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Abstract. This paper is concerned with the anisotropic singular behaviour of the solution of elliptic
boundary value problems near edges. The paper deals first with the description of the analytic properties of
the solution. The finite element method with anisotropic, graded meshes and piecewise linear shape functions
is then investigated for such problems; the schemes exhibit optimal convergence rates with decreasing mesh
size. For the proof, new local interpolation error estimates in anisotropically weighted spaces are derived.
Finally, a numerical experiment is described, that shows a good agreement of the calculated approximation
orders with the theoretically predicted ones.
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1 Introduction

Consider the Poisson problem with in general mixed boundary conditions in a three-dimen-
sional polyhedral domain. We are interested in situations where the solution has singular
behaviour near edges, for example in the Dirichlet problem when the interior angle at some
edge is greater than π. The anisotropic structure of the edge is reflected by an anisotropic
behaviour of the solution near the edge: The singular part of the solution can be represented
by a convolution of some two-dimensional singularity functions with a regular function in
the third direction, see Section 2.

It is well known that these singularities lead to a low approximation order of the standard
finite element method. Two-dimensional problems with corner singularities can be treated
with certain mesh refinement near these corners in order to improve the approximation order
[5, 6, 11, 13]. Thus it seems to be natural to treat edge singularities with meshes of tensor
product form, graded perpendicularly to the edge and quasi-uniform in the edge direction.
Pentahedral meshes seem to be natural, but each pentahedron can easily be divided into
three tetrahedra.

Such meshes are anisotropic in the sense that elements in the refinement region have an
aspect ratio which is growing to infinity for h → 0, h is the global mesh size. In [1] it is
shown for tetrahedral meshes that this strategy is successful, but under strong smoothness
assumptions to the data. Our aim is to relax these assumptions which requests some refined
considerations which shall be motivated now.
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The investigation of the finite element error u−uh in the energy norm (here equivalent to
the W 1,2(Ω)-norm) is usually reduced via Céa’s lemma to a general approximation problem.
If we want to take advantage of anisotropic finite element meshes, we need an approximation
operator for which error estimates are available that take these different asymptotic mesh
sizes of the elements into account. Here we rely on the Lagrangian interpolation operator
because such estimates have already been derived [1]. Moreover, we note that Clement’s
operator [7] is not applicable in the anisotropic context because the W 1,2(Ω)-error is in
general not bounded by aW 2,p(Ω)-norm of the solution. The same is true for the Scott/Zhang
operator [14] in its general definition. There may be some hope that a modification of the
latter operator may be suited for anisotropic elements but this is not clear to date.

The global interpolation error estimate is usually proved by taking the sum over element-
wise error estimates. Here, we have to distinguish mainly two cases, namely elements at the
edge and elements away from the edge (but within the refinement zone). For the latter ones
one can exploit that u ∈W 2,p(Ωi) for some p, and use the local interpolation error estimate
of [1]:
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Unfortunately, it holds true only for p > 2. This forced us to consider the regularity of u
in Banach spaces. The diameters hi of the finite element Ωi, perpendicularly to the edge,
are expressed by the product of the global mesh size h and some power rβ

i (β ≥ 0) of the
distance ri of the element Ωi to the edge considered. This leads to an estimate of the form

|u− uh;W 1,p(Ωi)| ≤ Ch
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We define the expression in the parentheses to be a seminorm in some Banach space A2,p
β

and have to investigate the question for which β the right hand side is bounded:

‖u;A2,p
β (Ω)‖ ≤ C‖f ;Lp(Ω)‖.

For this we used Grisvard’s representation formula for u [10] and calculated the norm, see
Section 2.

We encounter another problem by considering the elements Ωi at the edge. Here the
estimate (1.1) is not applicable due to u 6∈W 2,p(Ωi). Because anisotropic interpolation error
estimates do not hold for functions in Sobolev-Slobodetskĭı spaces (the seminorm can not be
transformed in the desired way from the reference element to Ωi), we extend (1.1) slightly
for functions in weighted spaces A2,p

β (Ωi). This is quite straightforward, see Subsection 3.2.
With all these ingredients we can finish the global error estimate.

In a last section we consider some other aspects: Because we treated for simplicity in
Sections 2 and 3 the Dirichlet problem only, we discuss in Subsection 4.1 other boundary
conditions.

For test calculations we can refer to another paper. In [3] we documented a test, where
one problem was calculated with isotropic as well as with anisotropic graded meshes. We
derived approximation orders from the finite element errors for different mesh size parameters
h. We observed a good agreement of the calculated approximation orders with the expected
ones (see (3.21)). Moreover, it turned out that the same error level can be achieved with
less computational effort (smaller number of elements, of nodes, of degrees of freedom)
with anisotropic meshes in comparison with isotropic ones. Another test is documented
in Subsection 4.2. There, the exact solution has a jump in the second derivative in edge
direction.
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2 Analytical properties of the solution

Consider the Dirichlet problem for the Poisson equation,

−∆u = f in Ω, u = 0 on ∂Ω, (2.1)

over a bounded polyhedral domain Ω ⊂ R
3. In particular, we will focus on prismatic domains

Ω = G× I, (2.2)

where G ⊂ R
2 is a polygonal domain and I = ] 0, z0 [ ⊂ R

1 is an interval. The domain G
has only one corner with interior angle ω > π at the origin; thus Ω has one “singular edge”
which is part of the x3-axis. The case of more than one singular edge can be treated similarly
because the edge singularities we are interested in are of local nature. The restriction to
prismatic domains is made because we want to consider edge singularities here, and such
domains do not introduce additional corner singularities [15].

For general polyhedral domains we have to distinguish between corner and edge singu-
larities. The corner singularities are not a problem of anisotropy; they can be treated with
isotropic, graded meshes as introduced for example in [5]. The main problem is to construct
meshes which are both anisotropic near edges and isotropic near those corners which cause
singularities. We will discuss this in a forthcoming paper.

