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Abstract

In this paper we discuss a combined a-priori a-posteriori approach to mesh refine-
ment in finite element methods for two- and three-dimensional elliptic boundary value
problems containing boundary singularities. We review first both techniques of a-priori
mesh grading around singularities and a-posteriori mesh refinement controlled by local
error indicators. In examples of two- and three-dimensional boundary value problems
we demonstrate the applicability and efficiency of various combined mesh refinement
strategies.

1 Introduction

The quality of a finite element approximation to the solution of an elliptic boundary value
problem can vary markedly over the computational domain. This is particularly the case
when boundary singularities, arising from re-entrant corners and edges or from the change of
the type of boundary conditions, are present. The deterioration of the approximation arises
on account of the lower global regularity of the solutions in these situations as compared with
problems having smooth boundaries and only one type of boundary condition. Many special
numerical techniques have been developed in recent years to compensate for the effects of
these singularities, and there is an extensive literature in this field, see e. g. [1, 2, 6, 11, 13,
14, 23, 27, 29, 30]. In this paper we shall focus on strategies, which are a combination of
a-priori grading and a-posteriori (or adapted) mesh refinement techniques.

The a-priori local mesh grading approach has been analyzed mainly in the two-dimen-
sional case [6, 24, 27, 29], but there are also some studies of three-dimensional contexts, see
[1,2,4, 15, 16]. Based on analytical knowledge of the solution of the boundary value problem
a family of meshes can be described which will produce optimal a-priori error estimates. The
only information necessary for this is a lower estimate for the exponent f; in the singular part
of the solution, for $; see (2.7). This technique can be applied with any finite element code.
The only modification necessary is in the preprocessor to generate the a-priori graded mesh.
It can be shown that the number of degrees of freedom for such a mesh is asymptotically the
same as for ungraded meshes and that the asymptotic behaviour of the condition number of
the resulting finite element stiffness matrix is not worse than that for problems with regular
solutions [2, 4, 24, 27]. The disadvantage of the a-priori analysis is that it considers only
the asymptotic behaviour of the finite element solution as the number of degrees of freedom
tends to infinity. Nevertheless it is an important part of finite element analysis because it
demonstrates the mesh which in this sense is optimal. ‘
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However, for detailed knowledge of the errors in a particular finite element approximation
and for assessing its acceptability, an a-posteriori error estimate has to be provided. Since
the first papers by Babuska and Rheinboldt (8, 9, 10] many different estimators have been
developed and included in finite element codes, for a review and comparison sée for example
[22, 31, 32]. Usually a-posteriori error estimates are calculated locally and then amalgamated
to form a global error estimate. They can thus also serve as an indicator for regions with
large or small errors, respectively, and can be used to determine where a mesh has to be
refined or even where it can be coarsened. This feature has brought a new dimension to finite
element analysis, namely the creation of automatic mesh adapting finite element strategies.
The process can be described as follows: Starting with a coarse initial mesh, the three steps

e calculating an approximate solution,
o estimating the error locally,

e generating an improved mesh,

are executed repeatedly until the estimated error is globally within a desired tolerance, for
example 5% or 10% in engineering applications.

In the h-version of adaptivity, which we consider here, there are two main strategies
for improving the mesh. The first is based on a subdivision of the existing elements. This
is relatively easy to program, but has the disadvantage, that adjacent elements have only
a small number of possible ratios of their mesh sizes, mainly 1 : 1 or 1 : 2. The second
approach demands a complete remeshing on the basis of a mesh density function derived
from the error estimator [25, 26] and it is necessary to have an automatic mesh generator
working with this background information. In this case the meshes produced have a more
gradually changing mesh size.

Especially in the first strategy, even though the sequence of meshes depends strongly on
the initial mesh, often little attention is payed to an appropriate design of this mesh. In most
cases a-priori knowledge of where the errors are large is totally ignored and not exploited in
the design of the initial mesh.

The initial question of our investigation is whether savings in computational effort can
be achieved by using mesh grading techniques combined with adaptive techniques. As a
measure we shall use the number of refinement steps and the number of degrees of freedom
required to achieve a finite element solution with an error below a given tolerance.

