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P R E F A C E  
 
 
 

Although the availability of the Precise Positioning Service (PPS) of the 
Global Positioning System (GPS) in the future is still uncertain it seems 
to revolutionize geodesy and to replace classical surveying techniques even 
by only using the various other capabilities (Standard Positioning Service 
- SPS). 
 
The Institute of Astronomical and Physical Geodesy (IAPG) of the Univer- 

sity of the Federal Armed Forces Munich decided therefore mid of 1984 to 
concentrate its satellite research on the topic of GPS. The present report 
summarizes the investigations and achievements in 1985 in the form of seven 
papers. 
 
Starting with basic physics and mathematics behind the analysis of GPS 

data the work covers aspects of GPS satellite selection in the field work, 
the incorporation of GPS baseline vectors in network adjustments with spe- 
cial emphasis of the determination of orthometric heights by combination 
with gravity data, and a description of one of the GPS analysis software 
products of IAPG, the phase-difference processing program. Finally, the re- 
quired force-modelling for the orbit determination of GPS satellites is 
outlined, as it is used in our program system. Most of the theory written 
in the papers is accompanied by test computations. 
 
The decision to publish the above mentioned papers in the green series of 

the University FAF Munich was mainly influenced by the fact, that knowledge 
and state-of-the-art in GPS research change very fast, and quick publica- 
tion is therefore recommended in order to avoid duplication of work. Thus, 
it can happen, that described software is an "old hat" in one or two years. 
Nevertheless, let us hope, that some of the results reported here may be a 
small step towards the full use of the capability of GPS in geodesy and 
surveying, mainly in Germany. 
 
We are indebted to Mrs. Grandl, Mrs. Grimm and Mrs. Zech for the patient 

and careful typing of the papers. We further acknowledge the Hessian De- 
partment of Surveys (Hessisches Landesvermessungsamt) in Wiesbaden, espe- 
cially Dr.-Ing. Strauß, for making Macrometer field data available to us. 
Thanks also to the U.S. National Geodetic Survey, Rockville, Md., for pro- 
viding data, and for assistance during the development of our own programs. 
 
We further acknowledge the efforts of Miss Eggert who managed the editori- 

al work. 
 
 
 

Neubiberg, March 1986 Günter W. Hein 
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THE BASIC OBSERVATION EQUATIONS OF CARRIER PHASE MEASUREMENTS 
TO THE GLOBAL POSITIONING SYSTEM 

INCLUDING GENERAL ORBIT MODELLING *) 
 
 

Günter W. Hein and Bernd Eissfeller 
University FAF Munich 

Institute of Astronomical and Physical Geodesy 
Werner-Heisenberg-Weg 39 

8014 Neubiberg 
Federal Republic of Germany 

 
 

ABSTRACT.  Starting with the physics of microwave pro- 
pagation the non-linear observation equations of car- 
rier phase (difference) observations to the Global Po- 
sitioning System (GPS) are derived.  A possible orbit 
model and its parameters are described for the GPS sa- 
tellites and inserted in the observation equations fol- 
lowing the principle of integrated geodesy.  The treat- 
ment of tropospheric and ionospheric effect on the 
observations is presented as well as the complete line- 
arization of the final observation equations.  The ge- 
neral estimation model for multi-baseline vectors in- 
cluding orbit modelling is outlined. 
 
The paper intends to present the mathematical back- 

ground of the use of GPS phase observations for survey- 
ing in a general operational way.  It does not discuss 
details of the numerical realization.  Rather, it is 
devoted to show the different functional relationship 
of the basic parameters and assumptions inherent in any 
approach. 

 
 

1.  INTRODUCTION  
 
Like the TRANSIT Doppler System, the GLOBAL POSITIONING SYSTEM (GPS) will 

replace classical surveying techniques in short time.  GPS receivers and 
corresponding processing systems including implemented software can be 
bought already now.  The surveyors will (and have to) trust on the given 
instrument. 
 
This paper is concerned with the mathematical background of the use of 

GPS phase carrier measurements for baseline determination.  Two goals we 
had in mind when writing it.  First, aware of the fact that the numerical 
realization of GPS processing software is just in the beginning stage, 
showing not yet the ultimate way of analyzing those observations, we wanted 
to describe the mathematics and physics as general as possible in order to 
 

 

*) A short summary of the paper was presented at the First International 
Symposium on Precise Positioning with the Global Positioning System, 
Rockville, Md., April 15-19, 1985, under the title "Integrated Modelling 
of GPS-Orbits and Multi-Baseline Components". 
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present the reader (in particular, students) a didactic way to this field. 
The second reason, following the tradition in geodesy to start from the 
large to the small, was the intention to imbed GPS observations in the model 
of integrated geodesy, taking advantage of such observations in a direct, 
operational way.  Thereby the derived linear observation equations or cor- 
responding systems can easily be combined with all other terrestrial geode- 
tic observations (HEIN, 1982a, b). 
 
It is obvious, that for the numerical realization of the presented mathe- 

matics, still more detailed investigations (in particular with respect to 
the ambiguities in the observations, gaps in the measurement series, etc.) 
are necessary. 
 
Since the Global Positioning Systems appears to revolutionize surveying 

and geodesy in the near future, many colleagues and institutions are con- 
cerned with GPS research.  As a consequence many papers are published.  By 
writing the paper under consideration by far not all available papers could 
be considered.  Therefore we like to refer the reader to a just published 
monograph by KING et al. (1985) and to the Proceedings of the First Inter- 
national Symposium on Precise Positioning with the Global Positioning 
(GOAD, 1985) which both can serve as sources for further literature. 
 
 

2.  THE OBSERVATION EQUATIONS OF CARRIER PHASE MEASUREMENTS  
 

2.1  Basic relations  
 
Every GPS satellite can be considered as a wave source transmitting elec- 

tromagnetic waves near the microwave spectrum.  The frequencies on the L- 
band are L1: =  ν1  =  1575.42 mHz and L2: =  ν2  =  1227.6 mHz corresponding to 
exactly 154 times and 120 times, respectively, the fundamental P-code 
chipping rate of 10.23 mHz. 
 
The basic relations for the description of electromagnetic fields are the 

Maxwells equations (see e.g. LIVINGSTON, 1970) 
 
 

∇ × H��⃗    =   
 ∂D��⃗  
∂t

 + 1��⃗                                                                                                                                            (2-1a) 

 

∇ × E��⃗    =   -
 ∂B��⃗  
∂t

                                                                                                                                                (2-1b) 
 

∇ ∙ D��⃗    =   q (2-1c) 
 

∇ ∙ B��⃗    =   0 (2-1d) 
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The symbols in (2-1a) to (2-1d) are 

E��⃗  the electric field intensity in [V/m] 

H��⃗  the magnetic field intensity in [A/m] 

D��⃗  the electric displacement in [V/m2] 

B��⃗  the magnetic induction in [T] = [Wb/m2] 

I��⃗  the electric current density in [A/m2] 

q the electric charge density in [C/m3] 

t the time in seconds 

∇ the nabla operator  (∇∙: = div,  ∇x: = rot) 
 
For electromagnetic fields in the atmosphere the following assumptions 

are customary, 
 

I��⃗    =   0��⃗  ,   B��⃗    =   µH��⃗  ,   D��⃗    =   εE��⃗      and     q   =̇   0 
 

where  µ  is the magnetic permeability and  ε  the dielectric constant. 
Using these assumptions, (2-2a) and (2-2b) can be deduced. 
 

∇2E��⃗  – µε 
 ∂2E��⃗  
∂t2

   =   0��⃗                                                                                                                                       (2-2a) 

 

∇2H��⃗  – µε 
 ∂2H��⃗  
∂t2

   =   0��⃗                                                                                                                                       (2-2b) 

 
where 
 

1
 c2 

   =   µ∙ε                                                                                                                                                       (2-2c) 

 
(∇2  is the Laplace operator). 
 
These are the so-called wave equations.  The simplest solutions of 

(2-2a, b) in one dimension are given by LIVINGSTON (1970) 
 

E(ρ,t)   =   E�(t)   sin �2π ν � 
 ρ 
c

 - t ��                                                                                                   (2-3a) 
 

H(ρ,t)   =   H�(t)   sin �2π ν � 
 ρ 
c

 - t ��  .                                                                                                (2-3b) 
 

ρ  is the length of the wave path,  ν  the frequency of the signal and the 
c  the speed of light.  By  E� , H� ,  we denote the corresponding amplitudes. 
(2-3a) and (2-3b) imply, that the electric and the magnetic field have the 
same phase.  The vectors  E��⃗   and  H��⃗   are orthogonal to the propagation di- 
rection and also orthogonal to each other  �E��⃗ ∙H  =  0� . 
 

P��⃗    =   E��⃗   ×  H��⃗  (2-4) 
 

P��⃗   is the so-called Poynting vector in the propagation direction. 
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From (2-3a,b) we find for the phase of the electromagnetic wave 

 

ϕ(ρ,t)   =   2π ν �
 ρ 
c
-t�  .                                                                                                                           (2-5) 

 
The phase (2-5) is the basic satellite observable in a GPS receiver. 
 
Due to the  sine  term in (2-3a,b) the phase is not affected by a phase 

shift of  2 π m , where  m  is an integer.  Thus 

 

sin �2π ν �
 ρ 
c
-t�  + 2π m�    =   sin �2π ν � 

 ρ 
c
-t��  .                                                                         (2-6) 

 
Consequently (2-5) can be written in a more general 

 

ϕ(ρ,t)   =   2π ν �
 ρ 
c
-t�  + 2π m                                                                                                                  (2-7) 

 
which expresses the simple fact, that phase measurements are not unique. 
Inserting further in (2-7)  c  =  λ ν ,  where  λ  is the wavelength, one gets 

 

ϕ(ρ,t)   =   
 2π 

λ
 ( ρ – c t + m λ ) .                                                                                                              (2-8) 

 
In order to derive the observation equations, we have to introduce two time 
instants for the signal propagation. 

 
tS is the transmission time of the satellite signal, and 

 

tR  =  tS + 
 ρ 
c
       is the time, when the signal is received. 

 
We first note that the phase of the signal for  t  =  tS  and  t  =  tR  re- 
mains the same.  Thus 

 
ϕ(0,tS)   =   ϕ(ρ,tR) . (2-9) 

 
Eq. (2-9) can be easily derived by inserting  t  =  tS , ρ  =  0  and  t  =  tR , 
ρ  =  ρ  in (2-8). 
 
From (2-9) follows the important fact, that we may describe the phase of 

the received signal either by  ϕ(0,tS)  or  ϕ(ρ,tR) . 
 
Following REMONDI (1984) we define the phase of the satellite signal by 

 
ϕS(tS) : =  ϕS(0,tS) (2-10a) 

or 

ϕS(tS) : =  
 2π 

λ
 (-c tS + m λ) .                                                                                                             (2-10b) 
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tS  and  tR  are realized by precise oscillators in the satellite (S) and 
receiver (R).  They are related to each other (as mentioned already above) 
by 

 

tS   =   tR – 
 ρ 
c

 .                                                                                                                                              (2-11) 

 
In (2-11)  c  is the mean value of the actual velocity of light in the con- 
sidered medium.  Thus, the following decomposition is reasonable, 

 
c   =   c0 - δc (2-12) 

 
where  c0  is the speed of light in the vacuum and  δc  is a small quantity 
expressing the mean variation of  c0  in the atmosphere.  The minus sign is 
due to the relation  c  <  c0  for a medium with refraction coefficient 
n  >  1 .  Using (2-12) in the expression  ρ c⁄   of (2-11) results in 

 
 ρ 
c

   =   
ρ

 c0 - δc 
   =   

ρ

 c0 �1-  δc 
c0

� 
   =̇    

ρ
 c0 

 �1+
 δc 
c0

�    =   
ρ
c0

 + 
 ρ δc 
c0
2  .                                  (2-13) 

 
The last term on the right hand side of (2-13) may be considered as an pro- 
pagation time delay  ∆ta  due to the atmosphere, 

 

∆ta   =   
ρ

 c02 
 δc  . 

 
The modelling of  ∆ta  is presented in section 4. 
 
Inserting (2-13) in (2-11) yields 

 

tS   =   tR - 
ρ

 c0 
 - ∆ta  .                                                                                                                              (2-14) 

 
Further, (2-14) in (2-10b) with  c  =  c0  results in 

 

ϕS(tS)   =   
 2π 

λ
 ( ρ  -  c0 tR  +  c0 ∆ta  +  m λ )  .                                                                               (2-15) 

 
ϕS(tS)  cannot directly be observed by a GPS receiver.  Instead of that, 
the satellite signal phase  ϕS(tS)  is compared with a reference oscillator 
ϕR(tR)  in the receiver, so that in reality the measurable quantity is the 
phase difference  ψ(tR) , 

 

ψi�tRi�   =   ϕSj �tSj�  -  ϕRi�tRi�   =   ϕSj �tRi- 
 ρij 
c

 - ∆taij�  -  ϕRi�tRi�                         (2-16) 

 
Ri  denotes the receiver  i  and  Sj  the satellite  j . 
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Since the receiver oscillator may have a small error, we introduce a 
clock error term  εi(t) . 

 
tRi    =   t + εi(t) (2-17) 

 
which can be modelled by a polynomial (REMONDI, 1984) 

 

ε(t)   =   α0  +  α1t  +  α2t
2  +  ...  . (2-18) 

 
Assuming that the receiver frequency  νRi  is constant  �νRi  : =  νi�  we 

write for  ϕRi 

 
ϕRi�tRi�   =   2π νitRi . (2-19) 

 
Furthermore 

 
ρij   =   ρij �tRi� 

 
∆ta  =   ∆ta�tRi� . 

 
εi(t)  and  ∆ta  are already small quantities.  Inserting (2-17) in (2-16), 
using (2-19) together with (2-15), and approximating  ρij �tRj�  by a Taylor 
expansion, neglecting higher order terms, 

 
ρij�tRi�   =̇   ρij(t)  +  ρ̇ij(t) εi(t) 

 
we get the basic phase comparison 

 

ψ(t)   =   2π m  +  
 2π 

λ
 � ρij(t)  +  ρ̇ij(t) ε(t) �  - 

 
- 2π ( νS + νR ) [ t + εi(t) ]  + 

 
+ 2π νS ∆taij(t) (2-20) 

 
 

2.2  The observation equation for single-differences  
 
In order to derive relative geometric information (baseline vectors) from 

phase observations of two receivers  R1, R2  to one identical satellite  Sj 
we subtract the corresponding equations (2-6) and obtain the observation 
equation of the so-called single-difference method. 
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ψsd(t)   =   ψ2(t)  -  ψ1(t) (2-21) 

 

ψsd(t)   =   2π (m2 - m1)  +  
 2π 
λS

 � ρ2j(t) - ρ1j(t) �  + 

 
+  2π (ν1 - ν2) t  +  2π νS � ∆ta2j(t) - ∆ta1j(t) �   + 

 
+  ψε(t) (2-22a) 

 
where the clock error term  ψε(t)  is of the form 

 

ψε(t)   =   
 2π 
λS

 � ρ̇2j(t) ε2(t)  -  ρ̇1j(t) ε1(t) �  + 

 
+  2π � ν1 ε1(t)  -  ν2 ε2(t) � . (2-22b) 

 
 
The single-difference observable (2-22a) does not contain the satellite 

phase value (no satellite clock error term), but now contains differences 
in clock values (or errors) between ground receivers 1 and 2, initial ambi- 
guity differences  �m2 - m1�  and distance differences  ρ2j(t) - ρ1j(t) . 
Since the clock differences have not a known relationship from one epoch 
to the next, they must be eliminated epoch-wise.  They remain, however, the 
same also for another satellite. 
 
As long as only one baseline is processed, no phase observables appear 

more than once, thus the measurements (2-22) are uncorrelated. 
 
 

2.3  The observation equation for double-differences  
 
The double-differencing (BOSSLER, GOAD, BENDER 1980) was introduced in or- 

der to compensate for effects caused by the receiver oscillators (receiver 
clock errors). 
 
The double-difference observables are computed on the base of two single- 

differences at epoch  t  using two different GPS satellites  Sj := (P,Q)  are 

 
ψd(t)   =   ψsd,Q(t)  -  ψsd,P(t) (2-23) 

 
ψd(t)   =   2π md  + 

 

+  
 2π 
λQ

 [ ρ2Q(t) – ρ1Q(t) ]  -  
 2π 
λP

 [ ρ2P(t) – ρ1P(t) ]  + 

 
+   2π νQ� ∆ta2Q(t)  -  ∆ta1Q(t) �  - 

 
+   2π νP� ∆ta2P(t)  -  ∆ta1P(t) �  + 

 
+  ψε,d(t) (2-24a) 
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where 

 
md   =   m2Q- m1Q +  m1P- m2P (2-24b) 

 

ψε,d(t)   =   
 2π 
λQ

 � ρ̇2Q(t) ε2(t)  -  ρ̇1Q(t) ε1(t) �  - 

 

- 
 2π 
λP

 [ ρ̇2Q(t) ε2(t)  -  ρ̇1P(t) ε1(t) ]  + 

 
+  2π �νQ – νP� � ε1(t) – ε2(t) � (2-24c) 

 
If we assume that the transmitted signals of the two GPS satellites P, Q 

have (nearly) identical wavelength, 

 
λP   =   λQ   =   λS 

 
νP   =   νQ   =   νS 

 
then (2-24a,b,c) simplifies to 

 
ψd(t)   =   2π md  + 

 

+ 
 2π 
λS

 [ ρ2Q(t) – ρ2P(t)  +  ρ1P(t) – ρ1Q(t) ]  + 

 
+  2π νS� ∆ta2Q(t) - ∆ta2P(t)  +  ∆ta1P(t) - ∆ta1Q(t) �  + 

 
+  ψε,d(t) (2-25a) 

 
where the integer ambiguity   md  consists of 

 
md   =   m2Q- m1Q +  m1P- m2P , (2-25b) 

 
and the clock-error term  ψε,d(t)  drops nearly out 

 

ψε,d(t)   =   
 2π 
λS

 { [ ρ̇2Q(t) – ρ̇2P(t) ] ε2(t)  + � 

 
�+  � ρ̇1P(t) – ρ̇1Q(t) � ε1(t) � (2-25c) 
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In (2-25a) satellite and receiver clock differences are (nearly) removed. 
No epoch-to-epoch clock differences have to be modelled and estimated. 
Therefore double-differences are less complicated to process.  However, 
data sets are correlated. 
 
 
 

2.4  The observation equation for triple-differences  
 
Following REMONDI (1984, 89 f.), the triple-difference observable 

ψt(t1,t2)  is defined as the difference of two double-difference-observables 
each belonging to a successive epoch  t1, t2  where the two satellites P, 
Q where observed 

 

ψt(t1,t2)   =   ψd(t2)  -  ψd(t1) (2-26) 

 
ψt(t1,t2)   =   2π  ( md2- md1)  + 

 

+ 
 2π 
λS

  [ ρ2Q(t2) – �ρ2Q(t1)  +  ρ2P(t1) – ρ2P(t2)  + 

 
�+  ρ1P(t2) – ρ1P(t1)  +  ρ1Q(t1) – ρ1Q(t2) ]  + 

 
+  2π νS � ∆ta2Q(t2) - ∆ta2Q(t1)  +  ∆ta2P(t1) �- ∆ta2P(t2)  + 

 
�+  ∆ta1P(t2) - ∆ta1P(t1)  +  ∆ta1Q(t1) - ∆ta1Q(t2) �  + 

 
+  ψε,t(t1,t2) (2-26a) 

 
where the remaining clock error term is given by 

 

ψε,t(t1,t2)   =   
 2π 
λS

 { [ ρ̇2Q(t2) – ρ̇2P(t2) ] ε2(t2)  + � 

 
+  [ ρ̇1P(t2) – ρ̇1Q(t2) ] ε1(t2)  - 

 
-  [ ρ̇2Q(t1) – ρ̇2P(t1) ] ε2(t1)  - 

 
�-  � ρ̇1P(t1) – ρ̇1Q(t1) � ε1(t1) � (2-26b) 

 
Triple-difference modelling has the effect of removing the bias by increas- 

ing the number of ranges  ρij.  Losses of lock will therefore result in the 
form of spikes in the processing which can be easily removed even automati- 
cally.  Thus, (2-26) is suited as a preprocessing algorithm to remove the 
“outliers”. 
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3.  ORBIT MODEL AND PARAMETERS  
 
In the nonlinear observation equations for single-differences  ψsd(t), dou- 

ble-differences  ψd(t)  and triple-differences  ψt(t)  we find the distance 
(range)  ρij(t)  from the receiver to a GPS satellite and its first time- 
derivate  ρ̇ij(t). 
 
The geometric information, to be derived from phase observations (e.g. 

baseline vectors), enter in the observation equations through  ρij(t).  ρ̇(t) 
is only a coefficient function for the clock error term. 
 
In the following we will discuss the quantities  ρ(t)  and  ρ̇(t), which 

depend on both, the ground station and the satellite position.  The last 
one is transmitted by the broadcast messages of the satellite in the form 
of estimates predicted by the control segment of the Global Positioning 
System.  For many high-precision tasks, however, it might be preferable to 
model or to reprove the orbit.  The following considerations have the in- 
tention to derive expressions for the orbit which can be inserted in the 
range  ρij, and subsequently substitute  ρij  itself.  Therefore a short sum- 
mary of the necessary reference systems and the orbit motion is discussed 
first. 
 
 
 

3.1  Reference systems 
 
In satellite geodesy we need in principle two reference systems. 

On the one hand we need a reference frame for the orbit determination which 
is a close approximation to an inertial system within the measurement ac- 
curacy.  Furthermore an earth fixed reference frame, usually the CIO-sys- 
tem, has to be considered to determine the station positions. 
 
 

3.1.1  Inertial reference frame 
 
The inertial system used in this paper is defined as the instantaneous 

astronomical system at epoch  t0.  We will deal with the motion of the sat- 
ellite and the rotation of the earth for  t ≥ t0  in the inertial reference 
frame. 
 
We define the inertial system as follows: 

 
position       x   =    [x1, x2, x3 ]T 

 
base vectors   e

1
x, e

2
x, e

3
x   with   � e

i
x �   =  1 

 
where 

 
e
1
x   is the unit vector of the true equinox at  t = t0, 

 
e
2
x   =   e

3
x  ×  e

1
x , and 



 

17 

e
3
x   is the unit vector parallel to the true rotation 

   axis  ω  of the earth at epoch  t = t0, 
 

origin   geocenter . 

 
This system held fixed at  t = t0, is free of rotations for  t ≥ t0  ex- 

cept its origin due to the movement of the earth.  The apparent acceler- 
ation due to the translation of the earth is considered together with the 
attraction of sun and moon on the GPS satellites.  (Here we consider always 
the acceleration of the satellite relative to the geocenter) 
 
We neglect relativistic effects affecting the reference system. 
 
 

3.1.2  Earth-fixed reference frame  
 
The widely used earth-fixed reference frame is the CIO (Conventional In- 

ternational Origin) system.  CIO is determined by the ILS (International 
Latitude Service).  The second reference axis we need to define lies in the 
astronomical meridian plane of Greenwich. 
 
 
The CIO-system is defined as follows: 

 

position       y   =    �y1, y2, y3 �T 
 

base vectors   e
1
y, e

2
y, e

3
y   with   � e

i
y �   =  1 

 
where 

 
e
1
y   is the unit vector in the astronomical meridian 

   plane of Greenwich, with 
   e

1
yT∙ e

3
y  =  0 

 
e
2
y   =   e

3
y  ×  e

1
y , and 

 
e
3
y   is the unit vector in the direction of the CIO-pole, 

 
origin   geocenter . 

 
 

3.1.3  Transformations  
 
Using a matrix of rotations  R(t), we find for the basic transformation 

between the inertial system and the earth-fixed system (see e.g. EISSFELLER 
and HEIN 1986) 

 
x   =   R(t) y (3-1a) 

 
y   =   RT(t) x (3-1b) 
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where 
 

R(t)       =   N(t0) P(t0) PT(t) NT(t) R
3

�-Θ(t)�  S(t) (3-1c) 
 

RT(t)     =   ST(t) R
3
T �-Θ(t)�  N(t) P(t) PT(t0) NT(t0) (3-1d) 

 

R-1(t)   =   RT(t) (3-1e) 
 

N is the nutation matrix, 
 

P is the precession matrix, 
 

R
3
 is the rotation matrix 

 (rotation around e
3
–axis), 

 
S is the matrix of instantaneous polar coordinates, 

 
Θ is the siderial time of Greenwich, 

 
t is the instantaneous time, and 

 
t0 is the initial epoch of orbit integration. 

 
 

3.2  Satellite motion  
 
Although the satellites of the Global Positioning System are at altitudes 

of about 20 000 km, their orbit will not be a perfect Kepler ellipse. 
 
This is caused by the presence of several disturbing accelerations, which 

have to be considered. 
 
The basic vector differential equation of satellite motion in rectangular 

coordinates with respect to an inertial reference frame, treating the sat- 
ellite as a point mass, is given by 

 
ẍ   =   a � x, ẋ, t � (3-2) 

 
where 
 

ẍ   =   
 d2x 
dt2

        is the acceleration vector, 

 
a is the vector of resulting accelerations, 

 
x is the position vector, and 

 

ẋ   =   
 dx 
dt

          is the velocity vector. 
 
The usual way to solve (3-2) is to decompose  a  into the dominant accel- 

eration term  g
0
  (radial symmetrical part of the earth's gravity field) and 
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in a vector  f  of disturbing accelerations. 

 
Thus, 

 
a     =   g

0
 + f (3-3a) 

 

with   g
0

   =  -
 GM 
r3

 x     and     r  =  � x �                                                                                                                (3-3b) 

 

and      f     =   �f
i

                                                                                                                                                     (3-3c)
i

 

 
GM  is the product consisting of the gravitational constant times the mass 

M  of the earth.  r  is the norm of the radius vector of the satellite, 
r  =  � x � . 

 

ẍ   =   -
 GM 
r3

 x  , 

 
leads to the Kepler ellipse with six constants of integration. 
 
 
The solution for the position and the velocity vector of a satellite is 

of the form 

 
x   =   x � u, t � (3-4a) 

 
ẋ   =   ẋ � u, t � (3-4b) 

 
The vector  u  is the vector of six integration constants, e.g. the six Kep- 
ler elements 

 

u   =   � Ω, i, ω, a, e, tp �T . (3-5) 

 
More details can be found, e.g., in ARNOLD (1970). 

 

x(t)   =   a R
3

(-Ω) R
1

(-i) R
3

(-ω)  �cosE-e, � 1-e2  sinE, 0�
T

                                          (3-6a) 
 

ẋ(t)   =   
 a2 
r

 n R
3

(-Ω) R
1

(-i) R
3

(-ω) �- sinE, � 1-e2 cosE, 0�
T

                                   (3-6b) 
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M�   =   n �t-tp�   =   E – e sinE (3-6c) 
 

n   =   �
 GM 
a3

�
1
2�

                                                                                                                                               (3-6d) 

 
r   =   a � 1 – e cosE � (3-6e) 

 
Ω is the right ascension of the ascending node, 

 
i is the inclination of the orbital plane, 

 
ω is the argument of the perigee, 

 
a is the semimajor axis, 

 
e is the eccentricity, 

 
tp is the time of perigee passage, 

 
M� is the mean anomaly, 

 
V is the true anomaly, 

 
E is the eccentric anomaly, 

 
n is the angular velocity of the satellite, and 

 
r is the radius of the orbit. 

 
The entire problem (3-2) with respect to  a  =  g

0
+ f  is solved, by the 

method of variation of constants. 

 
Thus 
 

u   =   u(t) . (3-7) 
 
Differentiating  x  twice with respect to time results in 
 

ẋ   =   
 ∂x 
∂u

 u̇  +  
 ∂x 
∂t

                                                                                                                                      (3-8a) 

 

ẍ   =   
 ∂ẋ 
∂u

 u̇  +  
 ∂2x 
∂t2

                                                                                                                                    (3-8b) 

 

with   0   =   
 ∂x 
∂u

 u̇  .                                                                                                                                                  (3-8c) 

 
(3-8c) is a commonly used constraint on  u, because  u  consists of six time 
functions but the problem (3-2) is uniquely determined already by three time 
functions. 
 
Inserting  ẍ  (3-8b) in the equation of motion of the satellite (3-2), we 
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get 

 
 ∂x 
∂u

 u̇   =   f                                                                                                                                                          (3-9) 

 
because of 

 

 ∂2x 
∂t2

 - g
0

   =   0  . 

 
(3-8c) together with (3-9) forms a nonlinear vector differential equation 
for  u̇ . 

 
Thus, 

 
 ∂x 
∂u

 u̇   =   0                                                                                                                                                    (3-10a) 

 
 ∂ẋ 
∂u

 u̇   =   f                                                                                                                                                    (3-10b) 

 
In order to use analytical or numerical integration methods, it is usual 

to arrange the vector  u̇  on one side. 

 
Thus, 

 

u̇   =   

⎣
⎢
⎢
⎢
⎢
⎡

 

 ∂x 
∂u

 ∂ẋ 
∂u

 

⎦
⎥
⎥
⎥
⎥
⎤
-1

 

⎣
⎢
⎢
⎢
⎡
  

0

f

  

⎦
⎥
⎥
⎥
⎤

                                                                                                                                     (3-11) 

 
The inverse on the right hand side of (3-11) can be computed analytically 
by inversion of the transformation relations  x  =  x �u�  and  ẋ  =  ẋ �u�  at 
u  =  u �x,ẋ�  and using some differential identities (see, e.g. EISSFELLER 
(1985)). 
 
The dimension of the inverse  Y  in (3-11) is 6 x 3.  It can be shown to 

be 

 

Y   =   
 ∂u 
∂ẋ

  .                                                                                                                                                     (3-12) 
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For the explicit form of   
∂u
∂ẋ

   see EISSFELLER (1985). 

 
With (3-12) eq. (3-11) is reduced to 
 

u̇   =   Y  f (3-13a) 
 

or in integral form 
 

u(t)   =   u(t0)  + �Y(t) f(t) dt  .                                                                                                     (3-13b)
t

t0

 

 
Note, that  u(t0)  is the initial state vector of Kepler elements at  t  =  t0. 
 
If we introduce an acceleration model for  f(t)  =  ∑ f

i
(t)i   the integral in 

(3-13b) can be evaluated numerically. 
 
