method or a first order finite element discretization
on uniform meshes. Later the results are extended to more general differen-
tial operators, more general domains, other discretizations, and higher space
dimensions. Eventually one finds that the methods cannot be understood as
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Tab. 6.1 Numbers of iterations for Example 6.5 with different N and pu.

N p=10|pu=08 | pu=06| p=04
225 21 22 23 26
1377 31 34 40 54
9537 36 41 54 88

70785 40 48 73 140
545025 42 55 97 217

fixed algorithms but they have to be adapted (at least in some components) to
the problem under consideration. Of course, methods are preferable which are
applicable without change for a fairly large class of problems/discretizations.
Then they are called robust. Let us consider now the two introductory ex-
amples (see Sections 4.2 and 5.2) and look at the robustness of the BPX
preconditioner with respect to anisotropic discretizations.

Example 6.5 Consider the Poisson problem
—Au=0 in €, w= (10 + z3) r*?sin %gﬁ on 012,

see Example 4.1 on page 146. The problem was calculated with the finite
element package SPC-PM Po 3D (see Comment 6.3 on page 237 for a short
description) on sequences of unrefined (¢ = 1.0) and anisotropically refined
(u = 0.8,0.6,0.4) finite element meshes. The arising systems of linear equa-
tions were solved using the CG method with BPX preconditioning and a coarse
grid solver [16]. Table 6.1 shows the numbers of iterations for different num-
bers N of nodal points and different mesh grading parameters py. We can
observe for the non-optimal discretization with © = 1.0 that the number of
iterations becomes constant for N — oco. However, this optimal property of
the BPX preconditioner gets lost when anisotropic refinement is introduced. A
similar behaviour is obtained in other examples, including the Lamé system of
elasticity in the same domain. Therefore we omit the tables with these results
here. 0

Example 6.6 Consider two singularly perturbed reaction diffusion problems
as introduced in Section 5.2. The first test problem is the one from example
5.1 on page 183 which was originally calculated in [167]:

—&?Au+u = 0 in Q= (0,1),

u = e /e e/ on HN. (6.7)

Since the results are sometimes quite different we document also a second test
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case,

—e?Au+u = 1 in Q=(0,1)%

u = 0 onfl::{xeaﬂ:xle\/xgzo}, (68)
9 :
% — 0 onTy:=90Q\T,.

In both problems boundary layers appear at {z € 9 : 21 =0V 23 = 0}. So
we use the same family of meshes as described in example 5.1 on page 183. In

Tables 6.2-6.4 we present the numbers of iterations when the CG method is
applied

(a) with diagonal (Jacobi) preconditioning (CG-D),
(b) with the BPX with multi-level diagonal scaling (BPX-MDS).

In all cases we terminated the CG method when a relative error of 107 was
reached. One can draw the following conclusions:

e For large € the behaviour of the system matrix A = 2K + M is dominated
by the stiffness matrix K. The iteration number behaves as h~' ~ N'/2 for
CG-D. For uniform meshes BPX-MDS converges with a constant number of
iterations, but this behaviour is not robust with respect to a distortion of the
mesh towards anisotropic refinement in the layers.

e For small ¢ (in comparison with h) the system matrix is dominated by the
mass matrix M. For uniform meshes the iteration numbers of BPX — M DS
remain almost the same as for large £ (robustness with respect to ). However
the system can be solved cheaper by CG-D which has also constant iteration
numbers.

If we use a better discretization method, namely anisotropic mesh refinement
in the layers, we find that these good properties of the two solvers get lost.
First, we observe a different behaviour in the two quite similar examples,
especially with BPX-MDS. For problem (6.7) there is no hint that BPX-MDS
has constant iteration numbers. Second, we see in the case CG-D that the small
iteration numbers obtained with uniform meshes, are not preserved (CG-D is
not robust with respect to a distortion of the mesh). O

From both examples, 6.5 and 6.6, we find that well-known solution techniques
have to be modified in order to cope with anisotropic mesh refinement. Let us
now review some results connected with anisotropy and found in the literature.