The outline of the paper is as follows: In the first two sections we state the class of
problems to be considered and describe basic features of its finite element discretization.
Particularly, in Subsection 3.2 we introduce the idea of appropriate mesh design for approx-
imating functions of rP-type, and in Subsection 3.3 we derive an error estimator by using
the residuals of the finite element solution. In Sections 4 and 5 the combined application
of a-priori mesh grading and a-posteriori adaptivity is demonstrated in the context of two-
and three-dimensional problems, and finally conclusions are given. We should mention that
the report [3] is an extended version of the paper in hand.

2 The model problem

2.1 Classical and weak formulation
We consider the quasi-harmonic differential equation

A*u+ f=V-(K-Vu)+ f=0 in QCRY d=2,3 (2.1)
together with essential and natural boundary conditions

on* Py (2.2)
on;. 1, (2.3)

u =
-Vu—-ou=—-(K:-Vu)-n-ou

Qg
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where 30 =T = T',UT, and ', NI, = 0. Boundary value problems like this occur in a wide
range of physical processes, see for example [35]. Regarding the case of steady state heat
conduction u denotes the temperature, and f the heat source in the body under investigation.
On the boundary either the temperature is fixed or a defined heat outflow 7 is given. K is a
symmetric and positive definite tensor of second order whose components Kj;; describe the
thermal conductivity of the physical medium, o is the thermal conductance and n denotes
the outward normal unit vector.

To obtain a weaker formulation of the boundary value problem which is appropriate for
finite element techniques employed here we multiply the equilibrium conditions (2.1) and
(2.3) by an arbitrary test function v € V where V = {v € H'(Q),v = 0 on I'y}. After
integration over 2 and I’y and employing Green’s theorem of integration by parts we obtain
the weak formulation of the boundary value problem as follows: Find an u € V such that

a(u,v)=b(v) VveV. (2.4)
Here, V = {u € H}(Q),u =7 on I';} and

/Vu 3k Vvd9+/ ouvdl, (2.5)

a(u,v)

b(v) / fodh - / godl, (2.6)
are bilinear and linear forms defined on H! x H! and H?, respectively. Notice, that Ty, # 0
or o # 0 is required for the existence of a unique solution u. The energy norm on V is

defined by |||z = Va(.,.)-

2.2 Singular solutions

The regularity of the solution of problem (2.4) is determined by the smoothness of the
coefficients K;; and the right-hand sides f, %, and @, as well as by the properties of the
domain. For sufficiently smooth domains and coefficients the so-called shift theorem holds;
that means, that for £ > 0

ue BMY(Q) if fe B*Y(Q), g€ B*VA(T,), e BMYA(T,).

This is no longer true, when the domain Q2 contains corners or edges. Consider for simplicity
smooth data, we let K;;, f € C*(R), and o, §, T be traces of C>(Q)-functions with respect
to Iy and Ty, respectively. Then in the case of a two-dimensional domain the solution u can
in genera.l be represented by

u= f(r)Z‘nr” “Ri(p) + ur - (2.7

Here, r and ¢ are polar co-ordinates centered at the singularity, the constants 7; denote stress
intensity factors, £(.) is a cut-off function, ®;(.) are trigonometric functions, g; € (0,1) are
real numbers, and u, is the regular part of the solution. The exponents §; depend on the
opening angle at the corner and the coefficients K;j, and can be determined exactly. —
Note that there are some exceptional angles which depend on the coefficients K;;. In these
cases the representation formula (2.7) is not valid, and additional logarithmic terms must be
included.

In three dimensions, the irregular boundary points are classified as conical corners, edges
and polyhedral corners. Near conical points the solution u behaves as in the two-dimensional
case. The radius r is here the distance to the corner and the functions ®; depend now on
two spherical co-ordinates, i. e.

u = £(r) Z‘y;rp‘(bg((p,O) +u,. (2.8)
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For K = I the exponents 3; can be determined exactly [13].