By inserting the result of integration of (3-13b) in (3-4a,b), the posi- 

tion  x  and the velocity vector  ẋ  of the satellite can be computed. 
 
 

3.3  The range  ρij  and its time derivative  ρ̇ij  
 
If we refer the quantities  ρ(t)  and  ρ̇(t)  to the inertial system, the 

time variations of the receiver stations and of the satellite positions 
can be taken easily into consideration. 
 
Denoting the vectors by index i, which refer to a satellite Si, and those 

by index j, which refer to the receiver station Rj, we find for  ρ(t)  and 
ρ̇(t), 
 

ρij(t)   =   � x
i

(t) - x
j

(t) � (3-14a) 

 
or 
 

ρij(t)   =   � � x
i

(t) - x
j

(t) �
T

 � x
i

(t) - x
j

(t) � �
0.5

 (3-14b) 

 

ρ̇ij(t)   =   
 dρij(t) 

dt
                                                                                                                                   (3-14c) 

 
or 
 

ρ̇ij(t)   =   
 � x

i
(t) - x

j
(t) �

T
 � ẋ

i
(t) - ẋ

j
(t) � 

ρij(t)                                                                              (3-14d) 

 
The vectors  x

i
(t)  and  ẋ

i
(t)  are given by 

 
x
i

   =   x
i

�u(t), t� (3-15a) 
 

ẋ
i

   =   ẋ
i

�u(t), t� (3-15b) 
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Using the transformation relation (3-1a), we find for x
j

(t) and ẋ
j

(t) 
 

x
j

(t)   =   R(t) y
j
 (3-16a) 

 

ẋ
j

(t)   =   
 dx

j
(t) 

dt
   =   Ṙ(t) y

j
                                                                                                              (3-16b) 

 
where 
 

Ṙ(t)   =      N(t0) P(t0) Ṗ
T(t) NT(t) R

3
�-Θ(t)� S(t)  + 

 

                +  N(t0) P(t0) PT(t) Ṅ
T(t) R

3
�-Θ(t)� S(t)  + 

 
                +  N(t0) P(t0) PT(t) NT(t) Ṙ

3
�-Θ(t)� S(t)  + 

 
                +  N(t0) P(t0) PT(t) NT(t) R

3
�-Θ(t)�  Ṡ(t) (3-16c) 

 
Evaluating the time derivative of  x

j
(t)  (3-16b) we may set  ẏ

j
  =  0, 

because we want not to deal with geodynamics in this approach. 
 
All the time derivatives of the matrices in (3-16c) can be computed ana- 

lytically and/or numerically. 
 
 

3.4  Acceleration model  
 
In this paper the orbit model consists of four types of disturbing accel- 

erations. 
 
These are 
 

f
1
 the gravity acceleration of the earth's gravity field, 

 
f
2
 the solar radiations pressure, 

 
f
3
 the attractions of sun and moon, and 

 
f
4
 the remaining accelerations due to unmodelled effects. 

 
Thus, the disturbing acceleration  f  is of the form 
 

f   =   �  f
i

                                                                                                                                                     (3-17)
4

i=1

 

 
Because of the altitude of the GPS satellites, we may assume, that air 

drag effects can be neglected. 
 
We assume further, that the tidal deformation of the earth causes no sig- 

nificant effect on the satellite (< 1 m). 
 
The vector  f

1
  of the gravity acceleration will be smooth.  Therefore the 
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modelling of  f
1
  may be simplified in contrast to low orbiting satellites. 

 
In opposite to this the accelerations f

2
, f

3
 have a greater impact on the 

satellite motion, because the GPS satellites are more closer to the 
sources of the forces (sun and moon). 
 
Since the acceleration models used in satellite geodesy describe the phy- 

sical reality only approximately, we have to consider some unmodelled re- 
sidual accelerations. 
 
In order to describe these residual effects, we use for f

4
 in this ap- 

proach a trigonometric series with unknown amplitudes, frequency and phases. 
This approach can be found in POPINSKI (1984). 
 
All accelerations depend on unknown dynamical parameters, which can be 

determined in principle from the observations ψsd, ψd and ψt. 
 
 

3.4.1  Gravity acceleration f
1
  

 
In deriving an expression for  f

1
  we have to note, that the radial symme- 

trical term   g
0

  =  -GM 
x

 r3 
   is already considered due to orbit integration, 

see (3-3a to c). 
 

Thus,  f
1
  represents the acceleration of the earth's disturbing gravity 

field.  The gravity vector  f
1
  can be computed as gradient of the spheri- 

cal harmonic expansion of the gravity field. 
 

f
1

   =   gradx  � U - U0 � (3-18a) 

 
where 
 

U0   =   
 GM 
r

    and    r   =   � x �                                                                                                              (3-18b) 

 
The operator  gradx  in (3-18a) denotes partial differentiation of 

�U-U0�  with respect to the inertial coordinates  x1, x2, x3. 
 
Since the spherical harmonic expansion of  U  refers to the earth-fixed 

system (earth-fixed spherical coordinates  q = [ r,φ,λ ]T ), we use the follow- 
ing transformation 
 

f
1

   =   R(t) 
 ∂qT 
∂y

  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

 ∂ ( U – U0 ) 
∂r

 ∂ ( U – U0 ) 
∂φ

 ∂ ( U – U0 ) 
∂λ

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                                                          (3-19) 
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where 
 

 ∂q 
∂y

   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

    cosφ  cos λ     cosφ  sin λ sinφ

-
 sinφ  cos λ 

r
-

 sinφ  sin λ 
r

 cosφ 
r

-
sin λ

 r  cosφ 
cos λ

 r  cosφ 
0

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                     (3-20) 

 
Using for  U – U0  the usual spherical harmonic expansion, see e.g. 

ARNOLD (1970), we cann compute the partial derivatives with respect to 
r, φ, λ  by 
 

       U – U0   =   GM �   �  
Rµ

 rµ+1 
 Pµν (sinφ)  � cµν  cos ν λ   +  sµν  sin ν λ �                            (3-21)

µ

ν=0

n

µ=2

 

 

 ∂(U-U0) 
∂r

   =   GM �   �  
Rµ

 rµ+2 
 ( µ + 1) Pµν (sinφ)  � cµν  cos ν λ   +  sµν  sin ν λ �         (3-22a)

µ

ν=0

n

µ=2

 

 

 ∂(U-U0) 
∂r

   =   GM �   �  
Rµ

 rµ+1 
  

 ∂Pµν (sinφ) 
∂φ

  � cµν  cos ν λ   +  sµν  sin ν λ �                  (3-22b)
µ

ν=0

n

µ=2

 

 

 ∂(U-U0) 
∂λ

   =   GM �   �  
Rµ

 rµ+1 
 ν Pµν (sinφ)  � sµν  cos ν λ   -  cµν  sin ν λ �                     (3-22c)

µ

ν=0

n

µ=2

 

 
The functions  Pµν (sinφ)  are the associated Legendre polynomials of first 
kind, 
 

Pµν (sinφ)         =   cosνφ  �aµνσ sinµ-ν-2σφ
κ

σ=0

                                                                               (3-22d) 

 
 ∂Pµν (sinφ) 

∂φ
   =   �aµνσ {(µ-ν-2) cotφ  -  ν tanφ }  cosνφ sinµ-ν-2σφ                       (3-22e)

κ

σ=0

 

 
with 
 

                    aµνσ   =   
(-1)σ (2µ-2σ)!

 2µσ! (µ-σ)! (µ-ν-2σ)! 
                                                                                   (3-22f) 

 
and 
 

                          κ   =   

⎩
⎪
⎨

⎪
⎧

  

 µ-ν 
2

      , if µ-ν is even

 µ-ν-1 
2

 , if µ-ν is odd.

� 
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3.4.2  Solar radiation pressure f
2
  

 
Following GSFC (1976, p. 4-60) we find for the direct solar radiation 

pressure the expression 
 

f
2

   =   ν k aS2  
x – x

S

 � x – x
S

 �
3

 
                                                                                                                             (3-23) 

 
with 

 

k     =   PS  �
A
 m 

�  cR                                                                                                                                       (3-24a) 

 

PS   =   
 s 
c

                                                                                                                                                        (3-24b) 

 
cR   =   1  +  cj (3-24c) 

 

x
S

   =   rS  �  

cos δS  cos αS
cos δS  sin αS

sin δS

  � (3-24d) 

 
rS   =   aS � 1 – eS  cosES � (3-24e) 

 
The variables have the following meaning: 
 

k ...  unknown model parameter 
 

ν = �
   1   if the satellite is in the sun light
   0   if the satellite is in the earth-shadow

� 
 
aS ...  semimajor axis of the orbit of the earth 
 
s ...  mean energy flux of the sun in Watt/m2 
 
c ...  velocity of light 
 
cj ...  quantity, which characterizes the optical properties of 
   the surface material (e.g. for AL is cj = 0.95)  
 A 
m

   ...              ratio of effective surface to mass of the satellite 
 
rS ...  radius sun – earth 
 
δS ...  declination of the sun in the inertial system 
 
αS ...  right ascension of the sun in the inertial system 
 
eS ...  excentricitiy of the earth orbit 
 
ES ...  excentric anomaly of the sun 
 
x
S
 ...  position vector of the sun 

 
x ...  position vector of the satellite 

 
(3-23) is only a rough model for the solar radiation effect.  In a refined 

approach we would have to add the indirect solar radiation pressure (re- 
flexion of solar radiation by the atmosphere), radiation pressure of the 
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earth and the Poynting – Robertson effect (relativistic corrections to 
(3-23)).  In addition the true effective surface (solar paddles etc.) would 
have to be considered. 
 
 
Because of the altitude of the GPS satellites and due to the relatively 

small velocity �� ẋ �  =̇  3,8
km
s

 �, it is justified to neglect these effects. 

 
 

3.4.3  Attraction of sun and moon f
3
  

 
Following GSFC (1976) the acceleration of the satellite due to a celestial 

body  H  relative to the geocenter is given by 
 

f
H

   =   -GMH  � 
x – x

H

 � x – x
H

 �
3

 
 + 

x
H

 � x
H

 �
3

 
 �                                                                                                      (3-25) 

 
where 
 

G ... is the constant of gravitation, 
 
MH ... is the mass of the celestial body, 
 
x
H
 ... is the position vector of the celestial 

  body relative to the inertial system, and 
 
x ... is the position vector of the satellite 
  in the inertial system. 

 
For the reason, why we take in (3-25) the relative acceleration of the satel- 

lite to the geocenter, see 3.1.1. 
 
Adding the attraction effects of sun (S) and moon (M), we find for  f

3
 

 

f
3

   =   -G � MM  �
x – x

M

 � x – x
M

 �
3

 
 + 

x
M

 � x
M

 �
3

 
 �   +  MS  � 

x – x
S

 � x – x
S

 �
3

 
 + 

x
S

 � x
S

 �
3

 
 � �                            (3-26) 

 
where  x

S
, x

M
  are given by 

 

x
M

   =   rM  �  
cos δM  cos αM
cos δM  sin αM

sin δM

  � (3-27a) 

 

x
S

   =   rS  �  
cos δS  cos αS
cos δS  sin αS

sin δS
  � (3-27b) 

 
rM   =   aM � 1 – eM  cosEM � (3-27c) 

 
rS   =   aE � 1 – eE  cosES � (3-27d) 
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δM, δS ... is the declination of moon and of sun, resp., 
 

αM, αS ... is the rectascension of moon and of sun, resp., 
 

rM, rS ... is the radial distance geocenter – moon, 
  and geocenter – sun, resp., 

 
eM, eE ... are the excentricities of the orbit of moon 
  and of earth, 

 
aM, aE ... are the semimajor axes of the orbit of moon 
  and of earth. 

 
All quantities refer to the inertial system defined in 3.1.1. 
 
 

3.4.4  Residual acceleration  f
4
  due to unmodelled effects  

 
Since all the acceleration models mentioned above are only approximations 

to the physical reality, we may consider some unmodelled effects acting on 
the satellite.  The acceleration  f

4
  shall be treated as the resulting ac- 

celeration of all unmodelled effects. 
 
POPINSKI (1984) proposes a Fourier series approximation together with a 

secular variation for the orbital elements to take account for those 
effects.  Using a series representation for the acceleration  f

4
  has the 

advantage, that it would be possible to obtain an empirical acceleration 
model.  If we have estimates of the amplitudes and frequencies in a series 
representation of  f

4
  for many observation epochs, we are able to make a 

regression and correlation analysis, e.g. as a function of the epoch. 
 
For later observation epochs we may use the results to extrapolate the 

vector  f
4
  as a function of computed regression parameters. 

 
A possible series expansion for  f

4
  can be 

 

f
4

   =   �  � aν cos( νωt + ψν )  + bν sin( νωt + ψν ) �                                                                   (3-28)
k

ν=0

 

 
where 
 

aν, bν ... are the unknown amplitude vectors, 
 
   ω ... is the unknown basic frequency, 
 
   ψν ... is the unknown phase, 
 
   k ... is the upper summation index 
  (which has to be determined by e.g. 
  a trias and error method), 

 
and 
 

aν          =           [ a1ν,a2ν,a3ν ]T (3-29a) 

 
bν          =           [ b1ν,b2ν,b3ν ]T (3-29b) 
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3.5  Dynamical parameters  p 
 
 
The dynamical parameter  p  entering the range  ρij  and  ρ̇ij  via the 

orbit integration (3-14), might be the following: 
 

p   =   � Ω(t0),i(t0),ω(t0),a(t0),e(t0),tp; ξ,η,Θ; � 
 

c20,c21,...,cnn,s20,s21,...,snn; k; 
 

�...a1ν,a2ν,a3ν...;...b1ν,b2ν,b3ν...; ω;...ψν...] (3-30) 
 
 

where 
 

Ω(t0),  i(t0),  ω(t0), ... are the initial values of the Kepler 

a(t0),  e(t0),  tp  elements for  t  =  t0  (see (3-13b)), 
 

ξ,  η ... are the pole coordinates (instantaneous 
  earth rotation axis – CIO), 

 
Θ ... is the siderial time, 

 
cµν,  sµν ... are the parameters of the spherical har- 
  monic expansion of the earth's gravity 
  potential (3-21), 

 
k ... is the parameter of solar radiation 
  pressure (3-23), 

 
a1ν,  a2ν,  a3ν ... are the parameters of the Fourier series 

b1ν,  b2ν,  b3ν  representation for unmodelled effects 

  ω,   ψν  (3-28). 

 
 
It is obvious, that with respect to orbit integration of GPS satellites 

some of the above mentioned parameters can be considered as sufficiently 
known, as e.g. the gravity field paremeters  cµν, sµν  and the siderial 
time  Θ.  The required minimal set of data for the orbit integration con- 
sists of the initial state elements, the polar motion coordinates  ξ, η, 
the parameter of solar radiation pressure  k  and, eventually, the para- 
meters for unmodelled accelerations. 
 
 
 

3.6  Linearization procedure  
 
We rewrite (3-13b), presenting the complete functional relations on  p, 

in form of 
 

u �p,t�    =   u
0

(t0)  + �Y �u �p,t�,t�  ∙ f �u �p,t�,p,t�dt                                            (3-31)
t

t0
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Using the common decomposition of  p  into an approximate value  p0  and 
into an unknown variation  δp , 

 
p   =   p0 + δp (3-32) 

 
we find for the variation  δu  of the Kepler elements 
 

δu �p0,t�    =   
 ∂u �p0,t� 

∂p
 δp                                                                                                                  (3-33) 

 

The Jacobi matrix 
 ∂u 
∂p

 is a solution of the following inhomogenous matrix 

differential equation 

 
 ∂u̇ 
∂p

   =   � 
∂Y

 ∂u1 
 f , 

∂Y
 ∂u2 

 f , ... , 
∂Y

 ∂u6 
 f �   + 

 

+  Y  
 ∂f 
∂u

  
 ∂u 
∂p

  +  Y  
 ∂f 
∂p

                                                                                                           (3-34a) 

 
or, in integral form 

 

 ∂u 
∂p

   =   
 ∂u

0
 

∂p
  + �  � 

∂Y
 ∂u1 

 f , 
∂Y

 ∂u2 
 f , ... , 

∂Y
 ∂u6 

 f �  
 ∂u 
∂p

  +
t

t0

 

 

+ � Y  
 ∂f 
∂u

  
 ∂u 
∂p

 dt  + � Y  
 ∂f 
∂p

 dt                                                                        (3-34b)
t

t0

0

t0

 

 

Since the Jacobi matrix  
 ∂u 
∂p

  is on both sides of (3-34b), an iterative 

method must be used to determine  
 ∂u 
∂p

 . 

 
Several numerical methods based on the approximation method of Picard can 

be found in numerical analysis to solve (3-34b) with sufficient accuracy, 
starting, e.g., with 

 
 ∂u 
∂p

   =̇    
 ∂u

0
 

∂p
 

 
on the right hand side of (3-34b). 
 
With  δu(t)  (3-33), we are able to determine the variation  δx

i
  of the 

position vector of the satellite  Si.  We find for  δx
i

(t)  the expression 
by partial differentiation 
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δx
i

(t)   =   
 ∂x

i
(t) 

∂u(t)  δu(t) 

 

=   
 ∂x

i
(t) 

∂u(t)   
 ∂u(t) 
∂p

                                                                                                                      (3-35) 

 
 
For the variation of the receiver position vector  x

j
(t)  we can deduce 

from (3-16a) 
 
 

δx
j

(t)   =   
 ∂x

j
(t) 

∂p
 δp  +  R(t) δy

j
                                                                                                        (3-36) 

 
 

The Jacobi matrix  
 ∂x

i
(t) 

∂p
  consists only of the partial derivatives of 

the rotation matrix  R(t)  with respect to the earth rotation parameters 
ξ, η, Θ  in  p. All other partial derivatives with respect to  pi  are 
zero. 
 
The explicit forms of all partial derivatives in (3-33) to (3-36) can be 

found in EISSFELLER and HEIN (1986). 
 
 
 

3.7  Linear variation  δρij(t)  
 
In order to linearize the nonlinear observation equations for single- 

differences, double-differences and triple-differences we need a linear 
variation  δρij(t)  of the range between receiver  Rj: = j  and satellite 
Si: = i . 
 
Starting with (3-14b), we obtain 
 
 

δρij(t)   =   
 ∂ρij(t) 
∂x

i
(t)  δx

i
(t)  +  

 ∂ρij(t) 
∂x

j
(t)  δx

j
(t)  .                                                                       (3-37) 

 
 

The gradients  
∂ρ(t)

 ∂x
i

(t) 
  and  

∂ρ(t)
 ∂x

j
(t) 

  are of the following form 

 
 

∂ρ(t)
 ∂x

i
(t) 

   =   
 � x

i
(t) - x

j
(t) �

T
 

ρ(t)                                                                                                             (3-38a) 

 

∂ρ(t)
 ∂x

j
(t) 

   =   
 � x

i
(t) - x

j
(t) �

T
 

ρ(t)                                                                                                             (3-38b) 
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∂ρ(t)
 ∂x

j
(t) 

   =   -
∂ρ(t)

 ∂x
i

(t) 
                                                                                                                              (3-38c) 

 
 

If we insert finally (3-35) and (3-36) in (3-37) considering (3-38c) we get 
 
 

δρij(t)   =   
 ∂ρij(t) 
∂x

i
(t)  � δx

i
(t) - δx

j
(t) �                                                                                          (3-39a) 

 
 

δρij(t)   =   
 ∂ρij(t) 
∂x

i
(t)  � 

 ∂x
i

(t) 
∂u(t)  

 ∂u(t) 
∂p

 - 
 ∂x

j
(t) 

∂p
 �  δp - 

 ∂ρij(t) 
∂x

i
(t)  R(t) δy

j
                   (3-39b) 
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4.  ATMOSPHERIC EFFECTS  
 
In section 2 eq. (2-14) the propagation time delay  ∆ta  of the electro- 

magnetic wave of the signal due to the atmosphere was already introduced. 
The physical reason for the delay  ∆ta  is the variation of the refraction 
index  n  in the atmosphere.  Therefore the propagation speed of the signal 
is not equal to the speed of light in vacuum.  Because of different physi- 
cal properties the atmosphere has to be divided into the troposphere 
(0 km ≤ H ≤ 30 km) and into the ionosphere (80 km < H < 1000 km). 
 
The basic relation between the actual speed of the light, c, and the 

speed in vacuum, c0, is given by 
 

c   =   c0 n⁄  . (4-1) 
 

Note, that  n  is in general frequency dependent, thus  n  =  n(ν) . 
 
Because  n  differs only by a small quantity from  1 , the following de- 

composition is used, 
 

n   =   1  +  N (4-2) 
 

where  N  is the refractivity. 
 
For the signal speed  c  and the time differential  dt  along the range  ρ 

we find 
 

c   =   
 dρ 
dt

                                                                                                                                                          (4-3a) 
 

or 
 

dt   =   dρ c⁄  (4-3b) 
 

Using (4-1) and (4-2) we get from (4-3b) the propagation time 
 

t   =   
1

 c0 
  �n dρ   =   

1
 c0 

  �( 1 + N ) dρ                                                                                              (4-4a)

ρ

0

ρ

0

 

 
or 
 

t   =   
ρ

 c0 
 + 

1
 c0 

 � N dρ  .                                                                                                                          (4-4b)

ρ

0

 

 
The atmospheric time delay  ∆ta  is then 
 

∆ta   =   t - 
ρ

 c0 
   =   

1
 c0 

 �N dρ  .                                                                                                             (4-5)

ρ

0

 

 
Expression (4-5) is conform with (2-14). 
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In order to consider the different effects of the troposphere and the 
ionosphere we have to do the decomposition 

 

∆ta   =   
1

 c0 
 � NT dρ  +  

1
 c0 

 � NI dρ                                                                                                    (4-6a)

ρI

ρT

ρT

0

 

 
where 
 

NT is the refractivity of the troposphere, 
 
NI is the refractivity of the ionosphere, 
 
ρT,ρI is the range from the receiver to the upper bound 
 of the troposphere, or, respectively, of the iono- 
 sphere. 

 
Thus, 

 
∆ta   =   ∆tT  +  ∆tI . (4-6b) 

 
 

4.1  Tropospheric effects  
 
The troposphere may be considered as a non-dispersive medium using the 

frequencies  L1 (=  ν1)   =   1575.52  mHz  and  L2 (=  ν2)   =   1227.6  mHz . 
This means that the refractivity  NT  is not a function of frequency. 
Since temperature and pressure data are not available along the range  ρT, 
surface data must be used to predict  NT  in the troposphere. 
 
Following GSFC (1976, p. 7-43)  NT  may be presented by 

 

NT   =   NR ∙ e-
 (h-hR) 

HT                                                                                                                                        (4-7a) 

 
where 

 

HT   =   
1

 NR 
 � NT(h) dh                                                                                                                                (4-7b)

∞

hR

 

 
and 
 

NR is the surface refractivity,  NR  =  NR(T,p) 
 (T  temperature,  p  air pressure), 
 
h is the altitude above sea-level, 
 
hR is the height of the receiver about sea-level, and 
 
HT is the tropospheric scale-height, defined by (4-7b). 
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If we consider  HT  to be an unknown parameter, we may compute the time 
delay  ∆tT  (4-6a,b) in a first approximation. 
 
Neglecting the curvature of the propagation path we use 

 
 dh 
dρ

   =̇    cos z   =̇    
 h 
ρ

                                                                                                                                    (4-8) 

 
where  z  is the zenith distance of the GPS satellite in the receiver sta- 
tion  R .  We find for  ∆tT 

 

∆tT   =   
1

 c0 
 � NT dρ

ρT

0

 

 

∆tT   =   
NR

 c0  cosz 
 �

hT
cosz

  e-
(h-hR)
HT   dh  .                                                                                           (4-9)

ρT

0

 

 
If we perform the integration of the exponential function in (4-9), we 

get for  ∆tT 

 

∆tT   =   
NR HT e

hR
HT

 c0  cosz 
 �1 – e-

hT
 HT  cosz �                                                                                                        (4-10) 

 
Note in (4-10) that the zenith distance is a function of time due to the 
varying satellite position. 
 

 
4.2  Ionospheric effects  
 
In contrast to the troposphere, the ionosphere is a dispersive medium. 

This means, that the refractivity  NI  is a function of frequency 
NI  =  NI(ν) .  Following again GSFC (1967, p. 7-44)  NI  is given by 

 

NI   =   ± 
 40.3  Ne 

ν2
                                                                                                                                        (4-11) 

 
where the  "+"  sign holds for the phase speed and the  "-"  sign for the 
group speed, and  Ne  are the number of electrons per volume. 
 
In order to compute the time delay  ∆tI  similar to (4-10), a profile 

model  Ne  =  Ne(h)  for the distribution of the electrons in the ionosphere 
is needed. 
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Using the modified Chapman profile we get for  Ne(h) 
 

Ne(h)   =   Nm e�1-x-e-x� (4-12a) 

 
where 

 

x   =   
 h - hm 
HI

                                                                                                                                        (4-12b) 

 
and 

 

HI   =   
 5 
3

 [ 30 + 0.2 ( hm – 200 ) ]   [in km] .                                                                         (4-12c) 

 
The quantity  Nm  is an unknown scale factor, whereas the quantity  hm  is 
an unknown reference height. 
 
Using (4-11) together with (4-12a) and (4-8) we may compute the time de- 

lay  ∆tI  in first approximation. 

 

∆tI   =   
1

 c0 
 � NI dρ                                                                                                                                    (4-13)

ρI

ρT

 

 

∆tI   =   
40.3  Nm

 c0 ν2 cosz 
 � e(1-x-e-x)  dh                                                                                            (4-13a)

hI
cosz

hT
cosz

 

 
Performing the integration in (4-13a) we find 

 

∆tI   =   
40.3 Nm HI
 c0 ν2 cosz 

  � e1-e
-�

hI
 HI  cosz  -  hm 

HI
 �

 - e1-e
-� 

hT
 HI  cosz  -  hm 

HI
 �

 �                                                    (4-14) 

 
 
 

4.3  Atmospherical parameters  a  
 
For the total atmospherical phase delay  ∆ta  we find from (4-10) and 

(4-14) 

 

∆ta(t)   =   
NR HT e

 hR 
HT

 c0  cosz(t) 
  � 1 - e

- hT
 HT  cosz(t)  �   + 

 

+  40.3 Nm HI
 c0 ν2  cosz(t) 

  � e1-e
- 

hI
 HI  cosz(t) 

 - e1-e
-� 

hT
 HI  cosz(t)  -  hm 

HI
 �

 �                             (4-15)/11 

 



 

37 

It should be outlined that (4-15) is only a simple model.  It is only 
used to show the fundamental dependence of  ∆ta  on some basic parameters. 
Of course, we may find some refined models, which can be introduced in the 
same way. 
 
Since  HI  is a function of  hm , we can introduce the following unknown 

atmospherical parameters  a . 

 
a   =   [ HT, hT, Nm, hm, hI ]T (4-16) 

 
For the definition of  HT, hT, Nm, hm, hI  see the preceeding chapters. 
 
The second term in (4-15) is frequency-dependent.  Thus, we might expect 

to get a good separation between tropospheric and ionospheric effects, if 
we work with two-frequency GPS receivers. 
 
 

4.4  Linearizations of  ∆ta  
 
With the vector of atmospherical parameters  a  (4-16) we have for  ∆ta 

(4-15) the form 

 
∆ta   =   ∆ta�t,a� . (4-17) 

 
Using the linearization 

 
a   =   a0 + δa (4-18) 

 
we find by Taylor expansion 

 

∆ta     =    ∆ta�a0,t�  +  
 ∂∆ta�a0,t� 

∂a
 δa                                                                                         (4-19a) 

 

δ∆ta   =   
 ∂∆ta 
∂a

 δa                                                                                                                                     (4-19b) 

 
The elements of the gradient  ∂∆ta ∂a⁄   can be found by partial differentia- 
tion of (4-15).  In principle, the parameters  a  are functions of time. 

 
There are two ways to solve this problem: 
 
(i)  introduction of time-dependent base functions for the parameters  a 

       (further parameterization), or 

(ii) introduction of different parameters  a
i

(ti)  for discrete times. 
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5.  LINEAR OBSERVATION EQUATIONS FOR PHASE MEASUREMENTS  
 

5.1  Linear observation equation for single-differences  ψsd(t)  

 
Using the decomposition 

 
ψsd(t)   =   ψsd

0 (t)  +  δψsd(t) (5-1) 

 
we get for the approximate value  ψsd

0 (t) , see (2-22a), 

 

ψsd
0 (t)   =   2π � m2

0 - m1
0 �  +  

 2π 
λS

 � ρ2j
0 (t) - ρ1j

0 (t) �  + 

 

+  2π � ν1 - ν2 � t  +  2π νS � ∆ta2j
0 (t) - ∆ta1j

0 (t) � (5-2a) 

 
Thereby the clock-error term  ψε(t)  is already of first-order. 

 
For the variation  δψsd(t)  in (5-1) we get 

 

δψsd(t)   =   2π  δm  +  
 2π 

λ
 � δρ2j(t) - δρ1j(t) �  + 

 

+  2π νS  � δ∆ta2j(t) - δ∆ta1j(t) �   + 
 

+  ψε(t) (5-2b) 

 
where  ψε(t)  is given already by (2-22b). 

 
The quantity  δm  is the variation of  � m2 – m1 � , in order to get the 

true difference in integer wavelengths. 

 
Using the expression for  δρij(t)  (3-39b) and  δ∆ta  (4-19b) we get the 

linear observation equation for single-differences in its final form 

 

δψsd(t)  =  
 2π 
λS

 � � 
 ∂ρ2j(t) 
∂x

S
(t)  - 

 ∂ρ1j(t) 
∂x

S
(t)  �   

 ∂x
S

(t) 
∂u(t)   

 ∂u(t) 
∂p

  + � 

 

�+  
 ∂ρ1j(t) 
∂x

S
(t)   

 ∂x
R1

(t) 

∂p
  -  

 ∂ρ2j(t) 
∂x

S
(t)   

 ∂x
R2

(t) 

∂p
  �  δp  + 

 

+  
 2π 
λS

 � 
 ∂ρ1j(t) 
∂x

S
(t)  R(t) δy

1
  -  

 ∂ρ2j(t) 
∂x

S
(t)  R(t) δy

2
 �   + 

 
+  2π  δm  +  ε0T  δε  . (5-3) 
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The clock-error term in (5-3) is of the form 

 

ε0   =   � -
 2π 

λ
 ρ̇1

0(t)  +  2π νS  +  2π ν1 , 
 2π 

λ
 ρ̇2
0(t)  -  2π νS  -  2π ν2 �

T

                                (5-4a) 

 
δε   =   [ ε1(t) , ε2(t) ]T (5-4b) 

 
It is obvious, that a further paramerization for  εi(t)  like in (2-18) 

can be done straightforward. 
 