Some authors investigate the robustness of their methods with respect to the
coefficients in the differential operator. A typical example is the anisotropic
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Tab. 6.2 Numbers of iterations for Example 6.6 with ¢ = 10~! and methods CG-D and
BPX-MDS.

a = 0.5 (uniform) a = 2¢|logy, €| (anisotropic)
CG-D BPX-MDS CG-D BPX-MDS
N | (6.7) | (6.8) | (6.7) | (6.8) | (6.7) | (6.8) | (6.7) | (6.8)
81 13 14 11 11 17 17 16 15
289 26 27 15 15 37 37 29 25
1089 50 95 17 18 71 74 41 34
4225 95 111 19 21 134 147 49 42
16641 | 182 222 20 23 252 293 o7 48

Tab. 6.3 Numbers of iterations for Example 6.6 with ¢ = 10~2 and methods CG-D and
BPX-MDS.

a = 0.5 (uniform) a = 2¢|logy, €| (anisotropic)
CG-D BPX-MDS CG-D BPX-MDS
N [ (67) [ 6.8) | (6:7) | (6.8) | (6.7) | (6.8) | (6.7) | (6.8)
81 11 10 13 11 12 8 15 10
289 12 10 18 16 22 15 28 17
1089 12 10 21 19 39 27 95 29
4225 11 9 24 21 69 52 111 46
16641 10 8 25 22 121 101 214 58

Tab. 6.4 Numbers of iterations for Example 6.6 with ¢ = 10~° and methods CG-D and
BPX-MDS.

a = 0.5 (uniform) a = 2¢|logy, €| (anisotropic)
CG-D BPX-MDS CG-D BPX-MDS
N (6.7) | (6.8) | (6.7) | (6.8) | (6.7) | (6.8) | (6.7) | (6.8)
81 11 10 13 11 12 6 14 6
289 12 10 18 16 18 8 24 8

1089 12 10 22 19 32 12 46 10
4225 12 10 25 21 54 20 101 13
16641 12 9 27 23 86 37 161 16
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equation

0%u 0%u

—y— — h— — 1 — 2 —
a@x% bax% f inQ=(0,1) u=0 on Q. (6.9)

In [92, Subsection 10.1] the problem is first considered for a = ¢ < 1, b = 1.
The discretization with a five-point scheme on a uniform grid gives the matrix
entries

0 —1 0 -1
h2| —e 242 — | =~h72| 2
0 —1 0 —1

If a multi-grid method is applied for the solution of the resulting algebraic
system of equations one finds that the y-line Gau3-Seidel iteration SY is an
appropriate smoother but not red-black Gauf-Seidel or z-line Gauf-Seidel.
What can we learn from this example?

1. In the example, the connection between adjacent nodes is anisotropic, this
means, the connection to some neighbours is more tight than to others, the
off-diagonal elements in one row are of different order of magnitude. Then it
is vital to pay attention to the tight connections. We come back to this later
on.

2. The method used above is not really robust with respect to the size of the
coefficients. As soon as a > b, an z-line Gauf}-Seidel smoother S* has to be
used. One could think that a smoother SY o S* based on alternating directions
is suited but this is not true any more if a differential operator like

19 9o\ (0 9\

2 (81’1 + 81’2) 2 (85{;1 81’2)
is considered where a diagonal-line Gauf3-Seidel smoother has to be applied.
The remedy proposed in [92] is to use an ILU (incomplete LU decomposition)
or ILLU (incomplete line LU decomposition) smoother. Later, the same author
proposes to use the frequency decomposition multi-grid method [93]. In this
method, multiple coarse grid corrections are used together with particularly
associated prolongations and restrictions.
Other authors argue that a-priori information can be used in the solver, so

the coefficients of the differential operator [86]. These authors investigated the
problem

2
—Zci@—kcou:f in Q = (0,1)¢, u=0 on 0f,
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forcg >0,¢; >0,i=1,...,d, and any space dimension d. Their multi-level
iterative method with tensor product subspace splitting shows convergence
rates independent of A and the coefficients ¢;, i = 1,... ,d.