Near edges we have also a representation formula similar to (2.7). Here, r is the distance
to the edge, but the coefficients 7; are no longer constants. Denote by z the co-ordinate in
the direction of the edge, then for constant coefficients K;; and a constant interior angle of
the edge

u=€(r) Y %i(2)r7@ilp) + ur - (2.9)
L]

In the case of polyhedral corners we have a superposition of corner and edge singularities.
The additional difficulty is that the functions ®;(¢,6) of the spherical co-ordinates are no
longer smooth. We remark that this situation gets still more complicated when the data is
not smooth and more general edges are considered. These problems are excluded here. For
a detailed mathematical investigation of boundary singularities we refer to the monographs
(18, 19).

3 Finite element discretization

3.1 Asymptotic error and extrapolation techniques

In conforming finite element techniques considered here the set of C%-continuous shape func-
tions V" = span{N;}™, (n denotes the total number of nodes) is a subset of V/, i. e. V'V
Thereby the weak formulation (2.4) of the boundary value problem is projected into finite
dimensions as follows: Find u» € V" such that

a(uk, o) = b(v*) ' Vot e VA, (3.1)

The difference between the finite element solution u? and the exact solution u is repre-
sented by the error function e = u — uh. It is well known that in a sequence of sufficiently
fine finite element meshes the global error in the energy norm has the asymptotic behaviour

llell% = a(e,e) = C*N=°. (3.2)

Here, N is the number of degrees of freedom of the finite element discretization, and C*
denotes a constant which is independent of N but influenced by the solution domain, the
regularity of the exact solution, the polynomial order of the finite element shape functions
and the mesh geometry. The convergence order a of the finite element solution for a sequence
of uniformly refined meshes is given by

b ‘2—imin(s ~1,p) (3.3)

where d is the dimension of the problem considered, s is the highest order of the Sobolev-
Slobodetskit space which contains the exact solution and p denotes the polynomial order of
shape functions [12]. Obviously, in problems with singularities in the gradient of the solution,
i. e. 8 < 2, the convergence order is determined by the regularity s of the exact solution.

If we assume that @ = 0 and that the convergence behaviour is already in the asymptotic
range so that (3.2) has become valid, we can use the identity

a(e,e) = a(u,u) - a(uh,u?). (3.4)

to extrapolate the unknown energy a(u,u) as follows: Determine the convergence order
either a-priori by (3.3) (if the regularity s is known) or a-posteriori by error estimators 7
which should have asymptotically the same convergence order as the energy

 lnnf —lnni

ko ™ v (3.5)
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R1/8
Figure 3.1: Anisotropic, graded mesh near an edge.

Using two finite element meshes with (3.2) and (3.4) the extrapolated energy Qex(u,u) =
a(u,u) is then given by

a(u, ) - a(ub, ) (32)°

aex(u’u) o o (%z)"

(3.6)

3.2 A-priori mesh grading

Assume that the solution u of a two-dimensional domain can be represented as in (2.7). For
simplicity we consider such solutions which have a regular part u, € H 2(Q) and only one
singular term. We now follow the idea of Oganesyan and Rukhovets [23] and employ the
co-ordinate transformation r* = g, p € (0,1]. Thereby the singular part of the solution is
transformed into 3
us = u,(e, ) = 16()”/*2(%) 37
u

k
so that, in contrast to W’ the derivatives %j‘;} (k.=.2:3,.:7) are square-integrable for

sufficiently small values of p (4 < %) We can suppose now that u, can be approximated on
a typical quasiuniform mesh with optimal order.

Trying to avoid this co-ordinate transformation for practical calculations we only trans-
form the finite element mesh as follows: For all nodes within an appropriate radius b around
the singularity centered at (z,,,Z,,) the new nodal co-ordinates are calculated as °

) T8
rul

Zinew = Ziold " (3) V=192

where r = [(z1 — 2,)? + (22 — 24,)}]"/? (circular region) or r = |21 = Ty | + |22 — Za5 ]
(quadrilateral region). For a more detailed consideration see [2, 3, 4].

Estimates of the discretization error are derived from different points of view in several
papers including [4, 11, 15, 16, 18, 24, 27, 29]. Whilst the proofs are given only for special
cases, it can be conjectured that finite element discretizations with polynomial shape func-
tions of degree p have the same approximation order as problems without singularities if the
condition g < p. = B/p is satisfied.