 

5.2  Linear observation equation for double-differences  

 
The nonlinear observation equation for double differences was given by 

(2-25a,b,c).  In order to obtain the linear observation equation we decom- 
pose again 

 
ψd(t)   =   ψd

0(t)  +  δψd(t) (5-5) 

 
where the approximate value     ψd

0(t)  is given by 

 
ψd
0(t)   =   2π md

0  + 
 

+  
 2π 
λS

 � ρ2Q
0 (t) – ρ2P

0 (t) + ρ1P
0 (t) – ρ1Q

0 (t) �  + 

 
+  2π νS � ∆ta2Q

0 (t) - ∆ta2P
0 (t) + ∆ta1P

0 (t) - ∆ta1Q
0 (t) � (5-6a) 

 
and 

 

δψd(t)   =   
 2π 
λS

 [ δρ2Q(t) – δρ2P(t) + δρ1P(t) – δρ1Q(t)]  + 

 
+  2π  δmd  + 

 
+  2π νS � δ∆ta2Q(t) – δ∆ta2P(t) + δ∆ta1P(t) – δ∆ta1Q(t) �  + 

 
+  ψε,d(t) (5-6b) 

 
The clock-error term  ψε,d(t)  (already of first order) was given by 

(2-25c), 

 

ψε,d(t)   =   
 2π 
λS

 { [ ρ̇2Q(t) – ρ̇2P(t) ] ε2(t)  +  [ ρ̇1P(t) – ρ̇1Q(t) ] ε1(t) }  . 

 
Note, that  P  and  Q  are two different GPS satellites. 
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Using again the formulas for  δρij(t) , Eq. (3-39b) and for  δ∆ta2 
(4-19b), we find the linear observation equation for double differences 

 

δψd(t)   =   
 2π 
λS

 � � 
 ∂ρ2Q(t) 
∂x

Q
(t)  - 

 ∂ρ1Q(t) 
∂x

Q
(t)  �   

 ∂x
Q

(t) 
∂u

Q
(t)   �

 ∂u
Q

(t) 
∂p

Q

  + 

 

�+  
 ∂ρ1Q(t) 
∂x

Q
(t)   

 ∂x
1

(t) 
∂p

Q

  -  
 ∂ρ2Q(t) 
∂x

Q
(t)   

 ∂x
2

(t) 
∂p

Q

 �  δp
Q

  - 

 

-  
 2π 
λS

 � � 
 ∂ρ2P(t) 
∂x

P
(t)  - 

 ∂ρ1P(t) 
∂x

P
(t)  �   

 ∂x
P

(t) 
∂u

P
(t)   �

 ∂u
P

(t) 
∂p

P

  + 

 

�+  
 ∂ρ1P(t) 
∂x

P
(t)   

 ∂x
1

(t) 
∂p

P

  -  
 ∂ρ2P(t) 
∂x

P
(t)   

 ∂x
2

(t) 
∂p

P

 �  δp
P

  + 

 

+  
 2π 
λS

 � 
 ∂ρ1Q(t) 
∂x

Q
(t)  - 

 ∂ρ1P(t) 
∂x

P
(t)  �  R(t)  δy

1
  + 

 

+  
 2π 
λS

 � 
 ∂ρ2P(t) 
∂x

P
(t)  - 

 ∂ρ2Q(t) 
∂x

Q
(t)  �  R(t)  δy

2
  + 

 

+  2π νS  � 
 ∂∆ta2Q(t) 

∂a
2Q

 δa
2Q

  -  �
 ∂∆ta1Q(t) 

∂a
1Q

 δa
1Q

  - 

 

�-  
 ∂∆ta2P(t) 

∂a
2P

 δa
2P

  +  
 ∂∆ta1P(t) 

∂a
1P

 δa
1P

 �   + 

 
+  2π  δmd  +  εdT  δε (5-7) 

 
The clock-error term is here of the form 

 

εd   =  � 
 2π 
λS

 ( ρ̇1P(t) - ρ̇1Q(t) ) , 
 2π 
λS

 ( ρ̇2P(t) - ρ̇2P(t) ) �
T

                                                        (5-8a) 

 
δε   =   [ ε1(t) , ε2(t) ]T (5-8b) 

 
For further parameterization of   εi(t)  see eq. (2-18). 

 
In (5-7) we observe two satellites  P , Q  having different orbital ele- 

ments  u
P

(t)  and  u
Q

(t) . 
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5.3  Linear observation equation for triple-differences  

 
The nonlinear observation equation for triple-differences was given by 

(2-26).  We decompose again by 

 

ψt(t1,t2)   =   ψt
0(t1,t2)  +  δψt(t1,t2) (5-9a) 

 
or 
 

ψt(t1,t2)   =   ψd
0(t2) - ψd

0(t1) + δψd(t2) – δψd(t1) (5-9b) 

 

where the approximate value  ψt
0  is given by 

 

ψt
0(t1,t2)   =   

 2π 
λS

 � ρ2Q
0 (t2) - ρ2Q

0 (t1) + ρ2P
0 (t1) - ρ2P

0 (t2)  + � 

 
�+  ρ1P

0 (t2) - ρ1P
0 (t1) + ρ1Q

0 (t1) - ρ1Q
0 (t2) �  + 

 
+  2π  � md2

0  - md1
0 �  + 

 
+  2π νS � ∆ta2Q

0 (t2) - ∆ta2Q
0 (t1)� + ∆ta2P

0 (t1) - 
 

- ∆ta2P
0 (t2) + ∆ta1P

0 (t1) - ∆ta1P
0 (t1) +  

 
�+ ∆ta1Q

0 (t1) - ∆ta1Q
0 (t2) � (5-10a) 

 
and the variation  δψt(t1,t2)  is 

 

δψt(t1,t2)   =   
 2π 
λS

 [ δρ2Q(t2) - �δρ2Q(t1) + δρ2P(t1) - δρ2P(t2)  + 

 
�+  δρ1P(t2) - δρ1P(t1) + δρ1Q(t1) - δρ1Q(t2) ]  + 

 
+  2π  δmt  + 

 
+  2π  νS � δ∆ta2Q(t2) - δ∆ta2Q(t1) + δ∆ta2P(t1) � - 

 
- δ∆ta2P(t2) + δ∆ta1P(t2) - δ∆ta1P(t1) + 

 
�+ δ∆ta1Q(t1) - δ∆ta1Q(t2)�  + 

 
+  ψε,t(t1,t2) (5-10b) 
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where the clock-error term is already given by (2-27b) and 
 
 

δmt   =   δmd2  - δmd1 . (5-10c) 
 
 
Using the expressions for  δρij(t) , see (3-39b), and those for  δ∆ta , 

see (4-19b), we get the final form for the linear observation equation for 
triple-differences 
 
 

δψt(t1,t2)   =   
 2π 
λS

 � � 
 ∂ρ1Q(t2) 
∂x

Q
(t2)  - 

 ∂ρ2Q(t2) 
∂x

Q
(t2)  �  

 ∂x
Q

(t2) 
∂u

Q
(t2)   �

 ∂u
Q

(t2) 
∂p

Q

  + 

 

+ � 
 ∂ρ1Q(t1) 
∂x

Q
(t1)  - 

 ∂ρ2Q(t1) 
∂x

Q
(t1)  �  

 ∂x
Q

(t1) 
∂u

Q
(t1)   

 ∂u
Q

(t1) 
∂p

Q

  + 

 

+ 
 ∂ρ1Q(t2) 
∂x

Q
(t2)   

 ∂x
1

(t2) 
∂p

Q

  -  
 ∂ρ2Q(t2) 
∂x

Q
(t2)   

 ∂x
2

(t2) 
∂p

Q

  + 

 

�+ 
 ∂ρ2Q(t1) 
∂x

Q
(t1)   

 ∂x
2

(t1) 
∂p

Q

  -  
 ∂ρ1Q(t1) 
∂x

Q
(t1)   

 ∂x
1

(t1) 
∂p

Q

 �  δp
Q

  - 

 

+ 
 2π 
λS

 � � 
 ∂ρ2P(t2) 
∂x

P
(t2)  - 

 ∂ρ1P(t2) 
∂x

P
(t2)  �  

 ∂x
P

(t2) 
∂u

P
(t2)   �

 ∂u
P

(t2) 
∂p

P

  + 

 

+ � 
 ∂ρ1P(t1) 
∂x

P
(t1)  - 

 ∂ρ2P(t1) 
∂x

P
(t1)  �  

 ∂x
P

(t1) 
∂u

P
(t1)   

 ∂u
P

(t1) 
∂p

P

  + 

 

+ 
 ∂ρ1P(t2) 
∂x

P
(t2)   

 ∂x
1

(t2) 
∂p

P

  -  
 ∂ρ2P(t2) 
∂x

P
(t2)   

 ∂x
2

(t2) 
∂p

P

  + 

 

�+ 
 ∂ρ2P(t1) 
∂x

P
(t1)   

 ∂x
2

(t1) 
∂p

P

  -  
 ∂ρ1P(t1) 
∂x

P
(t1)   

 ∂x
1

(t1) 
∂p

P

 �  δp
P

  + 

 

+ 
 2π 
λS

 � � 
 ∂ρ1Q(t2) 
∂x

Q
(t2)  - 

 ∂ρ1P(t2) 
∂x

P
(t2)  �  R(t2)  + � 

 

�+ � 
 ∂ρ1P(t1) 
∂x

P
(t1)  - 

 ∂ρ1Q(t1) 
∂x

Q
(t1)  �  R(t1) �  δy

1
  + 

 

+ 
 2π 
λS

 � � 
 ∂ρ2P(t2) 
∂x

P
(t2)  - 

 ∂ρ2Q(t2) 
∂x

Q
(t2)  �  R(t2)  + � 

 

�+ � 
 ∂ρ2Q(t1) 
∂x

Q
(t1)  - 

 ∂ρ2P(t1) 
∂x

P
(t1)  �  R(t1) �  δy

2
  + 
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+  2π νS  � � 
 ∂∆ta2Q(t2) 

∂a
2Q

 - 
 ∂∆ta2Q(t1) 

∂a
2Q

 � � δa
2Q

  + 

 

+  � 
 ∂∆ta1Q(t1) 

∂a
1Q

 - 
 ∂∆ta1Q(t2) 

∂a
1Q

 �  δa
1Q

  + 

 

+  � 
 ∂∆ta1P(t2) 

∂a
1P

 - 
 ∂∆ta1P(t1) 

∂a
1P

 �  δa
1P

  + 

 

�+  � 
 ∂∆ta2P(t1) 

∂a
2P

 - 
 ∂∆ta2P(t2) 

∂a
2P

 �  δa
2P

�   + 

 
+  2π  δmt  +  εtT  δε (5-11) 

 
where the clock-error term  εtT δε  is of the following form 

 

εt   =   
 2π 
λS

 { [ ρ̇1P(t2) - ρ̇1Q(t2) - ρ̇1P(t1) + ρ̇1Q(t1) ] , � 

 
�� ρ̇2Q(t2) - ρ̇2P(t2) - ρ̇2Q(t1) + ρ̇2P(t1) � �

T
 (5-12a) 

 
δε   =   [ ε1(t) , ε2(t) ]T (5-12b) 

 
For the parameters  εi(t) , i  =  { 1,2 } , see (2-18). 
 
 
 

6.  GENERAL ESTIMATION MODEL  
 

The linearized observation equations for GPS phase (difference) measure- 
ments form the following linear system of equations 

 
l   =   A

1
p  +  A

2
y  +  A

3
x
a

  +  A
4

ε  +  n (6-1) 

 
where 
 

l is the vector of phase (difference) observations, 
 
A
i
 (i = 1,...,4) are the corresponding design matrices 

 of  p , y , x , and  ε , 
 
p is the vector of unknown dynamical parameters of 
 the orbit, see (3-30), 
 
y is the vector of unknown 3d-station coordinates in 
 an earth-fixed reference frame, 
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x
a
 is the vector of unknown atmospherical parameters, 

 
ε is the vector of unknown clock-errors and of the 
 unknown integer number of wavelengths, and 
 
n is the vector of observational noise. 

 
In general, one does not solve for all unknowns in (6-1), at least not in 

one step.  For most routine applications the orbit information transmitted 
by the broadcast ephemerides of the GPS satellites can be considered as 
sufficiently known, so that the term  A

1
p  in (6-1) is determined.  The 

same holds for the integer number of wavelengths in  ε  derived from a pre- 
processing and applied at the raw observations, or the treatment of atmo- 
spherical parameters, if at all considered.  Thus, the general model may 
e.g. reduce to 

 
l   =   A

2
y  +  A

4
ε  +  n (6-2) 

 

where the usual least-squares minimum norm  nTC
nn
-1n  can be used to solve 

(6-2).  Possible correlations between the observations due to differencing 
are expressed in the variance-covariance matrix  C

nn
 .  For the defect in- 

herent in (6-1) or (6-2) station coordinates (and/or other parameters) have 
to be fixed. 
 
The functional relationship of GPS observations with regard to all pos- 

sible parameters in the general form of (6-1) should, however, show the 
user the assumptions made in the available algorithms for GPS-processing. 
Moreover it might serve as the basis for improvements in the available pro- 
cessing software.  If, for example, a given orbit has to be improved, then 
the given elements  u�(t)  can be used as appropriate values  u0�(t) := u�(t) , 
and the orbit integration (3-31) can be omitted. 
 
Present algorithms are developed for single baselines.  One of the im- 

provements in the future must concern the extension to multi-baseline de- 
termination of networks in one step.  The theoretical model (6-1) is al- 
ready defined without restrictions. 
 
A variety of solutions to (6-1) in more or less sequential form is pos- 

sible.  Numerical realizations have to show the best way to get the desired 
accuracy of the baseline vectors. 
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ABSTRACT.  This paper deals with the problern of trans- 
forming Cartesian baseline vectors (derived from the 
GPS) into differences in ellipsoidal coordinates 
(B,L,h). 

  In opposite to iterative solutions of this problem 
(HEISKANEN and MORITZ 1967, SCHÖDLBAUER 1984), a direct 
solution, based on a Taylor series expansion up to the 
complete third order terms, is presented. 

  Numerical investigations show, that the approximation 
error, neglecting higher order terms, is about 2.0 cm/ 
60 km in ellipsoidal latitude and about 1.0 cm/80 km in 
ellipsoidal height (per baseline length). 

  Finally an application field for this method is dis- 
cussed, in particular GPS moving baseline applications. 
 
 
 
 

1.  INTRODUCTION 
 

  The adjustment of differential GPS observations (single, double, triple 
differences) in stationary and non-stationary (moving baseline) applications 
results in Cartesian baseline vectors which refer to the World Geodetic Sys- 
tem 1972 (WGS 72) or in future to WGS 1984 (Block II NAVSTAR/GPS Satellites). 
 
  Using this new type of data for geodetic purpose the following computa- 
tional problem arises: 
 
  (i)    transformation of the baseline vectors to a national 
         reference frame 
 
  (ii)   convertion of the so transformed baseline vectors into 
         differences in ellipsoidal coordinates  (B,L,h) 
 
  For other curvilinear coordinate systems besides of  (B,L,h)  which are 
of interest in geometrical geodesy, see SCHÖDLBAUER (1985). 
 
  Besides these two more or less geometrical problems we are in addition 
concerned with the problem of converting differences in ellipsoidal heights 
into differences in orthometric heights. For more detail on this height 
problem see e.g. ENGELIS, TSCHERNING and RAPP (1984), HEIN (1985) and EISS- 
FELLER (1985). 
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  The problem (i) is easily solved by applying an appropriate rotation ma- 
trix on the baseline components referring to WGS 72, e.g. EISSFELLER (1985). 
 
  The standard solution for problem (ii) is first to add the transformed 
Cartesian baseline vector  ∆x

ij
  (between two stations i,j ) to the posi- 

tion vector  x
i

(Bi,Li,hi)  in order to obtain the position vector 
x
j
�Bj,Lj,hj�.  In a second step the ellipsoidal coordinates  Bj, Lj, hj 

are derived by inverting the three nonlinear component functions of the vec- 
tor  x

j
. 

 
  From a geometrical point of view this inversion problem consists in fin- 
ding the intersection point at the ellipsoid of reference by orthogonal pro- 
jection of a space point to the ellipsoid. Numerically this problem is 
solved iteratively by Newtons iteration method, see e.g. HEISKANEN and MO- 
RITZ (1967), BARTELME and MEISSL (1975) and SCHÖDLBAUER (1984). 
 
  However a direct solution is discussed in BENNING (1974). It is shown in 
BENNING (1974), that the intersection problem described above is equivalent 
to the problem of finding the roots of a fourth order algebraic equation. 
Because these roots have a rather complicated structure, the method proposed 
by BENNING (1974) is not widely used in geometrical geodesy. GPS baseline 
vectors in practice hardly exceed 100 km of baseline length. Therefore 
baseline components are in principle small quantities relative to the dimen- 
sions of earth. 
 
  For that reason it is very straightforward to construct a Taylor series 
expansion of the ellipsoidal coordinates  B, h  as a function of the base- 
line components  ∆x, ∆y, ∆z .  The left or right baseline station may be 
used as Taylor point in this expansion. Note, that because of the symmetry 
of the problem (rotational ellipsoid), the difference in longitude  L  can 
always be computed directly with the aid of elementary triqonometric rela- 
tions. Let f be the geodetic function to be expanded, the basic concept 
of geometrical geodesy may be summarized as follows, see also HEITZ (1985, 
p. 181) 
 

f�x�  =  f�x0� + �  
1
k!

 �
∂
∂x1

∆x1 + 
∂
∂x2

∆x2 + ... + 
∂
∂xm

∆xm�
k

f�x0�
∞

k=1

 

(1-1) 
 

f     function to be expanded 

x     vector of  m  independent variables 

x0    Taylor point 
∆xi   variations of components of  x 

 
 
  Thus, eq. (1-1) is a polynomial function of k'th order in the variations 
x
i
. The topic of this paper is to derive a Taylor series expansion for 

ellipsoidal latitude  B  and ellipsoidal height h as a function of base- 
line components  ∆x, ∆y, ∆z  including complete third order terms, based 
on (1-1). The necessary partial derivatives are computed with the aid of 
implicit differentiation techniques. 
 
  A similar approach, but presenting only approximate third order terms and 
using tensor calculus together with direct differentiation techniques, is 
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given in HEITZ (1985, p. 215). 
 
 

2.  BASIC RELATIONS 
 
  The starting point of the derivations is the functional relationship of 
the position vector  x=[x,y,z]T  (given in a national reference frame) 
with ellipsoidal coordinates (HEISKANEN and MORITZ 1967, p. 184) 
 
 

�

x

y

z

�   =  

⎣
⎢
⎢
⎢
⎡
 

(N + h)  cosB  cosL

(N + h)  cosB  sinL

�b
2

a2
 N + h�  sin B

 

⎦
⎥
⎥
⎥
⎤
 (2-1) 

 
with 
 

B , L , h ellipsoidal latitude, longitude, height 

a , b semimajor and semiminor axis of reference 
 ellipsoid 

N east-west radius of curvature. 
 
 
Following GROSSMANN (1976, p. 12) the quantity  N  is defined as follows 
 
 

N      =  
c
 V 

                                                                                                                                                            (2-2a) 
 

c      =  
 a2 
b

                                                                                                                                                          (2-2b) 
 

V      =  � 1 + e'2 cos2B�
1
2�                                                                                                                            (2-2c) 

 

e'2  =  
 a2-b2 

b2
                                                                                                                                                  (2-2d) 

 
 
Let in addition be  ∆x  the vector of GPS baseline components 
 
 

∆x  =  [∆x, ∆y, ∆z]T . (2-3) 
 
 
Based on (2-1), (2-2) and (2-3) the topic of this paper is to present the 
following Taylor series expansions 
 

t  =  tanB (2-4a) 
 

t  =  t0 + �
1
k!

 �
∂
∂x

∆x + 
∂
∂y

∆y + 
∂
∂z

∆z�
k

t0 + Rμn                                                                         (2-4b)
n

k=1

 

 

h  =  h0 + �
1
k!

 �
∂
∂x

∆x + 
∂
∂y

∆y + 
∂
∂z

∆z�
k

h0 + Rhn                                                                         (2-4c)
n

k=1
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The quantities  t0  and  h0  are the corresponding values of  t  and  h  at 
the Taylor point. 
 
  Notice, that instead of  B  itself the tangens of  B  is used as the bas- 
ic function in the series expansion. 
 
  This has some computational advantages and is allowed, because  tan B  is 
a unique function of  B  in the interval  �- π

2
, π
2
� .  The only problem, we 

are in the following discussions concerned with, is to compute the partial 
derivatives of  t  and  h  in (2-4b,c). 
 
  In order to do these differentiations efficiently, we need the functional 
relations of  h  with respect to rectangular coordinates  (x,y,z) . 
 
 
2.1  Basic expression of  t 
 
  Let  p  be the radial distance in the equatorial (x,y)-plane to the pro- 
jection point of the position vector  x  (projection parallel to z-axis). 
Thus, 
 

p  =  �x2 + y2�
1
2�  .                                                                                                                                              (2-5) 

 
If we square and sum the first two components of (2-1), we find for  p  in 
curvilinear coordinates 
 

p  =  � 
c
 V 

 + h �  cosB .                                                                                                                                 (2-6a) 

 
Using (2-2a,b) the third component of (2-1) is of the form 
 

z  =  � 
b
 V 

 + h �  sinB .                                                                                                                                 (2-6b) 

 
Elimination of  h  in (2-6a,b) and using the trigonometric identities 
 

sin2B  =  
t2

 1 + t2 
                                                                                                                                             (2-7a) 

 

cos2B  =  
1

 1 + t2 
                                                                                                                                             (2-7b) 

 
leads to a fundamental expression of  t 
 

�α2 + t2� (p t - z)2  =  β2 t2                                                                                                                          (2-8) 
 

                 α2  =  
a2

 b2 
                                                                                                                                           (2-8a) 

 
                 β2  =  b2e'4 .                                                                                                                                   (2-8b) 

 
Eq. (2-8) is again an algebraic equation of fourth order (see the introduc- 
tion). 
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It should be mentioned, that in the special case  a = b  (spherical approxi- 
mation of ellipsoid) eq. (2-8) degenerates to 
 

�1 + t2� �p t - z�
2

  =  0 (2-9) 
 
The roots of (2-9) are easily computed as 
 

t1,2  =  ±i  ;      i  =  � -1  (2-9a) 

 

t3,4  =  
 z 
p

  .                                                                                                                                                      (2-9b) 

 
Equation (2-9b) is nothing else than  tanφ , where  φ  is the spherical 
latitude. 
 
Equation (2-8) shows, that 
 

t  =  t(p,z) (2-10) 
 
which is the basic function, we need. In order to compute the partial deri- 
vatives of  t  with respect to  (x,y,z)  it is not necessary to find the 
explicit form of  t  (2-10) by solving (2-8), because (2-8) can be used di- 
rectly for this purpose by implicit differentiation. 
 
 
2.2  Basic expression of  h 
 
  Considering (2-6a) we find for the ellipsoidal height  h 
 

h  =  
p

 cosB 
 - 

c
 V 

  .                                                                                                                                        (2-11) 

 
Using again (2-7b) and  α2  (2-8a) the final expression of  h  is to be 
 

h =  p . � 1 + t2 �
1
2�  - c � 

1 + t2

 α2 + t2 
 �

1
2�

                                                                                                   (2-12) 

 
because  t = t(p,z)  (2-10) and  p = p(x,y)  (2-5), equation (2-12) is in 
principle a function of  (x,y,z) 
 
 
2.3  Basic expression of  L 
 
  As already mentioned in the introduction the problem of determination of 
L  is simplified, when using a rotational ellipsoid of reference. 
 
  Considering the quotient  y : x  from (2-1) one finds for  ∆L 
 

∆L  =  L - L0  =  arctan
 y + ∆y 
x + ∆x

 - arctan
 y 
x

  .                                                                                (2-13) 

 
Because of the simple structure of (2-13) the latitude  L  is left out of 
consideration from now on. 
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3.  SERIES EXPANSIONS 

 
  In this chapter the Taylor series expansions of  t  and  h  as functions 
of baseline components  (∆x, ∆y, ∆z)  are presented, including third order 
terms. 
 
 
3.1  Series expansion of  t  =   tanB 
 
  Considering only third order terms the series of  t  is of the following 
form 

 
t  =  t0 + t1 + t2 + t3 + 04 (3-1) 

 
with 

 
t0  =  tanB0 (3-2a) 

 
t1  =  tx ∆x + ty ∆y + tz ∆z (3-2b) 

 

t2  =  
1
2
txx ∆x2 + txy ∆x ∆y + 

1
2
tyy ∆y2 

            + txz ∆x ∆z + tyz ∆y ∆z + 
1
2
tzz ∆z2                                                                                            (3-2c) 

 

t3  = 
1
6
txxx ∆x3 + 

1
2
txxy ∆x2 ∆y + 

1
2
txyy ∆x ∆y2 

           + 
1
6
tyyy ∆y3 + 

1
2
txxz ∆x2 ∆z + txyz ∆x ∆y ∆z 

           + 
1
2
tyyz ∆y2 ∆z + 

1
2
txzz ∆x ∆z2 + 

1
2
tyzz ∆y ∆z2 

           + 
1
6
tzzz ∆z3                                                                                                                                           (3-2d) 

 
 
3.1.1  Transformation of partial derivatives 

 

  Because  t  =  t (p,z)  (2-10) and  p  =  �x2 + y2�
1
2�   (2-5) it is reasonable to 

differentiate  t  first with respect to  p  and afterwards  p  with respect 
to  (x,y)  by applying the chain rule of differentiation. 

 
  Thus, we are concerned with the following differential transformations 

 
1st order derivatives 

 
tx  =  tp px (3-3a) 

 
ty  =  tp py (3-3b) 

 
tz  =  tz (3-3c) 
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2nd order derivatives 
 

txx  =  tpp px
2 + tp pxx (3-3d) 

 
txy  =  tpp px py + tp pxy (3-3e) 

 
tyy  =  tpp py

2 + tp pyy (3-3f) 
 

txz  =  tpz px (3-3g) 
 

tyz  =  tpz py (3-3h) 
 

tzz  =  tzz (3-3i) 
 
 

3rd order derivatives 
 

txxx  =  tppp px
3 + 3tpp px pxx + tp pxxx (3-3j) 

 
txxy  =  tppp py px

2 + tpp �2pxpxy + pypxx�  + tp pxxy (3-3k) 
 

txyy  =  tppp px py
2 + tpp �2pypxy + pxpyy�  + tp pxyy (3-3l) 

 
tyyy  =  tppp py

3 + 3tpp py pyy + tp pyyy (3-3m) 
 

txxz  =  tppz px
2 + tpz pxx (3-3n) 

 
txyz  =  tppz px py + tpz pxy (3-3o) 

 
tyyz  =  tppz py

2 + tpz pyy (3-3p) 
 

txzz  =  tpzz px (3-3q) 
 

tyzz  =  tpzz py (3-3r) 
 

tzzz  =  tzzz (3-3s) 
 
 
3.1.2  Partial derivatives of  t  with respect to  p  and  z 
 
  As mentioned already before the partial derivatives of  t  with respect to 
(p,z)  may be obtained by implicit differentiation of (2-8). Therefore we 
define the following auxiliary function 
 

ϕ {p,z,t(p,z)}  =  �α2+t2� �pt-z�
2
- β2t2  =  0 . (3-4) 

 
With (3-4) we find for the partial derivatives of  t 
 

1st order derivatives 
 

tp  =  -
 ϕp 
ϕt

                                                                                                                                                         (3-5a) 

 

tz  =  -
 ϕz 
ϕt

                                                                                                                                                         (3-5b) 
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2nd order derivatives 
 
tpp  =  -�ϕpp + 2 ϕpttp + ϕtttp

2� : ϕt (3-5c) 
 
tpz  =  -�ϕpz + ϕpttz + ϕtttptz + ϕtztp� : ϕt (3-5d) 
 
tzz  =  -�ϕzz + 2 ϕtztz + ϕtttz

2� : ϕt (3-5e) 
 
 
3rd order derivatives 
 
tppp  =  -�ϕppp + 3 ϕppttp + 3 ϕptttp

2 + 3 ϕpttpp + ϕttttp
3 � 

�+ 3 ϕtttptpp� : ϕt (3-5f) 
 
tppz  =  -�ϕppz + ϕppttz + 2 ϕptztp + 2 ϕptttptz + ϕttztp

2 � 

+ ϕttttztp
2 + 2 ϕpttpz + ϕtt �2 tptpz + tztpp� 

�+ ϕtztpp� : ϕt (3-5g) 
 
tpzz  =  -�ϕzzp + ϕzzttp + 2 ϕptztz + 2 ϕztttptz + 2 ϕtztpz � 

+ ϕttptz
2 + ϕttttptz

2 + ϕtt�2 tztpz + tptzz� 

�+ ϕpttzz� : ϕt (3-5h) 
 
tzzz  =  -�ϕzzz + 3 ϕzzttz + 3 ϕttztz

2 + 3 ϕtztzz + ϕttttz
3 � 

�+ 3 ϕtttztzz) : ϕt (3-5i) 
 
 

In order to evaluate the expressions (3-5) the explicit partial derivatives 
of  ϕ  with respect to  (p,t,z)  are necessary. 
 