3. In [92, Subsection 10.5] it is mentioned that the approximation of the Pois-
son problem on an anisotropic mesh (like in Example 6.5) results in an an-
isotropic discrete problem. Using the ideas of Item 1 we conjecture that a
multi-grid method with a Gauf-Seidel smoother is appropriate which treats
all points with the same x3-coordinate together. Unfortunately, the subsys-
tems are not tri-diagonal here. A further investigation has still to be done.

The argument of Item 3 is also turned around in [92, Subsection 10.5]: an-
isotropic problems produce isotropic discrete equations if one succeeds in con-
structing a suitable grid. This approach is followed in [144]. The basic idea is
that the problem

o? 0?
—628—1;? — 0—.;2 = f(z1,22) in Q= (0,1)% u=0 on 0,
(6.10)
is equivalent to the problem

—Au = f(e7 1, z5) in Q= (0,7 x (0,1), w=0 on 9.

If 0 is discretized with a family of quasi-uniform meshes then the discrete
equations are isotropic. The drawback of this approach is that the number N
of nodes grows with e 1, N ~ ¢ 1h 2,

We conclude that problem (6.9) has been considered in the literature occa-
sionally in order to investigate robust solver techniques, see also [56, 112] and
the references cited there. But the author does not know about a reference
where the problem is discretized in an adequate way. Problem (6.10) is of
singularly perturbed type. For ¢ = 0 we obtain a parameter dependent one-
dimensional problem where it is possible to satisfy the boundary conditions
given for x5 = 0 and x5 = 1 but not for x; = 0 and ; = 1. One can ex-
pect layers of width O(e|Ine|) at these two sides if 0 < ¢ < 1 is considered
[43, 83]. With the ideas of Section 5.3 it should be possible to prove optimal
e-independent approximation error estimates for a family of meshes which are
anisotropically refined in the two layer regions, {2; and €25, and isotropic in
the remainder of the domain, €2g. For the solution of the resulting algebraic
system of equations we have then to combine the ideas cited above. In g, we
have an isotropic, quasi-uniform discretization as investigated in [86, 92, 93],
whereas in ©; and 2, we have almost (up to the |Ine|-term) isotropic discrete
equations as investigated in [144]. A comprehensive analysis has still to be
done.
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Let us come back to Poisson type problems which are equivalent to
—Au=f in Q, u=0 on 0f.

In [155] an adaptive procedure is described which results in anisotropic meshes,
see Section 6.2. This author had in mind examples like such with an exact
solution u = (1 — x2)?(1 — x3)? which has a layer near the sides z; = 1 and
zo = 1. He develops in the subsequent paper [156] an overlapping domain de-
composition preconditioner for this type of discretization. Following the idea
of [75] it is stated that the ratio H;/J; of the diameter H; of the subdomain
Q; and the minimal thickness ¢; of the overlap between Q; and [J, 4 Q;, influ-
ences the condition number of the preconditioned system. The (probably not

astonishing) consequence is that

e isotropic subdomains with an overlap of width of the order of the diameter
of the subdomain should be used,

e the local problems in the subdomain should be easily solvable.

Note that this is in agreement with Item 1 above, namely that the nodes with
a tight connection should be treated together.

If we combine these conclusions with the idea that the BPX-MDS precondi-
tioner can be viewed as an additive Schwarz method with one-dimensional
subspaces [203], we suggest the following preconditioner for the reaction diffu-
sion problem in Example 6.6.

Let ¢;i, ¢ = 1,...,Nj, be the nodal basis functions of level j, 7 = 1,... ,J.
Define for all j a decomposition Q = [J;?, ;; such that the following condi-
tions are satisfied.

(i) €, is a union of finite elements of level j. (Finite elements are considered
here as closed sets.)

