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1 IntroductionThe quality of a �nite element approximation to the solution of an ellip-tic boundary value problem can vary markedly over the computational do-main. This is particularly the case when boundary singularities, arisingfrom re-entrant corners and edges or from the change of the type of bound-ary conditions, are present. The deterioration of the approximation ariseson account of the lower global regularity of the solutions in these situationsas compared with problems having smooth boundaries and only one typeof boundary condition. Many special numerical techniques have been devel-oped in recent years to compensate for the e�ects of these singularities, andthere is an extensive literature in this �eld, see e. g. [1]{[14]. In this paperwe shall focus on strategies, which are a combination of a-priori gradingand a-posteriori (or adapted) mesh re�nement techniques.The a-priori local mesh grading approach has been analyzed mainly inthe two-dimensional case [15]{[18], but there are also some studies of three-dimensional contexts, see [1, 2, 3, 7, 8]. Based on analytical knowledgeof the solution of the boundary value problem a family of meshes can bedescribed which will produce optimal a-priori error estimates. The onlyinformation necessary for this is a lower estimate for the exponent � in thesingular part of the solution, for � see (4.1). This technique can be appliedwith any �nite element code. The only modi�cation necessary is in thepreprocessor to generate the a-priori graded mesh. It can be shown thatthe number of degrees of freedom for such a mesh is asymptotically the sameas for ungraded meshes and that the asymptotic behaviour of the conditionnumber of the resulting �nite element sti�ness matrix is not worse than thatfor problems with regular solutions [2, 3, 15, 16]. The disadvantage of thea-priori analysis is that it considers only the asymptotic behaviour of the�nite element solution as the number of degrees of freedom tends to in�nity.Nevertheless it is an important part of �nite element analysis because itdemonstrates the mesh which in this sense is optimal.However, for detailed knowledge of the errors in a particular �nite ele-ment approximation and for assessing its acceptability, an a-posteriori er-ror estimate has to be provided. Since the �rst papers by Babu�ska andRheinboldt [19, 20, 21] many di�erent estimators have been developed andincluded in �nite element codes, for a review and comparison see for exam-ple [11, 22, 23]. Usually a-posteriori error estimates are calculated locallyand then amalgamated to form a global error estimate. They can thus alsoserve as an indicator for regions with large or small errors, respectively, and2



can be used to determine where a mesh has to be re�ned or even whereit can be coarsened. This feature has brought a new dimension to �niteelement analysis, namely the creation of automatic mesh adapting �nite el-ement strategies. The process can be described as follows: Starting with acoarse initial mesh, the three steps� calculating an approximate solution,� estimating the error locally,� generating an improved mesh,are executed repeatedly until the error globally is within a desired tolerance,for example 5% or 10% in engineering applications.In the h-version of adaptivity, which we consider here, there are twomain strategies for improving the mesh. The �rst is based on a subdivisionof the existing elements. This is relatively easy to program, but has thedisadvantage, that adjacent elements have only a small number of possibleratios of their mesh sizes, mainly 1 : 1 or 1 : 2. The second approachdemands a complete remeshing on the basis of a mesh density functionderived from the error estimator [24, 25] and it is necessary to have anautomatic mesh generator working with this background information. Inthis case the meshes produced have a more gradually changing mesh size.Especially in the �rst strategy, even though the sequence of meshes de-pends strongly on the initial mesh, often little attention is payed to anappropriate design of this mesh. In most cases a-priori knowledge of wherethe errors are large is totally ignored and not exploited in the design of theinitial mesh.The initial question of our investigation is whether savings in compu-tational e�ort can be achieved by using mesh grading techniques combinedwith adaptive techniques. As a measure we shall use the number of re�ne-ment steps and the number of degrees of freedom required to achieve a �niteelement solution with an error below a given tolerance.The outline of the paper is as follows. In Sections 2 and 3 we statethe class of problems to be considered and give basic information on thediscretizations. In Section 4 we introduce the idea of appropriate meshdesign for approximating functions of r�-type. In a further section we derivean error estimator by using the residuals of the �nite element solution. Thisestimator proves to be equivalent to that of [21]. In Sections 6 and 7 wesummarize our computational experiments and �nally conclusions are given.3



2 The model problem2.1 Classical formulationThe di�usion or the ow of some quantity such as heat, mass, electric ormagnetic charge occurs in a wide range of physical processes. In such situa-tions the gradient of the rate of transfer per unit area, the vector function q,and an appropriate source term f have to satisfy the balance or continuityrequirement r � q = f : (2.1)The transport variable q itself is often related to a scalar potential functionu, q = �K �ru ; (2.2)where K is a symmetric and positive de�nite tensor of second order whosecoe�cients Kij describe the character of the physical medium; for exam-ple, the thermal conductivity in heat conduction problems, the permeabilityin electro-static problems, or K can be just a unit tensor in the case ofincompressible ow problems. If the coe�cients Kij are constants, i. e. in-dependent of position, the medium is called homogeneous, otherwise it isnonhomogeneous. If K is only diagonal, we call the medium orthotropic. Iffurther these diagonal elements are all equal, i. e. Kii = K for all i = 1; : : : ; dwhere d is the dimension of the domain, the medium is said to be isotropic.With (2.1) and (2.2) the potential function u is characterized by thequasi-harmonic di�erential equation��u+ f �r � (K �ru) + f = 0 in 
 � Rd; d = 1; 2; 3 (2.3)together with essential and natural boundary conditionsu = u on �u ; (2.4)� r�u � �u � �(K �ru) � n� �u = q on �q ; (2.5)where @
 � � = �u [ �q and �u \ �q = ;. The outward normal unit vectoris denoted by n and � is a physical constant associated with the transferthrough the surface part �q . For convenience in (2.3) and (2.5) we haveintroduced the two scalar di�erential operators �� and r�.4