The variational form of problem (2.1) is given by:

Find u ∈
o
H1(Ω) such that a(u, v) = (f, v) for all v ∈

o
H1(Ω). (2.3)

The bilinear form a(., .) and the linear form (f, .) are defined by

a(u, v) :=

∫

Ω

3
∑

i=1

∂iu∂iv dx, (f, v) :=

∫

Ω
fv dx.

We use the abbreviations ∂i for ∂
∂xi

and ∂ij for ∂i∂j . The space
o
H1(Ω) is defined, as usual,

by
o
H1(Ω) := {v ∈ H1(Ω) : v|∂Ω = 0}. For the data we consider f ∈ Lp(Ω), p ≥ 2. Lp(.)

(1 ≤ p ≤ ∞) are the usual Lebesgue spaces, W s,p(.) (s ≥ 0, 1 ≤ p ≤ ∞) the Sobolev(-
Slobodetskĭı) spaces (sometimes we write W 0,p(.) for Lp(.)), and Hs(.) := W s,2(.). — Note

that the conditions of the Lax–Milgram lemma are satisfied; thus the solution u ∈
o
H1(Ω) of

problem (2.3) exists and is unique.
As motivated in the Introduction, we are interested for which β the solution u belongs

to some anisotropically weighted space A2,p
β (Ω) := {v ∈ D′(Ω) : ‖v;A2,p

β (Ω)‖ <∞}, with

|v;A2,p
β (Ω)|p :=

∫

Ω







rβp
2
∑

i,j=1

|∂iju|
p +

3
∑

i=1

|∂3iu|
p







dx,

‖v;A2,p
β (Ω)‖p := |v;A2,p

β (Ω)|p +

∫

Ω

{

r(β−1)p
2
∑

i=1

|∂iu|
p + r−p|∂3u|

p + r(β−2)p|u|p
}

dx,

and x3 is the direction of the edge. The definition of the powers of r for the solution and
its first derivatives were motivated by searching an optimal description of u. It is used for
example in the proof of Theorem 3.5.

To treat this regularity problem we use a result of Grisvard [10] for a dihedral cone
D := C×R, where C is an infinite cone of R

2 of opening ω. We are concerned with the edge

regularity of the variational solution v ∈
o
H1(D) of the Dirichlet problem

−∆v = g ∈ Lp(D), (2.4)
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for p ≥ 2. Since we are only interested in the local behaviour of the solution, we suppose that
v exists and has a compact support. As before, we denote by x = (x1, x2, x3) the Cartesian
coordinates in D, where x3 ∈ R and (x1, x2) ∈ C, and by (r, ϕ) the polar coordinates in C.
Let us recall this theorem [10, Theorem 6.6].

Theorem 2.1 Suppose that jπ
ω 6= 2− 2

p for all j ∈ Z, then the solution v ∈
o
H1(D) of problem

(2.4) admits the decomposition

v = vr +
∑

0< jπ

ω
<2− 2

p

(Kj
x3

⋆ qj)ψj , (2.5)

where vr ∈ W 2,p(D) is the regular part of v, qj ∈ B
2− 2

p
− jπ

ω
,p
(R) (that means in the classical

Sobolev space W 2− 2

p
− jπ

ω
,p(R), if 2− 2

p − jπ
ω 6∈ Z, otherwise in the Besov space B2− 2

p
− jπ

ω
,p(R),

see [16]), ψj are the 2D-singular functions of the Laplace operator in C:

ψj(r, ϕ) := ξ(r)rjπ/ω sin

(

jπϕ

ω

)

, (2.6)

and finally Kj are kernels defined by

Kj(r, x3) := r
π(r2 + x2

3)
if
jπ
ω > 1 − 2

p,

Kj(r, x3) := 2r3

π(r2 + x2
3)

2 if jπ
ω ≤ 1 − 2

p.

There exists a positive constant C independent of g, such that

‖vr;W
2,p(D)‖ +

∑

0< jπ

ω
<2− 2

p

‖qj ;B
2− 2

p
− jπ

ω
,p
(R)‖ ≤ C ‖g;Lp(R)‖.

Here and in the sequel, K
x3

⋆ q means the convolution with respect to the edge parameter
x3:

(K
x3

⋆ q)(r, x3) :=

∫

R

K(r, s)q(x3 − s) ds.

In view of that Theorem, it suffices to show that the 3D-singularity function

vj := (Kj
x3

⋆ qj)ψj (2.7)

satisfies an inclusion of the type vj ∈ A2,p
β (D). The proof is based on the next general result

concerning convolution with arbitrary kernels, which is inspired from Theorem 6.5 of [10]
(notice that this theorem had a different goal).

Lemma 2.2 Let K(r, x3) be a kernel satisfying

|K(r, x3)| ≤ C
rβ

(r2 + x2
3)

γ
,∀r > 0, x3 ∈ R, (2.8)

with some C > 0 and γ > 1
2 (in order that K would be integrable with respect to x3) and

∫

R

K(r, x3) dx3 = 0. (2.9)

For q ∈ Bσ,p(R), with σ ∈ ]0, 1], we set h(r, x3) := (K
x3

⋆ q)(r, x3). If σ < 2γ − 1 and
β ≥ −1 − 2

p − σ + 2γ, then there exists a constant C1 > 0 (independent of q) such that

(∫ 1

0

∫

R

|h(r, x3)|
p rdrdx3

)1/p

≤ C1‖q;B
σ,p(R)‖. (2.10)
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Proof From assumption (2.9), we may write h(r, x3) =
∫

R
K(r, s){q(x3 − s) − q(x3)} ds,

and taking the Lp-norm with respect to x3, we obtain

‖h(r, x3);L
p
x3

(R)‖ ≤

∫

R

|K(r, s)| · ‖q(x3 − s) − q(x3);L
p
x3

(R)‖ ds. (2.11)

Let us introduce the functions

κ(s) := |s|−σ−1/p ‖q(x3 − s) − q(x3);L
p
x3

(R)‖, k(t) :=
|t|2γ−σ−1

(1 + t2)γ
,

and the multiplicative convolution I of k with the function s1/pκ,

I(r) :=

∫

R

k(r/s)s1/pκ(s)
ds

|s|
.

