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1 Introduction

The use of anisotropic mesh refinement in the adaptive finite element solution of partial
differential equations (PDEs) with highly anisotropic solutions is widely recognised as
having significant potential for improving the efficiency of the solution process, e.g. [3, 5, 10,
18, 22, 28]. Numerous schemes for driving anisotropic mesh adaptivity have been considered
in both the engineering, [3, 9, 10, 22, 27, 28], and the numerical analysis literature, [12,
25, 26]. Typically, such schemes fall into two broad categories: based either on a priori
knowledge of the nature of the solution (e.g. [6, 20]) or on more ad hoc indicators which
tend to use features of the equation or the numerical solution to drive the refinement (e.g.
(8, 14, 16, 24]). In this communication we propose an alternative technique for driving
anisotropic mesh refinement based upon a posterior: error estimation.
Throughout this paper we focus on a linear, second order, reaction-diffusion test prob-
lem
~Au+r*u=f; wue€Q=(0,1)x (0,1), (1)

with Dirichlet boundary conditions on 2. Note that when f = 0 equation (1) is satisfied
by
u=e "+ (2)

which features highly anisotropic boundary layers when x > 1. In order to assess the
quality of our proposed mechanism for driving the mesh adaptivity, described in Sections
2 and 3 we only use a very simple mesh refinement algorithm in this work. This allows us
to separate out the issue that we are concerned with here, of how to drive the anisotropic
refinement (i.e. provide the information needed to decide where an existing mesh needs to
be refined and in which directions) in a robust manner, from the (equally important) issue
of how to execute the refinement (i.e. the precise mechanisms and data structures used
to implement the refinement: see, for example, [11, 17, 23] for work in this area). The
paper concludes with a discussion of a number of important implementation issues and an
assessment of the potential of our new approach.

2 An adaptive strategy

The natural norm in which to measure the error of a numerical approximation to the
solution of (1) is the energy norm given by

ov ov
2 2 2 2y, 112
n , 3
where || - || represents the usual L? norm over 2. When a set of finite element solutions is

obtained using a nested sequence of progressively larger trial spaces (based upon conven-
tional, isotropic, h-refinement for example), the final term on the right-hand side of (3)
will tend to zero faster than the other two. It may be the case however that, although
tending to zero at the same asymptotic rate, the ratio between these two dominant terms
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is far from one. Our proposal is to drive an anisotropic mesh refinement algorithm based
upon the target of equilibrating these two terms, on each element, before reducing them
at the same rate using conventional h-refinement. Although the asymptotic convergence
rate will not be improved by such a strategy, we expect to see a significant computational
gain.

In order to demonstrate the effectiveness of the proposed strategy we begin by consid-
ering the exact error to equation (1),

e =u—u, (4)

where u is given by (2) and u" is the Galerkin finite element solution to (1) (with f = 0),
subject to exact Dirichlet boundary conditions, on a given mesh. Moreover, we also consider
only a very straightforward anisotropic refinement algorithm based upon the refinement of
rectangles in one of the three ways illustrated in Figure 1. This is a simplification of the
algorithm suggested in [23].

Figure 1: The three types of refinement allowed: regular (left), anisotropic in z (middle)
and anisotropic in y (right).

When an error on a particular rectangle exceeds some tolerance (typically 20% of the
maximum error over all rectangles) it is refined. If the x?||e"|| component of the error is
dominant on a rectangle (i.e. k%||e"||> > C|||e"|||?, where C'is typically chosen to equal 3),
or if

15 VI 1€ (5020 )

then regular refinement takes place on that rectangle. Otherwise, anisotropic refinement
takes place: refining in = when || %H dominates and in y when || % || dominates. Rectangles
are also refined when any edges contain two or more “hanging nodes” (due to successive
refinement of a neighbour) so as to prevent excessively large changes in h, or h, (the mesh
sizes in the z and y directions respectively).