Example 2.1 The general equations given above are now interpreted forsteady state heat conduction. In this case K denotes the thermal con-ductivity of the body under investigation. For an isotropic medium K ischaracterized by a scalar K, namely K � K I where I is a second orderunit tensor. The potential function u denotes the temperature distributionand the transport variable q stands for the heat ow within the body. Therelation between the heat ow and the temperature gradient is given byFourier 's law of heat conduction, represented in (2.2). On the boundaryeither the surface temperature, u, or the heat ow, here de�ned as heatoutow, normal to the surface part, qn = q + �u with qn = �r�u, is pre-scribed. In particular, with � = 0 and q = 0 we get the condition for anideal thermal isolated surface, i. e. r�u = 0. With q = ��u0 where � isthe thermal conductance and u0 is the reference temperature outside thedomain Newton's law of cooling is represented as qn = �(u� u0).Let 
� � 
 be an arbitrary control volume and �� = @
� its surface.The Gauss theorem Z
� ��u d
 = Z�� r�u d� ; (2.6)or expressed using (2.3) and (2.5) byZ
� f d
 = Z�� q�n d� (2.7)where q�n denotes the heat transport normal to the surface ��, indicates thelocal and global equilibrium of heat ow.2.2 Weak formulation of the boundary value problemBecause of the second order derivatives in the di�erential operator theclassical formulation of the boundary value problem requires at least thatu 2 C2(
) \ C1(
 [ �q) \ C0(
) and Kij 2 C1(
) \ C0(
 [ �q). In prac-tical applications, however, the coe�cients Kij are often discontinuous, forexample piecewise constant, so that the classical derivatives at points of dis-continuity are not de�ned. In order to overcome this and to make possiblethe use of �nite element methods, a weaker formulation of the boundaryvalue problem is set up. To obtain this we multiply the equilibrium condi-tions by an arbitrary test function and integrate over 
 and �q so thatZ
(��u+ f) v d
� Z�q(r�u + �u+ q) v d� = 0 8v 2 V (2.8)5



where V = fv 2 H1(
); v = 0 on �ug denotes the Hilbert space of functionswith square-integrable �rst derivatives and homogeneous conditions on �u.Employing Green's theorem in the formZ
 v ��u d
 = Z� v r�u d�� Z
rv �K �ru d
 (2.9)we obtain the weak formulation of the boundary value problem as follows:Find an u 2 V such thata(u; v) = b(v) 8 v 2 V : (2.10)Here we have introduced the following notation: V = fu 2 H1(
); u = uon �ug is the set of functions with square-integrable �rst derivatives thatsatisfy the boundary condition on �u, a(:; :) and b(:) are bilinear and linearforms de�ned on H1 �H1 and H1, respectively,a(u; v) = Z
ru �K �rv d
+ Z�q � u v d� (2.11)b(v) = Z
 f v d
� Z�q q v d� : (2.12)Notice, that k:kE � pa(:; :) de�nes the energy norm on V , provided thatthe problem has an unique solution. This is satis�ed for �u 6= ; or � 6= 0.Otherwise a solution exists and can be determined up to a constant only ifthe given quantities f in 
 and qn on � are in equilibrium.2.3 Singular solutions for two and three dimensionsThe regularity of the solution of problem (2.3{2.5) or (2.10{2.12) is deter-mined by the smoothness of the coe�cients Kij and the right-hand sides f ,u, and q, as well as by the properties of the domain. For su�ciently smoothdomains and coe�cients the so-called shift theorem holds; that means, thatfor k � 0u 2 Hk+1(
) if f 2 Hk�1(
); q 2 Hk�1=2(�q); u 2 Hk+1=2(�u) :This is no longer true, when the domain 
 contains corners in two dimensionsor corners or edges in three dimensions. We summarize here results onsingularities, see e. g. [26, 27] and the references therein.Consider �rst two dimensional problems and for simplicity smooth data;we let Kij , f 2 C1(
), and �, q, u be traces of C1(
)-functions with6



respect to �q and �u, respectively. Further let 
 be a two-dimensionaldomain and consider one boundary point x0 which is a re-entrant corner, ora point at which the type of the boundary condition changes. Denote by !the internal angle at this point.Introduce polar co-ordinates (r; ') in the neighbourhood U = fx 2 R2 :jx�x0j � R0g. For convenience consider r as dimensionless, for example saythat r is the distance to the corner divided by R0. In this case the solutionu can in general be represented byu = �(r)Xi ir�i�i(') + ur : (2.13)The constants i are called stress intensity factors, �(:) is a cut-o� function(�(r) = 1 for r < 12 , �(r) = 0 for r > 1, �(:) 2 C1[0;1)), �i(:) are smooth(in general trigonometric) functions of the polar angle, �i 2 (0; 1) are realnumbers, and ur is the regular part of the solution.Remark 2.1 The number of terms in the sum in (2.13) is mainly inuencedby the desired smoothness of the regular part ur. If we require ur 2 H2(
),then the sum reduces to one term in the following cases:(a) The type of the boundary condition does not change at the point x0,and � < ! < 2�.(b) The type of the boundary condition changes at x0, and !1 < ! < !2.The angles !1 < � and !2 > � are determined by the coe�cients Kij .For the Laplace operator it is !1 = �2 and !2 = 3�2 .For ! < � in (a) and ! < !1 in (b) it follows that u 2 H2(
), which meansthat we have no singularity. For ! > !2 in (b) there are two singular terms.Remark 2.2 There are some exceptional angles which depend on the co-e�cients Kij . In these cases the representation formula (2.13) is not valid,and additional logarithmic terms must be included.Remark 2.3 The exponents �i are solutions of an eigenvalue problem butthey are in two dimensions known exactly: for the Laplace operator we have� = �! in case (a) of Remark 2.1, in case (b) there is �1 = �2! and �2 = 3�2!(if ! > 3�2 ). 7