Inserting (2.8) into (2.11) we obtain

‖h(r, x3);L
p
x3

(R)‖ ≤ Crβ+1+σ−2γI(r). (2.12)

The assumption q ∈ Bσ,p(R) implies that κ ∈ Lp(R) and ‖κ;Lp(R)‖ ≤ C2‖q;B
σ,p(R)‖, for

some C2 > 0 independent of q. For σ < 1 this is a direct implication, otherwise we use
Theorem 2.5.1 of [16]. Moreover, we readily check that k ∈ L1(R+, dt

t ) (this is the space of

integrable functions with respect to the measure dt
t ) iff −1 < σ < 2γ − 1; therefore Young’s

theorem leads to

(∫ +∞

0
|I(r)|p

dr

r

)1/p

≤ C‖κ;Lp(R)‖ ≤ CC2‖q;B
σ,p(R)‖. (2.13)

Integrating the p-th power of the estimate (2.12) with respect to r on ]0, 1[ and using (2.13),
we arrive at (2.10). ✷

We are now able to prove some anisotropic regularities:

Theorem 2.3 If 0 < jπ
ω < 2 − 2

p , then

∂33vj ∈ Lp(D), (2.14)

∂3vj ∈ Lp(D), (2.15)

vj ∈ Lp(D), (2.16)

with norms depending continuously on the Lp-norm of g. If moreover, 1 − 2
p <

jπ
ω , then

∂13vj, ∂23vj ∈ Lp(D), (2.17)

rγ−1∂1vj , r
γ−1∂2vj ∈ Lp(D), (2.18)

rγ−2vj ∈ Lp(D), (2.19)

r−1∂3vj ∈ Lp(D), (2.20)

with γ > 2 − 2
p − jπ

ω , the norms depending continuously on the Lp-norm of g.

Proof If

1 −
2

p
<
jπ

ω
< 2 −

2

p
, (2.21)

we use Lemma 2.2, with K(r, x3) = rjπ/ω∂33Kj(r, x3), since

∂33vj = (K
x3

⋆ qj)(r, x3) ξ(r) sin

(

jπϕ

ω

)

.
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This kernel satisfies |K(r, x3)| ≤ Cr1+jπ/ω(r2 + x2
3)

−2 for all r > 0, x3 ∈ R. Therefore, we
can apply Lemma 2.2 with β = 1 + jπ

ω , γ = 2 and σ = 2 − 2
p − jπ

ω (σ < 1 due to assumption
(2.21)). Since the hypotheses of that theorem are satisfied, estimate (2.10) can be rephrased
as

∫ 1

0

∫

R

|∂33vj|
p rdrdx3 ≤ C ‖qj;B

σ,p(R)‖p.

An integration with respect to ϕ leads to (2.14) and the continuous dependence on the
Lp-norm of g.

Conversely, if

0 <
jπ

ω
≤ 1 −

2

p
, (2.22)

then we know that qj ∈ B
σ′,p(R), with σ′ = 2 − 2

p − jπ
ω ≥ 1. If σ′ = 1, we use Lemma 2.2 as

above with K(r, x3) = rjπ/ω∂33Kj(r, x3), q = qj ∈ Bσ,p(R), when σ = σ′. On the contrary,
if σ′ > 1, we apply Lemma 2.2 with K(r, x3) = rjπ/ω∂3Kj(r, x3), q = ∂3qj ∈ Bσ,p(R), when
σ = σ′ − 1.

Analogously, we can consider other derivatives. ✷

Let us remark that we cannot improve the conclusions of Theorem 2.3. Indeed, when we
apply Lemma 2.2, we get an equality in the condition β ≥ −1− 2

p −σ+2γ, in other words we
cannot decrease the value of β. This means that, in general, we cannot decrease the power
in r in front of the considered derivatives.

Let us also show that the condition 1 − 2
p < jπ

ω in the second part of Theorem 2.3 is
necessary, in the sense that without this condition, the conclusion could fail.

Lemma 2.4 If 0 < jπ
ω ≤ 1 − 2

p and qj ∈ B
2− 2

p
− jπ

ω
,p
(R) is a continuous function such that

qj ≥ 0, qj 6≡ 0. Then vj given by (2.7) satisfies

1

r
∂ϕvj 6∈ L

p(D). (2.23)

Proof By a direct computation, we show that

1

r
∂ϕvj =

2j

ω
h(r, x3)ξ(r)r

−1+jπ/ω cos(
jπϕ

ω
), (2.24)

where we have set

h(r, x3) :=

∫

R

qj(x3 − rt)

(1 + t2)2
dt.

Since qj 6≡ 0, there exist z0 ∈ R, ε > 0, δ > 0 such that qj(x3) > δ for all x3 ∈ ]z0 − ε, z0 + ε[.
This implies that for all x3 ∈ ]z0 − ε/2, z0 + ε/2[, we have h(r, x3) ≥ δρ for all r < 1, with

ρ =
∫ ε/2
−ε/2(1 + t2)−2 dt > 0. Inserting this estimate into (2.24), we get

∣

∣

∣

∣

1

r
∂ϕvj

∣

∣

∣

∣

≥ ρ′ξ(r)r−1+jπ/ω

∣

∣

∣

∣

cos

(

jπϕ

ω

)∣

∣

∣

∣

,

with some positive constant ρ′. This leads to the conclusion (2.23) because r−1+jπ/ω does
not belong to Lp with respect to the measure rdr near 0. ✷

Let us now come back to problem (2.1):

Theorem 2.5 Let u ∈
o
H

1
(Ω) be the solution of −∆u = f , with f ∈ Lp(Ω). If p < 6, then

u ∈ A2,p
β (Ω) with

{

β > 2 − 2
p − π

ω for 2 − 2
p ≥ π

ω > 1 − 2
p ,

β = 0 for 2 − 2
p <

π
ω ,

and
‖u;A2,p

β (Ω)‖ ≤ C‖f ;Lp(Ω)‖.
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Proof Set Ω′ = G×] − z0, 2z0[ and let w ∈
o
H

1
(Ω′) (resp. g ∈ Lp(Ω′)) be an odd extension

of u to Ω′ (resp.f). Then w satisfies −∆w = g in Ω′. Fix a cut-off function η ≡ η(x3)
which equals to 1 on Ω̄ and with support included in Ω′. Using finite differences in the edge
direction and Hölder’s inequality, we can show that η∂3w ∈ Lp(Ω′), if p < 6. Consequently,

v = ηw ∈
o
H

1
(D) has a compact support and satisfies −∆v ∈ Lp(D). Using Theorem 2.3 we

get v ∈ A2,p
β (D). The restriction to Ω yields the assertion. ✷

A discussion of other boundary conditions is postponed to Section 4.1.