 
  By differentiation of (3-4) we find 

 
ϕp    =  2 t �p t - z� �α2 + t2� (3-6a) 
 

ϕt    =  -2 � β2t – p �p t - z� �α2 + t2� – t �p t - z�
2

 � (3-6b) 

 
ϕz    =  -2 �p t - z� �α2 + t2� (3-6c) 
 
ϕpp  =  2 t2�α2 + t2� (3-6d) 
 
ϕpt  =  2 �2 α2p t - α2z + 4 p t3 – 3 t2z� (3-6e) 
 
ϕpz  =  -2 t �α2 + t2� (3-6f) 
 
ϕtt  =  2 �α2p2 - β2 + 6 p2t2 – 6 p t z + z2� (3-6g) 
 
ϕtz  =  -2 � p �α2 + t2� + 2 t �p t - z� � (3-6h) 
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ϕzz    =  2 �α2 + t2� (3-6i) 

 
ϕppp  =  0 (3-6j) 

 
ϕppz  =  0 (3-6k) 

 
ϕppt  =  4 t �α2 + 2t2� (3-6l) 

 
ϕptz  =  -2 �α2 + 3t2� (3-6m) 

 
ϕzzp  =  0 (3-6n) 

 
ϕzzt  =  4 t (3-6o) 

 
ϕzzz  =  0 (3-6p) 

 
ϕttp  =  4 �α2p + 6pt2 - 3tz� (3-6q) 

 
ϕttz  =  -4 �3pt - z� (3-6r) 

 
ϕttt  =  12p �2pt - z� (3-6s) 

 
 
3.2  Series expansion of  h 
 
  Considering only 3rd order terms the series of  h  is of the following 
form 

 
h  =  h0 + h1 + h2 + h3 + 04 (3-7) 
 

with 
 
h0 height in the Taylor point 

 
h1  =  hx∆x + hy∆y + hz∆z (3-8a) 

 

h2  =  
1
2
hxx∆x2 + hxy∆x∆y + 

1
2
hyy∆y2 

            + hxz∆x∆z + hyz∆y∆z + 
1
2
hzz∆z2                                                                                                 (3-8b) 

 

h3  =  
1
6
hxxx∆x3 + 

1
2
hxxy∆x2∆y + 

1
2
hxyy∆x∆y2 

            + 
1
6
hyyy∆y3 + 

1
2
hxxz∆x2∆z + hxyz∆x∆y∆z 

            + 
1
2
hyyz∆y2∆z + 

1
2
hxzz∆x∆z2 + 

1
2
hyzz∆y∆z2 

            + 
1
6
hzzz∆z3                                                                                                                                            (3-8c) 
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3.2.1  Transformation of partial derivatives 
 
  Because of (2-12)  h = h(p,t) , (2-10)  t = t(p,z)  and (2-5)  p = p(x,y) 
it is reasonable to differentiate  h  first with respect to  p  and  z , 
and second to transform the so obtained partial derivatives in those with 
respect to  (x,y,z) .  The following transformation expressions are quite 
analogous to the expressions (3-3a to s). 
 

1st order derivatives 
 
hx  =  hp px (3-9a) 
 
hy  =  hp py (3-9b) 
 
hz  =  hz (3-9c) 
 
 
2nd order derivatives 
 
hxx  =  hpppx

2 + hppxx (3-9d) 
 
hxy  =  hpppxpy + hppxy (3-9e) 
 
hyy  =  hpppy

2 + hppyy (3-9f) 
 
hxz  =  hpzpx (3-9g) 
 
hyz  =  hpzpy (3-9h) 
 
hzz  =  hzz (3-9i) 
 
 
3rd order derivatives 
 
hxxx  =  hppppx

3 + 3hpppxpxx + hppxxx (3-9j) 
 
hxxy  =  hppppypx

2 + hpp �2pxpxy + pypxx�  + hppxxy (3-9k) 
 
hxyy  =  hppppxpy

2 + hpp �2pypxy + pxpyy�  + hppxyy (3-9l) 
 
hyyy  =  hppppy

3 + 3hpppypyy + hppyyy (3-9m) 
 
hxxz  =  hppzpx

2 + hpzpxx (3-9n) 
 
hxyz  =  hppzpxpy + hpzpxy (3-9o) 
 
hyyz  =  hppzpy

2+hpzpyy (3-9p) 
 
hxzz  =  hpzzpx (3-9q) 
 
hyzz  =  hpzzpy (3-9r) 
 
hzzz  =  hzzz (3-9s) 
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3.2.2  Partial derivatives of  h  with respect to  p  and  z 
 
  In order to compute the partial derivatives of  h  with respect to  p  and 
z  a second auxiliary function  Θ  is defined. 
 

h  =  Θ {p,t(p,z)}  =  p�1 + t2�
1
2�  - c�

1 + t2

 α2 + t2 
�

1
2�

                                                                        (3-10) 

 
With the aid of  Θ  the partial derivatives of  h  are of the following 
form. Note, that  Θ  does not explicitly depend on  z 
 

1st order derivatives 
 
hp  =  Θp  +  Θttp (3-11a) 
 
hz  =  Θt tz (3-11b) 
 
 
2nd order derivatives 
 
hpp  =  Θpp + 2 Θpttp + Θtttp

2 + Θttpp (3-11c) 
 
hpz  =  Θpttz + Θtttptz + Θttpz (3-11d) 
 
hzz  =  Θtttz

2 + Θttzz (3-11e) 
 
 
3rd order derivatives 
 
hppp  =  Θppp + 3 Θppttp + 3 Θptttp

2 + Θttttp
3 

               + 3 Θpttpp + 3 Θtttptpp + Θttppp (3-11f) 
 
hppz  =  Θppttz + 2 Θptttptz + Θttttztp

2 

               + 2 Θpttpz + Θtt�2tptpz + tztpp� + Θttppz (3-11g) 
 
hpzz  =  Θptttz

2 + Θttttptz
2 + Θtt�2tztpz + tptzz� 

               + Θpttzz + Θttpzz (3-11h) 
 
hzzz  =  Θttttz

3 + 3 Θtttztzz + Θttzzz (3-11i) 
 

 
The partial derivatives of  t  with respect to  p  and  z  are already given 
in (3-5). In order to evaluate the expressions (3-11) the partial deriva- 
tives of  Θ  have to be additionally known. With the definition (3-10) of 
Θ , we find the following formulas. 
 

Θp  =  �1 + t2�
1
2�                                                                                                                                             (3-12a) 

 

Θt  =  
 t �p �α2 + t2�

3
2�  + c �1 - α2�� 

�1 + t2�
1
2�  �α2 + t2�

3
2�

                                                                                                  (3-12b) 
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Θpp    =  0 (3-12c) 

 

Θpt    =  
t

 �1 + t2�
1
2�  

                                                                                                                                     (3-12d) 

 

Θtt    =  
 p �α2 + t2�

5
2�  – c �1 - α2� �3 t4 + 2 t2 - α2� 

�1 + t2�
3
2�  �α2 + t2�

5
2�

                                                                  (3-12e) 

 
Θppp  =  0 (3-12f) 

 
Θppt  =  0 (3-12g) 

 

Θptt  =  
1

 �1 + t2�
3
2�  

                                                                                                                                     (3-12h) 

 

Θttt  =  -
t

 �1 + t2�
5
2�  �α2 + t2�

7
5�  
 

                 ��1 + t2� �α2 + t2� �4c �1 - α2� �1 - 3t2� - 5p �α2 + t2�
3
2� �� 

�                 + �8t2 + 3α2 +  5� � c �1 - α2� �α2 - 3t4  -2t2� + p �α2 + t2�
5
2� �� (3-12i) 

 

 
3.3  Partial derivatives of  p  with respect to  x  and  y 
 
  In order to evaluate the transformation relations (3-3) and (3-9), final- 
ly the partial derivatives of  p  (2-5) with respect to  x  and  y  are 
given. 
 

1st order derivatives 
 

px  =  
x
p

                                                                                                                                                              (3-13a) 

 

py  =  
y
p

                                                                                                                                                              (3-13b) 

 
 

2nd order derivatives 
 

pxx  =  
 y2 
p3

                                                                                                                                                        (3-13c) 

 

pxy  =  -
 xy 
p3

                                                                                                                                                    (3-13d) 

 

pyy  =  
 x2 
p3

                                                                                                                                                        (3-13e) 
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3rd order derivatives 
 

pxxx  =  -
 3xy2 
p5

                                                                                                                                              (3-13f) 

 

pxxy  =  
 y �2x2 - y2� 

p5
                                                                                                                                  (3-13g) 

 

pxyy  =  -
 x �x2 - 2y2� 

p5
                                                                                                                               (3-13h) 

 

pyyy  =  -
 3x2y 
p5

                                                                                                                                              (3-13i) 

 
 
 

4.  NUMERICAL INVESTIGATIONS 
 

  In the following two basic problems concerning the series expansions of  t 
(3-1) and  h  (3-7) are discussed numerically: 

 
  (i)    approximation errors of the complete third order expansions 

 
  (ii)   magnitude of the third order terms 

 
  The problems (i) and (ii) are discussed at a Taylor point (left baseline 
point) with 

 
B0 = 50°00'0".00 

L0 =  8°00'0".00 (4-1) 

h0 = 500 m 
 
 
4.1  Approximation error of series expansions 

 
  In principle it is possible to find analytic expressions for higher-order 
neglection terms in Taylor expansions. In order to do this, the fourth or- 
der derivatives of  t  and  h  with respect to  (x,y,z)  are required. A 
numerical study is preferred here, in order to avoid the computation of the 
higher order  (>3)  partial derivatives. Obviously the 04-terms, which are 
the approximation errors in (3-1) and (3-7), are a function of baseline 
length  b .  For this reason the approximation errors are analysed with re- 
spect to  b . 

 

b  =  � ∆x2 + ∆y2 + ∆z2 �
1
2�                                                                                                                               (4-2) 

 
The accuracy of the third order expansions of  h  and  t  was investigated 
in two steps: 

 
  (i)    a set of baseline components  �∆xi, ∆yi, ∆zi�  was generated by use 
         of eq. (2-1) vice 
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Figure 1   Approximation Error in Latitude 

 

  
Figure 2   Approximation Error in Height 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡

 

∆xi

∆yi

∆zi

 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

  =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

(N(Bi) + hi)cosBi cosLi - (N(B0) + h0)cosB0 cosL0

(N(Bi) + hi)cosBi sinLi - (N(B0) + h0)cosB0 sinL0

�b
2

a2
 N(Bi) + hi�sinBi - �b

2

a2
 N(B0) + h0�sinB0

 

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (4-3) 

 
with 

 

Bi  =  B0 + i'
π

 180 . 60' 
 , 

 

Li  =  L0 + i'
π

 180 . 60' 
 ,                                                                                                                            (4-4) 

 
hi  =  h0 + 500.00 m  =  const . 

 
Based on (4-4) the latitude  Bi  and the longitude  Li  are computed with 
1'  increments  (≐ 2.2 km)  from  1'  to  50'  or 2.2 km up to 110.0 km. 
 
  (ii)  The series expansions (3-1) and (3-7) for  t  and  h  were 
        programmed in FORTRAN. 
 
With the generated baseline components (4-3) the series expansions were 
evaluated based on (ii). The so computed values  �B�i, h�i�  are compared with 
the true values  (Bi, hi)  (4-4) which have been previously used to compute 
the baseline components (4-3) as input for (ii). The~results of this com- 
parison,  B (error)  =  Bi - B�i  and  h (error)  =  hi - h�i  as a function of 
baseline length  b  are presented in figures 1 and 2. 
 
  It can be seen, that the approximation errors increase exponentially with 
b .  If we allow an approximation error of 1 cm as upper limit for geodetic 
applications the Taylor expansions (3-1) and (3-7) are sufficiently accurate 
up to 50 km in latitude and 80 km in height. 
 
 
4.2  Magnitude of third order terms 
 
  Because the third order terms  t3  (3-2d) and  h3  (3-8c) have a rather 
complicated structure in comparison to the first and second order terms, we 
have to ask the question, if these terms may be neglected up to a fixed 
baseline length  b . 
 
  The following tables 1 and 2 show the magnitudes of  t3  and  h3  as a 
function of  b .  The baseline components used for the computation of  t3 
and  h3  are again computed with the aid of (4-3) and (4-4) in  2'  incre- 
ments (≐ 4.4 km). 
 
  We learn from table 1 and 2, that it is possible to neglect  h  with an 
approximation error of 2 cm for baseline length up to 110.0 km. 
 
  For precise computations in latitude the t3-term has to be considered even 
for short baselines. 
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 b [km] t3 [m]  b [km] h3 [m]  
       
   4.4  0.000    4.4 0.000  
   8.8  0.003    8.8 0.000  
  13.2  0.013   13.2 0.001  
  17.6  0.034   17.6 0.002  
  22.1  0.070   22.1 0.003  
  26.5  0.125   26.5 0.004  
  30.9  0.205   30.9 0.006  
  35.3  0.313   35.3 0.008  
  39.7  0.455   39.7 0.009  
  44.1  0.634   44.1 0.011  
  48.5  0.857   48.5 0.013  
  52.9  1.129   52.9 0.015  
  57.3  1.454   57.3 0.016  
  61.7  1.838   61.7 0.017  
  66.1  2.287   66.1 0.018  
  70.5  2.806   70.5 0.019  
  74.9  3.401   74.9 0.019  
  79.3  4.077   79.3 0.018  
  83.7  4.842   83.7 0.016  
  88.0  5.701   88.0 0.013  
  92.4  6.660   92.4 0.009  
  96.8  7.726   96.8 0.004  
 101.2  8.905  101.2 0.003  
 105.6 10.205  105.6 0.011  
 110.0 11.631  110.0 0.021  
       

 Table 1   Magnitude of t3 Table 2   Magnitude of h3  
 
 
 

5.  PRACTICAL APPLICATIONS 
 

  The solution presented has a rather complicated structure in comparison to 
the iterative procedures discussed in BARTELME and MEISSL (1975), HEISKANEN 
and MORITZ (1967) and SCHÖDLBAUER (1984). 
 
  Therefore the critical reader might ask the question: What is the pract- 
ical use of these series expansions? 
 
  To answer this question beforehand, one has to consider the following 
facts: 
 
  (i)   The coefficients in the series (3-1) and (3-7) depend only on 
        the Taylor point or on one baseline point (reference station). 
        If these coefficients are once evaluated, every arbitrary set 
        of baseline components  (∆x, ∆y, ∆z)  can be transformed by a 
        simple third order polynomial in geodetic coordinates. 
 
  (ii)  The iterative procedures mentioned above and in the introduce- 
        tion require for every GPS station  (B, L, h)  the evaluation 
        of many trigonometric (inversion of (2-1)) functions which is 
        computer time consuming. 
 
        Whereas in the series expansion proposed, only trigonometric 
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        functions in the reference station  (B0, L0, h0)  are 
        needed. 
 
  Considering (i) and (ii) we have to state, that the iterative solutions 
are of course favourable, if we have only to transform a few baseline vec- 
tors with respect to one reference station. 
 
  But e.g. in moving baseline applications, where we work with one fixed 
master station and with one moving GPS receiver, perhaps hundreds or thou- 
sands of different baseline vectors referring all to the same reference 
station are to be transformed. 
 
  In this application field the method discussed in this paper would be su- 
perior to the iterative solutions because of (i) and (ii). 
 
  Concerning moving baseline applications we have also to think of GPS aided 
inertial navigation systyms (INS). In order to update the INS online by 
baseline vectors one consistent geodetic coordinate system is required. The 
transformation of baseline vectors to geodetic coordinates can be computed 
very fast by the polynomial approximations (3-1) and (3-7) with constant co- 
efficients. Thus, an operational approach would be: 
 
  (a)  Compute all the coefficients in (3-1) and (3-7) for the master station 
       premission. 
 
  (b)  Solve the online transformation problem of baseline vectors and the 
       polynomials (3-1) and (3-7) on the navigation computer. 
 
For (b) we have to notice, that polynomials may be evaluated numerically 
very advanced by use of the Horner scheme. 
 
  The Horner decomposition of a third order polynomial  f  in  (∆x, ∆y, ∆z) 
like (3-1) or (3-7) is e.g. of the following form. 
 

f (∆x, ∆y, ∆z)   =   α000 

    + ∆x { α100 + α120∆y + ∆z ( α130 + α123∆y ) � 
�               + ∆x ( α110 + α111∆x + α112∆y + α113∆z ) } 

    + ∆y { α200 + α230∆z + ∆y( α220 + α122∆x + α222∆y + α223∆z ) } 

    + ∆z { α300 + ∆z ( α330 +  α133∆x + α233∆y + α333∆z ) } (5-1) 
 
with 
 

αijk     coefficients associated with the partial derivatives 
 

∂i+k+j f
 ∂xi ∂yk ∂zj 
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ABSTRACT.  When reaching the full operational capability 
of the NAVSTAR/GPS system with 18 satellites in 6 orbi- 
tal planes an optimal selection of satellites becomes 
more and more of importance.  GPS then provides 4 to 8 
visible satellites above the horizon to any user in the 
world at any time, however, most of the receivers are 
able to track only four satellites.  Therefore it will 
be necessary to select 4 satellites at any time of the 
tracking interval.  This selection has a great influence 
on accuracy of the processing results and is usually 
based on the so-called geometric dilution of precision 
(GDOP).  Up to now selection algorithms are implemented 
in the receivers, which try to approximate the smallest 
GDOP with smallest computational requirements. 
 
Since geodesists are interested in the highest possible 

accuracy, the applied selection method should be based 
on the special geodetic observation and computation tech- 
niques using phase differences, which have a quite dif- 
ferent error behaviour than pseudo-range measurements. 
The paper discusses an optimum selection method for dif- 
ferent observation types and visibility.  Various error 
sources like atmospheric propagation delays and ephe- 
meris errors are considered in the discussion. 

 
 
 

1.  INTRODUCTION  
 
The NAVSTAR/GPS satellite system was primarily designed for military and 

civil navigation applications using the pseudo-ranging technique.  Geode- 
sists make use of the system for high-precise differential positioning 
using instantaneous carrier phase difference measurements.  In contrast to 
the users of the navigation mode of NAVSTAR, the group of geodetic users is 
very small.  Therefore the development of GPS receivers by firms is prima- 
rily directed toward the requirements of online navigation processing and not 
to geodetic postprocessing.  According to the authors information the only 
pure geodetic receivers are the models Macrometer V-1000 and Macrometer II, 
which are codeless receivers.  This means, that they are not able to pro- 
cess pseudo-ranges. 
 
In the late 1980s 4 to 8 satellites will be visible above the horizon as 

soon as GPS a reaching the full 18-satellite configuration.  Most of the 
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receivers are able to track up to 4 satellites only.  Therefore the question 
of an optimum selection arises. 
 
The satellite selection method in GPS receivers is based on the geometric 

configuration of satellites which is very well represented by the so-called 
geometric dilution of precision (GDOP).  Selection algorithms were developed 
which allow a good and fast fitting to the smallest obtainable GDOP (KIHARA 
and OKADA, 1984). 
 
In the following we want to discuss 
 

• the influence of a more physical orientated model on satellite 
selection, describing the optimal satellite configuration and 
taking atmospheric models into account, 

 
• the different error behaviour of the different observation types, 

like pseudo-ranging, single, double and triple differences, 
 

• the influence of different error sources on geodetic positioning, 
 

• the optimal observation time for different observation types. 
 
Other authors have already treated the optimization of GPS observations 

and networks.  VANÍČEK et al. (1984) have analysed the geometrical properties 
of different observation types.  The publication of GRAFAREND et al. (1985) 
deals with the second order design of the Global Positioning Systems. 
 
 

2.  A SHORT DESCRIPTION OF PSEUDO-RANGING AND THE  
GEOMETRIC DILUTION OF PRECISION  

 

 
 

Fig. 1:  Pseudo-ranging constellation 
 
By use of pseudo-range measurements to 4 satellites we are able to deter- 

mine the position of P in three dimensions and an unknown receiver clock 
offset 
 

ρi   =   c ( τi + τ0 )   =   � � xp – xi �2 + � yp – yi �
2

 + � zp – zi �2                                                 (2-1) 
 

with  i    =    1, 2, 3, 4 
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where 
 

ρi ... is the distance from the receiver point P to the 
  satellite i 
 
τi ... is the transmission time of the satellite signal 
  from satellite i to receiver P 
 
τ0 ... is the unknown receiver clock offset 

 
Differentiating with respect to xp, yp, zp and τ0 we get the following 

design matrix 
 

B   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎡

  

-
 xp-x1 

ρ1
-

 yp-y1 
ρ1

-
 zp-z1 

ρ1
-1

⋮ ⋮ ⋮ ⋮

-
 xp-x4 

ρ4
-

 yp-y4 
ρ4

-
 zp-z4 

ρ4
-1

   

⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                                                        (2-2) 

 

The matrix �BTB�
-1
 then represents the covariance matrix of the errors 

determing the users position.  The geometric dilution of precision is de- 
fined as the square-root of the trace of this matrix. 
 

GDOP   =   �tr ��BTB�
-1

��
1
2�

   =   � σ112  + σ222  + σ332  + σ442  �
1
2�

                                                          (2-3) 

 
The radial component (position dilution of precision) is defined by 
 

PDOP   =   � σ112  + σ222  + σ332  �
1
2�

                                                                                                                    (2-4) 
 
The time dilution of precision is 
 

TDOP   =   � σ442  �
1
2�

                                                                                                                                           (2-5) 
 
 
 

3.  PHASE DIFFERENCE OBSERVATIONS  
 
In the following we want to discuss the modelling of the phase difference 

observations as considered in our numerical investigations, which will be 
described later.  Carrier phase measurements are much more precise than 
pseudo-ranges.  In the following we will assume, that the phase can be mea- 
sured with an accuracy of 1 degree (STANSELL et al., 1985).  That corresponds 
to a range error of 0.5 mm.  The precision of the measurements is limited 
by an insufficient knowledge of the satellite orbit, atmospheric propaga- 
tion delays and the clock uncertainty.  Accuracies of 1 ppm are already 
achieved in practice. 
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3.1  Single differences  
 

 
 

Fig. 2:  Single difference constellation 
 
Consider the baseline d between the points 1 and 2.  Carrier phase differ- 

ences are measured in both end points and the differences of these carrier 
phases are known as "single differences". 
 
The single phase difference is given by REMONDI (1984), HEIN and EISS- 

FELLER (1985). 
 

ψS   =   
 2π 

λ
 { ρ2k(t) - ρ1k(t) }  +  2π ( m2 - m1 )  +  2π � νR2  - νR1  � t  + 

 
+  ψε(t)  +  ψa(t) (3-1) 

 
with 
 

ψε(t)   =   
 2π 

λ
 { ρ̇2k(t) ε2  -  ρ̇1k(t) ε1 }  + 

 
+  2π νS { ε2 - ε1 }  + 
 
+  2π      � νR1ε2 - νR2ε1 � (3-2) 

 
In our simulation computations we will assume, that 
 

νS   =̇   νR1    =̇   νR2    =   const 
 

ε1   =̇   ε2   =   const 
 

and that the ambiguities m1 and m2 are known quantities, so that they cannot 
cause any bias to the observed quantity ψS.  The first term of ψε in (3-2) 
is a very small quantity and will therefore be neglected. 
 
ψa(t) describes the atmospheric correction term and is given by 
 

ψa(t)   =   
 2π 

λ
 ∙ � ∆ρ2kI- ∆ρ1kI�  +  

 2π 
λ

 ∙ � ∆ρ2kT- ∆ρ1kT�                                                              (3-3) 
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where 
 

∆ρikI ... is the ionospheric range correction for point i 
  to satellite k, 

 
and 
 

∆ρikT ... is the tropospheric range correction for point i 
  to satellite k. 

 
Using these considerations and assumptions, equation (3-1) becomes 

 

ψS   =   
 2π 

λ
 { ρ2k(t) - ρ1k(t) }  +  2π ν { ε2 - ε1 }  +  ψa(t)                                                               (3-4) 

 
Differentiating with respect to satellite and receiver positions we 

obtain 
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δρ1k   =   
 ∂ρ1k 
∂x

k

 δx
k

  +  
 ∂ρ1k 
∂x

1

 δx
1

                                                                                                               (3-6) 

 
with the partial derivatives 
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Finally we get the linear observation equation of ψS 
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 (3-8) 

+    2π ν  { δε2 - δε1 }  +  
 2π 

λ
 � δ∆ρ2kI- δ∆ρ1kI  �  + 

 

+   
 2π 

λ
  � δ∆ρ2kT- δ∆ρ1kT  � 
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The typical procedure is to fix station 1 and adjust station 2 relative 
to 1.  Any error in the approximate coordinates of station 1 would then be 
propagated into station 2. 
 
A more advanced solution is to solve for the mean vector a and difference 

vector d of the station coordinates (REMONDI, 1984) with 

 

a   =   � x
1

 + x
2

 �  2⁄  
and (3-9) 

d   =   � x
2

 - x
1

 � 

 
The above partial derivates must then be replaced by 
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The partial derivates with respect to a and d are 
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Involving (3-11) and (3-12) in (3-8) results in the following equation: 
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In practical applications the station average vector a will be held fixed 
and we will solve for the coordinate difference vector d. 
 
 

3.2  Double differences  
 
The double difference is the difference of two single differences to dif- 

ferent satellites m and k. 
 
 

ψD   =   
 2π 

λ
  { ( ρ2k- ρ1k) - ( ρ2m- ρ1m) }  +  ψε  +  ψa                                                                        (3-14) 

 
 

 
 

Fig. 3:  Double difference constellation 
 
 
For the linear observation equation one finds REMONDI (1984), 
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The partial derivates are of the form 
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Introducing again coordinate averages and differences, we finally arrive 

at 
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+  ... 

 
Since for double difference processing the main part of the receiver clock 

error cancels out, the influence of the receiver clock error will be ne- 
glected. 
 
 

3.3  Triple differences  
 
The triple difference is the difference of two double differences for two 

epochs (REMONDI, 1984). 
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Fig. 4:  Triple difference constellation 
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The linear observation equation 
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Introducing coordinate averages and differences as above, we get 
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+   ψε  +  ψa (3-20) 

 
Note, that again in (3-21) the receiver clock error virtually cancels out. 
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3.4  Error propagation analysis  
 
Our aim is to describe the influence of different error sources like orbit, 

clock and atmospheric influences on differential positioning. 
 
All linear observation equations are of the general form 
 

l   =   A x  +  B d  +  C ε  +  D a  +  n (3-21) 
 

where 
 

l ... is the observational vector with 
  l   =   [ δψ1, δψ2, ... ], 
 
A ... is a matrix containing partial derivatives with 
  respect to the satellite position coordinates, 
 
x ... is the satellite position vector, 
 
B ... is the design matrix containing partial derivatives 
  with respect to the baseline vector d, 
 
d ... is the unknown baseline vector, 
 
C ... contains partial derivatives with respect to 
  unknown clock errors, 
 
ε ... is the vector of unknown clock parameters, 
 
D ... contains partial derivatives with respect to 
  atmospheric corrections, 
 
a ... is the vector of atmospheric correction parameters, 
 

and n ... is a noise vector. 
 
The error covariance matrix Q

dd
 of the baseline vector d is derived by 

the law of error propagation as 
 

Q
dd

   =   � BT � Q
ll

 +  A Q
xx
AT  +  C Q

εε
CT  +  D Q

aa
DT �

-1
B �

-1

                                                        (3-22) 
 
In the following the square-root of the trace of this matrix is used as a 

basic error criterion for the discussion of optimum satellite configurations. 
 
 
 

4.  ATMOSPHERIC EFFECTS  
 
The atmosphere causes propagation delays of the electromagnetic wave of 

the satellites and the required corrections depend mainly on the elevation 
angle above the horizon.  The range correction due to ionospheric effects 
varies between 10 and 60 m and the correction due to tropospheric effects 
between 2 and 15 m. 
 
Figure 5 shows the different behaviour of the ionospheric and tropo- 

spheric time delays.  Considering the frequencies used in GPS the two effects 
have nearly the same magnitude. 
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Fig. 5:  Different behaviour of ionospheric and tropospheric delays 
 
 

4.1  Ionospheric propagation delay  
 
The ionosphere is that part of the atmosphere located approximately 80 km 

to 1000 km above the earth's surface.  The delay in electromagnetic wave 
propagation caused by the ionosphere depends on the electron content, which 
is the integral of the electron density over the signal path.  The time de- 
lay is related to the number of electrons along the slant path from satel- 
lite to receiver by 
 

∆t   =   
 40.3 

c f2
 Nc                                                                                                                                               (4-1) 

 
where 

Nc is the total electron content 
 (total number of electrons along the path from satellite to 
 receiver in units of electrons per square meter column) 

c is the speed of light in m/s 

f is the system operating frequency in Hertz 
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The total electron content Nc depends on several parameters, upon which the 
sun plays a major role.  This dependency leads to diurnal and seasonal vari- 
ations of the electron density.  Furthermore Nc depends on oscillations due 
to solar flux, on the geographical location of the observation point and on the 
magnetic activity.  The maximum electron density is expected at 2 pm local 
time. 
 
A lot of models have been developed for describing the ionospheric propa- 

gation delays.  They differ very much in complexity and in attainable accu- 
racy.  Table 1 shows the expected accuracy of several models and in compa- 
rison the accuracy expected from two-frequency ionospheric corrections. 
 
In the following we want to use only the most simple model to derive 

ionospheric propagation delays for our simulations.  The model developed by 
KLOBUCHAR has an accuracy of about 50 % and is used in connection with the 
Global Positioning System.  The polynomial coefficients of the model des- 
cribed later are part of the navigation message of GPS satellites.  Because 
of its small computational requirements it can be used by GPS receivers for 
operational correction of the ionospheric propagation delay. 
 
Let us briefly describe the algorithm developed by KLOBUCHAR.  The diur- 

nal behaviour of the time delay is approximated by a simple cosine function 
 

Tg   =   DC  +  A cos � 
 ( t - ϕ ) 2π 

P
 �                                                                                                          (4-2) 

 
where  

t ... is the local time at the ionospheric point in seconds, 
 
ϕ ... is the local time of maximum ionospheric correction 
  (We have used  =  50400 s), 
 
DC ... is the base ionospheric time delay 

  (We have used  DC  =  5∙10-9s), 
 
A ... is the amplitude of the ionospheric delay function in seconds, 
 

and P ... is the period of the ionospheric delay function in seconds. 
 
A and P are computed from the broadcast data αi and βi by the following 

relations 
 

A   =   � αi-1 φm
i-1                                                                                                                                           (4-3)

4

i=1

 

 

P   =   � βi-1 φm
i-1                                                                                                                                           (4-4)

4

i=1

 

 
where φm is the geomagnetic latitude of the ionospheric subpoint in semi- 

cycles.   If | ( t-ϕ ) 2π  P ⁄ | exceeds 
π
2
 the time delay is represented by the 

DC term only. 
 