In three dimensions, the irregular boundary points are classi�ed as coni-cal corners, edges and polyhedral corners, and there is an extensive literatureabout the regularity of the solutions in these cases; we mention here onlythe books of Grisvard [26] and Kufner/S�andig [27]. The regularity resultscan be summarized in the following way:Near conical points the solution u behaves as in the two-dimensionalcase, r is here the distance to the corner. The only di�erence is that thefunctions �i depend now on two spherical co-ordinates and the exponents�i cannot in general be determined exactly. In this caseu = �(r)Xi ir�i�i('; �) + ur : (2.14)Near edges we have also a representation formula similar to (2.13). Here,r is the distance to the edge, but the coe�cients i are no longer constants.Denote by z the co-ordinate in direction of the edge, thenu = �(r)Xi i(z)r�i�i(') + ur (2.15)holds, assuming that the angle of the edge is constant and that in (2.3{2.5) we consider constant coe�cients Kij . The exponents �i are as in thetwo-dimensional case, see Remark 2.3.In the case of polyhedral corners we have a superposition of corner andedge singularities. The additional di�culty is that the functions �i('; �)of the spherical co-ordinates are no longer smooth. We remark that thissituation gets still more complicated when the data is not smooth and moregeneral edges are considered. These problems are excluded here.3 The �nite element discretization3.1 The �nite element method as projection techniqueWe assume that the domain 
 can be represented (exactly or approximately)by an union of m �nite elements 
i, i. e.
 = [mi=1 
i ; 
i \ 
j = ; for i 6= j : (3.1)We consider so-called regular �nite element meshes in which each vertex ofan element corresponds to a vertex of an adjacent element. We de�ne a�nite-dimensional space V h � V and a �nite-dimensional manifold V h � V .8



Then the weak formulation of the boundary value problem is projected into�nite dimensions as follows: Find uh 2 V h such thata(uh; vh) = b(vh) 8 vh 2 V h : (3.2)The di�erence between the �nite element solution uh and the exact so-lution u is represented by the error function e = u � uh. Notice, that theerror function becomes homogeneous on �u and we can writekek2E = a(e; e) = b(e) : (3.3)From (2.10) and (3.2) we derive the orthogonality relation of the projectiona(u� uh; vh) = a(e; vh) = 0 8 vh 2 V h; (3.4)i. e. in the a(:; :) product the error function e is orthogonal to the discretetest space V h. This implies that the �nite element method as a projectionmethod gives the best global energy approximation with respect to the un-derlying �nite element space. In addition it turns out that in the case u = 0the discretization error is represented as energy di�erenceb(e) = b(u)� b(uh) = a(u; u)� a(uh; uh) = a(e; e) : (3.5)Assume the exact solution u can be represented by u = w + u0 wherew 2 V satis�es the homogeneous essential boundary condition and u0 withu0 = u on �u is employed to ful�l the nonhomogeneous condition. The weakformulation can then be rewritten asa(w; v) = b�(v) 8 v 2 V (3.6)where b�(v) � b(v)�a(u0; v). Notice, thatpa(w;w) is now the energy normof w.Note that in conforming �nite element techniques considered here thecondition V h � V yields that the surface function u can be exactly repre-sented by the �nite element interpolation, i. e. u = uh on �u. Let fNigni=1 bethe set of C0-continuous shape functions, where n denotes the total numberof nodes, and denote by ui (i = 1; : : : ; nu) the prescribed boundary valuesat the nu surface nodes on �u, then an appropriate function u0 is given asu0 = uh0 = Pnui=1 uiNi. In this notation we have V h = spanfNigni=nu+1 andV h = u0 + V h. The number of degrees of freedom of the �nite elementdiscretization is N = n� nu. 9



3.2 Extrapolation techniquesIt is well known that in a sequence of su�ciently �ne �nite element meshesthe global error in the energy norm has the asymptotic behaviourkek2E = ku� uhk2E � C�N�� : (3.7)Here, � is the convergence order of the �nite element solution, N the numberof degrees of freedom of the �nite element discretization, and C� denotes aconstant which is independent of N but dependent on the domain 
, theregularity of the exact solution, the polynomial order of the �nite elementshape functions and the mesh geometry [28]. An a-priori calculation orestimation of the constant C� is in general impossible. Therefore the a-priori estimate (3.7) describes the behaviour of the global discretizationerror but cannot be applied to determine a speci�c error level for the �niteelement solution.The energy convergence order for a sequence of uniformly re�ned meshesis given by � = 2d min(s� 1; p) (3.8)where d is the dimension of the problem considered, s is the highest orderof the Sobolev-Slobodetski�� space which contains the exact solution and pdenotes the polynomial order of shape functions [28]. Obviously, in problemswith singularities in the gradient of the solution, i. e. s < 2, the convergenceorder is determined by the regularity s of the exact solution. Also theinverse theorem is valid in an asymptotical sense, i. e. an observed numericalconvergence in the energy of order � indicates a certain smoothness of theexact solution of the boundary value problem [28].Expression (3.7) can be represented on a double logarithmic scale as thestraight line lnkek2E = �� lnN + lnC� (3.9)where � is the gradient.If we assume that u = 0 and that the convergence behaviour is alreadyin the asymptotic range so that (3.7) has become valid, then using three�nite element meshes we can extrapolate the unknown energy a(u; u) of theexact solution, the constant C� and the convergence order � by the three10



equations a(u; u)� a(uh1 ; uh1) = C�N��1 ;a(u; u)� a(uh2 ; uh2) = C�N��2 ; (3.10)a(u; u)� a(uh3 ; uh3) = C�N��3 :If we estimate the convergence order either a-priori by (3.8) where the reg-ularity of the exact solution has to be known or a-posteriori by error es-timators � which should have asymptotically the same convergence rate asthe energy, � � ln�21 � ln�22lnN2 � lnN1 ; (3.11)we can reduce the number of �nite element meshes to two. The extrapolatedenergy aex(u; u) � a(u; u) is then given byaex(u; u) = a(u1; u1)� a(u2; u2) �N2N1 ��1� �N2N1�� : (3.12)4 A-priori mesh gradingIn this section, we want to motivate mesh grading and derive the relationbetween the element sizes and their distance from the point x0 of boundarysingularity. For this we adopt the notation from Section 2.3 and consider forsimplicity a two-dimensional problem with a solution which has a regularpart ur 2 H2(
) and only one singular term (see Remark 2.1), so that thesolution u can be represented byu =  �(r)r��(') + ur: (4.1)We now follow the idea of Oganesyan and Rukhovets [29] and considerthe co-ordinate transformationr� = %; � 2 (0; 1]:That means that the neighbourhood U = f(x; y) 2 
 : r � R�10 (x2+y2)1=2 <1g is transformed into itself, but the singular part of the solution is nowus = us(%; ') =  ��(%)%�=��('): (4.2)11



