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Abstract. For the approximation of anisotropic structures like edges and boundary/interior
layers it 1s an obvious idea to use a family of finite element meshes with different mesh sizes in
different directions, so called anisotropic meshes. The paper reviews anisotropic local interpola-
tion error estimates for simplicial Lagrangian finite elements in two and three dimensions. Using
these elements, an anisotropic mesh refinement strategy is justified for treating boundary layers in
convection dominated problems.
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1 Introduction

If the solution of a partial differential equation has different behaviour in different
space directions then it is an obvious idea to reflect this in a finite element approxi-
mation by using a family of meshes with different mesh sizes in different directions,
so-called anisotropic meshes. Applications include the approximation of edge and in-
terface singularities in diffusion dominated problems (Poisson type equations) [2, 5],
of boundary and interior layers arising in convection-dominated problems, see [4] and
papers cited there, and of solutions of problems with strongly anisotropic material
parameters.

In this paper we are concerned with the finite element solution of a linear(ized)
diffusion-convection-reaction model in a bounded polyhedral domain Q C IR? with
Lipschitz boundary 0f:

Lou=—cAu+b-Vu+cu=f inQ, u=10 on J9,; (1)

e € (0,1] is a parameter. In case of P(z) = e7||b(x); RY|| > 1 and/or T'(z) =
e~ e(z)| > 1, problem (1) is of singularly perturbed type and the solution u may
have sharp boundary or interior layers. The resolution of such layers is often the main
interest in applications and will be considered here.
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Standard Galerkin finite element solutions may suffer from numerical instabilities
which are generated by dominant convection and/or reaction terms unless the mesh
is sufficiently refined. As a remedy, stabilized Galerkin methods have been proposed.
We will focus here on the Galerkin/Least-squares method. We estimate the finite
element error for a family of meshes with an a-priori anisotropic refinement in the
layer regions, whereas an isotropic mesh away from the layers is used which could be
(isotropically) refined via standard adaptive methods.

This family of meshes is anisotropic in the sense that al—ig-lo he/o. = oo, where h,

and p. denote the diameter of the finite element e and the diameter of the largest
inscribed ball in e, respectively. But the usual condition h./o. = O(1) does not
consider the anisotropic behaviour of the solution and leads to an overrefinement in
the layers.

The numerical analysis of this method relies heavily on anisotropic interpolation
error estimates. They are reviewed in Section 2. Using them we were able to prove
that, for sufficiently smooth solutions u of (1), the finite element error u— U}, converges
in an energy type norm || v ||| with the optimal order A* almost uniform with respect
to e:

lu— U | < CR*|Ine|Y/2. (2)

The meshes and the choice of the parameter set {6.} are descibed in Section 3.

2 Interpolation on anisotropic elements

Consider a polyhedral domain @ C R?, d = 2,3, and let T, = {e} be an admissible
triangulation of Q = (J. 2. Introduce the spaces V and V}, by

Vo= W (Q) = {veW"(Q):v|s = 0},

Vi {veV:v|. € Ple) Vee T},

where Py is the space of polynomials of maximal degree & > 1. The interpolant ]}(Lk)v of

a continuous function v is uniquely determined elementwise by (]}(Lk)v)(;z:(i)) = v(z®),
i=1,...,n, n = dim Py, where () are the nodal points of the element e. Finally,
let W™P(e) (m € IN,p € [1,00]) be the usual Sobolev spaces with the norm and the

special seminorm

lo; W™ ()P = 3 /|D%|pdx, o W) = S0 /|D%|pdx,

loo|<m e la|l=m e

and the usual modification for p = oc.

Yet in the mid-seventies the question was addressed as to whether Zlamal’s min-
imal angle condition can be weakened to a maxzimal angle condition [6, 7T]. In two
dimensions that means that the maximal interior angle v, of any element e is bounded
by 7V« Ye < 74, where 7. < 7 independent of h and e € 7,. But the interpolation
results in these papers were rarely applied because the possible advantage of using el-
ements with different diameters in different directions was not exploited. This remedy
was removed by proving so-called anisotropic estimates.



To take advantage of the different sizes of the element e in different directions we
introduce the following notation. For e C IR? let . be the longest edge of e. Then
we denote by hy . = meas;(F,) its length and by hy . = 2measy(e)/h; . the diameter
of e perpendicularly to F..