Figure 2 illustrates graphs of the error against the number of finite element unknowns
when equation (1) is solved, with x = 103, using the above refinement strategy. In the first
(left) case f = 0 and the exact solution is (2), whilst in the second (right) case f # 0 and
the Dirichlet boundary conditions are chosen so as to permit the exact solution

u=e""+e ™+ 1+ cos (10y) . (6)
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The main difference between these two cases is that w is essentially zero away from the
boundary in the former but is a smooth non-zero function away from the boundary in the
latter. The three graphs plotted in each case are all obtained using the same initial isotropic
mesh (where each element has an aspect ratio of 1) and correspond to artificially imposing
a maximum element aspect ratio after refinement of 1 (i.e. only regular refinement allowed),
16 and 256 respectively. For the purposes of this work we define the aspect ratio (AR) of a
rectangular element to be max (h,/hy, hy/h,). Furthermore, all finite element calculations
are performed using piecewise linear elements obtained by dividing each rectangle into two
triangles (with exceptional divisions into three or four triangles when hanging nodes are
present). A discussion of the use of even larger aspect ratios is postponed until Section 4.
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maximum aspect ratiol —— maximum aspect ratiol ——
maximum aspect ratio 16 - maximum aspect ratio 16—
maximum aspect ratio 256 -x-- maximum aspect ratio 256 -x--
100 ] 100 + ap
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Figure 2: Graphs of the error as a function of the number of unknowns for the two test
problems (with £ = 10%) with a maximum possible aspect ratio of 1 (upper), 16 (middle)
and 256 (lower) in each case. For each calculation the adaptivity is based upon the energy
norm of the (known) exact error, calculated using a seven point quadrature rule with degree
of precision five.

The results shown in Figure 2 are typical of those obtained for all large values of k and
clearly show a significant advantage from the use of our anisotropic refinement strategy.
Note that the asymptotic convergence rates are the same in all cases so the improvement
is by a constant factor. Also note that in both examples our adaptive algorithm begins
with uniform refinement to drive down the large initial L? error before the advantage of
using anisotropic refinement is seen.

3 A posteriori error estimation

Whilst the numerical results exemplified by those presented in the previous section are
extremely encouraging, it is clear that for the proposed methodology to be of any practical
value a similar quality of results must also be achievable using a posteriori error estimates
(as opposed to the exact error). Recently there has been a significant amount of research
into the development and analysis of a posteriori error estimates that are effective on



highly anisotropic grids (see, for example, [13, 18, 19, 25]). Our requirement is even more
demanding than this however, since we are restricted to consider only those techniques
which yield local estimates of the error as a function: thus enabling us to compute each of
the three L? norms that appear in (3) on each element.

For the purposes of this investigation we have selected a small number of well-known
a posteriori error estimation algorithms and contrasted their use with that of the exact
error as described in the previous section. The algorithms considered are shown in Table
1, with the first three (AB, AO and BW) all requiring the solution of a local error equation
on each element. In contrast with this, the ZZ approach involves a direct approximation
of the gradients of the error on each element and therefore provides no estimate of |[e”|.
Since all of these error estimators are defined on triangles piecewise linear triangular finite
elements have again been used, as described in the previous section.

Abbrv. Reference Comments
AB | Ainsworth & Babuska [1] | A generalisation of AO designed for large x
AO Ainsworth & Oden [2] | The equilibrated residual method
BW Bank & Weiser [7] We use the third algorithm from this paper

77 Zienkiewicz & Zhu [29] | Provides approximations of ||%|| and ||%|| only

Table 1: Descriptions of the error estimators used in this paper.

In order to assess the suitability of these indicators for our purposes, we return to the
calculations that led to the best results shown in Figure 2 (i.e. with a maximum aspect
ratio of 256). Both of these calculations are repeated and after each finite element solve we
not only compute the exact error function, e”, but also each of the a posteriori estimates
(n" say) described above. Table 2 presents the results of these calculations in the form of
effectivity ratios ||[n"(||/]||€"|||. (Note however that for the ZZ error estimate we have no
contribution from the L? part of the error.)

The results presented in Table 2 show that on very coarse meshes, where all elements
have an aspect ratio of one, the AB and the BW estimates both appear to perform quite
well, and as the meshes are refined uniformly the effectivity index gets closer to one in each
case. However, when anisotropic refinement begins to occur the quality of these estimates
tends to deteriorate as the maximum aspect ratio grows. This is clearly a potentially
undesirable property for our approach. Similar behaviour is observed for the AO algorithm
when anisotropic refinement occurs, although this is perhaps not surprising since this
estimate yields the same approximation as AB when an element is sufficiently small. For
the coarse initial meshes the AO estimate always overestimates the error.