3 Interpolation error estimates

3.1 The mesh

Recall first the standard mesh grading for two-dimensional corner problems [5, 6, 11, 13].
Let G =

⋃

iGi be a regular triangulation of G. With h being the mesh parameter, µ ∈ ]0, 1]
being the grading parameter, ri being the distance of Gi to the corner,

ri := min
(x1,x2)∈Gi

(x2
1 + x2

2)
1/2,

and some constant R > 0, we define real numbers hi (i = 1, . . . ,m)

hi :=











h1/µ for ri = 0,

hr1−µ
i for 0 < ri ≤ R,

h for ri > R,

(3.1)

and assume that the element size diam(Gi) is equivalent to hi.
This kind of grading is now extended in the third direction using a uniform mesh size

h. In this way we can get a pentahedral (prismatic elements with triangular basis) or, by
dividing each pentahedron, a tetrahedral triangulation Th = {Ωi}

m
i=1 of Ω, see Figure 4.1 for

an illustration. Note that the number m of elements is of the order h−3.
We remark that the elements of such a triangulation satisfy the conditions for which

anisotropic error estimates can be derived [1], namely a maximal angle condition and a
condition which relates the stretching direction of the elements to the global coordinate
system, see also [2] for a detailed explanation.

For a simplified presentation we denote by hi,j, j = 1, . . . , 3, the diameter of the element
Ωi in direction xj, that means, the relations

C1hi ≤ hj,i ≤ C2hi, j = 1, 2,
C1h ≤ h3,i ≤ C2h,

(3.2)

are satisfied for i = 1, . . . ,m.
We introduce now the finite element space Vh of all continuous functions whose restriction

to any Ωi (i = 1, . . . ,m) is a polynomial of first degree, with the obvious modification to
bilinear functions in the pentahedral case. Furthermore, we let V0h be defined by V0h :=

{vh ∈ Vh : vh|∂Ω = 0}. Note that Vh ⊂ H1(Ω) and V0h ⊂
o
H1(Ω). The finite element solutions

of problems (2.1) is defined by:

Find uh ∈ V0h such that a(uh, vh) = (f, vh) for all vh ∈ V0h. (3.3)

The assumptions of the Lax–Milgram lemma are fulfilled; thus this problem has a unique
solution.
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3.2 Local error estimates in weighted Sobolev spaces

As motivated in the Introduction, we are interested in local interpolation error estimates
for anisotropic elements. In [1], the case of classical Sobolev spaces was treated. In this
subsection, we shall extend these results to weighted Sobolev spaces and consider particularly
the three-dimensional case (tetrahedra and pentahedra). We remark that interpolation error
estimates for functions from weighted Sobolev spaces were already proved in [12] for the
two-dimensional isotropic case.

We consider first estimates on a reference element Ω0 ∈ R where R is the set of reference
elements discussed later, see Figures 3.1 and 3.2. We notice here that the elements of R
have the following essential property (P):

(P) For each axis xi (i = 1, . . . , 3) of the coordinate system there exists one edge Ei of
the reference element, which is parallel to this axis and, for normalization, which has
length meas1(Ei) = 1.

Using a similar notation as in [1, §2] we denote by P a space of polynomials, and since
each monomial xα = xα1

1 xα2

2 xα3

3 can be identified with the multi-index α ∈ N
3, we also

identify P with the corresponding set of multi-indices. The hull P of P is the set P :=
P ∪{α+ei : α ∈ P, i = 1, 2, 3} ({ei}

3
i=1 denotes the canonical basis of R

3) and the boundary
∂P of P is the set P \ P . Note that maxα∈P |α| = 1 + maxα∈P |α|.

We introduce now weighted Sobolev spaces on Ω0: For a finite set P ⊂ N
3 with 0 ∈ P

and for β ∈ R we set V P,p
β (Ω0) := {v ∈ D′(Ω0) : ‖v;V P,p

β (Ω0)‖ <∞}, where

‖v;V P,p
β (Ω0)‖

p :=
∑

α∈P

∫

Ω0

|rβ−k+|α|Dαv|p dx,

k := maxα∈P |α|, Dα := ∂α1

1 ∂α2

2 ∂α3

3 , and r(x) := (x2
1 + x2

2)
1/2. For v ∈ V P ,p

β (Ω0) we also
introduce the seminorm

|v;V P,p
β (Ω0)|

p :=
∑

α∈∂P

∫

Ω0

|rβ−k−1+|α|Dαv|p dx.

The space WP,p(Ω0) is introduced in analogy to V P,p
β (Ω0) by omitting the weight.

Lemma 3.1 Let P ∈ N
3, P finite with 0 ∈ P . Then we have the compact embedding

V P ,p
β (Ω0)

c
→֒ V P,p

β (Ω0).

Proof For any v ∈ V P ,p
β (Ω0) and any fixed α ∈ P , we have

rβ−k−1+|α|Dαv ∈ Lp(Ω0),

rβ−k+|α|Dα+eiv ∈ Lp(Ω0), i = 1, 2, 3.

