Mesh Tying and Contact Algorithms for Nonlinear Beam-to-Solid Interactions # Ivo Steinbrecher¹ and Alexander Popp¹ ¹Institute for Mathematics and Computer-Based Simulation, University of the Bundeswehr Munich, Germany ### Motivation The interaction of beam-like structures with three-dimensional objects (1D-3D) can be found in a variety of different applications. Mechanically, the inteaction can be divided into three different types: Beam-to-Solid ... volume coupling surface coupling contact Beam-to-solid volume coupling can be considered the most fundamental of the three cases and will be investigated in detail here. Different methods exist to model embedded beams in volumes. The proposed approach [1] aims to fill the gap between homogenized and full 3D models by coupling efficient 1D beam elements [2] to 3D solids. #### homogenized beam-to-solid mesh tying 3D model of beam # **Problem Description** In the beam-to-solid volume mesh tying case the displacements of the beam surface are coupled to the solid, via $$\underline{\boldsymbol{u}}^B - \underline{\boldsymbol{u}}^S = \underline{\mathbf{0}}$$ on Γ_c . Using a mortar method [3] to discretize the coupling constraints leads to the following coupling contributions to the global weak form, where λ are the coupling tractions, i.e. the Lagrange multipliers $$-\delta W_c^f = \int_{\Gamma_c} \underline{\lambda} \left(\delta \underline{\boldsymbol{u}}^B - \delta \underline{\boldsymbol{u}}^S \right) dA_0, \quad \delta W_{\lambda}^f = \int_{\Gamma_c} \delta \underline{\lambda} \left(\underline{\boldsymbol{u}}^B - \underline{\boldsymbol{u}}^S \right) dA_0.$$ The evaluation of the surface integrals is computationally expensive. To circumvent this problem, the integrals over the beam surface are approximated with integrals over the beam centerline. This changes the coupling from a surface-to-volume coupling to a line-to-volume coupling. ## Discretization The primary field variables are approximated with a finite element discretization $$\underline{\boldsymbol{u}}_h^S = \sum_{k=1}^{n_S} N_k \boldsymbol{d}^S_k \qquad \underline{\boldsymbol{u}}_h^B = \sum_{k=1}^{n_B} H_k \boldsymbol{d}_k^B \qquad \underline{\boldsymbol{\lambda}}_h = \sum_{k=1}^{n_\lambda} \Phi_k \boldsymbol{\lambda}_k$$ The discretized coupling terms follow as $$-\delta W_{c,h} = \delta \boldsymbol{d}^{B^{\mathrm{T}}} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{\lambda} - \delta \boldsymbol{d}^{S^{\mathrm{T}}} \boldsymbol{M}^{\mathrm{T}} \boldsymbol{\lambda}$$ $$\delta W_{\lambda,h} = \delta \lambda^{\mathrm{T}} \boldsymbol{D} \boldsymbol{d}^{B} - \delta \lambda^{\mathrm{T}} \boldsymbol{M} \boldsymbol{d}^{S}$$ with $$\boldsymbol{M}[j,k] = \int_{L} \Phi_{j} H_{k} \mathrm{d}s \, \boldsymbol{I}$$ $$\boldsymbol{M}[j,k] = \int_{L} \Phi_{j} \left(N_{k} \circ \chi_{h}\right) \mathrm{d}s \, \boldsymbol{I}$$ The discrete mapping $\circ \chi_h$ of the solid shape functions on to the beam results in strong and weak \triangle discontinuities, which has effects on the accuracy of the numerical integration. Two integration algorithms are compared, element- and segment-based integration [4]. #### element-based - simple algorithm - low accuracy across discontinuities #### segment-based - complex algorithm - accurate even with low number of Gauss points # **Numerical Examples** element-based segment-based consistency Patch test are only fulfilled for segment-based integration. **Spatial convergence** is optimal for reasonable beam to solid element size ratios. /validation **Composite plate** The fibers in the plate are modelled as individual beams. Comparison with a homogenized model shows excellent agreement. Reinforced pipe under pressure This system can not be modeled with a homogenized approach. The solid is discretized with isogeometric elements. ## References - [1] Steinbrecher, I., Popp, A. (2019): Beam-to-Solid Interactions Based on a Mortar Finite Element Approach, Paper in preparation. - [2] Meier, C., Popp, A. and Wall, W. A (2017): Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff-Love Theory Versus Simo-Reissner Theory. Archives of Computational Methods in Engineering 26(1), pp. 163–243. - [3] Puso, M. A. (2004): A 3D Mortar Method for Solid Mechanics. International Journal for Numerical Methods in Engineering 59(3), pp. 315–336. - [4] Farah, P., Popp, A. and Wall, W. A (2015): Segment-Based vs. Element-Based Integration for Mortar Methods in Computational Contact Mechanics. Computational Mechanics 55(1), pp. 209-228.