The ZZ estimate is extremely poor on the very coarse meshes, which is due to the fact
that it does not approximate the L? component of the energy norm of the error. Once
this component has been driven down through regular refinement however the ZZ estimate
performs well: consistently yielding an effectivity index of between about 0.6 and 0.7. Most
significantly, this is the only one of the four estimates considered which does not appear
to be adversely affected by the increasing aspect ratio.
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Problem 1 Problem 2
Vertices (AR) | AB | AO | BW | ZZ | Vertices (AR) | AB | AO | BW | ZZ
25 (1) 0.83 | 1.36 | 0.72 | 0.01 || 25 (1) 0.87 1245 0.82 ] 0.01
57 (1) 0.86 | 1.42 | 0.74 | 0.01 || 81 (1) 0.84 | 1.40 | 0.71 | 0.01
121 (1) 0.89 | 1.45 | 0.76 | 0.02 || 145 (1) 0.87 | 1.55 | 0.74 | 0.02
249 (1) 0.91 | 1.47 | 0.78 | 0.04 || 294 (1) 091 | 1.68 | 0.78 | 0.04
505 (1) 0.96 | 1.47 | 0.81 | 0.09 || 673 (1) 0.99 | 1.49 | 0.83 | 0.09
1017 (1) 1.04 | 1.36 | 0.86 | 0.18 || 1185 (1) 1.07 | 1.42 | 0.88 | 0.18
2041 (1) 1.11 | 1.19 | 0.93 | 0.36 || 2288 (1) 1.11 | 1.39 | 0.93 | 0.35
2567 (2) 1.20 | 1.21 | 1.03 | 0.56 || 3407 (2) 1.19 | 1.25 | 1.02 | 0.56
3086 (4) 1.40 | 1.41 | 1.08 | 0.66 || 4077 (4) 1.38 | 1.51 | 1.07 | 0.64
4643 (8) 1.63 | 1.63 | 1.15 | 0.72 || 7351 (8) 1.60 | 1.70 | 1.14 | 0.70
7256 (16) 1.84 | 1.84 | 1.20 | 0.70 || 10533 (16) 1.78 1 1.91 | 1.17 | 0.67
13074 (32) 2.16 | 2.16 | 1.36 | 0.65 || 22090 (32) 2.09 | 2.15 | 1.31 | 0.62
24352 (64) 2.69 | 2.69 | 1.62 | 0.62 || 37921 (64) 2.56 | 2.59 | 1.54 | 0.60
45380 (128) 3.44 | 3.44 | 2.20 | 0.61 || 85764 (128) 3.24 1 3.25 | 2.07 | 0.59
83515 (256) 4.41 | 4.41 | 3.41 | 0.60 || 138298 (256) | 3.93 | 3.94 | 2.99 | 0.58
259578 (256) | 3.66 | 3.66 | 3.25 | 0.59 || 368598 (256) | 3.30 | 3.30 | 2.84 | 0.58

Table 2: The effectivity ratios of a number of error estimates when the adaptive algorithm
(based upon the elementwise energy norm of the exact error) is applied to the two test
problems with a maximum permitted aspect ratio of 256. The first column for each problem
gives the total number of vertices in each mesh along with the maximum aspect ratio of
any rectangle in that mesh.

Having assessed the effectiveness of our selected error estimators on sequences of meshes
determined from the exact error, we now contrast these meshes with those obtained when
the adaptivity is driven by the estimated errors. Results for the same two examples, with
the same maximum aspect ratio of 256, are presented in Figure 3. The graphs shown are
of the exact error in each case but do not include the graph for the AO estimate. This is
because it turns out that, despite providing different numerical values to AB on the coarse
initial grids, this estimate leads to very similar sequences of grids to those obtained using
AB in both examples (the graphs of error against unknowns are almost indistinguishable).

The graphs shown in Figure 3 are again typical of those obtained for other large values
of k. In both examples we see that the AB error estimate proves to be a better driver of
the adaptivity than BW, despite there being little to choose between them from the results
presented in Table 2. In particular, once the aspect ratio becomes significantly greater
than one, the AB estimate appears to provide the better indication of the relative sizes of
||%|| and ||%|| on each element.