For anisotropic estimates we need a coordinate system condition which means in
two dimensions that the angle 1. between F. and the zi-axis must be bounded in
the sense |sint.| < Chy/h1.. In the three-dimensional case, the sizes hy ., hq., and
hs., the maximal angle condition and the coordinate system condition are introduced
similarly, see [3].

Theorem 1 Assume that the element e fulfills the maximal angle condilion and the
coordinate system condition. Then for v € W*P(e) and m = 0,...,k, the estimale

o= [0 WP <C 3D BT hG [D o W ()P

|a|=k+1-m
holds, if d =2 orm <k orp > 2.

The proofs are given in [3], special cases were derived before in [9] (m = 0) and
[2] (m = 1). Note that (i) the restriction p > 2 is necessary in the case d = 3,
m = k, (ii) the maximal angle condition is necessary for anisotropic interpolation,
see for example [3, Section 7], (iii) refined estimates as given in Theorem 3 can also
be proven for quadrilateral elements [1, 2], and for functions from weighted Sobolev
spaces [5]. Furthermore, a numerical example that underlines the necessity of the
coordinate system condition is given in [3, Section 7].

3 The convection diffusion reaction problem

We consider problem (1) with the basic assumptions 0 < ¢ < 1, b € [WH(Q)],
f € L*Q), and V-b = 0 almost everywhere in Q. On the family of meshes 7}, described
below we introduce the following stabilized finite element method of Galerkin/Least-
squares type:

Find Uy, € Vi, such that Bsg(Up,vi) = Lsa(vy) Yo, € Vi
with

Bsg(u,v) = ¢(Vu,Vv)g + %{(b -Vu,v)g — (b-Vo,u)g} + (cu,v)q +
—I—Z(SG (Leu, Lov)e,

Lsg(v) U)Q + Z 5@ (f7 Lav)ev

and a set {é.} of non-negative numerical diffusion parameters. Here, (., .)s denotes
the inner product in L*(G), G C Q. In view of the difficulties to get a priori infor-
mation on the solution u we restrict our consideration to a certain class of problems
introduced in Navert [8] which allows to localize the boundary layers R. of thickness



Figure 1: Anisotropic mesh in the boundary layer region

O(e"Inl), k = § or k = 1, at some straight lines M C 9. Then, we assume the

following hypothesis is to be satisfied:
HD?{U;LQ(Q)H < [X’(f) meas(e)g—mm‘

We introduce now local coordinates (£,n) with £ =0 at M. As a starting point,
we generate an orthogonal mesh vialines ¢ =&, =i-e"h,np=n,=7-h (1 =0,..., 1,
j=0,...,j0) and &, = d(¢) = e*In L, see Figure 1. The rectangles K = [{;, &i41] X
(i, mix1] are split into 2 triangles which satisfy the maximal angle condition and the
coordinate system condition with respect to the fitted coordinate system. Note that
our approach guarantees a stronger refinement near corners of M. Outside R. we can
double h¢ . in ¢-direction (perpendicularly to (9Q); and (0€)y, respectively) until
he e ~ h but we can also omit this transition layer; it does not affect our analysis. We
see easily that the number of elements is of the order 7%|Ine|™".

Then we were able to prove the following error estimate in an energy type norm

ol = Bsa(v,v) [4].

Theorem 2 Under the assumptions made above, and for v € H™t?(Q), 1 <r < k,
and using the parameter design

h2 .
5. = < if (P2 > (P22 = \/1 4 (Pan)? 4 (Tan)2,
ey/1+ (Pan)2 4 (Tan)? v
] c th 1_|_(Pan)2_|_ran . N
66 — ; 3 . € € 0 < Pan < Pa.l"l7
mm{ub; L=@P ¢ T+(pmpyapf Y0SEOSE
with
pon = BeclB L] pan _ Bhelles L2
& &

we get the almost uniform (with respect to ) error estimate (2).

In a numerical example we found a resolution of a characteristic boundary layer
with about 48 000 anisotropic elements of the same quality as with an isotropic uni-
form mesh with about 2 million elements.



An interior layer with known location can be treated in an analogous way, see [10]
for an algorithm. If the position of an interior layer at some manifold M is not a-priori
known, one can try to identify M in an adaptive procedure using an appropriate error
indicator. Such an approach has been proposed in [11] for compressible flow problems.
A (fixed) anisotropically refined mesh is then constructed in the neighbourhood of
M.
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