Figure 4.1: Mesh in the transformed plane (%; ') (left); graded mesh in theoriginal (r; ') plane, � = 0:7 (middle); graded mesh in the original (r; ')plane, � = 0:4 (right).The advantage is that, in contrast to @2us@r2 , the derivatives @kus@%k (k =2; 3; : : :) are square-integrable for su�ciently small values of � (� < �k�1).We can suppose that us can be approximated on a typical quasiuniformmesh of element size h with optimal order (depending on the degree of theshape functions).Trying to avoid this co-ordinate transformation for practical calculations(for example one would have to transform also the input data) has led to theidea of creating only the mesh in the transformed domain, of transformingback immediately and of computing on the transformed mesh but in theoriginal co-ordinate system. Two examples of transformed meshes are givenin Figure 4.1.In the following, we want to derive another description of the gradedmesh so constructed, in the original co-ordinates. We try to �nd a relationbetween the diameter hi of an element 
i and its distance ri from the cornerpoint. (Instead of ri � minx2
i jx � x0j we can use the easier computablequantity minxj2Si jxj�x0j, where Si is the set of vertices of the element 
i.)Elements with a vertex at the corner of the domain are contained in thetransformed domain in a circle with the radius % = h, which means in theoriginal domain hi = h1=� if ri = 0: (4.3)For elements without a vertex at the corner we �nd a circular annulusthat contains the element and has an inner radius %i and an outer radius %osuch that %o�%i = h. In the same way we can write for the original domain12



Figure 4.2: Mesh as proposed by Raugel.ro � ri = hi, r�o = %o, r�i = %i. Consequently, we havehhi = r�o � r�iro � ri = �r��1�with some r� 2 (ri; ro). This relation can be rewritten in the form hi =1�hr1��� . Because ri < r� < ro = %1=�o � (2%i)1=� = 21=�ri (4.4)we get 1�hr1��i < hi < 2�1+1=� � 1�hr1��i . This means that we demandC1hr1��i � hi � C2hr1��i if ri > 0: (4.5)The conditions (4.3) and (4.5) are actually those which are used in theproofs for a-priori error estimates for graded meshes and are also convenientfor verifying whether or not a given mesh generation strategy provides thedesired meshes.A slightly di�erent mesh generation algorithm including a transformationis presented by Raugel [16]. Starting with a coarse mesh she divides eachtriangle intoM2 smaller ones whereM is the number of layers. The trianglesare chosen to be congruent if the initial triangle has no vertex at the criticalcorner of the domain, and graded otherwise, see Figure 4.2. In fact, this isan approximation of our circular neighbourhood of the corner by a polygonalone.Another approach is the so-called dyadic partition [7]. Again startingwith a coarse mesh the elements are simply divided as in many adaptivere�nement strategies, until the conditions (4.3) and (4.5) are ful�lled withsuitable constants C1 and C2. 13



We also suppose that one can de�ne a corresponding mesh density func-tion for using a mesh generator of the type described in [24, 25].Remark 4.1 Adjacent elements are of comparable diameter. This followsfrom (4.4) and (4.5). Consequently, there is no di�culty with ful�lling thecondition that the aspect ratio of the elements (the ratio between the radiusof the smallest outer and the largest inner balls) should be bounded. Notealso, that elements in di�erent parts of the domain may not be of comparablesize, see (4.3).Remark 4.2 Our construction of the graded meshes shows that the numberof elements is independent of the parameter �. It can even be shown thatthe conditions (4.3) and (4.5) yield an asymptotic number of elements oforder h�2 independently of the manner of construction [3].Remark 4.3 The asymptotic order of the condition number of the sti�nessmatrix does not increase when using mesh grading [3, 15].Remark 4.4 Estimates of the discretization error are derived from di�erentpoints of view in several papers including [3, 7, 8, 15, 16, 17, 18, 26, 29].Whilst the proofs are given only for special cases, it can be conjectured thatfor � < �� � �p (4.6)the approximation order in Sobolev spacesHk(
) is the same as for problemswith the same smoothness of the data in domains with smooth boundariesand without changing type of the boundary conditions. Here, we denote byp the degree of the shape functions.The extension of the mesh grading approach to problems in three-dimen-sional domains is natural using tetrahedral elements; consider for example apolyhedron with singularities near edges and corners. However, near edgesthe idea of transformation, mesh generation and re-transformation leads toanisotropic �nite elements, see Figure 4.3. According to [1], an elementis called anisotropic if its diameters in di�erent directions have di�erentasymptotic scales.Though not ful�lling the condition of a bounded aspect ratio (for ele-ments near the edge the aspect ratio is of the order h1�1=�), such meshescan be applied successfully, see for instance [1]. One has only to take carethat the angles between the faces of each tetrahedron do not tend to � for14



h1=� hFigure 4.3: Anisotropic, graded mesh near an edge.decreasing h, but are bounded by some constant � < �, which is indepen-dent of the mesh size. For linear elements and some smoothness assumptionson the data, it is shown that the optimal convergence order in the sense ofRemark 4.4 is received for � < �:One can expect that this result extends to shape functions of higher de-gree in the sense of Remark 4.4, but as far as we know, no comprehensivemathematical investigation of anisotropic meshes has yet been done.On the other hand, describing the mesh by conditions (4.3) and (4.5)it is also possible to consider meshes with bounded aspect ratio. They canbe constructed for instance by the method of dyadic partition, see above.Approximations on such meshes are more comprehensively investigated [2,3, 7, 8] and most of the a-priori error estimates from the two-dimensionalcase are shown to also hold true in three dimensions. There is, however,one serious drawback: the asymptotic order of the number of elements aswell as of the condition number of the sti�ness matrix increase for � � 13[2, 3]. An asymptotic number of elements of the order h� with � < �d (d isthe dimension of the domain) yields a loss in e�ectivity in comparison withproblems with smooth solutions and non-re�ned meshes. It is not clear,whether this loss is a consequence of the singularity in the solution of theproblem or of a non-optimal method. A condition number of the orderh� with � < �2 leads to a slower convergence of iterative solvers for theresulting �nite element equation system (we used a preconditioned methodof conjugated gradients) or to the need of a special preconditioner that isadapted to this problem. 15