(ii) Each element of level j is contained in at most N, subdomains 2;; where
N, is independent of j.

(iii) For all 2;; there is at least one ¢, such that supp ¢; C Q;;.
(iv) The subdomains ;;,i=1,... ,n;, j=1,...,J, are isotropic.

(v) The minimal thickness d;; of the overlap between €2;; and Ui; U Q51
is of order diam 2;;.

An example for this domain decomposition is illustrated in Figure 6.6, left
hand side. The subdomains with nodes on one line do not introduce diffi-
culties. The corresponding local problems have tridiagonal system matrices
which can be solved directly with optimal performance. The only difficulty is
the subdomain in the lower left corner. In a first test we avoided this two-
dimensional arrangement of nodes and used only one-dimensional subspaces
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Fig. 6.6 Left: Illustration of the subdomains for a modified BPX-like preconditioner. Right:
Lines of clustered points in the preconditioner BPX-3.

in this corner. Hence the resulting preconditioner BPX-3 (3 for 3-dimensional
subsystems) is different from BPX-MDS only in the common consideration of
points at the lines illustrated in Figure 6.6, right hand side. It does not satisfy
conditions (iv) and (v) for a small number of points.

Example 6.7 We continue example 6.6 by displaying the iteration numbers
for the CG with preconditioner BPX-3. Additionally, we used the three-diag-
onal matrix of the finest level as a simple preconditioner, CG-3. This can be
considered as some kind of Jacobi preconditioning. The results are given in
Tables 6.5-6.7. We find that BPX-3 is a preconditioner with a very similar
behaviour for both test examples and for all €. In particular, the iteration
numbers are nearly the same as for BPX-MDS and uniform mesh refinement.
The simpler preconditioner CG-3 has its strength for small ¢ where it could
be used instead of CG-D when a multi-level algorithm is not implemented. [J

We remark that a preconditioner corresponding to (i)—(v) above can be defined
without difficulty in other model situations. In [169], problems with bad pa-
rameters were considered. As a motivation, the Poisson problem was treated
in a strip domain Q = (0,1) x (0,¢). For h > ¢ the quadrilateral mesh had only
one element in x,-direction. Every pair of nodes with the same x;-coordinate
was considered together. In this way one can satisfy conditions (i)-(iii) and
(v). Condition (iv) can be fulfilled only for A < e. In [169], another approach
was used: the pairs of nodes defined a block diagonal matrix with 2 x 2 blocks
which was used within the Jacobi smoother of a multi-grid method. As a
consequence, the smoother behaved e-independent (but h-dependent).

From all the literature, tests and remarks in this section we can conclude that
it is not satisfactorily clear how to solve the algebraic systems arising from the
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Tab. 6.5 Numbers of iterations for Example 6.6 with ¢ = 10~! and methods CG-3 and
BPX-3.

a = 2¢|logy, €| (anisotropic)
CG-3 BPX-3
N (6.7) | (6.8) | (6.7) | (6.8)
81 10 11 11 11
289 23 23 16 16
1089 44 47 19 20
4225 84 97 21 23
16641 | 164 198 22 26

Tab. 6.6 Numbers of iterations for Example 6.6 with ¢ = 10~3 and methods CG-3 and
BPX-3.

a = 2¢|logy, €| (anisotropic)
CG-3 BPX-3
N (6.7) | (6.8) | (6.7) | (6.8)
81 11 7 13 8
289 16 12 16 10
1089 28 21 19 14
4225 49 36 22 17
16641 89 64 27 22

Tab. 6.7 Numbers of iterations for Example 6.6 with ¢ = 107° and methods CG-3 and
BPX-3.

a = 2¢|logy, €| (anisotropic)
CG-3 BPX-3

N (6.7) | (6.8) | (6.7) | (6.8)
81 - ) - )
289 14 6 18 6
1089 24 8 21 7
4225 40 11 23 9
16641 61 8 24 10
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finite element discretization with (locally) anisotropic finite element meshes,
even in the case of a symmetric, positive definite system matrix. From the
material developed in this section we think that it is worth to investigate
further the following ideas.