This implies rβ−k+|α|Dαv ∈ W 1,p(Ω0), since |rβ−k+|α|Dαv| ≤ C|rβ−k+|α|−1Dαv| almost ev-
erywhere in Ω0. Thus there is a constant C > 0 such that

‖rβ−k+|α|Dαv;W 1,p(Ω0)‖ ≤ C‖v;V P,p
β (Ω0)‖. (3.4)

Let {vm}m∈N be a sequence in V P ,p
β (Ω0) such that for some K > 0 and for all m ∈ N the

relation ‖vm;V P ,p
β (Ω0)‖ < K holds. From (3.4) we obtain for all m ∈ N and α ∈ P the bound

‖rβ−k+|α|Dαvm;W 1,p(Ω0)‖ ≤ C. Owing to the compact embedding W 1,p(Ω0)
c
→֒ Lp(Ω0)

(Rellich–Kondrašov theorem), there is a subsequence {vmk
} such that for all α ∈ P

rβ−k+|α|Dαvmk
→ wα in Lp(Ω0). (3.5)
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(Since P is finite we can use card(P ) times this theorem.) Because 0 ∈ P we obtain in
particular

rβ−kvmk
→ w0 := rβ−kv ∈ Lp(Ω0),

which implies vmk
→ v in D′(Ω0), and Dαvmk

→ Dαv in D′(Ω0) for all α ∈ P . With (3.5),

we deduce that wα = rβ−k+|α|Dαv ∈ Lp(Ω0) and therefore vmk
→ v in V P,p

β (Ω0). Thus the
embedding is proved. ✷

We show now that, under some condition on β, elements of V P,p
β (Ω0) are in L1(Ω0), as

well as all derivatives with respect to P .

Lemma 3.2 Let P ⊂ N
3, P finite, such that 0 ∈ P . If β < 2 − 2

p then for all v ∈ V P,p
β (Ω0)

the following relation holds:

Dαv ∈ L1(Ω0) for all α ∈ P. (3.6)

Proof If β ≤ 0 the assertion is obvious since V P,p
β (Ω0) →֒WP,p(Ω0). If β > 0, then we have

rβ−k+|α|Dαv ∈ Lp(Ω0) for any α ∈ P . Since |α| ≤ k we deduce that rβDαv ∈ Lp(Ω0). Using
Hölder’s inequality, we show that this implies (3.6): Indeed, we have for 1

p + 1
q = 1

∫

Ω0

|Dαv| dx =

∫

Ω0

r−β|rβDαv| dx ≤ ‖r−β;Lq(Ω0)‖ ‖r
βDαv;Lp(Ω0)‖.

The Lq(Ω0)-norm of r−β is finite if and only if βq < 2 (by using cylindrical coordinates
(r, ϕ, z)). But this is equivalent to β < 2 − 2

p . ✷

From Lemmas 3.1 and 3.2 and using the same arguments as in [1, Lemma 2], we obtain
the following lemma.

Lemma 3.3 Let P ∈ N
3 be a finite set of multi-indices with 0 ∈ P . If β < 2 − 2

p then there
is a constant C > 0 such that

‖v;V P ,p
β (Ω0)‖ ≤ C|v;V P ,p

β (Ω0)| (3.7)

for all v ∈ V P ,p
β (Ω0) satisfying

∫

Ω0
Dαv dx = 0 for α ∈ P .

We are now ready to give the interpolation estimate, first in a very general form, then
especially for our purposes.

Lemma 3.4 Let β < 2 − 2
p be a real number, and let P,Q ⊂ N

3 and γ ∈ N
3 be such that

0 ∈ Q and Q + γ ⊂ P . Further introduce a linear operator I : Cµ(Ω0) → P , µ ∈ N,

and assume that there are linear functionals Fi ∈

(

V Q,p
β (Ω0)

)′

, i = 1, . . . , j, j = dimDγP ,

satisfying

Fi(D
γIv) = Fi(D

γv) (i = 1, . . . , j) for all v ∈ Cµ(Ω0) ∩ V
Q+γ,p
β (Ω0),

Fi(D
γq) = 0 for all i = 1, . . . , j =⇒ Dγq = 0 for all q ∈ P.

(3.8)

Then there is a constant C > 0 such that

‖Dγ(v − Iv);V Q,p
β (Ω0)‖ ≤ C|Dγv;V Q,p

β (Ω0)|

for all v ∈ Cµ(Ω0) ∩ V
Q+γ,p
β (Ω0).

Proof We follow the proof of Lemma 3 of [1], since Lemma 1 of [1] can be extended to the
spaces V P,p

β (Ω0) (owing to Lemma 3.2), while Lemma 2 of [1] is replaced by Lemma 3.3. ✷
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Theorem 3.5 Suppose that 0 ≤ β < 1 − 1
p , p > 2, and let Iv be the (bi-)linear Lagrangian

interpolant of v with respect to the vertices. Then for all v ∈ A2,p
β (Ω0) ∩ C(Ω0) we have for

i = 1, 2

∥

∥

∥rβ−1∂i(v − Iv);Lp(Ω0)
∥

∥

∥ ≤ C

{∫

Ω0

[

rpβ (|∂1iv|
p + |∂2iv|

p) + |∂3iv|
p
]

dx

}1/p

, (3.9)

∥

∥

∥r−1∂3(v − Iv);Lp(Ω0)
∥

∥

∥ ≤ C

{∫

Ω0

(|∂13v|
p + |∂23v|

p + |∂33v|
p) dx

}1/p

. (3.10)

Proof We set Q := {(0, 0, 0)}, Q := {(0, 0, 0)} ∪ {ei}i=1,2,3 and remark that v ∈ A2,p
β (Ω0)

implies ∂iv ∈ V 1,p
β (Ω0) = V Q,p

β (Ω0) (i = 1, 2) and ∂3v ∈ V 1,p
0 (Ω0) = V Q,p

0 (Ω0). To prove the

assertion we apply Lemma 3.4 with P = Q, γ := ei and F1(v) :=
∫

Ei
v dxi, where Ei is that

edge of Ω0 which is parallel to the xi-axis, see Property (P) on page 8. It remains to prove
the continuity of F1.