The Z7Z estimate also leads to interesting behaviour in these two tests. In each case it
begins anisotropic refinement much sooner than any of the other estimates permit since it
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Figure 3: Graphs of the error as a function of the number of unknowns for the two test
problems (with x = 10® and a maximum aspect ratio 256). Each problem is solved four
times: the adaptivity being driven by the exact error and the error estimates AB, BW and
77.

has no approximation of the L? component of the error. Hence the condition
Klle"]1* < Clle"I1? (7)

is always satisfied. In the first example this proves to be advantageous (thus demonstrating
that our choice of C' = 1 in (7) is over-cautious in this case), leading to the maximum
aspect ratio of 256 being reached far sooner than when the exact error is used. Since
the ZZ estimate is apparently unaffected by these large aspect ratios it continues to do
well and ultimately leads to meshes of almost identical quality to those obtained using the
exact error to drive the adaptivity. In the second example however, where the solution is
a non-zero function away from the boundary, the ZZ estimate performs less well. Again it
leads to anisotropic refinement in the boundary layer sooner than the other estimates but,
since the L? component of the error in the interior has not been eliminated at this stage,
the adaptive algorithm runs into difficulties later on.

Overall therefore, we see that, of the error estimates considered, the AB estimate would
appear to be the most appropriate to use in the practical situation where the exact error is
unavailable. Nevertheless, it is unlikely that this is an optimal choice and, as described in
the next section, provides some implementation difficulties when the aspect ratio becomes
extremely large.

4 Implementation issues

The results presented in the preceding sections are a small selection from a much larger
number of computations, performed with a variety of different parameter choices. In this
section we provide a brief overview of some of these parameters, such as the maximum
aspect ratio, the interval in (5) and the constant C' in (7), and discuss the significance of the

6



particular values selected. We also make some observations on the practical implementation
of our chosen error estimates.

Perhaps the most fundamental parameter in our anisotropic algorithm is the maximum
permitted aspect ratio, which is taken to be 256 for the examples in Section 3. One
advantage of this choice is that, for the sizes of mesh that we consider, the maximum AR
is reached before the end of the refinement process and so we are able to observe that
the rate of convergence reverts back to approximately one for further refinements. From
a theoretical point of view however there is a strong argument against imposing any such
upper limit. Instead one could just rely on the refinement selection mechanism (5) to
decide whether anisotropic refinement is no longer appropriate since, for any fixed choice
of x, this situation should eventually arise. Practically however this approach leads to a
number of difficulties (although, if these can be overcome, permitting larger aspect ratios
certainly can deliver superior results in terms of the energy norm of the error versus the
number of unknowns).

A major problem, for example, is that as the aspect ratios within a finite element mesh
grow, the resulting discrete algebraic equations become much more ill-conditioned (even for
a fixed number of unknowns). In our linear solver we use the conjugate gradient algorithm
with a simple algebraic preconditioner. For maximum efficiency however a hierarchical
preconditioner or solver, such as multigrid, should be used. Only if an appropriate algebraic
equation solver is applied is it possible to obtain a computational advantage from the fewer
degrees of freedom present in an anisotropic mesh. This issue of the use of hierarchical
solvers on anisotropic grids is discussed in further detail in [4, Section 6.3] for example.

Another difficulty with using extremely anisotropic elements arises in the solution of the
approximate error equations used to obtain the AB and AO estimates. These estimates
require the solution of a Neumann boundary value problem on each element, which is
usually undertaken with the aid of a small finite element calculation (e.g. using nine or ten
cubic basis functions or ten piecewise linear basis functions: we have implemented both
but use the latter in this work). Unfortunately, as the aspect ratio of an element grows
these systems get harder to solve numerically. Indeed, once the AR reaches about 104, it is
very difficult to obtain any solution at all since the finite element system becomes singular
in floating point arithmetic (despite the fact that, analytically, it is always non-singular
for k > 0).

A further significant parameter is our choice of C'= 1 in (7). Recall that unless (7) is
satisfied, anisotropic refinement is not permitted and so increasing C' allows such refinement
to occur for a larger relative component of the L? norm of the error. It is apparent from
the first graph in Figure 3 that in some cases C' = % is too cautious a choice (since the ZZ
estimate performs better than using the exact error, due to the fact that the former has no
L? component). Our initial implementation of the adaptive algorithm uses C' = 1 however
this generally performs poorly on our second example (and problems similar to it). Less
extreme choices for the value of C tend to yield similar performance to C' = %: altering
the point at which the anisotropic refinement begins but generally leading to final meshes
of a very similar quality.