e For the Poisson problem in domains with edges:

— multi-grid methods with clustering nodes,

— the CG method with BPX-like preconditioners derived by clustering nodes.
It is not clear whether one can cluster together all nodes with the same x3-
coordinate (in Example 6.5) where one does not satisfy condition (iv), or if
one has to cluster smaller portions in order to satisfy condition (iv). Possibly
one can use ideas from the algebraic multi-grid approach to find appropriate
subspaces.

e The same ideas could be explored for the singularly perturbed problem of
Example 6.6. A promising first test was described in Example 6.7. Open is
the treatment of the corner regions. Additional ideas are:

— using multi-grid methods with an ILU smoother, and

— using a classical domain decomposition approach with 4 subdomains. The
subdomain solvers could be constructed with the ideas above since they are
meshed in a uniform way. But it is not clear which Schur complement precon-
ditioner and which basis transformation has to be used.

It is a task of future research to give a mathematical foundation for the algo-
rithms and to extend the class of treatable problems.

6.4  Short description of utilized software

At several places in this monograph we presented numerical test examples.
They were calculated with software which was developed mainly at the Fakultat
fiir Mathematik of the Technische Universitdt Chemnitz. In this final section
we want to describe these packages. (We remark that this section does not
necessarily belong to the topic of this chapter although, of course, any software
has its open problems.)

Comment 6.1 The sequential finite element package FEMGPM. The
Finite Element Multi-Grid Package Mechanics FEMGPM [180] is a member
of the FEMGP family which has been implemented by B. Heise, M. Jung,
W. Queck, T. Steidten and others since 1985. With FEMGPM the user can
solve linear elliptic problems (including the heat equation, plane stress and
plane strain problems), linear and non-linear parabolic problems and coupled
thermo-elasticity problems. In all problems the spatial dimension is two which
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includes also rotationally symmetric three-dimensional domains (Fourier finite
element method [99, 147, 193]).

Main features are the following.

e A user mesh must be provided in a file. FEMGPM works with linear or
quadratic shape functions on triangles. Coefficients and the right hand side
must be programmed and linked.

o After reading the file, the user mesh is hierarchically refined. This refinement
can be controlled with several options, for example, to adapt the mesh to
material boundaries or to singular points.

e The finite element system of equations can be solved with multi-grid meth-
ods or with preconditioned conjugate gradient methods. Preconditioners in-
clude multi-grid and methods based on hierarchical bases (Yserentant [199],
BPX [55, 197]).

e Various information (including CPU times, error norms, pointwise solutions)
can be printed. There is also graphical output for meshes, isolines and de-
formed domains. Other postprocessing includes the calculation of derivatives
(stresses) using superconvergence effects.

Comment 6.2 The sequential finite element package FEMPS3D. The
package FEMPSS3D is a finite element code for solving the Poisson equation
with (in general inhomogeneous, mixed) boundary conditions of Dirichlet, Neu-
mann or Newton (Robin) type. The first version was developed in 1987-1989
by the author at a VAX workstation. In 1993 it was ported by G. Hanke to
the UNIX operating system. The main features are the following:

e The mesh can consist of tetrahedra, hexahedra, and pentahedra. Linear and
quadratic shape functions can be used.

e The code does not contain a general mesh generator. It is possible to read
mesh data from a file generated by any code, eventually after adapting the
data structure. Later, we developed also some special routines to triangulate
our test domains.

e The problem data are given in general by function subroutines. For Dirichlet
data we developed the additional feature to interpolate some pointwise values
over the surface.

e For the assembly of the equation system many different integration rules are
programmed. Only the non zero elements of the upper right triangle of the
matrix are stored. The system is solved with a conjugate gradient method, pre-
conditioned with different types of incomplete Cholesky factorization (IC(0),
IC(1), MIC), see [161].
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e The resulting solution can be interpreted with tables of values in subdomains
and with a representation of isolines. When the exact solution is known in
academic examples, the table of values and the isolines can be given for the
error as well. Additionally the error norms in H(Q2), Ly(Q) and in a discrete
maximum norm are calculated.