In the simpler case i = 3 we can use the embeddings

V 1,p
0 (Ω0) →֒W 1,p(Ω0) →֒W 1−2/p,p(E3) →֒ L1(E3)

which holds for 1 − 2
p > 0, that means p > 2.

For i = 1, 2 we use that v ∈ V 1,p
β (Ω0) implies

rβv ∈W 1,p(Ω0) →֒ W 1−2/p,p(Ei) →֒ Lp(Ei), i = 1, 2.

Using Hölder’s inequality we conclude for 1
p + 1

q = 1 that

∫

Ei

|v| dxi ≤ ‖r−β;Lq(Ei)‖ ‖r
βv;Lp(Ei)‖ ≤ ‖r−β;Lq(Ei)‖ ‖v;V

1,p
β (Ω0)‖.

Using that r−β ∈ Lq(Ei) for β < 1
q = 1 − 1

p the proof is complete. ✷

Remark 3.6 In applications with the same type of boundary conditions on both faces of
the edge, we have β = 2 − 2

p − π
ω + ε with an arbitrarily small positive real ε. That means

β < 1 − 1
p is equivalent to 1 − 1

p <
π
ω , so that for p close to 2 this condition always holds.

Corollary 3.7 For p > 2, 0 ≤ β < 1− 1
p , we have for v ∈ A2,p

β (Ω0) and i = 1, 2 the estimates

‖∂i(v − Iv);Lp(Ω0)‖ ≤ C

{∫

Ω0

[

rpβ (|∂1iv|
p + |∂2iv|

p) + |∂3iv|
p
]

dx

}1/p

, (3.11)

‖∂3(v − Iv);Lp(Ω0)‖ ≤ C

{∫

Ω0

(|∂13v|
p + |∂23v|

p + |∂33v|
p) dx

}1/p

. (3.12)

Proof The assertion follows from (3.9) and (3.10) since the weights on the left hand side
are bounded from below by some constant C > 0. ✷

Now we are going to transform these estimates to the actual finite elements Ωi. We
realize that for two tetrahedra/pentahedra Ωi and Ω0 there is an affine linear transformation

x = F (y) = By + b (3.13)

with B = (bjk)
3
j,k=1 ∈ R

3×3, b = (bj)
3
j=1 ∈ R

3, such that Ωi = F (Ω0). For pentahedra one

reference element is sufficient, for example Ω0 := {y ∈ R
3 : y1 > 0, y2 > 0, y1 + y2 < 1, 0 <

y3 < 1}. In the tetrahedral case we consider two reference elements Ωa and Ωb as given in
Figure 3.1. Note that anisotropic tetrahera can have three or four edges with length of order
h3, they are mapped to Ωa and Ωb, respectively.
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Figure 3.1: Basic reference elements for anisotropic interpolation error estimates in the
three-dimensional case.
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Figure 3.2: Additional reference elements for interpolation error estimates in weighted
Sobolev spaces.

We see that in our case (compare Section 3.1) b13 = b23 = b31 = b32 = 0 and the subma-

trix

(

a11 a12

a21 a22

)

satisfies the properties which are well-known from the two-dimensional

isotropic case. This leads to the following relations for the matrix elements bjk and b
(−1)
jk of

B and B−1, respectively:

|bjk| ≤ C min{hj,i, hk,i}, |b
(−1)
jk | ≤ C min{h−1

j,i , h
−1
k,i}. (3.14)

Using Corollary 3.7 for the special case β = 0 we get with (3.14) the estimate [1]

|v − Iv;W 1,p(Ωi)| ≤ C
3
∑

k=1

hk,i|∂kv;W
1,p(Ωi)| for p > 2. (3.15)

To transform the estimates (3.11), (3.12) for β > 0 we can assume that h1 and h2 are of
the same order, but we need additionally that

y2
1 + y2

2 ≤ Ch−2
1 (x2

1 + x2
2) for all x ∈ Ωi, (3.16)

which can be concluded from b13 = b23 = 0 and b1 = b2 = 0. The geometrical meaning of
the latter condition is that at least one vertex of Ωi is contained in the x3-axis, and that this
vertex is mapped to the corresponding vertex at the y3-axis. For treating all possible cases, we
have to extend the set of reference elements in the tetrahedral case to R = {Ωa,Ω

′
a,Ωb,Ω

′
b},

where Ω′
a and Ω′

b are obtained from Ωa and Ωb, respectively, by a reflection at the plane
y1 = 1

2 , see Figure 3.2. One can choose the appropriate reference element by the number
of edges with length of order h3 (three or four) and the number of vertices of Ωi that are
contained in the x3-axis (one or two).
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Theorem 3.8 Let Ihv be the (bi-)linear Lagrangian interpolant of v ∈ A2,p
β (Ωi) with respect

to the vertices. Assume further that at least one vertex of element Ωi is located at th x3-axis.
Then for v ∈ A2,p

β (Ωi), 0 ≤ β < 1− 1
p , p > 2, the norm of the derivatives of the interpolation

error can be estimated by

‖∂j(v − Iv);Lp(Ωi)‖

≤ C

{∫

Ωi

[

h
p(1−β)
1,i rpβ (|∂1jv|

p + |∂2jv|
p) + hp

3,i|∂3jv|
p
]

dx

}1/p

, i = 1, 2, (3.17)

‖∂3(v − Iv);Lp(Ωi)‖ ≤ C

{

∫

Ωi

3
∑

k=1

hp
k,i |∂k3v|

p dx

}1/p

. (3.18)

Proof The assertion is a direct consequence from Corollary 3.7 using the transformation
(3.13) with (3.14) and (3.16). ✷

Corollary 3.9 Under the assumptions of Theorem 3.8 the following estimate holds:

|v − Ihv;W
1,p(Ωi)| ≤ C (h1−β

1,i + h3,i)|v;A
2,p
β (Ωi)|. (3.19)

3.3 Global error estimates

In this section, we investigate first the global interpolation error, that is the difference be-
tween the solution u of our boundary value problem (2.3) and its piecewise (bi-)linear in-
terpolant Ihu on the family of anisotropically graded meshes introduced in Subsection 3.1.
The difficulty is that we are interested on one hand in an estimate in the energy norm which
is equivalent to | . ;W 1,2(Ω)|, in order to apply Céa’s lemma for the finite element error.
But on the other hand the local interpolation error estimates (3.15) and (3.19) are valid for
| . ;W 1,p(Ωi)| with p > 2 only.