5 A-posteriori error estimation5.1 Basic features of a-posteriori error estimatesSeveral techniques of a-posteriori error estimation have been elaborated and,based on the number of papers published on this �eld, it is clear that therehas been a dramatic development during the last few years. In order tocharacterize established error estimators for elliptic boundary value prob-lems we may consider two classes; the residual type and the recovery typeof a-posteriori error estimation.The residual type, mainly connected with the works of Babu�ska and hisco-workers, uses the duality between the classical and the weak formulationof the boundary value problem [6, 10, 19, 20, 21, 30, 31, 32]. The �niteelement solution satis�es the weak formulation but in the classical form ofthe boundary value problem it causes residuals in the equilibrium conditionswhich are a measure of the discretization error of the �nite element solution.The recovery type of error estimation, based on an idea of Zienkiewiczand Zhu, uses the di�erence between the classical �nite element solutionand a solution which has been improved by recovery techniques [33, 34, 35,36, 37]. In engineering practice both the residual type and the recoverytype estimators are widely applied in complex structural calculations. It iswell known that both estimators show qualitatively the same results. Fur-ther it has been proved that for uniform meshes of bilinear rectangles bothestimators are equivalent from an analytical point of view [38].We now summarize briey some basic features of a-posteriori error esti-mation. We shall then apply the residual type of error estimator in the con-text of general quasi-harmonic boundary value problems, and by numericalexperiments which are demonstrated in Section 6 and Section 7 we discussthe combined use of a-priori mesh grading techniques and a-posteriori errorcontrol.A quantity �i which estimates the local discretization error in a sub-domain, which we take to be the individual element 
i, is called the errorindicator. The totality of �i indicates the distribution of the discretiza-tion error in the solution domain. The global error measure, called errorestimator �, is related to the local indicators by�2 = mXi=1 �2i (5.1)where m denotes the number of elements in the total domain. We also16



introduce the percentage error of the energy norm by�% = �pa(u; u) � 100% (5.2)where the global energy is approximated by a(u; u) � a(uh; uh) + �2. Thetrue error kekE has to be bounded by the error estimator � such thatC1� � kekE � C2� (5.3)where the constants C1 and C2 are independent of the �nite element meshand the exact solution. When C1 and C2 are close to unity the estimator �gives the correct error level and the so-called e�ectivity index, de�ned by� = �kekE ; (5.4)approaches one as the exact error kekE tends to zero. If � ! 1 the errorestimator � is said to be asymptotically exact.5.2 A residual type error estimatorWe consider the linear elliptic boundary value problem (2.3{2.5) and applya conforming �nite element technique to the weak form (2.10). Whilst theessential boundary condition on �u is automatically satis�ed by restrictionof the bilinear form of the weak formulation over V � V , in the equilibriumconditions (2.3) and (2.5) the �nite element solution uh usually leads toresidual terms. In a formal sense we can write��uh + f = R+ J�ij in 
 (5.5)uh = u on �u (5.6)� r�uh � �uh = q + � on �q (5.7)where R denotes the residual distributed in 
 and � is the residual alongthe boundary part �q. The residual term J�ij , for convenience denotedhenceforth by J , whereJ = (Ki �ruh) � ni + (Kj �ruh) � nj (5.8)is only de�ned on the interfaces �ij between two elements 
i and 
j , seeFigure 5.1. The residual J represents a weak form, also called generalized17




i ni 
jnjFigure 5.1: Interface between two adjacent elements 
i and 
j .form, of the second derivatives of the di�erential operator with respect tothe C0-continuous �nite element approximation.If we interpret the residuals R, J and � as additional loads, the �niteelement solution uh can be considered as the exact solution of the �niteelement boundary value problem (5.5{5.7). Both boundary value problems(2.3{2.5) and (5.5{5.7) di�er by their loadings and these di�erences indicatethe discretization error of the �nite element solution.Because the ow balance expressed by the Gauss theorem has to besatis�ed in both the original and the �nite element boundary value problemthe residuals R, J , and � have to be in local and global equilibrium.Using the linearity in the governing equations we get a boundary valueproblem for the error function e such that��e+R+ J = 0 in 
 (5.9)e = 0 on �u (5.10)r�e+ �e = � on �q : (5.11)In comparison to the original formulation (2.3{2.5) the loads f and q are nowreplaced by the residuals R, J , and �. Notice, that the essential boundarycondition (5.10) becomes homogeneous.The boundary value problem of the error function can be represented byits weak formulation. Using the same procedure as in Section 2.2 we geta(e; v) = b(v) 8v 2 V (5.12)where a(e; v) = Z
re �K �rv d
+ Z�q � e v d� (5.13)b(v) = Z
Rv d
+ ZP�ij J v d� + Z�q � v d� ; (5.14)18