In 1993/94 the code was extended by F. Milde and the author, but only for
linear tetrahedral elements:

e In Version 2 we included an error estimator of residual type and an adaptive
mesh refinement procedure, see details in [17] and in the preprint version of
[15].

e For Version 3, parts of the package were reprogrammed. Moreover, the
isotropic a-priori mesh grading by dyadic partition (see Section 4.2) was in-
cluded.

e In the expectation of an optimization of the meshes two nodal relaxation
procedures were included: the standard Laplace smoothing and the improved
version introduced in [157] for graded meshes.

e An interface to the visualization package GRAPFE [195] was developed.

In 1997 the meshing strategies of Section 4.4 were included with the help of
U. Reichel.

Comment 6.3 The parallel finite element package SPC-PM Po 3D,
Version 2. At present time much effort is being spent in both developing and
implementing parallel algorithms. The experimental package SPC-PM Po 3D
is part of the ongoing research of the Chemnitz research group Scientific Par-
allel Computing (SPC) into finite element methods for problems over three-
dimensional domains. Special emphasis is paid to choose finite element meshes
which exhibit an optimal order of the discretization error, to develop precon-
ditioners for the arising finite element system based on domain decomposition
and multilevel techniques, and to treat problems in complicated domains as
they arise in practice.

e In Version 2 [4, 16] the program can solve the Poisson equation and the
Lamé system of linear elasticity with in general mixed boundary conditions
of Dirichlet and Neumann type. The domain @ C R?® can be an arbitrary
bounded polyhedron.

e The input is a coarse mesh, a description of the data and some control
parameters. The program distributes the elements of the coarse mesh to the
processors, refines the elements, generates the system of equations using linear
or quadratic shape functions, solves this system and offers graphical tools to
display the solution.



238 6 Open problems

e Further, the behavior of the algorithms can be monitored: arithmetic and
communication time is measured, the discretization error is measured, different
preconditioners can be compared.

e The program has been developed for MIMD computers; it has been tested on
Parsytec machines (GCPowerPlus—128 with Motorola Power PC601 processors
and GCel-192 on transputer basis) and on workstation clusters using PVM.
The special case of only one processor is included, that means the package can

be compiled for single processor machines without any change in the source
files.

We point out that the implementation is based on a special data structure

which allows that all components of the program run with almost optimal
performance (O(N) or O(NIn N)).

The package SPC-PM Po 3D is based on a set of libraries which are still under
development. They are documented in the Programmer’s Manual [16] and in
other separate papers [90, 133, 137, 138]. An overview over the program, its
capabilities, its installation, and handling is provided in the User’s Manual [4].
Test examples are included in [4, 10, 22, 159].

The historical roots of the program are at one hand in several parallel pro-
grams for solving problems over two-dimensional domains using domain de-
composition techniques. These codes have been developed since about 1988
by A. Meyer, M. Pester, and other collaborators. On the other hand, the au-
thor developed 1987-89 a sequential program for the solution of the Poisson
equation over three-dimensional domains which was extended 1993-94 together
with F. Milde (Comment 6.2 on page 236). SPC-PM Po 3D, Version 2 [4, 16],
was developed in 1995-1996 under the supervision of A. Meyer and the au-
thor. Other main contributors are D. Lohse, M. Meyer, F. Milde, M. Pester,
and M. Thel. Meanwhile the package is being extended to include a multi-
grid solver (M. Jung), adaptivity (F. Milde), the solution of the Navier-Stokes
equations (St. Meinel) and a plasticity model (D. Michael).

The research group SPC (Scientific Parallel Computing) is located at the
Fakultdt fiir Mathematik of the Technische Universitit Chemnitz. 1t is part of
the DFG-Sonderforschungsbereich 393
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