It is a natural idea to apply the mesh grading approach also to problems in three-
dimensional domains, for example with edges. But then the following situation arises: the
idea of transformation, mesh generation and re-transformation leads to anisotropic elements
near the edges, see Figure 3.1. According to [1] an element is called anisotropic if its diame-
ters in different directions have different asymptotics as the element size is tending to zero.
Such meshes have already been applied successfully. For linear elements, and with certain
smoothness assumptions on the data, it has been shown in [1] for three-dimensional domains
that the optimal order of convergence is achieved for p < B.
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Figure 4.1: The two-dimensional test problem with the initial finite element mesh (domain:
100 x 100).

3.3 A-posteriori error estimation

Several techniques of a-posteriori error estimation have been elaborated and, based on the
number of papers published on this field the development has been much pursued during
the last few years. In this paper we employ a residual type error estimator. It is mainly
connected with the works of Babuska and his co-workers, and uses the duality between the
classical and the weak formulation of the boundary value problem [5, 7, 8, 9, 10, 20, 34].
The finite element solution, which satisfies the continuity requirements of the solution of the
weak form (2.4) but not those of the solution of the classical formulation (2.1-2.3), produces
residuals in the equilibrium conditions (2.1) and (2.3) and these are employed for assessing
the discretization error of the finite element solution, for more details see also [3, 21].
Following this approach the discretization error in the energy norm is estimated by

m m 1 -2
eZxn?=Y"N=C*Y —— h.~~/ J dr s
llellz = n ; .;E(K.-)Xj: ? Jionu), v
with Q
0 on Q nruv
Jei £ on fhnl,, (3:9)
3J on QinQ;.

Here, the quantity 7 is the global error estimator whilst the indicator A; estimates the
contribution of an individual element to the global error. The residual £ = —V*ub—gut -7
is defined along the surface part Ty and J = (K; - Vu*) - n; + (K; - Vuh) - n; denotes the
residual on the interface between two adjacent elements Q; and ;. C is a global constant
which we estimate by Richardson extrapolation and E(K;) denotes the largest eigenvalue
of the tensor K which can vary from element to element. (9;); stands for the interface
between two adjacent elements ; and Q;. In two-dimensional domains the discretization
parameter h;; is taken as h;; = meas(9%;);. In three dimensions we use two versions:

hi; (2 meas((99);))"/?, (3.10)
hi; = (6 mea.s(Q.-))l/s, (3.11)

related to the area of the faces and to the volume of the element, respectively.

4 Mesh grading and adaptivity in two-dimensional problems

We consider the two-dimensional Laplace equation, Au = 0, together with boundary condi-
tions illustrated in Figure 4.1. The change of the type of boundary condition on the lower
surface of the domain causes a singularity in the gradient of the solution of order O(r~2 ),
see Subsection 2.2. The discretization error of the finite element solution based on the mesh




85

N [ nc=1 |a(v",u")/10°| C %
22 | 38.93 1.411 0.727 | 60.20 %
76 | 31.60 1.790 0.651 | 43.72 %
280 | 23.63 1.996 0.623 | 31.31 %
1072 | 17.14 2.103 0.612 | 22.29 %
4192 | 12.27 2.157 0.610 | 15.91 %

Table 4.1: Uniform refinement: extrapolation of the scale factor C.

shown in Figure 4.1 is expected to be significant near this singular point. In order to decrease
this error as cheap as possible we treat the domain around the singularity by an appropriate
mesh refinement. We discuss and compare here the following strategies:

¢ uniform mesh refinement,
o uniform mesh refinement with mesh grading,
e adaptive mesh refinement,
¢ adaptive mesh refinement with mesh grading.

In uniform mesh refinement each element is subdivided into four congruent elements.
Obviously, this strategy is not very powerful because both the a-priori information about
the exact solution around the singularity and the a-posteriori estimation of the discretiza-
tion error distribution of the finite element solution are not included in this procedure. Mesh
grading techniques as discussed in Subsection 3.2 make use of the known exponent of singu-
larity to improve a-priori the mesh design. In contrast to this, adaptive mesh refinements are
controlled a-posteriori by estimating the distribution of the discretization error of the finite
element solution. Based on this only those elements are subdivided in which the estimated
error is high.