see also Remark 5.1. Because of the homogeneous boundary condition on�u the bilinear form is now restricted to V � V . Therefore the arbitraryfunction v can be replaced by the error function and we can write with (3.3)and (5.12{5.14)kek2E = a(e; e) = Z
Re d
+ ZP�ij J e d� + Z�q � e d� : (5.15)With (5.15) the global discretization error in the energy norm is representedby the residuals of the �nite element solution and the unknown error functione. In order to get local error indicators which characterize the discretizationerror of an individual element we have to determine the part of the globaldiscretization error associated with each element. The divisions of the resid-uals R and � into element contributions are obvious. On the interelementsurface �ij the residual J is shared by two adjacent elements. A divisionaccording to J = Ji + Jj with Ji = (1 � c) J and Jj = c J is controlledby the function c which can be achieved iteratively so that in addition tothe global equilibrium of residuals, which is satis�ed automatically, the localequilibrium is also ful�lled [39, 40]. In a simpler and cheaper way one halfof the residual can be allocated to each of the two adjacent elements so thatc = 1=2. For the contribution of element 
i to the total energy error we cannow writekek2
i = Z
i Re d
+ 12Xj Z�ij J e d� + Z�q\
i � e d� (5.16)where index j runs over the interelement surfaces of element 
i. Finally theelement error (5.16) is estimated by [10, 19, 20, 21, 30, 31, 32]�2i = C2E(Ki) �h2i Z
i R2 d
+ hi Z@
i J 2 d�� (5.17)with J = 8><>: 0 on 
i \ �u ;� on 
i \ �q ;12J on 
i \ 
j : (5.18)Here, parameter hi characterizes the element size, C is a global constantwhich we estimate by extrapolation techniques, and E(Ki) denotes thelargest eigenvalue of tensor K which can vary from element to element.19



Remark 5.1 Because of the orthogonality relation (3.4) of the �nite ele-ment projection we cannot solve the boundary value problem of the errorfunction (5.9{5.11) with the same �nite element space as the original prob-lem. Assume that the error function can be expressed as a seriese = 1Xi=p+1 ei with ei 2 spanN(i)where N(i) is the set of shape functions of order i. Assume further thatthe leading term in the error series represents globally and locally the dis-cretization error. The di�erence between a �nite element solution of orderp and p + 1 can then be employed for indicating the discretization error.In principle this technique is included in error estimators using smoothingtechniques where the discontinuous gradient of the solution is improved byan approximation of higher order.Remark 5.2 The element error indicator employs both the distributedresidual R and the residual J on the element surfaces. Both parts of theerror indicator are of same order. In �nite element approximations withlinear shape functions, however, the surface term is dominant so that in anerror estimation the residual R can be neglected [10].6 Mesh grading and adaptivity in two-dimensio-nal problems6.1 Test example and plan of experimentsWe consider �rst the two-dimensional Laplace equation, �u = 0, togetherwith boundary conditions illustrated in Figure 6.1. The change of the type ofboundary condition on the lower surface of the domain causes a singularityin the gradient of the solution of order O(r� 12 ), see also Subsection 2.3. Thediscretization error of the �nite element solution based on the mesh shownin Figure 6.1 is expected to be signi�cant near this singular point. In orderto reduce the discretization error we treat the domain around the singularitywith an appropriate mesh re�nement. In the next sections we discuss andcompare the following strategies of re�nement:� uniform mesh re�nement,� uniform mesh re�nement with mesh grading,20



x1x2 u = 0 @u@x2 = 1 @u@x1 = 0@u@x2 = 0@u@x1 = 0Figure 6.1: The two-dimensional test problem with the initial �nite elementmesh (domain: 100� 100).� adaptive mesh re�nement,� adaptive mesh re�nement with mesh grading.In uniform mesh re�nement each element is subdivided in four elementsas illustrated in Figure 6.2, Algorithm A. Obviously, this strategy is notvery powerful because both the a-priori information about the exact solu-tion around the singularity and the a-posteriori estimation of the discretiza-tion error distribution of the �nite element solution are not included in thisprocedure. Mesh grading techniques as discussed in Section 4 make useof the known order of singularity to improve a-priori the mesh design. Incontrast to a-priori mesh grading adaptive mesh re�nements are controlleda-posteriori by estimating the distribution of the discretization error of the�nite element solution. Based on this only those elements in which theestimated error is high are treated with re�nement Algorithm A. In orderto produce regular meshes a transition between the re�ned and the unre-�ned subdomains is realized by subdivision of elements in two as shown inFigure 6.2, Algorithm B.6.2 Extrapolation of the energy using uniform mesh re�ne-mentWe consider �rst the behaviour of the error estimator � for a sequence ofuniformly re�ned meshes. The one-dimensional discretization parameter hi21



Algorithm A Algorithm BFigure 6.2: Re�nement algorithms.in (5.17) is taken as hij = meas(@
i)j (6.1)where (@
i)j denotes the interface between two adjacent elements 
i and 
j .For a further discussion concerning hi see also Section 7. Note that in theexample investigated the residual part R of the error estimator disappears.With E(Ki) = 1 for Laplace's equation we get�2 = mXi=1 �2i = C2 mXi=1 3Xj=1 hij Z(@
i)j J2 d� : (6.2)For the time being the global constant C, which inuences the error levelbut not its distribution, is unity.The numerical results are summarized in Table 6.1. According to (3.8)the theoretical convergence order of the discretization error becomes � = 12for the problem illustrated in Figure 6.1. Using (3.11) the convergenceorder is well represented by the global error estimators for example we get� = 0:4904 with the error estimates of the meshes 4 and 5. The error levelwith C = 1, however, is signi�cantly overestimated so that the error levelhas to be scaled by estimating an appropriate C. Using extrapolation (3.12)we determine the extrapolated energy as aex(u; u) � 2:213 � 103. Now wecan calculate the scale factor C byC = kekE�C=1 =  aex(u; u)� a(uh; uh)�2C=1 ! 12 : (6.3)The numerical results in Table 6.1 demonstrate that a reasonable constantcan be found. 22