The elevation angle is considered by introducing an obliquity factor SF 

defined by 
 

SF   =   sec � sin-1 � 
r0

 r0 + h 
 cosα � �                                                                                                     (4-5) 
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where 
 

α ... is the elevation angle, 
 

r0 ... is the mean earth radius,  
and h ... is the point height. 
 
Figure 6 shows the dependency of ionospheric correction on the elevation 

angle computed from the KLOBUCHAR model. 
 
In our simulation program we have used this model to describe the influ- 

ence of the ionosphere on the differential point positioning.  We distin- 
guish here between different cases.  At first we assume that we have a 
one frequency receiver and we are not able to correct for ionospheric time 
delay by use of a special model.  Then for single difference positioning 
the difference 

 

( ∆ρ2I - ∆ρ1I )  
 2π 

λ
                                                                                                                                          (4-6) 

 
affects our measurement where ∆ρ2I and ∆ρ1I are the ionospheric range delays. 
In our case we will derive these quantities from our ionospheric model. 
 
Because the measurements are made simultaneously, the corrections depend 

on the elevation angle and slightly on the azimuth.  For short baselines 
and elevation angles greater than 10° degrees the ionospheric influence 
will cancel out.  In order to describe the ionospheric influence in our 
least squares model we assume that the quantity given in (4-6) is a mean 
value and introduce the square of it as variance in the Q

aa
 matrix already 

mentioned above.  This is only an approximation and is mathematically not 
completely correct. 
 
In the second case we try to model the ionospheric error expected from 

two-frequency measurements. 
 
The frequency dependency of the ionospheric delay can be used to deter- 

mine the correction by using both L-Band frequencies of the NAVSTAR system 
(L1 = 1575 MHz and L2 = 1227 MHz). 
 
The differential time delay of the two signals is given by 

 

∆tL1  - ∆tL2    =   
 40.3  Nc 

c
  � 

1

 fL1
2  

 - 
1

 fL2
2  

 �                                                                                             (4-7) 

 
Solving for the electron content we get 

 

Nc   =   
 c  � ∆tL1- ∆tL2  � 

40.3
  � 

fL1
2   fL2

2

 fL2
2  - fL1

2  
 �                                                                                                   (4-8) 

 
According to KLOBUCHAR et al. (1980) the two frequency ionospheric cor- 

rection technique has a r.m.s. of about 2 meters for range measurements, 
which corresponds to a time delay of about 6.7 nanoseconds. 



 

78 

Therefore we assume that the relative error of such observations caused 
by ionospheric delay is about 5 %.  The variance of such an ionospheric 
residual error is 
 

� 0.05  ( ∆ρ2I - ∆ρ1I ) 
 2π 

λ
 �
2

                                                                                                                    (4-9) 

 
Note, that we neglect the difference in wave length of the two signals in 

order to simplify the simulation. 
 
 

4.2  Tropospheric effects  
 
The troposphere is that part of the atmosphere which is located between 

the earth's surface and a height of about 70 km.  It can be treated as a 
nondispersive medium.  That means that the tropospheric propagation delay 
is not a function of the signal frequency (see Fig. 5).  The propagation 
delay depends on the refractivity of the medium and the refractivity depends 
on the temperature T and the air pressure p.  The formulas of SMITH and 
WEINTRAUB (1953) define the atmospheric refractivity as the sum of a wet 
and a dry term. 
 
The dry term is defined by 
 

ND   =   77.6 
 p 
T

                                                                                                                                               (4-10) 
 

and the wet term by 
 

NW   =   3.73 ∙ 105 � 
e

 T2 
 �                                                                                                                            (4-11) 

 
where N ... is the refractivity, 
 
 p ... is the air pressure in millibars, 
 
 T ... is the temperature in Kelvin, 
 
and e ... is the pressure of the water vapour in millibars. 
 
Since pressure and temperature are not available along the signal path, 

the surface measurements are used to predict the refractivity along the 
path of the electromagnetic wave.  For the prediction of the refractivity 
usually exponential profiles are used.  In our simulation program we use a 
tropospheric range correction algorithm developed by BLACK (1978). 
 
The range correction is defined by the sum of the dry and wet part 
 

∆ρT   =   ∆ρTD  + ∆ρTW (4-12) 
 

The dry part is given by 
 

∆ρTD    =   2.343  p � � T - 4.12� T ⁄ � ∙ I(h=hD, α) (4-13) 
 

and the wet part is 
 

∆ρTW    =   KW   I(h=hW, α) (4-14) 
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with 
 

I(h,α)   =   � 1 - � (cosα)  � 1 + � 1 - lc �  h  rs ⁄ � ⁄ �
2

 �
-1 2�

 (4-15) 
 

where 
 
 hD ... 148.98 (T – 4.12) m above the station,  
 hW ... 13000 m,  
 lc ... 0.85,  
 KW ... 0.28 for summer, 
   0.36 for spring or fall in midlatitudes, 
   0.12 for winter in maritime latitudes, 
   0.06 for winter in continental latitudes, 
   0.05 for polar regions, 
 
 rs ... distance from earth center to the station,  
 p ... surface pressure in standard atmospheres, 
 
 T ... surface temperature in degrees Kelvin. 
 
In figure 7 the dry and the wet part of the tropospheric correction are 

shown as a function of the elevation angle.  Note that the wet part is only 
a small quantity in comparison to the dry part. 
 
According to REMONDI (1984) the tropospheric correction can be modelled 

within 2 – 5 % for the dry part which is about 80 % of the correction.  The 
modelling of the wet part is a bit more complicated.  For simplicity we 
assume a relative error of 3 % for the complete correction and introduce 
similar to (4-9) a variance of 
 

�0.03  ( ∆ρ2T - ∆ρ1T )  
 2π 

λ
 �
2

                                                                                                                 (4-16) 

 
 
 

5.  NUMERICAL INVESTIGATIONS  
 
Software was developed for the analysis described in chapter 3.  Based on 

an 18 – satellite constellation we have derived satellite positions in an 
earth fixed reference frame at epoch intervals of 1 minute.  For these pre- 
liminary computations the orbital elements of table 2 were used. 
 
All following simulation computations were done for a baseline of about 

64.8 km length, which is located in West-Germany and has really been ob- 
served in 1983 during a Macrometer V-1000 campaign of the "Hessisches Landes- 
vermessungsamt" (LANDAU, 1986) (see figure 8).  We are aware of the fact, 
that we have chosen a baseline with an average length. 
 
The computations are done for a fictitious day July 1, 1990.  Figure 9 

shows the satellite traces for one day in the horizon system of point 
Ronneburg, located in West-Germany.  The "hole" in the northern part of the 
figure is conspicuous.  It has a diameter of 70° degrees and is caused by 
the fact that the inclination is put equal to 55° for all satellites.  The 
missing satellites in that part of the sky are a little unfavourable for 
geodetic applications. 
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Fig. 8:  Geographical location of the considered baseline 
 
 
Figure 10 shows the distribution of satellites throughout the day and the 

number of visible satellites.  There are 5 to 8 satellites always visible 
at station Ronneburg.  The geometric dilution of precision is given in 
figure 11.  It varies between 1.8 and 5.5. 
 
Because most of the available GPS receivers are able to track only 4 satel- 

lites, we assume in our considerations, that 4 satellites have to be col- 
lected from the number of all visible satellites.  All satellites which have 
an elevation angle of more than 5° degrees above the horizon are visible. 
In all figures presented in this paper the smallest available error was 
plotted which was found by checking all possible satellite combinations. 
The number of possible combinations can easily be computed by the relation 
 

m   =   � 
n
p �    =   

 n ∙ (n-1) ∙ ... ∙ (n-p+1) 
1 ∙ 2 ∙ 3 ∙ ... ∙ (p-1) p

                                                                                        (5-1) 

 
where n is the number of visible satellites and p is the maximum number of 
satellites which can be tracked (here p = 4). 
 

n m 

4  1 

5  5 

6 15 

7 35 

8 70 
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5.1    Consideration of different error sources  
 

5.1.1  Influence of receiver clock errors on phase difference measurements  
 
According to DAVIDSON et al. (1983) the r.m.s. error of a receiver clock 

offset is about 10-10 seconds.  The variance of a single receiver clock off- 
set converted to carrier phase is given by (2π ν)2 mε

2.  With ν = 1575.42 MHz 
(L1-frequency) we finally get (0.98986558)2.  Considering the receiver 
clock errors of both receivers we get for a single difference observation 
 

( 2π ν )2 mε1
2   +  ( 2π ν )2 mε2

2  (5-2) 
 

This corresponds to a range error of ± 0.042 m. 
 
For double and triple difference processing the receiver clock offset 

cancels out.  In our simulations we assume that no clock errors effect the 
baseline determination in that case. 
 
 

5.1.2  Orbit errors  
 
We further assume, that the satellite positions are given with a r.m.s. 

error of ± 10 m, which seems to be a realistic assumption of the orbit accu- 
racy (see LANDAU and HAGMAIER, 1986). 
 
 

5.2  Discussion of results  
 
Phase difference measurements have a completely different error behaviour 

than pseudo-range measurements.  Phase difference measurements have geome- 
tric strength in the direction of the satellites motion, whereas pseudo- 
range measurements have geometric strength in the direction of the satellite 
receiver connection.  This behaviour must be reflected in the optimal satel- 
lite selection.  The computations described in the following are done to 
prove this assumption.  They are always carried out in the same manner: 
Simulating different observation types the algorithm looks for the best sa- 
tellite combination which minimizes the trace of the Q

dd
 matrix.  All pos- 

sible satellite combinations are computed for a whole day and compared to 
the trace achieved for the satellite combination proposed by the GDOP com- 
putations.  This accuracy difference is always drawn in the lower part of 
the figures in the appendix and reflects the difference in expected accuracy 
for different satellite combinations.  It is self-evident, that this quanti- 
ty does not give the obtainable r.m.s. error for baseline components from 
one epoch measurements, but it describes the error behaviour very well and 
helps us to get an impression of the effects of different error sources on 
accuracy. 
 
As already mentioned above, we made computations with single, double and 

triple differences and compared results to GDOP computations.  We distinguish 
between different atmosphere modelling: 
 
    Ionosphere 

      error flag 
        0      no ionospheric delay considered 
        1      considered but not corrected (see 4-6) 
        2      two-frequency correction     (see 4-9) 
        3      KLOBUCHAR correction applied. 
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    Troposphere 
      error flag 
        0      no tropospheric delay considered 
        1      considered and corrected          (see 4-16) 
 
We handle troposphere and ionosphere in different ways because up to now 

(as far as we know) in present post-processing software only the tropo- 
spheric error is corrected but not the ionospheric.  So the ionospheric error 
(flag 1) allows to get an idea of the error induced by neglecting the iono- 
spheric refraction. 
 
 

5.2.1  Results of single difference processing  
 
The error behaviour of single difference processing is very similar to 

the behaviour of pseudo-ranging.  Figure 12 shows the accuracy profile with 
a difference profile caused by different satellite combination selections. 
Note that the selected satellites are the same as those proposed by the 
geometric dilution of precision except for a few epochs.  The maximum accu- 
racy difference is small: about 1 cm.  The differences appear more fre- 
quently, if we consider atmospheric modelling.  These influences will be dis- 
cussed in greater detail for the double difference processing. 
 
 

5.2.2  Results of double difference processing  
 
Double difference processing will be discussed in greater detail because 

it is the most frequently used processing technique. 
 
Figure 13 (a-f) and table 4 describe the obtainable accuracy derived 

from double difference processing in comparison to the accuracy which can 
be achieved using the GDOP proposal.  Figure 13a shows that the accuracy 
differences appear more frequently and becomes larger than for single differ- 
ence processing.  The error behaviour is slightly different.  Whereas in 
single difference processing the largest discrepancy appears at about 8 pm 
the largest one in double difference processing appears with 4 cm at about 
3 pm.  The profile of the obtainable accuracy in the upper part of the fi- 
gure looks very similar to the profile in figure 12. 
 
Introducing the error model described in chapter 3 for two-frequency mea- 

surements the profile does not change very much.  The maximum baseline error 
increases from ± 17 cm to ± 20 cm (fig. 13b). 
 
Considering atmospheric effects in case of one-frequency measurements, 

but not correcting them, leads to a maximum error of ± 1.63 m and a maxi- 
mum accuracy difference of 0.83 m (fig. 13c).  The largest errors occur in 
the time span between 7 am and 7 pm.  The errors for the other periods of the 
day are smaller than ± 30 cm.  An observation with one-frequency receivers 
should therefore be carried out between 7 pm in the evening and 7 am in the 
morning.  Using a simple ionospheric correction model like that of KLOBUCHAR 
the error can be reduced to a maximum of ± 97 cm (fig. 13d). 
 
Figure 13e shows the error caused by consideration of tropospheric effects 

and correcting them with an accuracy of 3 %.  The tropospheric effects in- 
fluence the satellite selection more than the ionospheric ones corrected by 
two-frequency measurements.  This is caused by the different properties of 
the correction formulas.  Please note, that the curve in figure 7 has a much  
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larger gradient than the curve in figure 6 for elevation angles between 5° 
and 15° degrees.  The difference in atmospheric correction influences the 
differential positioning.  This difference is caused by differences in ele- 
vation angles from the two end points.  For low elevation angles the tropo- 
sphere will therefore effect the measurement much more than the ionosphere. 
 
Figure 13f gives an impression of the influence on baseline determination 

when combining two-frequency measurements with tropospheric correction. 
 
In table 4 the expected accuracies for 35 different satellite combinations 

are presented corresponding to the different figures described above.  The 
satellite combination study is given for a single epoch 5h 40m UTC.  The 
proposal of 4 different satellite combinations demonstrates the difference in 
error behaviour of the models.  Figure 15 shows the satellite configuration 
at that epoch.  7 satellites are visible: 3, 6, 9, 12, 14, 15, 17.  6, 9 and 
15 are below an elevation angle of 15° degrees, at positions where large at- 
mospheric effects can be expected.  Double difference processing without 
consideration of atmospheric effects (a) proposes to use sats 6, 9, 15, 17 
where 6 and 9 are satellites with low elevation angle.  This combination 
gives the best results when considering only geometrical aspects.  In co- 
lumn (e) we have considered tropospheric effect. 
 
Satellite 9, which has the lowest altitude and therefore causes the 

largest atmospheric error, drops out.  Columns (c) and (d) demonstrate the 
influence of atmospheric effects in addition.  In these cases satellite com- 
binations were chosen which have only one satellite with low altitude, al- 
though that causes a change for the worse in geometry of tracked satellites. 
 
A comparison of the combination 33 proposed by GDOP for different atmo- 

spheric modelling shows that the received accuracy is in most cases not the 
smallest attainable one. 
 
 

5.2.3  Results of triple difference processing  
 
The triple difference processing technique has a completely different error 

behaviour than single or double difference processing.  In the above men- 
tioned processing techniques the position of satellites and their configu- 
rations plays the major role.  Yet, in triple difference processing the re- 
lative motion of the satellites with respect to the baseline is considered. 
In our simulation we considered an epoch interval of ten minutes.  During 
that time the space vehicle flies about 2400 km.  The baseline determination 
using triple differences is therefore weaker and has a completely different 
error behaviour.  The accuracy profile for the ficticious day in 1990 is 
given in figure 14.  It is evident that the difference in proposed satellite 
combinations is much larger than for single or double difference processing. 
 
Figure 18 describes the different accuracies obtained by use of an opti- 

mal selection algorithm and of a conventional one.  It shows the superiority 
of the improved algorithm which results during the whole observation span 
in smaller r.m.s. errors.  The advantage of an improved algorithm is the fact 
that the gradient becomes greater and therefore the accuracy increases ra- 
pidly with the observation time. 
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5.3  Final comparison of different phase difference measurements  
 
In order to compare the phase difference observation types the obtained 

accuracies are given in table 3 and in figure 16.  Note that the error be- 
haviour of single difference processing and pseudo-ranging is similar be- 
cause of the limited combination possibilities.  (The orbits of the satel- 
lites are fixed.  The satellite position optimization is therefore strongly 
limited.)  In case of double difference processing the different error be- 
haviour is more fully expressed.  The selected satellite combination changes. 
The behaviour of triple difference processing is completely different which 
is also shown in figure 14. 
 
The effect of satellite selection on the accuracy of baseline determina- 

tion is described in table 5.  Different accuracy estimates are compared 
for conventional and improved satellite selection methods.  Whereas the dif- 
ference is large for one-frequency receivers (neglecting ionospheric ef- 
fects), the difference is small in case of two-frequency ionospheric correc- 
tion.  This is especially valid for single and double difference methods. 
The triple difference method is improved significantly, which could be ex- 
pected due to the completely different error behaviour (compare figures 11 
and 14). 
 
We could state that it is possible to avoid satellite selection if we 

have a receiver with a sufficient number of channels to track all visible 
satellites.  The question is whether or not a receiver with 6 channels (like 
the Macrometer) is superior to a 4 channel receiver.  Figure 16 shows 
the trace of the variance-covariance matrix Q

dd
 with respect to 

daytime for double difference processing with a maximum of 6 satellites. 
The improvement seems to be very small.  In order to get an idea about the 
influence of 6-channel processing on the received baseline accuracy, we 
compared in figure 17 the accuracies of 4- and 6-channel observation with 
respect to the observation time span.  We see that the improvement is in 
the range of millimeters. 
 
 
 

6.  CONCLUSIONS  
 
High precision geodetic differential positioning using GPS carrier phase 

difference measurements requires an optimal satellite selection algorithm. 
The algorithms currently in use do not always result in an optimum selec- 
tion, which depends highly on the post-processing algorithm.  The highest 
precision is received if all possible error sources are modelled before 
satellite selection.  This is especially true for processing techniques 
using satellite positions at different epochs for forming the observations 
like delta- or triple-differences.  These types of algorithms are applied 
frequently in dynamic positioning.  The improved algorithm cannot be run 
on a computer in online processing mode during observation time due to the 
large computational requirements.  Therefore we recommend the following 
procedure: 

1.  Choose the post-processing algorithm 

2.  Compute optimal satellite configurations for the desired observation 
    time span under considerations of all error sources like clock and 
    orbit errors and atmospheric effects on a large scale computer and 
    store the selection on tape. 
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3.  Use the selection information by co-operation of a magtape-recorder 
    with the receiver in the field. 
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Appendix: Figures and Tables  
 
 

 ionospheric 

 range error 

without correction 20 – 60 m 

Klobuchar model 10 – 30 m 

Bent model  4 – 12 m 

Bent model + updating  2 -  6 m 

two-frequency observation       3 m 

 
   Table 1:  Expected residual error for different ionospheric correction 
             methods (elevation > 5°) (from STEIN, 1982) 
 
 
 
 

Sat. a e ω i Ω M 

No. (m)  (deg) (deg) (deg) (deg) 

 1 26 560 001. 0.003 0.0 55.0   0   0 

 2 26 560 002. 0.003 0.0 55.0   0 120 

 3 26 560 003. 0.003 0.0 55.0   0 240 

 4 26 560 004. 0.003 0.0 55.0  60  40 

 5 26 560 005. 0.003 0.0 55.0  60 160 

 6 26 560 006. 0.003 0.0 55.0  60 280 

 7 26 560 007. 0.003 0.0 55.0 120  80 

 8 26 560 008. 0.003 0.0 55.0 120 200 

 9 26 560 009. 0.003 0.0 55.0 120 320 

10 26 560 010. 0.003 0.0 55.0 180 120 

11 26 560 011. 0.003 0.0 55.0 180 240 

12 26 560 012. 0.003 0.0 55.0 180   0 

13 26 560 013. 0.003 0.0 55.0 240 160 

14 26 560 014. 0.003 0.0 55.0 240 280 

15 26 560 015. 0.003 0.0 55.0 240  40 

16 26 560 016. 0.003 0.0 55.0 300 200 

17 26 560 017. 0.003 0.0 55.0 300 320 

18 26 560 018. 0.003 0.0 55.0 300  80 
 

Table 2:  GPS 18 satellite constellations  (from Nakiboglu et al., 1985) 
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No. SINGLE DOUBLE TRIPLE PDOP SATS 

 1   0.652  0.403 0.141   13.364  3   6   9  12 
 2   0.493  0.381 0.520   10.012  3   6   9  14 
 3   0.113  0.073 0.104    2.342  3   6   9  15 
 4   0.293  0.204 0.104    5.867  3   6   9  17 
 5   0.311  0.210 0.088    6.285  3   6  12  14 
 6   0.135  0.070 0.163    2.687  3   6  12  15 
 7   0.353  0.222 0.123    6.942  3   6  12  17 
 8   0.124  0.075 0.083    2.485  3   6  14  15 
 9   0.276  0.189 0.057    5.478  3   6  14  17 
10   0.325  0.215 0.634    6.427  3   6  15  17 
11   0.299  0.237 0.084    5.991  3   9  12  14 
12   0.139  0.078 0.120    2.758  3   9  12  15 
13   0.683  0.379 0.515   13.331  3   9  12  17 
14   0.298  0.215 0.082    5.899  3   9  14  15 
15   0.290  0.204 0.055    5.716  3   9  14  17 
16   0.155  0.096 0.125    3.018  3   9  15  17 
17   0.152  0.094 0.471    3.018  3  12  14  15 
18 121,193 71.243 0.079 2470,487  3  12  14  17 
19   0.209  0.104 0.122    4.058  3  12  15  17 
20   0.155  0.093 0.064    3.019  3  14  15  17 
21   0.324  0.174 0.080    6.530  6   9  12  14 
22   0.150  0.065 0.160    3.206  6   9  12  15 
23   0.258  0.118 0.224    5.439  6   9  12  17 
24   0.192  0.096 0.061    3.952  6   9  14  15 
25   6.607  3.326 0.048  135.675  6   9  14  17 
26   0.115  0.053 0.078    2.426  6   9  15  17 
27   0.303  0.153 0.222    6.236  6  12  14  15 
28   0.198  0.099 0.052    4.079  6  12  14  17 
29   0.124  0.062 0.112    2.540  6  12  15  17 
30   0.115  0.058 0.054    2.354  6  14  15  17 
31   0.591  0.367 0.084   11.847  9  12  14  15 
32   0.274  0.168 0.074    5.493  9  12  14  17 
33   0.101  0.065 0.090    2.028  9  12  15  17 
34   0.157  0.093 0.670    3.138  9  14  15  17 
35   0.132  0.080 0.082    2.635 12  14  15  17 

   0.101  0.053 0.048    2.028 smallest error 

 9 12 15 17 6 9 15 17 6 9 14 17 9 12 15 17 corresp. sats 

 
  Table 3:  Phase difference accuracy at 5h 40m UTC for different satellite 
            combinations (Atmospheric effects are neglected) 
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Fig. 7:  Tropospheric range correction computed from the Black model 
 
 
 
 
 
 
 
 

 
 
  Fig. 6:  Ionospheric range correction computed from the Klobuchar model 
           for 2 pm local time 
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SATELLITE PASSES OF THE NAVSTAR-GPS SYSTEM 
 
STATION : RONNEBURG 
 
DATE : 1.7.90 
 
Latitude  : 50.240 degrees 
 
Longitude : 9.068 degrees 
 
Height    : 236 meter 

 
 
 

 
 
 
 
 
Fig. 9:  Satellite traces for the simulation day and location 
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SATELLITE VISIBILITY OF NAVSTAR-GPS SYSTEM 
 
STATION : RONNEBURG                     DATE : 1.7.90 
 
Latitude  : 50.240 degrees 
 
Longitude : 9.068 degrees 
 
Height    : 236 meter 
 
 

 
 
 
Fig. 10:  Satellite visibility 
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GEOMETRIC DILUTION OF PRECISION - NAVSTAR 
 
STATION : RONNEBURG                     DATE : 1.7.90 
 
Latitude  : 50.240 degrees 
 
Longitude : 9.068 degrees 
 
Height    : 236 meter 
 
 

 
 
 
Fig. 11:  Geometric dilution of precision 
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ACCURACY OF SINGLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 12:  Single difference processing 
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ACCURACY OF DOUBLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 13a:  Double difference processing (case 0:0) 
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ACCURACY OF DOUBLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 13b:  Double difference processing (case 2:0) 
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ACCURACY OF DOUBLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 13c:  Double difference processing (case 1:0) 
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ACCURACY OF DOUBLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 13d:  Double difference processing (case 3:1) 
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ACCURACY OF DOUBLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 13e:  Double difference processing (case 0:1) 
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ACCURACY OF DOUBLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 13f:  Double difference processing (case 2:1) 
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ACCURACY OF DOUBLE DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 14:  Triple difference processing 
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SATELLITE PASSES OF THE NAVSTAR-GPS SYSTEM 
 
STATION : RONNEBURG 
 
Latitude  : 50.240 degrees 
 
Longitude : 9.064 degrees 
 
Height    : 228 meter 
 
 
 
 
 

 
 
 
 
 
 
Fig. 15:  Satellite configuration at about 6 am 
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ACCURACY OF DIFFERENCE PROCESSING 
 
STATION 1 : RONNEBURG        STATION 2 : MELIBOCUS 
 
Latitude  : 50.240 degrees   Latitude  : 49.726 degrees 
Longitude : 9.064 degrees    Longitude : 8.637 degrees 
Height    : 228 meter        Height    : 515 meter 
 
Baseline Length : 64806.1 (m) 
 
 

 
 
 
 
Fig. 16:  Double difference processing (6-channel receiver) 
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Fig. 17:  Comparison of achieved accuracies with double difference 
          processing. 1) 4-channel receiver (─) 2) 6-channel receiver (- - -) 
 

 

 
 
Fig. 18:  Comparison of achieved accuracies with triple difference 
          processing. 1) optimal selection method (─) 2) conventional 
         selected method (- - -) 
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THE ESTIMATION OF ORTHOMETRIC HEIGHTS FROM GPS BASELINE VECTORS 
USING GRAVITY FIELD INFORMATION AND LEAST-SQUARES COLLOCATION 

 
 

Bernd Eissfeller 
University FAF Munich 

Institute of Astronomical and Physical Geodesy 
Werner-Heisenberg-Weg 39 

8014 Neubiberg, F.R. Germany 
 
 

ABSTRACT.  The adjustment of GPS baseline vectors in geo- 
detic networks yields (among other quantities) very pre- 
cise ellipsoidal height differences.  Due to the fact 
that the (orthometric) heights in classical geodetic net- 
works are defined physically referring to the geoid as ver- 
tical reference surface, heights above the ellipsoid are 
in principle of no use for geodetic and surveying appli- 
cations. 
 
The topic of this paper is to discuss a solution stra- 

tegy for the separation of orthometric heights and rela- 
tive geoidal heights, which can be done only by taking into 
account additional gravity field data in such an approach. 
 
Starting with the basic observation of cartesian base- 

line vectors, a least-squares collocation solution stra- 
tegy is presented.  Minimizing the hybrid quadratic norm 
of observational noise and the functionals of the gravi- 
ty disturbing potential (signals), ellipsoidal coordinates 
B, L, orthometric heights H, and geoidal undulations N 
can be estimated in a unified model approach. 

 
 
 

1.  INTRODUCTION  
 
Although the basic observables of interferometric satellite geodesy are 

phase-measurements, the user of the GPS is mostly concerned with cartesian 
baseline vectors between the network stations. 
 
The baseline components are derived by a preprocessing adjustment from 

single, double and triple differences (see e.g. REMONDI (1984), BOSSLER et 
al. (1980), HEIN and EISSFELLER (1985)) and are handed over to the user to- 
gether with their variance-covariance matrix. 
 
Referring to BOCK et al. (1984) the today obtainable accuracy of all three 

baseline components is about 1.6 ppm of baseline length (Macrometer Model 
V – 1000). 
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In consideration of this remarkable accuracy it is obvious to use GPS- 
baseline vectors not only for the improvement or estimation of horizontal 
coordinates, but also for the estimation of heights. 
 
Cartesian baseline vectors are in principle purely geometrical quantities, 

which are determined a priori in WGS 72 (geocentric, GPS based earth-fixed 
reference frame). 
 
It follows out of this, that if we transform the baseline components to a 

national (local) reference frame (three rotations and scale), it is easily 
possible to convert them into differences of ellipsoidal latitude B, longi- 
tude L and into differences of ellipsoidal heights h (EISSFELLER (1986), in 
this volume). 
 
On the other hand the heights in national geodetic networks are physically 

defined orthometric heights H, referring to the geoid as reference surface. 
 
In order to relate the precise differences in ellipsoidal heights, com- 

puted with the aid of GPS-baseline vectors to the national height systems, 
precise geoidal undulations or gravity field data are necessary. 
 
It is well known, that the geoid has a very irregular geometry.  There- 

fore relative large variations in geoidal heights even over short distances 
are to be expected.  For example in mountainous regions a variation of the 
geoid about 1.5 m to 2.5 m/50 km is no rarity (SÜNKEL (1983)).  Even in 
plain regions the variations of the geoid are larger than the r.m.s. error 
of ellipsoidal height-differences derived from the GPS. 
 
Thus the topic of this paper is to discuss a solution strategy for the 

estimation of orthometric heights from GPS-baseline vectors only in com- 
bination with gravity field data. 
 
The basic starting-point in this approach is to set the ellipsoidal 

heights h equal to the sum of geoidal heights N and orthometric heights H. 
 
When doing so, we arrive finally at the general linear model of least- 

squares collocation with parameters (MORITZ (1980)).  This model is usually 
solved by minimizing the hybrid norm of observational noise and gravity 
field functionals (signals).  In particular this model approach implicitly 
comprises various possibilities of interpolation and improvement of geoidal 
heights. 
 
 

2.  OBSERVATION EQUATIONS  
 
The observational data, considered in this paper, are cartesian baseline 

vectors, already adjusted coordinates and orthometric heights (e.g. the 
results of a national survey), geoidal undulations, gravity anomalies and 
deflections of the vertical. 
 
The use of already adjusted coordinates is optional. 
 