Theorem 3.10 Let u be the solution of the boundary value problem (2.3) with f ∈ Lp(Ω),
2 < p < p+,

p+ := min

{

6;

(

1 −
π

ω

)−1
}

. (3.20)

Then for the interpolation error u− Ihu the following estimate holds:

|u− Ihu;W
1,2(Ω)| ≤ Chs‖f ;Lp(Ω)‖,

s =

{

1 for µ < π
ω · p

2p−2 ,

2
p − 1 + 1

µ · π
ω − ε for µ ≥ π

ω · p
2p−2 .

(3.21)

Proof We reduce the estimation of the global error to the evaluation of the local errors
and distinguish between the m0 = O(h−1) elements whose closure has at least one common
point with the edge, and the m−m0 = O(h−3) elements away from the edge:

|u− Ihu;W
1,2(Ω)|2 =

m0
∑

i=1

|u− Ihu;W
1,2(Ωi)|

2 +
m
∑

i=m0+1

|u− Ihu;W
1,2(Ωi)|

2. (3.22)

For the elements in the first sum we apply the local estimate (3.19). Using Hölder’s inequality,
we have for i = 1, . . . ,m0

|u− Ihu;W
1,2(Ωi)|

p ≤ (measΩi)
−1+p/2|u− Ihu;W

1,p(Ωi)|
p

≤ C(hh2
i )

−1+p/2(h1−β
i + h)p|u;A2,p

β (Ωi)|
p.
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Summing up these estimates for all i = 1, . . . ,m0, and using again Hölder’s inequality, we
can conclude

m0
∑

i=1

|u− Ihu;W
1,2(Ωi)|

2 ≤ m
1−2/p
0

(

m0
∑

i=1

|u− Ihu;W
1,p(Ωi)|

p

)2/p

≤ C
m0
∑

i=1

h−1+2/p(hh2
i )

1−2/p(h1−β
i + h)2|u;A2,p

β (Ωi)|
2

≤ C
(

h(2−β−2/p)/µ + h1+(1−2/p)/µ
)2

‖f ;Lp(Ω)‖2.

Since for β = max{0; 2 − 2
p − π

ω + ε′} there holds 1
µ(2 − 2

p − β) > s, and we have directly

1 + 1
µ(1 − 2

p) > 1 ≥ s (with s from (3.21)), we get

m0
∑

i=1

|u− Ihu;W
1,2(Ωi)|

2 ≤ Ch2s‖f ;Lp(Ω)‖2. (3.23)

For the elements in the second sum of (3.22) we can use that u ∈ W 2,p(Ωi), i = m0 +
1, . . . ,m, and thus apply the local estimate (3.15). Again with Hölder’s inequality, we have
for i = m0 + 1, . . . ,m:

|u− Ihu;W
1,2(Ωi)|

p ≤ (measΩi)
−1+p/2|u− Ihu;W

1,p(Ωi)|
p

≤ C(hh2
i )

−1+p/2









hp
i

∑

|α|=2

α3=0

‖Dαu;Lp(Ωi)‖
p + Chp

∑

|α|=2

α3>0

‖Dαu;Lp(Ωi)‖
p









(3.24)

For µ < π
ω · p

2p−2 we can estimate h2p−2
i ≤ Ch2p−2r

(2p−2)(1−µ)
i = Ch2p−2rpβ

i with β =
1
p(2p − 2)(1 − µ) > 2 − 2

p − π
ω .

For µ ≥ π
ω · p

2p−2 we have to use part of h2p−2
i via hi < Cri to get also the power pβ of

ri on the right hand side:

h2p−2
i = h

p

µ
· π
ω
−pε

i h
2p−2− p

µ
· π
ω

+pε

i

≤ Ch
p

µ
· π
ω
−pε

r
( p

µ
· π
ω
−pε)(1−µ)

i r
2p−2− p

µ
· π
ω

+pε

i

= Ch
p

µ
· π
ω
−pε

rpβ
i

with β = 1
p

[(

p
µ · π

ω − pε
)

(1 − µ) + 2p − 2 − p
µ · π

ω + pε
]

= 2− 2
p −

π
ω + ε

µ > 2− 2
p −

π
ω for ε > 0.

Note that h
2p−2− p

µ
· π
ω

+pε

i < Cr
2p−2− p

µ
· π
ω

+pε

i because 2p − 2 − p
µ · π

ω + pε > 2p − 2 − p
µ · π

ω ≥ 0
due to the assumption on µ.

Thus we get with (3.24)

|u− Ihu;W
1,2(Ωi)|

p ≤ Chps+3(p−2)/2‖u;A2,p
β (Ωi)‖

p

with s from (3.21). Summing up these estimates for all i = m0 + 1, . . . ,m, and using again
Hölder’s inequality, we can conclude with Corollary 2.5

m
∑

i=m0+1

|u− Ihu;W
1,2(Ωi)|

2 ≤ (m−m0)
1− 2

p





m
∑

i=m0+1

|u− Ihu;W
1,2(Ωi)|

p





2/p

≤ Ch−3(1− 2

p
)h

2

p
(ps+ 3

2
(p−2))‖u;A2,p

β (Ω)‖2

= Ch2s‖f ;Lp(Ω)‖2. (3.25)

From (3.23) and (3.25) we get the assertion. ✷
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Corollary 3.11 Let u be the solution of the boundary value problem (2.3) with f ∈ Lp(Ω),
2 < p < p+, p+ from (3.20), and let uh be the finite element solution of (3.3). Then the
error estimate

‖u− uh;W 1,2(Ω)‖ ≤ C|u− uh;W 1,2(Ω)| ≤ Chs‖f ;Lp(Ω)‖

holds, with s from (3.21).