N �C=1 a(uh; uh)=103 C �%22 38.93 1.411 0.727 60.20 %76 31.60 1.790 0.651 43.72 %280 23.63 1.996 0.623 31.31 %1072 17.14 2.103 0.612 22.29 %4192 12.27 2.157 0.610 15.91 %Table 6.1: Uniform re�nement: extrapolation of the scale factor C.6.3 Mesh grading and adaptivity; numerical resultsIn Figure 6.3 the behaviour of the discretization error using various re�ne-ment techniques is demonstrated. Corresponding �nite element meshes areillustrated in Figure 6.4. The mesh grading discussed here is realized withinthe triangle with the corners (0; 0), (100; 0) and (50; 50), see Figure 6.1. Ac-cording to Remark 4.4 an appropriate grading parameter employed here isgiven as � = 0:4.With uniform mesh re�nement the convergence order depends on theregularity of the exact solution, see Figure 6.3. By re�nement new degreesof freedom are created and uniformly distributed over the domain so thatneither the structure of the exact solution nor the distribution of the �niteelement discretization error is taken into consideration. Therefore with uni-form mesh re�nement the highest discretization error remains around thesingularity. In Figure 6.4(a) the mesh after 3 uniform re�nements (1072degrees of freedom) is shown.In adaptive techniques the inuence of the singularity on the convergenceorder is eliminated. Controlled by local error indicators a mesh re�nementis produced especially near the singularity. We reach a global convergenceorder of approximately one, which is optimal for �nite element approxi-mations with linear shape functions. With classical adaptive techniques,however, the mesh re�nement is locally uniform, i. e. an element which hasto be re�ned is divided in four congruent subelements. Information aboutlocalisation and order of singularities to control a-priori a graded mesh de-sign are not included. Therefore usually a large number of re�nement stepsare needed to achieve a su�ciently �ne mesh around the singular point.The uniform mesh re�nement with mesh grading leads to the same opti-mal convergence order as in the case of adaptive re�nement. By an appropri-23
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N
�% 1 121 1 uniformuniform/gradedadaptiveadaptive/gradedFigure 6.3: Behaviour of the discretization error by using various meshre�nement techniques.ate mesh grading of the uniform re�ned mesh the inuence of the singularityon the convergence order of the �nite element solution is eliminated. Notice,that in the initial mesh a mesh grading already reduces the discretizationerror from 60:20% to 51:93%, see Figure 6.3.The most e�cient mesh re�nement technique is obviously the adaptivemesh re�nement combined with mesh grading around the singularity. Theconvergence order achieved is near one which has already been obtainedwith uniform graded re�nement as well as with classical adaptive re�ne-ment. In comparison with uniform graded re�nement, however, the errorlevel expressed by the constant C� in (3.7) is now decreased. In contrastto classical adaptive re�nement the number of meshes needed to achieve acertain error level is substantially reduced. A further simple comparisionshows the advantage of adaptive graded re�nement techniques: Whilst withan adaptive graded mesh the error level of about 10% is reached after 3 re-�nements employing �nally 437 degrees of freedom, we would obtain thesame error level with uniform ungraded mesh re�nement with about 27000degrees of freedom (result extrapolated).24



(a) uniform (b) adaptive
(c) uniform with grading (d) adaptive with gradingFigure 6.4: Finite element meshes after various re�nement strategies.25



7 Tests in a three-dimensional domain7.1 The numerical exampleIn the three-dimensional domain
 = f(x1; x2; x3) = (r cos'; r sin'; z) 2 R3 : r < 1; 0 < ' < 32�; 0 < z < 1gwe consider Laplace's equation with essential boundary conditions�u = 0 in 
; (7.1)u = u on @
: (7.2)The right hand side u is taken such thatu = (10 + z)r2=3 sin 23' (7.3)is the exact solution of the problem which has the typical singular behaviourat the edge.7.2 Uniform mesh re�nement with gradingFirst we investigate the inuence of mesh grading on the behaviour of the�nite element error, and especially on the convergence order of the error.Anisotropic meshes are constructed by a transformation of the ungradedmeshes, as described in Section 4, see Figure 4.3. We vary the numberof element layers M (6, 9, 12, 18, 24) and the grading parameter � (1.0,0.9, : : : ). From the numerical solution the energy norm kekE of the �niteelement error e = u � uh is computed by numerical integration with a 14-point-formula. As in the previous section, these norms are arranged in adouble logarithmic scale in Figure 7.1. We can observe that the error isdecreasing with decreasing values of � until some optimal �� of about 0.5,then it increases again. Note also that � = 0:4 and � = 0:3 give a relativelylarge error for coarse meshes.The convergence order is increasing with decreasing �, but is still notin its asymptotic range. (There are relatively large di�erences among thecalculated approximation orders with respect to the number of degrees offreedom, the number of nodes and the number of elements, though theyshould be asymtotically the same. The reason for this is the relativelylarge proportion (about 20%) of boundary nodes, which have no degreesof freedom.) 26
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Figure 7.1: Behaviour of the error for di�erent grading parameters �.We can conclude that the anisotropic, graded meshes are useful for treat-ing edge singularities, for diminishing the error and achieving the optimalapproximation order.7.3 Error estimationIn addition to the computation of the error norm kekE using the exact solu-tion, we estimate the errors with the error estimator described in Section 5.As in Section 6 the indicator �i reduces to�2i = C2hi Z@
i J2d� = C2 4Xj=1hij Z(@
i)j J2d�; (7.4)27



hij as in (7.5) hij as in (7.6)M N kekE �C=1 kekE=�C=1 �C=1 kekE=�C=13 20 2.3391 10.5970 0.221 10.4270 0.2246 275 1.4915 6.7680 0.220 6.6615 0.22412 2783 0.9444 4.2717 0.221 4.2060 0.22524 24863 0.5965 2.6912 0.222 2.6504 0.225Table 7.1: Behaviour of the error estimator for � = 1:0.hij as in (7.5) hij as in (7.6)M N kekE �C=1 kekE=�C=1 �C=1 kekE=�C=13 20 1.9886 10.5930 0.188 9.9354 0.2006 275 1.0655 6.1399 0.174 5.6382 0.18912 2783 0.5562 3.4363 0.162 3.0910 0.18024 24863 0.2858 1.8775 0.152 1.6555 0.173Table 7.2: Behaviour of the error estimator for � = 0:5.where the domains (@
i)j denote now the faces of the tetrahedron 
i. Intwo variants, the discretization parameter hij is taken at �rst related to theareas of the faces, hij = (2meas((@
i)j))1=2; (7.5)and at second related to the volume of the element,hij = (6meas(
i))1=3: (7.6)In Table 7.1 and Table 7.2 we set out, for meshes with di�erent numbersM of layers, the exact error norm and the estimates �C=1 in both variantsof the discretization parameter. For ungraded meshes (� = 1:0) the ratiokekE=�C=1 is almost independent of the mesh size, so that extrapolationtechniques as described in Subsection 3.2 will give a reasonable constant.As illustrated in Table 7.2, in uniform graded meshes (� < 1) the ratiokekE=�C=1 changes signi�cantly with the number M of layers. We see thereason for this in the unbounded aspect ratio (Remark 4.1). Note thatthe aspect ratio is of order N3(�1+1=�) for elements near the edge. | A28