Concerning the gravity field data the user has the option to use all pos- 

sible combinations of the data types mentioned above. 
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2.1  Observation equation of cartesian baseline components  
 
Let x� be the position vector of a network station in WGS 72 and x the cor- 

responding position vector in the national reference frame. The basic trans- 
formation relation between x� and x for two stations i, j is then given as 
 

x�
i

   =   x�
0

  +  λ R �ε� x
i
 (2-1a) 

 
x�
j

   =   x�
0

  +  λ R �ε� x
j
 (2-1b) 

 
where 
 

λ scale factor 
 
ε vector of Eulerian angles  ε  =  [ ε1, ε2, ε3 ]T 
 
R �ε� matrix of rotations (WGS 72 to national datum) 
 
x�
0
 displacement vector of national reference frame 

 (origin) in WGS 72 
 
Using (2-1a,b) the baseline vector b

ij
 in WGS 72 is obtained as the dif- 

ference 
 

b
ij

   =   x�
j

 - x�
i

   =   λ  R �ε�  � x
j

 - x
i

� . (2-2) 
 
Note, that the displacement vector x�

0
 drops out (due to the difference in 

(2-2)) and is therefore an unestimable quantity. 
 
The rotation angles ε may be considered as small quantities, hardly ex- 

ceeding 10" of arc. Therefore the matrix of Eulerian rotations R �ε�, which 
can be found e.g. in WOLF (1975), including the second order terms (appro- 
ximation error ≤ 1.0 mm), is approximately given as 
 
 

R �ε�   =̇    

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

1 - 
 ε22 
2

 - 
 ε32 
2

ε3 + ε1 ε2 ε1 ε3 - ε2

ε3 1 - 
 ε12 
2

 - 
 ε32 
2

ε2 ε3 + ε1

ε2 -ε1 1 - 
 ε12 
2

 - 
 ε22 
2

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  .                                           (2-3) 

 
 
Because the GPS user is primarily interested in ellipsoidal coordinates B, 

L and in heights, it is quite natural to involve in (2-2) the well-known 
relationship of x on B, L, h. 
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Following HEISKANEN and MORITZ (1967) the transformation relation can be 
found to be 
 

x �u,h�   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

( N (B) + h ) cosB  cosL

( N (B) + h ) cosB  sinL

� 
 b2 
a2

 N (B) + h� sinB

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                        (2-4a) 

 
with 
 

N (B)   =   
c

 V (B) 
   =   

c

 � 1 + e'2 cos2B �
1
2�

 
                                                                                     (2-4b) 

 

c   =   
 a2 
b

   ,      e'2   =   
 a2 - b2 

b2
                                                                            (2-4c), (2-4d) 

 
and 
 

u   =   [ B,L ]T (2-4e) 
 

N (B) east-west radius of curvature of reference ellipsoid 

B, L ellipsoidal latitude, longitude 

   h ellipsoidal heights 

a, b semimajor, semiminor axis of reference ellipsoid 
 
The decomposition of B, L, h in u and h is due to the separation in hori- 

zontal coordinates and in heights. 
 
The basic starting-point of the further discussion is to approximate the 

ellipsoidal height h by the sum of orthometric height H and geoidal 
height N.  In addition to this N is replaced by Bruns formula, that is 
N = T/j. 
 

Thus, 

h   =̇   H + 
T
 j 

                                                                                                                                     (2-5) 

 
where 

T gravity disturbing potential 
 
j normal gravity 

 
Concerning eq. (2-5) it is assumed, that the neglection of the curvature 

and the torsion of the plumbline will cause only a small model error with- 
in centimeter level.  In order to get the linear observation equation of 
b
ij
 (2-2), we do the usual Taylor expansion near some approximate values 

λ0, ε0, u0, H0 and T0. 
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This yields 
 

δb
ij

   =   b
ij

 - b
ij
0    or (2-6a) 

 
 
 

δb
ij

   =   
 ∂b

ij
 

∂λ
 δλ  +  

 ∂b
ij

 

∂ε
 δε  +  

 ∂b
ij

 

∂u
j

 δu
j

  -  
 ∂b

ij
 

∂u
i

 δu
i

  + 

 

             +  
 ∂b

ij
 

∂Hj
 δHj  -  

 ∂b
ij

 

∂Hi
 δHi  +  

1
 j 

 
 ∂b

ij
 

∂Hj
 δTj  -  

1
 j 

 
 ∂b

ij
 

∂Hi
 δTi                                       (2-6b) 

 
 
 
The partial derivatives in eq. (2-6b), stored in Jacobi matrices and 

vectors, are defined as follows 
 

 ∂b
ij

 

∂λ
   =   R �ε�   � x

j
 - x

i
�                                                                                                                         (2-7a) 

 
 
 

 ∂b
ij

 

∂ε
   =   λ  

⎣
⎢
⎢
⎢
⎢
⎡

  

ε2 ∆x2 + ε3 ∆x3 ε1 ∆x2 - ε2 ∆x1 - ∆x3 ∆x2 - ε3 ∆x1 + ε1 ∆x3

∆x3 - ε1 ∆x2 ε3 ∆x3 ε2 ∆x3 - ε3 ∆x2 - ∆x1

-∆x2 - ε1 ∆x3 ∆x1 - ε2 ∆x3 0

  

⎦
⎥
⎥
⎥
⎥
⎤

        (2-7b) 

 
with 
 

∆x1   =   x1.j - x1.i ,  ∆x2   =   x2.j - x2.i  and  ∆x3   =   x3.j - x3.i 
 
 
 

∂b
ij

 ∂u
i,j

 
   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

 ∂x1 
∂B

 ∂x1 
∂L

 ∂x2 
∂B

 ∂x2 
∂L

 ∂x3 
∂B

 ∂x3 
∂L

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 i,j

        (2-7c)          and         
∂b

ij

 ∂Hi,j 
   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

 ∂x1 
∂H

 ∂x2 
∂H

 ∂x3 
∂H

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 i,j

        (2-7d) 

 
 
 
For the elements of (2-7c,d) we find in particular with the north-south 

radius of curvature M(B). 
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M (B)   =   
c

 V (B)3 
   =   

c

 � 1 + e'2 cos2B �
3
2�

 
                                                                                           (2-8) 

 
 

 ∂x1 
∂B

   =   - � M + H + 
T
 j 

 �  sin B  cosL                                                                                                  (2-9a) 

 
 

 ∂x2 
∂B

   =   - � M + H + 
T
 j 

 �  sin B  sinL                                                                                                  (2-9b) 

 
 

 ∂x3 
∂B

   =   - � M + H + 
T
 j 

 �  cos B                                                                                                                (2-9c) 

 
 

 ∂x1 
∂L

   =   - � N + H + 
T
 j 

 �  cos B  sinL                                                                                                (2-10a) 

 
 

 ∂x2 
∂L

   =   - � N + H + 
T
 j 

 �  cos B  cosL                                                                                                (2-10b) 

 
 

 ∂x3 
∂L

   =   0                                                                                                                                                      (2-10c) 
 
 

 ∂x1 
∂H

   =   cosB  cosL                                                                                                                               (2-11a) 
 
 

 ∂x2 
∂H

   =   cosB  sinL                                                                                                                               (2-11b) 
 
 

 ∂x3 
∂H

   =   sinB                                                                                                                                            (2-11c) 
 
 
 

2.2  Observation equation for already adjusted coordinates  
 
For at least some of the network stations of national control networks, 

where we perform GPS observations, results of former adjustments for B, L 
and orthometric heights H are available.  The adjustment of these stations 
was usually done by conventional least-squares methods, based on terrestri- 
al observations. 
 
Because the original observations are often no more available, we propose 

to introduce the adjusted coordinates together with their variance-covari- 
ance matrix (as derived observations) in the adjustment of GPS-baseline 
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vectors as follows 
 

u
i

   =   u
i
0 + δu

i
 (2-12a) 

 
or 
 

� 
Bi

Li
 �    =   � 

Bi
0

Li
0

 �  + � 
δBi

δLi
 � (2-12b) 

 
and 
 

Hi   =   Hi
0 + δHi (2-12c) 

 
 
 

2.3  Observation equation of gravity field data  
 
Because the variations δH and δT j⁄  in eq. (2-6b) are linear dependent (due 

to the same partial derivatives) the separation problem of ellipsoidal 
heights in orthometric and geoidal heights can only be solved with additio- 
nal gravity field information. 
 
As gravity field information, introduced in this context, we want to dis- 

cuss geoidal undulations, gravity anomalies and deflections of the vertical. 
 
With respect to the approximate value T0 for the gravity disturbing po- 

tential (chapter 3) we are in the following only concerned with residual 
gravity field functionals.  Following MORITZ (1980) the linear observation 
equations for residual geoidal heights, gravity anomalies and deflections of 
the vertical in a station i are given as 
 
 

δNi      =      
 δTi 
j

                                                                                                                                           (2-13a) 

 

δ∆gi   =   -
 ∂δT 
∂Ri

 - 
 2δTi 
Ri

                                                                                                                         (2-13b) 

 

δξi       =      
1

 j Ri 
  

 ∂δTi 
∂φ

                                                                                                                           (2-13c) 

 

δηi      =      
1

 j Ri  cosφi 
  

 ∂δTi 
∂λ

                                                                                                           (2-13d) 

 
 

where R mean earth radius. 
 
The approximate values for all the above residuals are found in applying 

the same linear operators to T0 as to δT in (2-13a to d). 
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3.  APPROXIMATE VALUE FOR THE GRAVITY DISTURBING POTENTIAL  
 
In the chapter before we have already introduced an approximate value T0 

for the gravity disturbing potential. 
 
If we known, such a T0, an approximate value for the orthometric height 

may be computed via H0  =  h0 -T0 j� , where h0 is the ellipsoidal height de- 
rived from baseline components. 
 
This is relevant for the combination of baseline components with already 

adjusted or observed orthometric heights (2-12c). 
 
Besides of this T0 serves as a consistent reference value for the obser- 

vation equation of baseline components and for the observed or computed 
gravity field functionals. 
 
One might evidently assume, that in most countries no precise geoid is 

available.  Similar to SÜNKEL (1983), we therefore propose to compose the 
approximate value T0 by three different components. 
 

Thus, 
 

T0 = T180  +  Ttrend  +  Tterrain , (3-1) 
 

where 
 

T0 approximate value 

T180 global trend based on earth-model 
 (e.g. GEM-10C, n = 180) 

Ttrend empirical (local) trend function 

Tterrain terrain correction 
 
When introducing an approximate function T0 for the disturbing potential 

itself, we have to reduce all the gravity field data too in applying the 
respective linear operators (SÜNKEL (1983)) on T0. 
 

Thus,  

N0      =      
 T0 
j

                                                                                                                                                  (3-2a) 
 

∆g0   =   -
 ∂T0 
∂R

 – 
 2 T0 
R

                                                                                                                               (3-2b) 
 

ξ0      =      
1

 j R 
  

 ∂T0 
∂φ

                                                                                                                                     (3-2c) 

 

η0      =      
1

 j R cosφ 
  

 ∂T0 
∂λ

                                                                                                                       (3-2d) 

 
In addition to the three components in (3-1) it might be reasonable in 

mountainous regions to introduce an isostatic reduction term as a fourth 
component (SÜNKEL (1983)). 
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3.1  Global trend T180  
 
The global trend of the disturbing potential T may be modeled with a 

spherical harmonic expansion of the geopotential, e.g. with the earth-model 
GEM-10 C of order and degree n = 180. 
 

T180   =   
 kM 
r

 �  � � 
 R 
r

 �
µ

Pµν (sinφ)  ( Cµν cos νλ  + Sµν sin νλ )                                         (3-3)
µ

ν=0

180

µ=1

 

 
Note the presence of the term µ = 1 in (3-3) (relative potential!).  For 

the notation (3-3) see e.g. MORITZ (1980). 
 
 

3.2  Local (empirical) trend Ttrend  
 
As already mentioned in the introduction the solution of the linear obser- 

vational model, we are concerned with, is based on least-squares collocation, 
treating the residual disturbing potential δT and its functionals δ∆g, δξ 
and δη as signals. 
 
Concerning the signals, we have at least approximately to fulfill the 

conditions (MORITZ (1980)) in the region of interest 
 

E { δT }   =̇   0 (3-4a) 
 

E { δ∆g }   =̇   0 (3-4b) 
 

E { δξ }   =̇   0 (3-4c) 
 

E { δη }   =̇   0 (3-4d) 
 

where 
E { ∙ }  is the expectation operator. 

 
However, it cannot be expected, that the conditions (3-4a to d) are ful- 

filled, if we consider a local network and take only the global trend T180 
into account. 
 
 

3.2.1  Trend polynomial  
 
The most simple expression for Ttrend is a linear trend function with 

additional unknowns a0, a1, a2 and a3. 
 

Ttrend   =   a0  +  a1 � h - h0 �  +  a2 � φ - φ0 �  +  a3 � λ - λ0 � (3-5) 
 

where 
 

( h0 ) h (mean) height 
 

( φ0 ) φ (mean) latitude 
 

( λ0 ) λ (mean) longitude 
 
The mean values h0, φ0, λ0 are the mean values of the region under con- 

sideration. 
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If we apply the respective linear operators to (3-5) (with the approxima- 

�tion 
∂

 ∂r 
  =  ̇

∂
 ∂h 

�, the corresponding trend functions for all the gravity field 

functionals can be found. 
 

∆gtrend   =   2 
 a0 
R

 - a1 �1 + 2 
 ( h-h0 ) 

R
 �  - 2 

 a2 
R

 ( φ - φ0 ) - 2 
 a3 
R

 ( λ - λ0 )                   (3-6a) 

 

ξtrend       =   
a2

 j R 
                                                                                                                                            (3-6b) 

 

ηtrend      =   
a3

 j R cosφ 
                                                                                                                              (3-6c) 

 
Note, that all trend functions have to observe the Laplace equation 

      ∆T  =  0 . 
 
Concerning (3-5), the Laplace equation causes a linear relation between 

      a1 and a2. 
 

a2   =   
2 R

 tanφ 
 a1                                                                                                                                              (3-7) 

 
In practice trend elimination with polynomials (3-5) will be restricted 

to the case, where information on the disturbing potential is already avai- 
lable (existing geoid!).  Only in this case a significant estimation of a0 
can be expected. 
 
 

3.2.2  Trend elimination based on Stokes integral  
 
In general we may assume, that completely no geoidal information is avai- 

lable, or if such information is available, the accuracy of geoidal heights 
is not sufficient. 
 
Usually we start here with observed gravity anomalies in order to improve 

the geoid, because gravity anomalies are the only gravity field data, which 
is available densely spaced over large regions of a nation. 
 
If we consider a local GPS network, the condition E { δ∆g }  =̇  0 (3-4b) will 

be normally violated, because ∆g180 does not represent a sufficient mean 
value. 
 
Again one may fit an empirical polynomial to the remaining gravity ano- 

malies �∆g - ∆g180� by a preprocessing adjustment, e.g. 
 

∆gtrend   =   ∆g - ∆g180   =   b0  +  b1 � h - h0 �  +  b2 � φ - φ0 �  +  b3 � λ - λ0 � . (3-8) 
 
For the notation see eq. (3-5). 
 
The basic problem is now to convert ∆gtrend into a respective trend in the 

disturbing potential Ttrend, because least-squares collocation will re- 
sult only in residual disturbing potentials, when using trend corrected ∆g 
values as input data. 
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A very simple approach to this conversion problem is to apply the Stokes 
operator on ∆gtrend. 
 

Thus, 

Ttrend   =   
R

 4 Π 
 � ∆gtrend S(ψ) dσ  .                                                                                                     (3-9)

σ

 

With 
S(ψ) Stokes function 

σ, dσ surface and surface element of unit sphere. 
 
The integration of all the polynomial terms in (3-8) via (3-9) may be 

performed by numerical methods. 
 
 

3.3  Terrain correction Tterrain  
 
According to SÜNKEL (1983) and to FORSBERG and TSCHERNING (1981) it is 

quite useful to remove the short wavelength gravity field from the disturb- 
ing potential and its functionals.  The short wavelength gravity field is 
strongly correlated with the topography and can be removed by terrain correc- 
tions, based on Newton's integral. 
 
The correction expressions Tterrain, ∆gterrain, ξterrain and ηterrain are 

given as follows 
 

Tterrain      =   k �
 ρ 
l

 dv                                                                                                                           (3-10a)
v

 

 

∆gterrain   =   k �
 �r2 – R r cosψ  – 2 l�2 

r l3
 ρ dv                                                                           (3-10b)

v

 

 

ξterrain       =   -
 k R 
j

 �
 sinψ  cosα 

l3
 ρ dv                                                                                       (3-10c)

v

 

 

ηterrain      =   -
 k R 
j

 �
 sinψ  sinα 

l3
 ρ dv                                                                                       (3-10d)

v

 

with 

l   =   � r2 + R2 – 2 r R cosψ �
1
2�
 (3-11) 

 
ψ spherical distance between space point 
 and integration point 

r radial distance of space point 

R mean earth radius 

α azimuth of integration point relative to 
 space point on the unit sphere 

ρ density 

v volume of integration. 
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The evaluation of the integrals (3-10a to d) provides a digital terrain 
model and a density hypothesis. 
 
E.g. a digital terrain model is available in the FRG with a resolution of 

100 m × 100 m. 
 
Applying the terrain corrections, we may expect to get a smooth (homo- 

geneous and isotropic) residual field for δT, δ∆g, δξ, δη.  Besides of this 
the correction length of the covariance functions, e.g. cov [ δ∆g , δ∆g ], 
cov [ δ∆g , δT ] and cov [ δT , δT ] will increase. 
 
 

4.  LINEAR MODEL AND SOLUTION STRATEGY  
 
If we rewrite the observation equations of GPS-baseline components (2-6b), 

of already adjusted coordinates (2-12a,b,c) and of gravity field functionals 
(2-13a to d) in vector-matrix notation, we arrive at the following linear 
model 
 

l
1

   =   A
1

 z
1

  +  A
2

 z
2

  +  R
1

 t  +  n
1
 (4-1a) 

 
l
2

   =         z
1                   +  n

2
 (4-1b) 

 
l
3

   =                                      R
2

 s  +  n
3
 (4-1c) 

 
with 
 

l
1
 vector of observed baseline components 

l
2
 vector of already adjusted coordinates 

l
3
 vector of observed or computed gravity field data 

z
1
 unknown transformation parameters and 

 unknown coordinates of old stations 

z
2
 unknown coordinates of new stations 

n
i
 observational noise 

A
i
 coefficient-matrices of parameters 

R
i
 coefficient-matrices of gravity field signals, 

 containing the respective linear operators 

t disturbing potentials in the GPS stations 

s disturbing potentials in the gravity field data stations 
 

or more explicitly 
 

l
1

   =   � ...... δb
ij
...... �

T
 (4-2a) 

 
l
2

   =    [ ....δBi, δLi, δHi..... ]T (4-2b) 
 

l
3

   =    � .....δTi, δ∆gi, δξi, δηi... �T (4-2c) 
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z
1

   =   � δλ, δε, ..., δBi, δLi, δHi, ... �T (4-2d) 
 

z
2

   =   [ .... δBi, δLi, δHi, .... ]T (4-2e) 
 

t
 

   =   [ .... δTi.....  ... ]T (4-2f) 
 

s
 

   =   � .... δTj......... �T (4-2g) 
 
As a priori statistics of noise and signals in the linear model (4-1) the 

following variance-covariance matrices are given. 
 

C
11

   =   E � n
1

 n
1
T � (4-3a) 

 

C
22

   =   E � n
2

 n
2
T � (4-3b) 

 

C
33

   =   E � n
3

 n
3
T � (4-3c) 

 
C
tt

   =   E � t  tT � (4-3d) 
 

C
ss

   =   E � s  sT � (4-3e) 
 

C
st

   =   E � s  tT �   =   C
ts
T  (4-3f) 

 
Because the vectors l

1
, l

2
 and l

3
 are fairly different types of observa- 

tions, the corresponding noise vectors n
1
, n

2
 and n

3
 are assumed to be un- 

correlated.  This means for all i, j (i ≠ j) that C
ij

  =  0 . 
 
For the computation of the autocovariance matrices C

ss
, C

tt
 and the cross- 

covariance matrix C
st
 of the gravity field functionals see e.g. MORITZ 

(1980). 
 
The linear model (4-1) is the general model of least-squares collocation 

with parameters. 
 
Minimizing the hybrid norm (MORITZ (1980)) 
 

n
1
T C

11
-1 n

1
  +  n

2
T C

22
-1 n

2
  +  n

3
T C

33
-1 n

3
  + 

 

+  � tT sT �   � 
C
tt

C
ts

C
ts

T C
ss

 �

-1

 � 
t

s
 �    =   min (4-4) 

 
estimates for the unknown parameters and the signals are found as 
 

z*   =   � 
z
1

z
2

 �    =   � AT D-1 A �
-1

 AT D-1 l (4-5a) 
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s*   =   � 
t

s
 �    =   � 

C
tt

C
ts

C
ts

T C
ss

 �  RT D-1 � l - A z* � (4-5b) 

 
with 
 

A     =   

⎣
⎢
⎢
⎢
⎡

  

A
1

A
2

0 I

0 0

  

⎦
⎥
⎥
⎥
⎤

         (4-6a),     R   =   

⎣
⎢
⎢
⎢
⎡

  

R
1

0

R
2

  

⎦
⎥
⎥
⎥
⎤

 (4-6b) 

 
 

C     =   

⎣
⎢
⎢
⎢
⎡

  

C
11

0 0

0 C
22

0

0 0 C
33

  

⎦
⎥
⎥
⎥
⎤

   (4-6c),     l   =   

⎣
⎢
⎢
⎢
⎡

  

l
1

l
2

l
3

  

⎦
⎥
⎥
⎥
⎤

 (4-6d) 

 
 

and D     =   

⎣
⎢
⎢
⎢
⎢
⎡

  

C
11

 + R
1

 C
tt

 R
1
T 0 R

1
 C
ts

 R
2
T

0 C
22

0

R
2

 C
ts

T R
1
T 0 C

33
 + R

2
 C
ss

 R
2
T

  

⎦
⎥
⎥
⎥
⎥
⎤

 (4-6e) 

 
 

The error statistics are given in MORITZ (1980) as 
 
 

E
z*z*

   =   � AT D-1 A �
-1
 (4-7a) 

 

E
s*s*

   =   C
s*s*

 - C
s*s*

 RT D-1  � I - A E
z*z*

 AT D-1 �  R C
s*s*

 . (4-7b) 
 
 
Equations (4-5a,b) may be written in a more direct form, if we use the 

block-matrix inversion formulas of the Appendix.  Marking the elements of 

the invers D-1 with an asterisk and considering its symmetry, thus 
 
 

D-1   =   
�
�
   

D
11

*   D
12

*   D
13

*

D
12

*T D
22

*   D
23

*   

D
13

*T D
23

*T D
33

*

�
�
 , (4-8) 

 
 

we find for the six independent elements in (4-8) with the aid of Appendix B 
 
 
 
 



 

121 

D
11

*   =   � C
11

 + R
1

 C
tt

 R
1
T - R

2
 C
ts

 R
2
T � C

33
 + R

2
 C
ss

 R
2
T - ��  

 
�                     - R

2
 C
ts

 R
1
T � C

11
 + R

1
 C
tt

 R
1
T �  R

1
 C
ts

 R
2
T �

-1
 ∙ 

 
�                     ∙ R

2
 C
ts

T R
1

 �
-1
 (4-9a) 

 

D
12

*   =   0 (4-9b) 

 

D
13

*   =   - � C
11

 + R
1

 C
tt

 R
1
T �

-1
 R

1
 C
ts

 R
2
T D

33
* (4-9c) 

 

D
22

*   =   C
22

-1 (4-9d) 

 

D
23

*   =   0 (4-9e) 

 

D
33

*   =   � C
33

 + R
2

 C
ss

 R
2
T - R

2
 C
ts

T R
1
T ∙ � 

 
�                     ∙ � C

11
 + R

1
 C
tt

 R
1
T �  R

1
 C
ts

 R
2
T �

-1
 (4-9f) 

 

Denoting AT D-1 with N, the block-matrix elements of N are found as 
 

N
11

   =   A
1
T D

11
* A

1
 +  D

22
* (4-10a) 

 
N
12

   =   A
1
T D

11
* A

2
 (4-10b) 

 
N
22

   =   A
2
T D

11
* A

2
 (4-10c) 

 
N
21

   =   N
12

T (4-10d) 
 
With the four input blocks (4-10a up to d) it is easily possible to com- 

pute the blocks of Q  =  N-1.  For the relationship of Q
11
, Q

12
, Q

22
 and Q

21
 

on N
11
, N

12
, N

22
 and N

21
 see the Appendix A. 

 
With the so partioned matrix expressions we find for the unknowns and sig- 

nals 
 

z
1

   =   � Q
11

 A
1
T +  Q

12
 A
2
T �  D

11
* l

1
 +  Q

11
 D
22

* l
2

 + 
 

          + � Q
11

 A
1
T +  Q

12
 A
2
T �  D

13
* l

3
 (4-11a) 

 

z
2

   =   � Q
12

T A
1
T +  Q

22
 A
2
T �  D

11
* l

1
 +  Q

12
T D

22
* l

2
 + 

 
          + � Q

12
T A

1
T +  Q

22
 A
2
T �  D

13
* l

3
 (4-11b) 
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t   =   � C
tt

 R
1
T D

11
*  +  C

ts
 R
2
T D

13
* �   � l

1
 -  A

1
 z
1

 -  A
2

 z
2

 �  + 
 

       +  � C
tt

 R
1
T D

13
*  +  C

ts
 R
2
T D

33
* �   l

3
 (4-11c) 

 

s   =   � C
ts

T R
1
T D

11
*  +  C

ss
 R
2
T D

13
* �   � l

1
 -  A

1
 z
1

 -  A
2

 z
2

 �  + 
 

       +  � C
ts

T R
1
T D

13
*  +  C

ss
 R
2
T D

33
* �   l

3
 (4-11d) 

 
It can be seen from (4-11a up to d) how the observation groups l

1
, l

2
, l

3
 

and the variance-covariance structure of noise and signals enter in the 
estimation procedure. 
 
Besides of this, equations (4-11a to d) are also of practically signifi- 

cance. 
 
In practice the vector l

3
 of gravity field data will be of much larger 

dimension as the observation vectors l
1
 and l

2
 together.  Therefore it is 

quite reasonable to detach the matrix inversions concerned with l
3
 from 

those matrix inversions concerned with l
1
 and l

2
. 

 
Note again, that the vectors of unknowns z

1
 and z

2
 contain besides ellip- 

soidal coordinates B, L and transformation parameters the wanted orthome- 
tric heights H. 
 
 

5.  SUMMARY AND CONCLUSIONS  
 
Geodetic positioning with the GPS is because on its high accuracy a very 

potential future surveying technique.  It will certainly replace the today 
customary terrestrial surveying techniques in near future. 
 
This statement should only be understood in the sense of national surveys. 
 
If using the GPS only, e.g. without spirit levelling, the basic problem is 

the problem of deriving orthometric heights, which refer to the geoid. 
 
We have clearly to state the fact, that ellipsoidal heights without fur- 

ther geoidal information are of no use for the surveyor (especially in moun- 
tain-regions). 
 
In this paper a solution strategy for the estimation of orthometric heights 

and horizontal ellipsoidal coordinates from cartesian baseline components 
only in combination with gravity field data was proposed. 
 
The underlying estimation procedure is the method of least-squares collo- 

cation with parameters. 
 
Thus, additionally the proposed method will result in geoidal heights at 

all the GPS stations, making use of the interpolation properties of least- 
squares collocation. 
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The cost, which is to pay for this approach, is the requirement of a dense 
gravity field covering and of a digital terrain model in the whole area of 
a nation. 
 
From a more practical point of view the concept of solution is the follow- 

ing: 

       (i)  use all the gravity field data available in the region of in- 
              terested in order to compute a high precision geoid on a re- 
              gular grid, 

      (ii)  arrange the geoidal data with the appropriate corrections or 
              reductions (chapter 3) in a database, 

     (iii)  observe or reobserve the national geodetic networks with use 
              of the GPS, 

      (iv)  use the method proposed to adjust the baseline components to- 
              gether with the geoidal heights stored in the vector l

3
 

              (4-1c). 
 
If the data required is once arranged, the estimation of orthometric heights 

is reduced to a numerical problem. 
 
And if in addition the geoidal heights and the digital heights are referred 

to a regular grid, like mentioned in (i), very powerful algorithms for the 
computation of terrain-corrections and the inversion of the variance-covari- 
ance matrix D (4-6c) may be applied via the FFT (Fast Fourier Transformation). 
 
The method proposed here starts with the basic decomposition h = H + N. 
 
In contrast to the approach of ENGELIS, TSCHERNING and RAPP (1984), where 

orthometric heights are derived in a two step solution via H = h – N, where 
step one consists of the adjustment of baseline components (B, L, h) and 
step two of the computation of the geoid (N), the linear model (4-1) com- 
bines all the observations in a unique model approach. 
 
Thus we may expect, that our approach will give the most realistic esti- 

mates of parameters and error statistics, because the variance-covariance 
structure of all the observations and of the gravity field functionals enter 
into the estimation procedure.  Note, that the observed or computed gravity 
field functionals are not longer treated as errorless corrections. 
 
Of course it would be possible to replace the orthometric heights in 

(2-5) by the corresponding mapping equation of potential differences into 

metric values, e.g.  H(P)  =  
W0 - W(P)

 g(P) + α H(P) 
   (here Helmert's definition). 

 
This approach can be found in HEIN (1985). 
 
The linearization of the mapping equation, using the usual decomposition 

W = U + T, will result in the context of eq. (2-6b) in a more complex gra- 
vity disturbing potential signal structure. 
 
This is, because via the linearization procedure the disturbing potential 

is introduced in the material station at earth-surface and in the projection 
point at the geoid too. 
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Appendix A  
 

Inversion of a (2,2) symmetrical block-matrix  
 
Let the matrix to be inverted be given as 
 

N   =   �  
N
11   N

12

N
12

T N
22

  � (A1) 

 
Using the relations of Schur and Frobenius (WOLF (1975)), we find for the 

block elements of Q  =  N-1 the following expressions 
 

Q
11

   =   � N
11

 -  N
12

 N
22

-1 N
12

T �
-1
 (A2) 

 

Q
12

   =   -N
11

-1 N
12

 Q
22
 (A3) 

 

Q
22

   =   � N
22

 -  N
12

T N
11

-1 N
12

 �
-1
 (A4) 

 
Q
21

   =   Q
12

T (A5) 

 
 

Appendix B  
 

Inversion of a (3,3) symmetrical block-matrix  
 
The matrix to be inverted is thus given as 
 

N   =   

⎣
⎢
⎢
⎢
⎡

  

N
11   N

12   N
13

N
12

T N
22   N

23

N
13

T N
23

T N
33

  

⎦
⎥
⎥
⎥
⎤

 (B1) 

 

Similar to Appendix A the invers block-matrix Q  =  N-1 can be derived. 
For reasons of clearness it is useful to introduce some auxiliary matrices 
P
ij
 . 
 