The choice of the exact interval on the right-hand side of (5) is also not too critical.
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Clearly when the quotient on the left-hand side is either very large or very small then we
would wish to refine anisotropically (provided that (7) is satisfied). Similarly, when the
quotient is very near to one, uniform refinement is appropriate. Calculations using the
intervals [$,3] and [3, 4] for example both lead to results for which the graphs of error
against unknowns are virtually identical to those obtained when using the interval [3, 2] in
(5).

Our final remarks concerning implementation issues relate to the complexity of the
implementation and the cost of execution of each of the error estimates that have been
considered. For the exact error calculations on each triangle we have used a 7-point quadra-
ture rule with algebraic degree of precision 5 throughout this work. A small number of
calculations with a more accurate formula (37 points and degree of precision 13) show that
the 7-point formula is adequate in almost all cases. The only inaccuracies occur on very
coarse grids but these tend to be refined in an identical manner whichever formula is used.
Other than the numerical calculation of the energy norm of the exact error, the simplest
estimate to compute is ZZ since, unlike the other estimates that we have considered, this
does not require any error equations to be solved. The most complex estimate to imple-
ment and compute is AB (closely followed by AO) as this requires the careful calculation
of Neumann data for the error equations on each triangular element. The BW estimate
also requires an error equation to be solved on each triangle however the edge data is far
simpler to compute and it is only necessary to solve a 3 x 3 linear system on each element.

5 Discussion

The numerical calculations reported in Sections 2 and 3 are all based upon x = 10, which
is chosen to be representative of large values of k. When much smaller values of x are used
the anisotropy in the problem decreases and there is less to choose between the different
error estimates in terms of the refinements that they induce. In the limiting case where
t = 0 the solutions to our test problems are simple smooth functions. However, choosing
the right-hand side of (1) appropriately it is possible to manufacture an artificial problem
whose solution contains a steep boundary or internal layer. In this situation the energy
norm reduces to the H! semi-norm and the resulting problem has been considered by
a number of authors, including [15, 18, 23]. Our approach works well in this case too
however, in practice one would always choose an initial mesh that is able to approximate
the data, f in (1), accurately (see, for example, [15, 21]). Hence the initial mesh for this
type of problem should always be anisotropic when an anisotropic refinement algorithm is
available. There are situations in three dimensions however where an anisotropic solution
exists to the Poisson problem with an isotropic right-hand side on certain domains: see
[4, 18] for example.

There are a number of additional computational comparisons that could be made in
order to obtain further data on the performance of our proposed technique. One particular
approach would be to produce a hybrid algorithm based upon combining ZZ with an
estimate which is able to provide an approximation to the L? norm of the error. This



could be achieved in at least two ways. For example, the AB estimate, say, could be used
until (7) is satisfied and then the ZZ estimate could be used instead. Alternatively, the two
estimates could be combined so as to estimate the energy norm of the error by the sum of
the L? norm of the AB estimate plus the ZZ estimate. Initial experiments with the first of
these strategies are very encouraging: generally leading to an improvement over the use of
AB alone.

Further comparisons, against existing ad hoc refinement strategies, such as [3, 14, 23],
would also be worth undertaking. The difficulty with this however is that most such strate-
gies implicitly link the criteria for adapting the mesh with the process used for executing
the adaptivity. This link makes reliable comparisons quite difficult to achieve. A Hessian
approach (e.g. [14]) might be used within the context of our existing refinement algorithm
however by only performing anisotropic refinement when eigenvectors of the Hessian are
nearly parallel with rectangle edges.

One of the main advantages of the simple mesh refinement algorithm used in this work
is its lack of complexity. This therefore allows us concentrate on assessing the quality of
the information that we are able to extract from the exact error and the selected error
estimates. For practical problems however this Cartesian refinement algorithm is not suf-
ficiently general since there is a need to be able to align an anisotropic mesh with solution
features which may occur in arbitrary directions. It is not the goal of this short paper
to consider algorithms for undertaking refinement in this general manner, however we do
expect the ideas introduced here still to be applicable in such cases. In particular, provided
the adaptivity procedure is able to produce an anisotropic mesh that is well aligned with
the anisotropy present in the solution (see, for example, [18] for a discussion of a matching
function which is able to quantify this), then it should be possible to drive this adaptivity
using the approach described in this work. Developing such an adaptive algorithm, which
should be robust and, ideally, maintain the hierarchical data structures required for the
fast solution of very poorly conditioned systems of equations, is still a topic of current
research however.
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