modi�cation of the error estimator is necessary, for example by employinganother discretization parameter hi.7.4 Adaptive mesh re�nement with gradingBecause the exact solution of the boundary value problem under investiga-tion is given in (7.3), we can also use the exact error function e = u � uhto indicate the local discretization error. The adaptive algorithm can besummarized in the following way: Given a tolerance " that should boundthe global error, we mark all elements 
i for which the relationkek2
i > "2m (7.7)is ful�lled. As before, the number of elements is denoted by m. Then allmarked tetrahedra are divided into 8 smaller ones. Finally all elements withirregular nodes are divided such that a regular mesh is produced. We remarkthat this green closure is removed before the next re�nement step starts inorder to avoid a subsequent division of these elements.Remark 7.1 Note that condition (7.7) implies that in general in each re-�nement step more elements violate the test when a smaller parameter "is given. The strategy is not to minimize the error for a given number ofdegrees of freedom but to try to reach the given error level with as fewre�nement steps as possible.In the computational tests, we have varied the grading parameter �between 0:4 and 0:6, the desired error tolerance between 3% and 5%, as wellas the mesh size of the initial mesh. Here we present only the cases � = 0:6," = 0:05 kuhkE and initial meshes like those in the previously describedtest, but with only M = 3, 4 and 5 layers. The results of the other cases aresimilar. For comparison, we present also the result with � = 1, that meanswithout grading.We used two strategies of involving mesh grading. In the �rst one onlythe initial mesh was graded. The new nodes introduced in the re�nementprocess are generated in the midpoints of the edges of the element of theprevious level. The disadvantage of this procedure is that the e�ect ofgrading gets partially lost during the re�nement process. Obviously it wouldbe an advantage not to start with a too coarse initial mesh.Our results show this behaviour exactly. For the graded initial mesh with4 or 5 layers the error is below the tolerance with less degrees of freedom29
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kek% 1 1 ungradedgraded initial meshall meshes gradedFigure 7.2: Error in the energy norm, initial mesh with 3 layers.and only 2 re�nement steps in comparison to 3 re�nement steps in the casewithout grading, see Figures 7.2 to 7.4 for the di�erent cases.In a second strategy the re�ned meshes were also graded. This wasrealised by two node movements. The �rst one was executed before there�nement in order to reproduce an ungraded mesh; it is the same trans-formation with 1� instead of �. The ungraded mesh is then re�ned, andthe grading is produced again. Note that all nodes of the graded mesh haveexactly the same coordinates in the next mesh. Especially for simple geome-tries as in our cases the movement procedure can be programmed extremelyeasily; the mesh grading consumes much less time than the re�nement step.The result of this second strategy is a further improvement of the �niteelement process. Now the error is below the tolerance " in two re�nementsteps also for the coarsest initial mesh we used.In Figure 7.5 we present cross-cuts through the �nal meshes at z = 13 forthe three cases, in which the initial mesh consists of 3 layers. For comparisonwe give a uniform, graded mesh with 12 layers.30
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kek% 1 1 ungradedgraded initial meshall meshes gradedFigure 7.3: Error in the energy norm, initial mesh with 4 layers.
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kek% 1 1 ungradedgraded initial meshall meshes gradedFigure 7.4: Error in the energy norm, initial mesh with 5 layers.31



(a) uniform, graded, M = 12 (b) adaptive, without grading
(c) adaptive, graded initial mesh (d) adaptive, all meshes gradedFigure 7.5: Cross-cuts through �nal meshes at z = 13 .32



8 Concluding remarksThe technique of a-priori mesh grading around certain singularities has beenincorporated successfully into a-posteriori mesh re�nement strategies. Byusing an uni�ed a-priori a-posteriori approach the advantages of both thegrading and the re�nement procedures can be combined in order to reducethe local and global discretization error of the �nite element solution morerapidly.The key point in �nite element analysis of boundary value problems withsingularities is that su�ciently small mesh sizes around singularities becomenecessary to bring the discretization error under a certain level. In classicaladaptive �nite element methods, where with each adaptive re�nement stepthe mesh size around the singularity can be decreased at most by one half,usually a large number of steps is needed to achieve the desired error level.Adaptive re�nement combined with mesh grading seems to be a suitable toolfor improving �nite element meshes around singularities faster than withoutthis feature.References[1] Th. Apel and M. Dobrowolski, \Anisotropic interpolation with appli-cations to the �nite element method," Computing 47, 277{293 (1992).[2] Th. Apel and B. Heinrich, \Mesh re�nement and windowing near edgesfor some elliptic problem," to appear in SIAM J. Numer. Anal.[3] Th. Apel, A.-M. S�andig, and J.R. Whiteman, \Graded mesh re�nementand error estimates for �nite element solutions of elliptic boundary valueproblems in non-smooth domains," in preparation.[4] A.W. Craig, M. Ainsworth, J.Z. Zhu and O.C. Zienkiewicz, \h andh-p version error estimation and adaptive procedures from theory topractice," Engineering with Computers 5, 221{234 (1989).[5] L. Demkowicz, J. T. Oden, W. Rachowicz and O. Hardy, \Towarda universal h-p adaptive �nite element strategy. Part 1: Constrainedapproximation and data structure," Comp. Meth. Appl. Mech. Eng.77, 79{112 (1989). 33
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