P
11

   =   N
11

 -  N
12

 N
22

-1 N
12

T   =   P
11

T (B2) 
 

P
22

   =   N
22

 -  N
12

T N
11

-1 N
12

   =   P
22

T (B3) 
 

P
33

   =   N
33

 -  N
13

T N
11

-1 N
13

   =   P
33

T (B4) 
 

P
13

   =   N
13

 -  N
12

T N
22

-1 N
23

   =   P
31

T (B5) 
 

P
23

   =   N
23

 -  N
12

T N
11

-1 N
13

   =   P
32

T (B6) 
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With the aid of the matrices P
ij
 the block elements Q

ij
 of Q can be de- 

rived. 
 

Q
11

   =   � P
11

 -  P
13

 P
33

-1 P
13

T �
-1
 (B7) 

 

Q
22

   =   � P
22

 -  P
23

 P
33

-1 P
23

T �
-1
 (B8) 

 

Q
33

   =   � P
33

 -  P
23

T P
22

-1 P
23

 �
-1
 (B9) 

 

Q
12

   =   N
11

-1  � N
13

 P
33

-1 P
23

T -  N
12

 �  Q
22
 (B10) 

 

Q
13

   =   N
11

-1  � N
12

 P
22

-1 P
23

 -  N
12

 �  Q
33
 (B11) 

 

Q
23

   =  - P
22

-1 P
23

 Q
33
 (B12) 

 
Q
21

   =   Q
12

T (B13) 

 
Q
31

   =   Q
13

T (B14) 

 
Q
32

   =   Q
23

T (B15) 
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ABSTRACT.  The Global Positioning System (GPS) offers the 
possibility to determine coordinate differences in a three- 
dimensional coordinate system with high accuracy. In geode- 
sy GPS will be able to replace (nearly) all surveying tech- 
niques currently used for observations between points sepa- 
rated by more than a few tens of kilometers. Therefore it 
is necessary to derive models for the integration of GPS- 
vectors in classical networks and coordinate systems. 
 
GPS baseline vectors are pure geometrical values provid- 

ing a coordinate determination in a 3D-Euclidian space. 
 
In order to use the full potential of GPS it is necessary 

to solve the following problems: 
 

      (i)  The transformation problem 
     (ii)  The determination of orthometric heights 
 

For that purpose the knowledge of high-precision geoid 
heights is required. 
 
Integrated geodesy allows by combination of GPS baseline 

vectors with other geodetic observations the determination 
of both, pure geometric positions and dynamical parameters 
as orthometric and geoidal heights. 
 
The results of numerical investigations are presented to 

show the efficiency of the integrated geodesy model in net- 
work adjustments using GPS baseline vectors. 
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1.  INTRODUCTION  

 

With the advent of the Global Positioning System (GPS) it is now possible 

to derive coordinate differences in an earth-fixed coordinate system with 

cm – accuracy. This extraterrestrial method for relative point positioning 

seems to be already fully accepted by the geodetic community. With the 

necessary integration of GPS baseline vectors derived from phase (differ- 

ence) observations two major problems arise. This is the transformation 

problem between the different reference frames and the determination of the 

dynamical height component for geodetic purposes. 

 

Although these extraterrestrial methods allow a (geometrical) height de- 

termination with cm – accuracy the derived ellipsoidal height alone is not 

sufficient for surveying applications. 

 

In surveying and engineering the orthometric height above the geoid is pre- 

ferred which differs from the ellipsoidal height by the geoidal undulation. 

 

 

 
 

where      h ...  ellipsoidal height 

           H ...  orthometric height 

           N ...  geoid height 

 

Figure 1 
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The knowledge of geoidal undulations is necessary (at least) for two pur- 

poses: 

 

(1)  For all network points with fixed vertical components the geoidal 

     height has to be known for the derivation of ellipsoidal heights. 

     These (geometric) ellipsoidal heights are absolutely necessary for 

     the determination of transformation parameters between the satellite 

     reference frame and the local geodetic system. 

 

(2)  For all stations with "free" vertical components it is necessary to 

     know the geoidal height for the derivation of orthometric heights. 

 

The geoidal height is a dynamic quantity which can be computed by applying 

integral formulas or collocation. Non-consideration of geoidal heights 

will lead to a decrease in horizontal positioning accuracy especially in 

mountainous areas. For example in the GPS-network of Hessen, which will be 

described later, the geoidal heights of the six network points differ up 

to two meters. In the following considerations the influence of neglecting 

of geoidal heights will be estimated more in detail. 

 

The integration of GPS baseline vectors in the integrated geodesy model 

will allow a combination with "dynamical" parameters like potential differ- 

ences, gravity and astronomical observations. Such an integrated approach 

will provide both, horizontal coordinates and orthometric heights, as well 

as geoidal undulations within one three-dimensional network adjustment. 
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2.  A CONVENTIONAL APPROACH USING LEAST SQUARES ADJUSTMENT  

 

The ephemeris data for the satellites of the NAVSTAR-system are given in 

the World Geodetic System 1972 (WGS 72). The derived baseline vectors are 

therefore defined in that system, too. For applications in surveying and 

engineering those coordinate differences have to be integrated in classical 

geodetic networks with a local datum definition like the German "Bessel" 

ellipsoid with the "Rauenberger Datum". 

 

Different strategies have already been developed to solve this problem 

(WOLF 1985, SWIATEK 1984). 

 

 

2.1  The mathematical model  

 

Let us shortly describe a model using common least-squares adjustment fol- 

lowing in principle STEEVES (1984). 

 

A relation between two reference systems is given by the seven-parameter 

similarity transformation 

 
∆x   =   ( 1 + K ) Rω ∆x

OBS
 (2-1) 

 

where 
 

∆x
OBS

 ... is the vector of "observed" differences 

  in WGS 72 

∆x ... is the vector of transformed coordinate differences 

  in the local reference system 

K ... is a scale factor 

and Rω ... is a rotation matrix of the following form 

 

Rω   =   �  

 1    ωz -ωy

-ωz  1    ωx

   ωy -ωx  1

  � 

 

        =   �  

1 0 0

0 1 0

0 0 1

  �  + 

⎣
⎢
⎢
⎡
  

 0    ωz -ωy

-ωz  0    ωx

   ωy -ωx  0

  

⎦
⎥
⎥
⎤
 (2-2) 
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Rω   =   I  +  Uω 

 

Considering differential rotations 

 

∆x   =   Rω ∆x
OBS

   =   � I + Uω �  ∆x
OBS

   =   ∆x
OBS

 + Uω ∆x
OBS

 (2-3) 
 

or 
 

∆x - ∆x
OBS

   =   Uω ∆x
OBS

   =   ∆U
r

 ∙ �  

ωx

ωy

ωz

  � (2-4) 

 

with 
 

∆U
r

   =   

⎣
⎢
⎢
⎡
  

0 -∆ZOBS    ∆YOBS
   ∆ZOBS 0 -∆XOBS

-∆YOBS    ∆XOBS 0

  

⎦
⎥
⎥
⎤
 (2-5) 

 

and differential scale change we get 

 
∆x   =   ( 1 + K ) ∆x

OBS
   =   ∆x

OBS
 +  K ∆x

OBS
 (2-6) 

 

or 
 

∆x - ∆x
OBS

   =   K ∙ ∆x
OBS

 (2-7) 

 

By combination of both parts we get finally 

 

∆x - ∆x
OBS

   =   ∆U
r

 �  

ωx

ωy

ωz

  �   +  K ∙ ∆x
OBS

 (2-8) 

 

The observational equation is given by 

 

d∆x
ij

   =   -dx
i

  +  dx
j

  +  ∆U
r

 �  

ωx

ωy

ωz

  �   +  K ∙ ∆x
OBS

  +  f
∆x∆y∆z

 (2-9) 

 

with the "observation vector" 

 
f
∆x∆y∆z

   =   ∆x
OBS

 -  ∆x
0
 (2-10) 
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where ∆x
0
 is a coordinate difference vector computed from the approxi- 

mate coordinates of the network points. 

 

The formulas above are given for an adjustment procedure in a cartesian 

coordinate system. Since we want to work in an ellipsoidal coordinate sys- 

tem the coefficients of the design matrix have to be transformed by the 

following relations 

 
∂l

 ∂φ 
   =   

∂l
 ∂x 

∙
∂x

 ∂φ 
  +  

∂l
 ∂y 

∙
∂y

 ∂φ 
  +  

∂l
 ∂z 

∙
∂z

 ∂φ 
 

 
∂l
 ∂λ 

    =   
∂l
 ∂x 

∙
 ∂x 
∂λ

  +  
∂l
 ∂y 

∙
 ∂y 
∂λ

  +  
∂l
 ∂z 

∙
 ∂z 
∂λ

                                                                                 (2-11) 

 
∂l
 ∂h 

    =   
∂l
 ∂x 

∙
∂x
 ∂h 

  +  
∂l
 ∂y 

∙
∂y
 ∂h 

  +  
∂l
 ∂z 

∙
∂z
 ∂h 

 

 

The partial derivatives with respect to the ellipsoidal coordinates are de- 

fined in EISSFELLER et al. (1985). 

 

 ∂x 
∂φ

   =   � 
 a2 - b2 

a4
 N3 cos2φ – N – h �  sinφ  cos λ                                                                     (2-12a) 

 

 ∂y 
∂φ

   =   � 
 a2 - b2 

a4
 N3 cos2φ – N – h �  sinφ  sin λ                                                                     (2-12b) 

 

 ∂z 
∂φ

   =   � 
 b2 
a2

 ∙ 
 a2-b2 
a4

 N3 sin2φ  +  
 b2 
a2

 N  +  h �  cosφ                                                          (2-12c) 

 
 ∂x 
∂λ

   =   -( N + h )  cosφ  sin λ                                                                                                             (2-12d) 

 
 ∂y 
∂λ

   =    ( N + h )  cosφ  cos λ                                                                                                             (2-12e) 

 
 ∂z 
∂λ

   =   0                                                                                                                                                        (2-12f) 
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 ∂x 
∂h

   =   cosφ  cos λ                                                                                                                                 (2-12g) 

 
 ∂y 
∂h

   =   cosφ  sin λ                                                                                                                                 (2-12h) 

 
 ∂z 
∂h

   =   sinφ                                                                                                                                              (2-12i) 

 

The final observation equations are given by 

 

�  

d∆xij

d∆yij
d∆zij

  �    =   -T
i

 ∙ �  

dφi

dλi
dhi

  �   +  T
j

 ∙ �  

dφj

dλj
dhj

  �   +  ∆U
r

 ∙ �  

ωx

ωy

ωz

  �   +  K ∆x
OBS

  +  f
∆x∆y∆z

 (2-13) 

 

where T is a matrix of the following structure 

 

T   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

 ∂∆x 
∂φ

 ∂∆x 
∂λ

 ∂∆x 
∂h

 ∂∆y 
∂φ

 ∂∆y 
∂λ

 ∂∆y 
∂h

 ∂∆z 
∂φ

 ∂∆z 
∂λ

 ∂∆z 
∂h

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                                                      (2-14) 

 

Writing the observation equation (2-13) in matrix equation we get 

 
l   =   A  x  +  n (2-15) 

 

where 

 

      l  ...  is the observational vector 

      x  ...  is the unknown vector  x  =  x �φ,λ,h,ωx,ωy,ωz,K� 

      A  ...  is the design matrix 

and   n  ...  is the white noise vector 

 



 

134 

The system can be solved by applying the L2-norm 

 

nT C
nn
-1 n   =   Min (2-16) 

 

where C
nn
 is the variance-covariance matrix of observations. 

 

 

2.2  Practical computations with the conventional least-squares model  
 

Using the least-squares adjustment model we made several computations in a 

GPS-network in Hessen (West-Germany). 

 

A six station three-dimensional geodetic control network was observed with 

MACROMETER model V-1000 field units. For a detailed description see 

SCHWINTZER et al. (1985), LANDAU (1985). The network was surveyed by GPS in- 

terferometry under the commission of the department of surveys Landesver- 

messungsamt Hessen (LVA). The purpose of this campaign was to densify the 

German first and second order geodetic triangulation network. The derived 

baseline components were kindly provided by the LVA. 

 

In our considerations three of the six network points were held fixed in 

space by attaching a high weight to their coordinates. These were the 

points Taufstein, Feldberg and Melibocus. This procedure was chosen since 

it allowed a comparison with a classical triangulation adjustment. The 

ellipsoidal coordinates were derived from a terrestrial network adjustment 

and were supplied to us by the LVA. In addition orthometric heights of the 

network points were available. Geoidal heights were derived from a geoid 

computation of LELGEMANN et al. (1981). 

 

The network consists of 12 baselines (one baseline was observed twice) with 

a maximum length of 96 km. The largest misclosures after the adjustment pro- 

cedure are received for coordinate differences between fixed points. They 

appear for the difference  dX  between Feldberg and Melibocus with -0.10 m 

and for  dX  between Melibocus and Taufstein with +0.22 m. All values of 

the noise vector after the adjustment are lower than 0.10 m. The greatest 

standardized misclosure is +1.1 for the  dZ – component of the baseline 

vector Kloppenheim – Melibocus. All other are less than 1.0. Gross errors 

in the observations can therefore be excluded. 
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Figure 3 shows an output print of the program using least-squares adjust- 

ment. The received mean standard errors are 

 

± 0.092 m  in latitude direction 

± 0.073 m  in longitude direction 

± 0.094 m  in orthometric height 

 

The decrease in accuracy from point Kloppenheim to point Geiersberg is 

caused by the unfavorable network structure. (There is no connection bet- 

ween the points Ronneburg, Geiersberg and Taufstein). 
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3.  THE NEED FOR AN INTEGRATED APPROACH  
 

In principle a geodetic network built up by GPS baseline component vectors 

is a purely geometrical figure, which is independent of the gravity field 

(as far as the orbit of the satellites is not considered). The need for an 

integrated model is obvious, if orthometric height determination is desired 

in connection with GPS-measurements. Merely the ellipsoidal heights of 

points on the earth's surface can be derived from GPS baseline vectors by 

known transformation parameters and without knowledge of orthometric heights 

which are preferred in surveying applications. As already discussed above, 

the knowledge of the geoidal height is in particular necessary for the in- 

tegration of GPS derived coordinates into classical geodetic networks. 

Geoid heights can be computed using integral formulas and/or collocation 

procedures. 

 

3.1  The influence of geoidal heights on the determination  

     of horizontal coordinates  
 

Let us shortly discuss the influence of geoidal heights on the location of 

new points in order to proof the proposition that neglecting of geoidal 

heights at fixed stations does not influence the coordinates of new points 

significantly. For that purpose we made some computations in the already 

mentioned GPS network in Hessen. We neglected the geoidal heights and in- 

troduced orthometric instead of ellipsoidal heights at fixed network sta- 

tions. The location changes for all 3 new points were less than 2 cm, 

consequently within the computed error estimates of coordinates. However, 

with increasing accuracy of coordinate differences derived from GPS inter- 

ferometry or for larger geoidal height differences the error might be 

significant and no more neglectable. 

 

3.2  Estimation of the approximation error when neglecting geoidal heights  
 

The usual least-squares adjustment model is 

 

x�
1

   =   � AT C
nn
-1 A �

-1
AT C

nn
-1 l

1
 (3-1) 

 

where 

 x�
1
 ... is the unknown vector of coordinates 
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and l
1
 ... is the observational vector (observed values minus the re- 

   ference value derived from approximate coordinates) 

 

An error in the approximate height component will cause an error in the 

observational vector  ∆l  =  l
2

 - l
1
  where  l

2
  is the observational vector 

computed from approximate coordinates with unknown geoidal heights. Thereby 

the ellipsoidal height was approximated by the orthometric height. 

 

The error in the coordinate unknowns can then be estimated by the relation 

 

∆x   =   x�
2

 -  x�
1

   =   � AT C
nn
-1 A �

-1
AT C

nn
-1  ∆l (3-2) 

 

The vector  ∆l  is defined 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

d∆xij

d∆yij

d∆zij

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

-
 ∂∆x 
∂hi

 ∂∆x 
∂hj

-
 ∂∆y 
∂hi

 ∂∆y 
∂hj

-
 ∂∆z 
∂hi

 ∂∆z 
∂hj

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  ∙  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

Ni

Nj

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                                    (3-3) 

 

where  Ni, Nj  are the geoidal heights at the stations  i  and  j , 

 

where 

 
 ∂∆x 
∂h

   =   cosφ  cos λ                                                                                                                                 (3-4a) 

 
 ∂∆y 
∂h

   =   cosφ  sin λ                                                                                                                                 (3-4b) 

 
 ∂∆z 
∂h

   =   sinφ                                                                                                                                              (3-4c) 

 

Let us assume that the rotational parameters and the scale factor are 

known. Considering a single baseline the following relations express the 

influence of geoidal heights on the location of network points (Point 1 

is assumed to be fixed in the coordinate system). 
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dx2   =   - sinφ2  cos λ2 ∙ ( -cosφ1  cos λ1 ∙ N1 + cosφ2  cos λ2 ∙ N2) - 

      -sinφ2  sin λ2 ∙ � -cosφ1  sin λ1 ∙ N1 + cosφ2  sin λ2 ∙ N2� + (3-5) 

      +cosφ2                ∙ ( -sinφ1                ∙ N1 + sinφ2                ∙ N2) 

 
dy2   =   - cosφ2  sin λ2 ∙ ( -cosφ1  cos λ1 ∙ N1 + cosφ2  cos λ2 ∙ N2) - 

      -cosφ2  cos λ2 ∙ � -cosφ1  sin λ1 ∙ N1 + cosφ2  sin λ2 ∙ N2� + (3-6) 

      +              0              ∙ ( -sinφ1                ∙ N1 + sinφ2                ∙ N2) 

 

where  dx2, dy2  are metric quantities in latitude and longitude direction, 

respectively. It can be shown that the influence of the geoidal undulation 

at point 2 cancels out. We finally get 

 
dx2   =   ( sinφ2  cos λ2  cosφ1  cos λ1  +  sinφ2  sin λ2  cosφ1  sin λ1  - � 

�              -   cosφ2  sinφ1� ∙ N1 (3-7) 

 
dy2   =   ( cosφ2  sin λ2  cosφ1  cos λ1  +  cosφ2  cos λ2  cosφ1  sin λ1) ∙ N1 (3-8) 

 

 
 

Figure 5:  Location error at point P2 caused by neglecting the 
           geoidal height at point P1 
 

Let us now use these relations to estimate the horizontal location error 

for a baseline. We define two points  P1 ( φ1  =  50° ,  λ1  =  0° )  and 

P2 � φ2  =  50°.1 - 60°.6  ,  λ2  =  0° �. Now we are varying both, the geoidal height 

at the fixed station  P1  and the latitude of  P2  and estimate an appro- 

ximation error for "true" baseline components, between points  P1  and  P2. 
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We are only interested in the resulting latitude error of point 2. The 

results of the computations are presented in figure 6. 

 

 
 

Figure 6:  Horizontal location error for single baselines 

 

It can be seen that the location error increases with increasing baseline 

length and geoidal height. 

 

3.3  The influence of geoidal heights on the determination of  

     transformation parameters  
 

The geoidal heights at fixed network stations influence the determination 

of rotational angles and scale factor of the transformation between WGS 72 

and the local reference system (here the Bessel ellipsoid with the "Rauen- 

berger Datum"). In order to examine the magnitude of the influence two ad- 

justments were performed, one with, the other without considering geoidal 

heights. 

 

1.  Computation of transformation parameters without consideration of 

    geoidal heights 

          K        =     - 8.46∙10-6   ± 4.46∙10-7 

          ωx      =     - 1".11               ± 0".17 

          ωy      =       5".73               ± 0".16 

          ωz      =     - 2".48               ± 0".23 
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2.  Computation of transformation with geoidal heights taken into account 

          K        =     - 8.53∙10-6   ± 4.45∙10-7 

          ωx      =       0".50               ± 0".17 

          ωy      =       0".69               ± 0".16 

          ωz      =     - 3".16               ± 0".23 

 

This demonstrates that for the derivation of transformation parameters the 

knowledge of geoidal heights is absolutely necessary. In particular, the 

rotational angles are sensitive for geoidal height differences. The scale 

factor is influenced mainly by a constant shift in height information. 
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4.  THE INTEGRATED MODEL APPROACH  
 

As mentioned above a good knowledge of the geoid is necessary for the inte- 

gration of GPS-derived coordinate differences into existing networks. The 

influence of geoidal heights on horizontal locations has already been dis- 

cussed in detail. Future investigations in the refinement of phase modell- 

ing will lead to an increase in accuracy for the derived coordinate differ- 

ences. Therefore the knowledge of the geoidal height will become more 

and more of interest. Furthermore the question arises how precise orthome- 

tric height information can be used in such a procedure. The derivation of 

precise orthometric height information was discussed by ENGELIS et al. 

(1984, 1985). 

 

We want to present a model which allows the combination of GPS baseline 

components with classical geodetic measurements like horizontal and verti- 

cal angles, distances, azimuths as well as "dynamical" observations like 

potential differences, gravity and astronomical observations. Such a model 

is an application of the integrated geodesy philosophy and the collocation 

theory (HEIN 1982). A similar method was described by HEIN (1985) which 

allows a combined adjustment of orthometric height observation with GPS 

baseline components in the integrated model. EISSFELLER et al. (1985) dis- 

cussed the combination of gravity data with GPS baseline vectors in detail. 

 

The functional model can be described by the matrix equation 

 
l   =   A  x  +  R  t  +  n (4-1) 

 

where 

 
l  ...  is the observational vector, 

A  ...  the design matrix, 

x  ...  the unknown vector, 

R  ...  the coefficient matrix for the gravity disturbing 
        potential and derivatives of it, 

t  ...  the signal vector, 

and n  ...  is the noise vector. 
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The vector  x  consists of the following types of unknowns 
 

x   =   x � φ, λ, H, ωx, ωy, ωz, K, o, r � (4-2) 
 

where 
 

φ, λ ... are ellipsoidal latitudes and longitudes, 

H ... are orthometric heights, 

ωx, ωy, ωz ... are rotational unknowns, 

K ... is the scale factor, 

o ... are orientation unknowns (for direction), 

and r ... are refraction unknowns (for zenith distances). 
 

The vector  t  consists of 
 

t   =   t ( T(N∙γ), ξ, η, δg) (4-3) 
 

where 
 

T ... is the gravity disturbing potential, 

N ... the geoidal height, 

ξ ... the deflection component in latitude direction, 

η ... the deflection component in longitude direction, 

δg ... is the gravity disturbance. 
 

Note that the ellipsoidal height  h  was split up into the orthometric height 

H  in the deterministic part and the geoid height  N  in the pseudostochas- 

tic part. In the linearized equation system (4-1) both parts have similar 

coefficients (the orthometric height  H  in the A-matrix and the geoid 

height  N  in the R–matrix). 
 

In common least-squares approaches this split up will cause a rank defect. 

In collocation the system can be solved applying the hybrid norm 
 

nT C
nn
-1 n  +  tT K

tt
-1 t   =   Min (4-4) 

 

where  C
nn
  is the variance-covariance matrix of observations and  K

tt
  is 

that one of the signal quantities. 
 

By including dynamical observations it will be possible to compute optimal 

estimates for the geoidal height. An efficient solution for combination of 

geodetic observations with gravity data is discussed in LANDAU et al. (1985). 
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4.1  The observation equations  
 

The observation equations of GPS-derived coordinates in the integrated geo- 

desy model are given similar as in the conventional approach by 

 

⎣
⎢
⎢
⎢
⎡

 

d∆Xij

d∆Yij

d∆Zij

 

⎦
⎥
⎥
⎥
⎤
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i
*  

⎣
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⎢
⎢
⎡
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⎥
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                                                     (4-5) 

 

where 

 

T*   =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

  

 ∂∆X 
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                                                                                                      (4-6) 
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4.2  Properties of the integrated approach  
 

The inclusion of GPS-baseline vectors into the integrated model approach 

has several advantages. 

 

-  The internal consideration of geoidal heights results in precise hori- 

   zontal coordinates and transformation parameters. The highest obtainable 

   point accuracy is therefore achieved. 

 

-  The combination with orthometric heights, gravity field data and poten- 

   tial differences results in high-precision orthometric and geoidal 

   heights at all network points. The high-precision GPS ellipsoidal height 

   information combined with orthometric heights enables the user to improve 

   the modelling of the gravity field and therefore supports the correction 

   for the deflection of the vertical, e.g., for zenith distances. 

 

-  The internal prediction allows the determination of geoidal heights or 

   other functionals of the gravity disturbing potential at non-network 

   points. 

 

-  The combination with all types of geodetic measurements leads to an op- 

   timal network adjustment. 

 

 

4.3  The GPS-network Summit County  
 

Some numerical investigations were made in a GPS control network located in 

Ohio (U.S.A.). The network consists of 38 network points and has a size of 

about 35 x 50 km2. The height differences in that area are less than 100 m. 

Therefore we may expect that the geoid will be a rather smooth surface 

allowing excellent interpolation. Besides the 66 determined GPS baselines, 

information about already determined triangulation stations and orthometric 

heights were available. All information was kindly provided by the U.S. Na- 

tional Geodetic Survey, Rockville, Md. 

 

In addition to the geometric information 199 gravity measurements were 

available, see Fig. 8. 
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Figure 7:  Network configuration – Summit County, Ohio 
 
 

 
 

Figure 8:  Gravity measurements and network points in Summit County 
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Approximation errors may be caused by unfavorable distribution of the gra- 

vity data. Therefore a computation of more or less absolute geoidal heights 

using integral techniques seems to be impossible without additional inter- 

polations. For such techniques a 2° cap with dense gravity data around the 

computation points is required. The following computations are therefore 

restricted to the determination of a relative geoid. They will show in 

which way the gravity data are able to improve geoidal height determination 

and by that the derivation of orthometric heights. 
 
 

4.4  The gravity anomaly covariance function  
 

From the available 199 gravity anomalies we computed an empirical covariance 

function characterized by the following parameters: 
 

      Variance of gravity anomalies          C0   =   123.78  mgal2 

      Variance of horizontal gradients       G0   =   112.74  E2 

      Correlation length                     ξ      =      22.14  km 
 

Using these parameters we defined the chosen analytic covariance model of 

TSCHERNING and RAPP (1974), by an iterative procedure. The results are: 
 

      Squared ration of Bjerhammer's sphere to earth radius  s = 0.999153 

      Order of local covariance function                     n = 102 
 

 
 

Figure 9:  Empirical and analytical covariance function of gravity anomalies 

           ( ∆ = empirical, + = analytical ) 
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The order of the local covariance function and the variance of horizontal 

gradients reflect the smoothness of the gravity field. 

 

 

4.5  Practical computations  
 

In the following we want to discuss three different variants of adjustment 

solutions and will analyze their properties. In all variants we hold point 

7 in all three directions and points 2 and 3 with their horizontal coordi- 

nates fixed in space. From the computed ellipsoidal heights orthometric 

heights were derived at all possible stations. 

 

Solution 1:  Conventional least-squares adjustment using the 

             model discussed in chapter 2 

Solution 2:  Integrated adjustment using the same information 

             as in solution 1 

Solution 3:  Integrated adjustment similar to solution 2 plus 

             199 gravity observations 

 

The results of the three adjustment strategies are listed in table 1. 

 

 

4.5.1  Solution 1  
 

Solution 1 is an adjustment solution using the conventional least-squares 

adjustment model described in chapter 2. The received mean standard errors 

are ± 0.79 cm in latitude, ± 0.95 cm in longitude and ± 3.78 cm in ellip- 

soidal height. Figure 10 shows error ellipsoids for the network adjustment. 

The results reflect the high precision of the coordinates derived from GPS- 

baseline component vectors. 

 

From the adjusted ellipsoidal heights and the given orthometric heights at 

the 11 network stations we were able to determine relative geoidal heights. 

They are listed in table 2. 
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Figure 10:  Error ellipsoids of the network points. 

            (Note that the points 2, 3, 305 and 315 were excluded) 

 

4.5.2  Solution 2  
 

In solution 2 we applied the integrated geodesy model approach and splitted 

the ellipsoidal height into the orthometric and the geoidal part as des- 

cribed above. We used the same data as in solution 1 plus the eleven ortho- 

metric heights which were held fixed and get finally the mean coordinate 

standard error of ± 0.8 cm in latitude, ± 0.9 cm in longitude and ± 1.9 cm 

in orthometric height. In constrast to solution 1 we determined directly 

orthometric and not ellipsoidal heights. Note that the integrated geodesy 

model allows by the internal interpolation properties the determination of 

orthometric and geoidal heights at stations without any a priori know- 

ledge of orthometric or geoidal heights. 

 

Table 2 presents therefore not only geoidal heights for eleven points as in 

solution 1 but at all network points. The mean standard error of the geoidal 

heights was computed to ± 1.9 cm. 
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Figure 14 shows the standard errors of geoidal heights in form of an iso- 

line plot. It demonstrated that the standard errors in the outer network 

part increase rapidly. This is due to the extrapolation of the collocation 

algorithm. 

 

The results look very promising. We state, that it is possible to deter- 

mine precise orthometric and geoidal heights with cm-accuracy using few 

orthometric height information and GPS-baseline components by applying the 

integrated approach. However, the reader has to be reminded that the co- 

variance function was derived from given gravity anomalies, and the geoid 

in the area under consideration is very smooth. 

 

Otherwise additional gravity field information is necessary to support the 

internal interpolation and prediction properties. 

 

 

4.5.3  Solution 3  
 

In solution 3 we introduced 199 gravity observations in order to improve the 

geoid height determination. This results in mean coordinate standard errors 

of ± 0.7 cm in latitude, ± 0.9 cm in longitude and ± 1.4 cm in height. It 

shows an improvement in both, horizontal and vertical coordinate components. 

The improvement in horizontal location is small, but the improvement in 

height in remarkable. The determined geoidal heights are listed in table 2. 