To estimate the global constant C by extrapolation we consider first the behaviour of
the error estimator 1 for a sequence of uniformly refined meshes. The numerical results
we discuss are summarized in Table 4.1. According to (3.3) the theoretical convergence
order of the discretization error becomes a = 1 for the problem under investigation. Using
extrapolation (3.6) we determine the extrapolated energy as ex(u,u) =~ 2.213- 103. Now we
can calculate the scale factor C by

llelle _ (aex(u, u) - a(u",u"))% g (4.1)

fNc=1 ']é':l

The numerical results in Table 4.1 demonstrate that for sufficiently refined meshes a reason-
able constant can be found.

In Figure 4.2 the behaviour of the discretization error using the refinement techniques
mentioned above is demonstrated. Corresponding finite element meshes are shown in Fig-
ure 4.3. According to Section 3.2 an appropriate grading parameter employed here is given
as u = 04.

With uniform mesh refinement the convergence order depends on the regularity of the
exact solution. By refinement new degrees of freedom are created uniformly distributed over
the domain so that neither the structure of the exact solution nor the distribution of the
finite element discretization error is taken into consideration. Therefore with uniform mesh
refinement the highest discretization error remains around the singularity. In Figure 4.3(a)
the mesh after 3 uniform refinements (1072 degrees of freedom) is shown.
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10 - adaptive uniform /graded
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Figure 4.2: Behaviour of the discretization error by using various mesh refinement techniques.

(a) uniform (b) adaptive
X
(c) uniform with grading (d) adaptive with grading

Figure 4.3: Finite element meshes after various refinement strategies.
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h;; as in (3.10) hi; as in (3.11)

M| N | lelle || mo=1 | llelle/mc=1 || ne=1 | lelis/nc=1
3 20 | 2.3391 || 10.5970 0.221 10.4270 0.224
6 275 | 1.4915 || 6.7680 0.220 6.6615 0.224
12 | 2783 | 0.9444 || 4.2717 0.221 4.2060 0.225
24 | 24863 | 0.5965 || 2.6912 0.222 2.6504 0.225

Table 5.1: Behaviour of the error estimator for 4 = 1.0.

In adaptive techniques the influence of the singularity on the convergence order is elim-
inated. Controlled by the error indicators a mesh refinement is produced especially near
the singularity. We reach a global convergence order of approximately one, which is opti-
mal for finite element approximations with linear shape functions. With classical adaptive
techniques, however, the mesh refinement is locally uniform, i. e. an element which has to
be refined is divided in four congruent subelements. The information about localisation and
order of singularities to control a-priori a graded mesh design is not included. Therefore usu-
ally a large number of refinement steps is needed to achieve a sufficiently fine mesh around
the singular point.

The uniform mesh refinement with mesh grading leads to the same optimal convergence
order as in the case of adaptive refinement. By an appropriate mesh grading of the uniform
refined mesh the influence of singularity on the convergence order of the finite element
solution is eliminated. Notice, that already in the initial mesh a mesh grading reduces the
discretization error, in this case from 60.20% to 51.93%, see Figure 4.2.

The most efficient mesh refinement technique is obviously the adaptive mesh refinement
combined with mesh grading around the singularity. The achieved convergence order is
near one which has already been obtained with uniform graded refinement as well as with
classical adaptive refinement. In comparison with uniform graded refinement, however, the
error level is now decreased and in contrast to classical adaptive refinement the number of
meshes needed to achieve a certain error level is substantially reduced.

5 Numerical results in a three-dimensional domain

In the three-dimensional domain Q = {(z1,22,23) = (rcosy,rsing,2) € R¥®:r<1,0<p<
%1,0 < z < 1} we consider Laplace’s equation Au =0 with essential boundary conditions
u = 7 on 9. The right hand side % is taken such that

u = (10 + 2)r*/3sin %(p (5.1)

is the exact solution of the problem which has the typical singular behaviour at the edge.