Remark 3.12 Note that the restriction p < p+ is not essential for this estimate, because
f ∈ Lp(Ω) yields f ∈ Lq(Ω) for q ≤ p and ‖f ;Lq(Ω)‖ ≤ C‖f ;Lp(Ω)‖. We can apply
Theorem 3.10 for q < p+. Nevertheless, we have to replace p in (3.21) by min{p; p+ − δ},
δ > 0 arbitrary.

Remark 3.13 In order to use meshes which are not too much refined, the estimates are
most favourable for p close to 2. For p = 2 + δ (δ is an arbitrarily small real number) we
have

s =







1 for µ < π
ω

(

1 − δ
2+2δ

)

,

1
µ · π

ω − ε− δ
2+δ for µ ≥ π

ω

(

1 − δ
2+2δ

)

,

so that one can conclude that the approximation order s is

s =

{

1 for µ < π
ω ,

1
µ · π

ω − ε for µ ≥ π
ω ,

(3.26)

(even when f is smoother). On the other hand it is not clear in which way the constant C
depends on p; we suspect that C → ∞ for p→ 2.

Remark 3.14 With analogous arguments as in [5] we can prove that the condition number
of the stiffness matrix is of order h−2, that means, of the same order as for quasiuniform
meshes.

4 Other aspects

4.1 Extension to general boundary conditions

All the results of Sections 2 and 3 can be extended to Neumann boundary conditions by
replacing sin( jπϕ

ω ) by cos( jπϕ
ω ) everywhere.

In the case of mixed boundary conditions the analytical results extend with sin( jπϕ
ω )

replaced by sin(
(j− 1

2
)πϕ

ω ). But the condition 0 ≤ β < 1 − 1
p in Theorem 3.8, with β =

2− 2
p −

π
2ω +ε, leads to the restriction ω < π. This restriction is known from the isotropic case

(see [5]); it is equivalent to the condition that u must be contained in W 3/2+ε,2(Ω) →֒ C(Ω)
in order to have well-defined pointwise values of u. Only in that case interpolation makes
sense.

Newton boundary conditions need more explanation. Consider the problem

−∆u = f in Ω,
∂u

∂n
+ σu = 0 on ∂Ω, (4.1)

where σ ≥ 0 on ∂Ω, σ(x) > σ0 > 0, for all x in a part ∂ΩT ⊂ ∂Ω with meas2∂ΩT > 0, and
σ ∈W 1−1/p,p(∂Ω) ∩W 1−1/s,s(∂Ω), for some s > 3.

Theorem 4.1 Let u ∈ H1(Ω) be the variational solution of (4.1) with p < 6, then

u ∈ A2,p
β (Ω) with

{

β > 2 − 2
p − π

ω for 2 − 2
p ≥ π

ω > 3
2 − 3

p

β = 0 for 2 − 2
p <

π
ω

and
‖u;A2,p

β (Ω)‖ ≤ C‖f ;Lp(Ω)‖.
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Proof First we transform the boundary conditions into

∂u

∂n
= −σu on ∂Ω,

and use a lifting trace theorem in order to come back to homogeneous Neumann boundary
conditions. Indeed, since there exists s > 3 such that σ ∈ W 1−1/s,s(∂Ω), there exists
σ̃ ∈ W 1,s(Ω) such that σ̃ = σ on ∂Ω. Using Theorem 1.4.4.2 of [9] we get σ̃u ∈ H1(Ω),
because u ∈ H1(Ω). Consequently, σu ∈ H1/2(∂Ω), and because of the classical trace
theorem, there exists w ∈ H2(Ω) such that

∂w

∂n
= −σu on ∂Ω.

This means that u1 := u− w ∈ H1(Ω) is the solution of
∫

Ω
∇u1 · ∇v dx =

∫

Ω
f1v dx for all v ∈ H1(Ω),

where f1 := f + ∆w. Since f1 ∈ L2(Ω) and owing to Theorem 23.3 of [8], we conclude that

u ∈ H1+π/ω−ε(Ω) for all ε > 0.

Using again Theorem 1.4.4.2 of [9] to u ∈ H1+π/ω−ε(Ω) and some σ̂ ∈ W 1,p(Ω) such that
σ̂ = σ on ∂Ω, we obtain that

σ̂u ∈W 1,p(Ω), if
π

ω
>

3

2
−

3

p
.

Note that the condition π
ω > 3

2 − 3
p is necessary to have the embedding H1+π/ω−ε(Ω) →֒

W 1,p(Ω). With the help of the classical trace theorem, there exists w1 ∈W 2,p(Ω) such that

∂w1

∂n
= −σu on ∂Ω.

Finally, setting u2 = u− w1, we see that u2 ∈ H1(Ω) and that it is a solution of

∫

Ω
∇u2 · ∇v dx =

∫

Ω
f2v dx for all v ∈ H1(Ω),

with f2 := f+∆w1 ∈ Lp(Ω). Applying Corollary 2.5 to u2 (in the case of homogeneous Neu-
mann boundary conditions), we conclude that u2 ∈ A2,p

β (Ω) with β satisfying the conditions

of that corollary. Since w1 ∈W 2,p(Ω), we get the assertion. ✷

Thus, Corollary 3.12 applies with the restriction

2 < p < p+ := min

{

6; (
1

2
−

π

3ω
)−1; (1 −

π

ω
)−1
}

.

Note that the proof of this case needs also a proof of ‖u − Ihu;L
2(Ω)‖ ≤ Chs‖f ;Lp(Ω)‖

which can be carried out with the same arguments as in the proof of Theorem 3.10.

4.2 Numerical tests

As an example we consider the Poisson problem

−∆u = f in Ω,

u = g on ∂Ω(1),

∂u

∂n
= 0 on ∂Ω(2),