First we investigate the influence of mesh grading on the convergence behaviour of the
finite element error. In Figure 5.1 it is illustrated that the error is decreasing with decreasing
values of 4 until some optimal p. of about 0.5, then it increases again. Note also that u = 0.4
and p = 0.3 give a relatively large error for coarse meshes. We can conclude here that the
anisotropic, graded meshes are useful for treating edge singularities, for diminishing the error
and achieving the optimal approximation order.

In Table 5.1 and Table 5.2 we set out, for meshes with different numbers M of layers,
the exact error norm and the estimates nc=1 in both variants of the discretization parameter
h;; in (3.8). For ungraded meshes (4 = 1.0) the ratio ||e||/nc=1 is almost independent of
the mesh size, so that extrapolation techniques as described in Subsection 3.1 will give a
reasonable constant.
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I L 1 I 1 I
30 100 300 1000 3000 10000 30000 N
Figure 5.1: Behaviour of the error for different grading parameters u.

hij as in (3.10) hij as in (3.11)
M| N | lelle || ne=1 |llelle/ne=1 || nc=1 | llelle/nc=1
3| 20 1.9886 || 10.5930 | 0.188 | 9.9354 | 0.200
6| 275|1.0655| 6.1399 | 0.174 |/ 56382 | 0.189
12| 2783 | 05562 | 3.4363| 0.62 |[3.0910 | 0.180
24 | 24863 | 0.2858 || -1.8775 | 0.52 | 1.6555 | 0.173

Table 5.2: Behaviour of the error estimator for u = 0.5.

As illustrated in Table 5.2, in uniform graded meshes (u < 1) the ratio ||e||g/nc=1 changes
significantly with the number M of layers. We see the reason for this in the unbounded aspect
ratio, that is the ratio between the radius of the smallest outer and the largest inner balls of
the element. Note that the aspect ratio is of order N3(~1+1/#) for elements near the edge,
compare Figure 3.1. — A modification of the error estimator is necessary, for example by
employing another discretization parameter h;; in (3.8). Because the exact solution of the
boundary value problem under investigation is given in (5.1), we can also use the exact error
function e = u — u® to indicate the local discretization error.

In further computational tests we have applied mesh grading and adaptivity together in
the three-dimensional context. Therefore we have varied the grading parameter x between
0.3 and 0.7, the desired error tolerance between 3% and 10%, as well as the mesh size of the
initial mesh. Here we present the cases u = 0.5, ¢ = 0.05||u*||¢ and initial meshes with 3
layers.

We have used two strategies of involving mesh grading, see Figures 5.2 and 5.3. In
the first one only the initial mesh was graded. The new nodes introduced in the refinement
process, are generated at the midpoints of the edges of the element of the previous level.
The disadvantage of this procedure is that the effect of grading gets partially lost during the
refinement process. The results illustrated in Figure 5.2 show exactly this behaviour.

In a second strategy the refined meshes were graded as well. This was realised by two
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20 50 100 5001000 5000 10000 N
Figure 5.2: Error in the energy norm, initial mesh with 3 layers.
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Figure 5.3: Cross-cuts through final meshes at z = 1
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node movements. The first one was executed before the refinement in order to reproduce
an ungraded mesh. The ungraded mesh is then refined, and the grading is produced again.
Note that thereby all nodes of the graded mesh have exactly the same co-ordinates in the
next mesh. As demonstrated in Figure 5.2 adaptivity with mesh grading in each mesh shows
the fastest decreasing of the finite element error towards a certain error level.

6 Concluding remarks

The technique of a-priori mesh grading around certain singularities has been incorporated
successfully into a-posteriori mesh refinement strategies. By using a unified a-priori a-
posteriori approach the advantages of both the grading and the refinement procedures can
be combined in order to reduce the local and global discretization error of the finite element
solution more rapidly.

The key point in finite element analysis of boundary value problems with singularities
is that sufficiently small mesh sizes around singularities become necessary to bring the dis-
cretization error under a certain level. In classical adaptive finite element methods, where
with each adaptive refinement step the mesh size around the singularity can be decreased at
most by one half, usually a large number of steps is needed to achieve the desired error level.
Adaptive refinement combined with mesh grading seems to be a suitable tool to improve
finite element meshes around singularities faster than without this feature.
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