They were determined with a mean standard error of ± 1.4 cm. Comparing the 

geoidal heights of the solution 2 and 3 we get a mean absolute difference 

of 3.9 cm. The improvement of the geoidal heights by inclusion of gravity 

data is of the order of 20 cm for point 2 which is located in the south- 

western part of the network area. 

 

The geoid height differences are plotted in figure 13. One can see that the 

largest differences are at points in the western part of the network area, 

where only few gravity data are given, see figure 7. With a more dense 

distribution of gravity observations in that area the determination of the 

height component might improve significantly. 
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Determined standard errors for coordinates derived from different 

adjustment solutions ( all quantities given in centimeter ) : 

 

Name SOLUTION 1 SOLUTION 2 SOLUTION 3 

 mB mL mh mB mL mH mB mL mH 

  1 
  2 
  3 
  5 
  4 
  6 
  7 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
315 
316 
317 
318 
319 
321 
322 
323 
324 
325 
326 
328 
329 
330 
333 
334 
335 
336 
338 

0.36 
0.00 
0.00 
0.42 
0.38 
0.29 
0.00 
0.85 
0.75 
0.84 
1.62 
0.40 
0.83 
1.50 
0.80 
0.75 
1.49 
0.25 
0.75 
0.33 
0.40 
0.24 
0.87 
1.00 
0.79 
0.78 
0.75 
0.84 
0.79 
0.77 
0.76 
0.88 
0.76 
0.48 
1.00 
0.82 
0.34 
1.28 

0.63 
0.00 
0.00 
0.69 
0.60 
0.51 
0.00 
1.23 
0.99 
0.82 
0.91 
0.75 
0.80 
1.38 
1.28 
0.80 
1.39 
0.48 
1.06 
1.04 
0.81 
0.66 
0.84 
0.98 
1.19 
1.15 
0.87 
1.18 
0.95 
1.08 
1.20 
0.95 
0.90 
1.21 
1.13 
0.82 
0.98 
1.38 

2.00 
2.29 
2.04 
2.15 
1.99 
1.73 
0.00 
4.23 
3.78 
3.83 
7.32 
2.17 
3.75 
6.42 
4.14 
3.56 
6.47 
1.56 
3.53 
3.23 
2.57 
1.77 
4.02 
4.24 
3.94 
3.86 
3.35 
4.13 
3.80 
3.84 
3.81 
4.12 
3.61 
2.95 
4.38 
3.89 
2.86 
5.83 

0.33 
0.00 
0.00 
0.41 
0.36 
0.25 
0.00 
0.83 
0.73 
0.84 
1.57 
0.38 
0.82 
1.48 
0.77 
0.73 
1.48 
0.24 
0.74 
0.33 
0.39 
0.24 
0.87 
0.80 
0.75 
0.74 
0.74 
0.84 
0.76 
0.74 
0.75 
0.87 
0.74 
0.47 
0.79 
0.82 
0.33 
1.14 

0.61 
0.00 
0.00 
0.69 
0.59 
0.48 
0.00 
1.18 
0.98 
0.81 
0.90 
0.74 
0.79 
1.34 
1.27 
0.80 
1.37 
0.47 
1.01 
1.04 
0.80 
0.65 
0.83 
0.96 
1.17 
1.16 
0.86 
1.17 
0.94 
1.07 
1.17 
0.95 
0.89 
1.19 
1.08 
0.82 
0.97 
1.27 

0.00 
8.20 
2.51 
1.38 
0.00 
0.00 
0.00 
1.18 
1.02 
1.70 
0.00 
0.74 
1.73 
2.36 
2.42 
1.39 
2.53 
0.44 
1.59 
0.00 
0.00 
1.05 
1.03 
0.76 
2.04 
1.90 
1.24 
2.11 
1.45 
0.00 
1.39 
1.46 
1.15 
1.43 
0.00 
1.04 
0.00 
0.00 

0.33 
0.00 
0.00 
0.41 
0.36 
0.25 
0.00 
0.80 
0.71 
0.83 
1.48 
0.38 
0.82 
1.47 
0.75 
0.70 
1.47 
0.24 
0.73 
0.33 
0.38 
0.23 
0.86 
0.75 
0.73 
0.71 
0.73 
0.83 
0.74 
0.71 
0.75 
0.86 
0.71 
0.47 
0.74 
0.82 
0.33 
0.95 

0.61 
0.00 
0.00 
0.69 
0.59 
0.47 
0.00 
1.14 
0.95 
0.81 
0.88 
0.74 
0.79 
1.30 
1.26 
0.79 
1.37 
0.47 
1.00 
1.03 
0.80 
0.65 
0.83 
0.96 
1.16 
1.14 
0.85 
1.17 
0.93 
1.05 
1.13 
0.94 
0.88 
1.16 
1.06 
0.81 
0.91 
1.19 

0.00 
5.57 
1.78 
0.97 
0.00 
0.00 
0.00 
1.33 
0.92 
1.47 
0.00 
0.71 
1.56 
1.85 
1.31 
1.25 
2.13 
0.42 
1.57 
0.00 
0.00 
0.96 
1.01 
0.61 
1.74 
1.53 
1.21 
1.76 
0.97 
0.00 
1.43 
1.28 
1.10 
1.07 
0.00 
1.03 
0.00 
0.00 

   Mean standard errors       

 0.79 0.95 3.78 0.76 0.93 1.88 0.73 0.92 1.42 

 
         where        B = ellipsoidal latitude 

                      L = ellipsoidal longitude 

                      h = ellipsoidal height 

         and          H = orthometric height 

Table 1:  Coordinate accuracies derived from different solution strategies 
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STATION SOLUTION 1 SOLUTION 2 SOLUTION 3  

 N1 N2 mN2 N3 mN3 N3 - N2 

 
 
 
 
 

  1 
  2 
  3 
  5 
  4 
  6 
  7 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
315 
316 
317 
318 
319 
321 
322 
323 
324 
325 
326 
328 
329 
330 
333 
334 
335 
336 
338 

 
 
 
 
 

35.3 
 
 
 

31.2 
33.8 
 0.0 
 
 
 

43.0 
 
 
 
 
 
 
 
 

80.0 
28.9 
 
 
 
 
 
 
 
 

68.7 
 
 
 
 

52.5 
 

73.1 
57.1 

 
 
 
 
 

35.7 
86.0 
46.9 
54.4 
31.5 
34.4 
 0.0 
57.8 
70.0 
49.7 
44.1 
40.5 
48.0 
59.6 
23.4 
47.8 
59.1 
37.0 
55.0 
81.4 
29.5 
33.9 
36.3 
51.2 
57.5 
66.8 
48.7 
56.7 
22.5 
68.6 
57.0 
40.2 
43.7 
56.6 
47.2 
26.7 
73.1 
58.1 

 
 
 
 
 

0.5 
8.2 
2.6 
1.3 
0.5 
0.5 
0.1 
1.7 
0.9 
1.4 
2.0 
0.9 
1.5 
1.8 
2.5 
1.2 
1.7 
0.6 
1.8 
0.9 
0.7 
1.1 
0.8 
1.1 
1.7 
1.6 
1.2 
1.7 
1.4 
1.0 
1.7 
1.4 
1.1 
1.4 
0.9 
0.8 
0.8 
1.5 

 
 
 
 
 

 35.5 
107.2 
 47.1 
 48.8 
 31.2 
 33.6 
  0.0 
 56.0 
 63.2 
 44.3 
 47.1 
 40.6 
 42.2 
 59.2 
 38.5 
 42.2 
 56.3 
 35.0 
 52.2 
 81.8 
 29.2 
 28.9 
 35.0 
 46.4 
 52.9 
 61.0 
 47.6 
 52.7 
 35.0 
 71.6 
 53.1 
 46.0 
 52.8 
 52.1 
 45.0 
 25.0 
 68.3 
 55.7 

 
 
 
 
 

0.5 
5.6 
1.8 
0.9 
0.5 
0.5 
0.1 
1.4 
0.8 
1.2 
1.8 
0.9 
1.4 
1.1 
1.1 
1.2 
1.4 
0.6 
1.6 
0.9 
0.7 
1.1 
0.8 
0.8 
1.6 
1.4 
1.1 
1.5 
0.8 
1.0 
1.4 
1.2 
1.1 
1.0 
0.8 
0.7 
0.7 
1.0 

 
 
 
 
 

-0.2 
21.1 
 0.2 
-5.6 
-0.3 
-0.8 
 0.0 
-1.8 
-6.8 
-5.4 
 3.0 
 0.2 
-5.9 
-0.5 
15.1 
-5.6 
-2.7 
-2.0 
-2.8 
 0.4 
-0.4 
-5.0 
-1.2 
-4.8 
-4.5 
-5.7 
-1.1 
-4.0 
12.4 
 3.0 
-4.0 
 5.8 
-0.9 
-4.5 
-2.2 
-1.7 
-4.8 
-2.4 

    Mean values   +- 1.9   +- 1.4  3.9 

 

 

Table 2:  Geoid heights (all quantities given in cm) 
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Figure 11:  Heights in the network area given in meter 

 

 

 

 

Figure 12:  Geoidal heights computed by adjustment solution 3 given in cm 
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Figure 13:  Geoid height differences between solutions 2 and 3 given in cm 

 

 

 

 

Figure 14:  Height standard errors given in cm 
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5.  APPLIED SOFTWARE PRODUCTS  
 

The described computations were done using software developed at the Insti- 

tute of Astronomical and Physical Geodesy of the University FAF Munich. 

 

The program system OPERA which was developed in 1981 was completely re- 

vised and main parts were rewritten. The new version 2.0 is a high sophis- 

ticated program which is much faster than the old version, more operatio- 

nal and user-friendly. A lot of new features were added to the new program 

system like the integration of GPS baseline component vectors, geoidal and 

orthometric heights and the use of topographic information for smoothing 

gravity field data etc. It allows a split up of the ellipsoidal into geo- 

idal and orthometric height as described in chapter 4. 

 

The new program is working in an ellipsoidal coordinate system and allows 

the computation of 1D, 2D and 3D integrated and conventional adjustments. 

It is written in machine independent FORTRAN 77 and contains a comfortable 

pre- and postprocessor. Many program features are running in two modes 

(interactive or in batch). For example, the empirical covariance function 

and the adaption of an analytic covariance function can be computed under 

interactive control. The program makes use of a bit structured information 

storage in order to save memory and special sorting techniques are incor- 

porated to allow the user to mix information in different ways. 

 

Several processing modes are possible 

 

-  pure geometrical adjustment (1D, 2D, 3D), 

-  integrated geodesy adjustment (1D, 2D, 3D), 

-  prediction, filtering and interpolation. 

 

The program allows the combined or separate determination of coordinates 

and gravity field dependent quantities like geoidal heights, gravity dis- 

turbing potential, gravity disturbances, deflections of the vertical and 

orthometric heights. 
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6.  CONCLUSIONS  
 

The estimated location errors caused by neglecting geoidal heights at 

fixed network point demonstrates the necessity to take these quantities in- 

to account for high-precise point positioning with GPS-baseline component 

vector. 

 

The considered concept of solution applying the integrated model approach 

shows how to combine classical geodetic measurements with dynamic obser- 

vations and GPS-baseline component vectors. The integrated model provides 

the combination of high-precise geometric information derived from GPS- 

interferometry with dynamic information like potential differences derived 

from spirit levelling. This is superior to the use of orthometric heights, 

which are derived using hypothetical reduction methods. Integrated model 

adjustment leads therefore to both, the determination of ellipsoidal 

heights and orthometric heights of network points with cm-accuracy. 

 

The numerical results demonstrate the efficiency of the integrated approach 

adjusting three-dimensional geodetic networks. 

 

Future investigations with our software package in areas with a more dense 

gravity set and with spirit levelling measurements will show the superiori- 

ty of the integrated approach in deriving horizontal and vertical point 

positions without any usage of hypothetical reductions. 
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ABSTRACT.  This paper summarizes the work which was done 
at the Institute of Astronomical and Physical Geodesy in 
the field of phase difference processing for precise dif- 
ferential positioning with the Global Positioning System. 
 
It includes the description of the applied model and 

presents the corresponding software product. 
 
As an example the processing results of data collected 

in Hessen (FRG) are presented and discussed. 
 
 
 

1.  INTRODUCTION  
 

  GPS phase difference processing is one of the most powerful tools for 
establishing three-dimensional geodetic networks.  Practical measurements 
have shown that accuracies of 1 ppm are attainable, so that the Global Po- 
sitioning System becomes of interest for a lot of applications in geodetic 
research and practical surveying.  Therefore our institute started with 
some research on the field of relative positioning and orbit determination 
for the GPS-satellite system.  This research goes hand in hand with the 
development of specific software (HEIN and EISSFELLER, 1985). 
 
  The first experiences with phase difference processing software were made 
with programs which were kindly provided by Dr. Remondi (National Geodetic 
Survey, USA) for single- and triple difference processing. 
 
  Due to the absence of a double-difference processing program we decided to 
develop such a program taking advantage of the experiences made with the 
NGS-products. 
 
  The developments resulted in a user-friendly interactive menu-driven pro- 
gram system which allows the processing of all types of receiver data (Macro- 
meter, TI 4100 etc.).  Several models for atmospheric corrections, the pos- 
sibility of processing dual frequency data, and an automatic cycle slip de- 
tection algorithm were incorporated into the program. 
 
In the following the author will describe the applied model, the software 
product itself and present the results of processed measurements made during 
a Macrometer campaign in Germany in 1984. 
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2.  THE THEORETICAL MODEL  
 

2.1  The observables  
 

  In the following considerations we are dealing with the processing of 
double-differences of phase measurement data.  The double-difference method 
uses the differences of raw phase measurements between two receivers and 
two satellites. 

 

ψDj
k (ti)   =   � ψ2

k
(ti) - ψ1

k
(ti) �  - � ψ2

j
(ti) - ψ1

j
(ti) � (2-1) 

 
where 

ti ... specifies the time epoch 

j,k ... are indices of the two satellites 

and ψu

j
(ti) ... is the raw phase at epoch ti for station u 

   to satellite j with u = 1,2 
 
  Since in practice it is possible to track more than two satellites a re- 
ference satellite j is introduced which is usually the satellite with most 
of the observations. 
 
  The advantage of the double-difference method lies in the fact, that the 
influences of satellite and receiver clock errors drop nearly out, so that 
they can be modelled by simple quadratic polynomials. 
 
 
2.2  The observation equation  
 

  The double difference observation is described by the relation 
 

ψDj
k (ti)   = 

 

=   
 fS 
c

 ∙ � ρ2k(ti) - ρ1k(ti) �  + 

 

+   
 fS 
c

 ∙ � ρ̇2k(ti) - ρ̇1k(ti) � ∙ � a0 + a1(ti-t1) + a2(ti-t1)2 �  - 

 

-   
 fS 
2c

 ∙ � ρ̇2k(ti) - ρ̇1k(ti) � ∙ � b0 + b1(ti-t1) + b2(ti-t1)2 �  + 

 
+     fS  ∙  ( 1 + α ) ∙ � T2

k(ti) - T1
k(ti) �  + 

 
+     fS  ∙  � I2

k(ti) - I1
k(ti) �  - 
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-   
 fS 
c

 ∙ � ρ2
j(ti) - ρ1

j(ti) �  - 

 

-   
 fS 
c

 ∙ � ρ̇2
j(ti) - ρ̇1

j(ti) � ∙ � a0 + a1(ti-t1) + a2(ti-t1)2 �  + 

 

+   
 fS 
2c

 ∙ � ρ̇2
j(ti) - ρ̇1

j(ti) � ∙ � b0 + b1(ti-t1) + b2(ti-t1)2 �  - 

 

-     fS  ∙  ( 1 + α ) ∙ � T2
j(ti) - T1

j(ti) �   - 

 

-     fS  ∙  � I2
j(ti) - I1

j(ti) �   + 

 
+     mjk (2-2) 

 

 
  The unknowns can be classified in the following way 

 
a.  The integer unknown mj

k 

    It can be shown that the number of integer unknowns is (l-1) where l is 
    the number of observed satellites in the measurement data set. 

 

 
b.  Tropospheric scale factor 
    Although this unknown parameter has no physical meaning, there is a 
    widespread belief, that the insertion of such a scale factor results in 
    an accuracy improvement (REMONDI, 1984).  The corresponding coefficient 
    of the design matrix results from the partial derivative 

 
 ∂ψDj

k  
∂α

   =   fS ∙ � T2
k(ti) - T1

k(ti) - T2
j(ti) + T1

j(ti) �                                                              (2-3) 

 
    The tropospheric delay T and the ionospheric delay I can be computed by 
    special atmospheric models. 

 

 
c.  Polynomial coefficients for the approximation of the common receiver 
    time offset ξ(ti) and the time difference δ(ti). 
    The receiver errors are described by 

 

ξ(ti)   =   a0 + a1�ti-t1� + a2�ti-t1�
2
 (2-4) 

 

    and δ(ti)   =   b0 + b1�ti-t1� + b2�ti-t1�
2
 (2-5) 
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    The design matrix coefficients are given by 

 
 ∂ψDj

k  
∂an

   =   
 fS 
c

 ∙ � ρ̇2k(ti) - ρ̇1k(ti) - ρ̇2
j(ti) + ρ̇1

j(ti)� ∙ (ti-t1)n                                       (2-6) 

 
 ∂ψDj

k  
∂bn

   =   
 fS 
2c

 ∙ � ρ̇2k(ti) - ρ̇1k(ti) - ρ̇2
j(ti) + ρ̇1

j(ti)� ∙ (ti-t1)n                                       (2-7) 

 
    with     n  =  0,1,2 

 
    The receiver time errors are defined by 
 

ξ(ti)   =   a0 + a1�ti-t1� + a �ti-t1�
2
 (2-8) 

 
    and 

 

δ(ti)   =   b0 + b1�ti-t1� + b �ti-t1�
2
 (2-9) 

 

 
d.  The coordinate unknowns of receiver stations are derived from the quan- 
    tities ρ(ti) and ρ̇(ti) which represent range and range rate between re- 
    ceiver and satellite location. 
 
    The partial derivates are given by the relation 

 
 ∂ψDj

k  
∂x

   =   
 fS 
c

 ∙ ρ2k(ti)  + 

 

+   
 fS 
c

 ∙ 
 ∂ρ̇2k(ti) 

∂x
 ∙ ξ(ti) - 

fS
 2c 

 ∙ 
 ∂ρ̇2k(ti) 

∂x
 ∙ δ(ti)  - 

 

-   
 fS 
c

 ∙ 
 ∂ρ̇2

j(ti) 
∂x

  - 

 

-   
 fS 
c

 ∙ 
 ∂ρ̇2k(ti) 

∂x
 ∙ ξ(ti) - 

fS
 2c 

 ∙ 
 ∂ρ̇2

j(ti) 
∂x

 ∙ δ(ti)                                          (2-10) 

 
    where x is the vector of coordinate unknowns. 

 
    The partial derivatives of range and range rate are defined by the re- 
    lations 

 
 ∂ρ(ti) 
∂x

   =   -
 x
S

 - x 
ρ(ti)                                                                                                                          (2-11) 
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 ∂ρ̇(ti) 
∂x

   =   
x
S

 - x
 ρ2(ti) 

 ∙ ρ̇(ti) - 
x
S

 ρ(ti) 
                                                                                        (2-12) 

 
 
2.3  Atmospheric correction models  
 

2.3.1  Tropospheric correction  
 

  Two different models of tropospheric propagation delay correction are im- 
plemented in the program.  The first one was developed by GOAD and GOODMAN 
(1974) whereas the second is a very simple model published by BLACK (1978). 
Both algorithms are using surface measurements of temperature, air pressure, 
and relative humidity for the prediction of the current troposphere state. 
The different models were incorporated in order to check the accuracy of the 
models and their influence on baseline determination. 
 
 
2.3.1  Ionospheric correction  
 

  Since C/A-Code receivers are single frequency receivers they are not 
able to correct for ionospheric influences as described in chapter 2.4. 
Therefore the program uses a special ionospheric correction model which 
takes advantage of the GPS-navigation data.  Since ionospheric effects are 
very difficult to model and the applied algorithm is very easy, the correc- 
tion has only a relative accuracy of 50%.  Nevertheless the use of this 
information seems to be superior to neglecting ionospheric effects.  For a 
detailed description of the approach the reader is referred to LANDAU, 
EISSFELLER (1986), KLOBUCHAR. 
 
 
2.4  The processing of dual frequency data  
 

  The ionospheric effect on the signal transmission is in very good appro- 
ximation inversely proportional to the square of the signal frequency 
(KLOBUCHAR et al., 1980).  The time delay is given by the relation 

 

I  =  
A

 f2 
                                                                                                                                                   (2-13) 

 
where   A ...  is a scale factor depending on the current electron 
               density in the ionosphere 
and     f ...  is the frequency of the transmitted signal. 
 
  Considering the phase observable ψ the application of (2-12) results in 

 

∆ψ   =   f ∙ I   =   
 A 
f

                                                                                                                             (2-14) 

 
  The satellites are transmitting signals on two frequencies, which are 
multiplies of 10.23 (MHz). 
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L1 :  f1 = 154 . 10.23 (MHz) = 1575.42 (MHz) 

L2 :  f2 = 120 . 10.23 (MHz) = 1227.60 (MHz) 
 
  Both frequencies are in phase at the time they are transmitted by the sa- 
tellites.  P-Code receivers are able to take advantage of the frequency de- 
pendent behaviour by use of the two frequencies (L1, L2). 
 
  Let us consider the "raw" phase measurement, neglecting receiver oscilla- 
tor drift and tropospheric effects. 

 

ψ(ti)   =   ϕS(ti) - ϕR(ti) – 
 f 
c

 ∙ ρ(ti) + 
 A 
f

 + m                                                                               (2-15) 

 

Then the term 
 A 
f
 represents the phase shift due to ionospheric effects. 

 
Relation (2-15) can be written for each frequency. 

 

L1 :   ψ(ti)   =   { ϕS(ti) - ϕR(ti) }  - 
 f1 
c

 ∙ ρ(ti)  +  
A

 f1 
  +  m1                                                  (2-16) 

 
Since both, the L1 and L2 phase are based on the same rate of 10.23 MHz and, 
consequently, are fully synchronized, the following equation holds: 

 

{ ϕS(ti) - ϕR(ti) }L2    =   
 f2 
f1

 ∙ { ϕS(ti) - ϕR(ti) }                                                                           (2-17) 

 
  Insertion of (2-17) in (2-16) yields 

 

L2 :   ψ(ti)   =   
 f2 
f1

 ∙ { ϕS(ti) - ϕR(ti) }  - 
 f2 
c

 ∙ ρ(ti)  +  
A

 f2 
  +  m2                                     (2-18) 

 
  To eliminate the ionospheric effect we can use a linear combination of 
equations (2-16) and (2-18) 

 
ψ(ti)   =   α1∙ ψL1

(ti)  +  α2∙ ψL2
(ti) (2-19) 

 
with 

 

α1   =   
f1
2

 �f1
2 - f2 

2 � 
      and      α2   =   

-f1 ∙ f2
 �f1

2 - f2 
2 � 

                                                                                (2-20) 
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Thus we get the final observation 

 

ψ(ti)   =   { ϕS(ti) - ϕR(ti) }  -  
 f1 
c

 ∙ ρ(ti)  + 

 
+   α1∙ m1  +  α2∙ m2 (2-21) 

 
  By combination of the corresponding observables of the two frequencies 
considering (2-21) a good elimination of the ionospheric effect may be pos- 
sible.  The accuracy of this elimination is of the order of 2 – 3 meters. 
Since the differenced observations are linear combinations of quantities of 
type (2-21) too, the approach can be applied to all kind of processing tech- 
niques. 
 
  In practice the two frequencies are processed separately, as different 
cycle slips can appear in the two data sets.  Afterwards the linear combi- 
nation is processed, which is corrected for ionospheric influences. 
 
 
2.5  The correlated nature of the observables  
 

  Since double difference observables are correlated, we have to introduce 
a non-diagonal weight matrix for each epoch.  Each submatrix contains a 2 
on the diagonal, and the non-diagonal elements are equal to 1.  The sub- 
matrices together build a banded weight matrix which has to be taken into 
account in the adjustment process (see REMONDI, 1984, p. 122-123). 
 
 
 

3.  THE DEVELOPED SOFTWARE PRODUCT  
 

  The developed double difference processing program is a menu-driven inter- 
active oriented program written in FORTRAN 77 and is installed on a VAX- 
computer.  The main emphasis was put on user-friendly aspects as well as 
fast performance of calculations. 
 
 
3.1  Program structure  
 

  The program is controlled by use of several menus providing a lot of 
processing features.  They are described in detail in chapter 3.2.  Input 
control is done by a special positioning file holding information about ap- 
proximate station coordinates, antenna heights, file names for measurement, 
and orbit data, etc.  The output is directed to the terminal screen and in 
addition to a journal file recording all user operations and program re- 
sults.  An example of such a journal file is given in the appendix. 
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3.2  Program features  
 

  In the following I like to discuss shortly the main features of the pro- 
gram by describing the different menu tables. 
 
 
3.2.1  Main menu  
 
 
 

 
 
 
Fig. 1:  Main menu 
 
 
  By choosing the number between 1 and 6 the user exits the main menu, and 
the program displays the chosen sub-menu.  After finishing the data pro- 
cessing the operator may exit the program by pressing 9.  Typing 0 results 
in a return to the data processing algorithm for the calculation of a new 
iteration with control parameters defined by the menus. 
 
  Number 6 and 7 may by chosen to read or write the current control para- 
meters.  In that case the whole necessary processing information will be 
transferred to or from a disk file.  This is extremely useful if somebody 
wants to process a larger number of baseline having the same control para- 
meters without having to define parameters each time. 
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3.2.2  Design of A - matrix  
 
 
 

 
 
 
Fig. 2:  Menu level 2 (Design of A – matrix) 
 
 
       1 ...      monitors the fixing of station coordinates.  Information 
                  records followed by "true" or "false" are always state- 
                  ments which can be true or false.  Press 1 to switch from 
                  "true" to "false" or vice versa. 
 
       2 ...      determines the "solve for" station.  If the statement is 
                  set to true the program will solve for station 1 and if it 
                  is false it solves for station 2. 
 
       3 + 4 ...  define the order of the time offset (time difference) 
                  polynomial. 
 
       5 ...      activates the tropospheric scale unknown determination as 
                  discussed in chapter 2.2. 
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3.2.3  Handling of atmospheric corrections  
 
 
 

 
 
 
Fig. 3:  Menu level 2 (Handling of atmospheric corrections) 
 
 
       1 + 2 ...  control the units of given atmospheric corrections. 
 
       3 + 4 ...  inform the program about internal computation of tropo- 
                  spheric correction inquiries.  The Black (3) or the Goad/ 
                  Goodman (4) model may be used alternatively. 
 
       5 ...      instructs the program to correct for ionospheric influences 
                  using the Klobuchar approach. 
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3.2.4  Data processing features  
 
 
 

 
 
 
Fig. 4:  Menu level 2 (Data processing features) 
 
 
       1 ...      informs the program, that the bias recovery and cycle slip 
                  detection are finished and no further bias recovery is neces- 
                  sary. 
 
       2 + 3 ...  choose either an interactive (user-controlled) bias recovery 
                  (2) or an automatic (program-controlled) cycle slip detection. 
 
       4 ...      fixes the estimated ambiguities to integer values. 
 
       5 ...      instructs the program to process a new frequency in case of 
                  dual-frequency measurements. 
 
       6 + 7 ...  the satellite ambiguities may be fixed to pregiven values 
                  (6), otherwise the computed satellite biases are used. 
 
       8 ...      jumps to the data deletion menu to delete outliers in the 
                  measurements. 
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3.2.5  Handling of input data  
 

 
 
 
Fig. 5:  Menu level 2 (Handling of input data) 
 
 
       1 ...      informs the program about the type of measurement data. 
                  Half wave-length data derived from Macrometer measurements, 
                  for example, or full wave length data measured with code- 
                  receivers like the TI 4100. 
 
       2 ...      monitors the processing of dual-frequency data.  Enter 1 for 
                  L1-band processing, 2 for L2-band processing or 3 for a com- 
                  bination of both frequencies. 
 
       3 to 6 ..  specify the type of measurement data to be used during proces- 
                  sing. 
 
       7 ...      attaches satellite numbers to the observation channels.  This 
                  is not necessary if the channel numbers are identical with 
                  satellite numbers. 
 
       8 ...      jumps to the time synchronization menu.  It allows the syn- 
                  chronization of measurement data and orbit data.  Results of 
                  clock comparison can be used for receiver synchronization. 
 
       9 ...      informs the program about the type of measurement data used 
                  during processing in case of phase difference observation 
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                  data (single, double, triple).  The differences may have 
                  been computed by differencing raw phase observables of sta- 
                  tion 2 minus station 1 or vice versa. 
 
 
 

4.  PROCESSING OF REAL DATA  
 

4.1  Description of observed data set  
 

  In the following I would like to describe the processing of real observa- 
tion data with the developed software product.  It was done with data kind- 
ly provided by the Hessian Department of Surveys ("Landesvermessungsamt 
Hessen") and collected during a Macrometer campaign in November 1984.  The 
data set consists of raw phase observational data at each of the stations 
shown in figure 6.  Furthermore one state vector for each considered satel- 
lite was available.  Please note, that no information about antenna heights, 
weather data and time synchronization was available during the computation 
process.  An unrealistic assumption about the atmosphere during the measure- 
ment period along with an unsymmetrical distribution of satellites above the 
horizon (Fig. 7) could lead to the rotation of the resulting baseline compo- 
nents.  For that reason a comparison with results obtained by a U.S. com- 
mercial firm might be difficult. 
 
 
4.2  Prediction of satellite orbits  
 

  Starting with the given state vectors for each satellite we predicted the 
satellite position in an inertial reference frame by applying a Krogh - 
Shampine – Gordon fixed-step integrator and a specific force modelling des- 
cribed in LANDAU, HAGMAIER (1986).  The satellite positions were computed 
for time intervals of 180 seconds.  It can be assumed, that the satellite 
positions are accurate to approximately 50 meters. 
 
 
4.3  Processing description and results  
 

  Due to difficulties in modelling atmospheric corrections caused by missing 
weather measurement data and unknown antenna heights, the author decided to 
restrict the processing to the triangle "Hausberg, Hupp, Bauernheim" ob- 
served on the 320th day of 1984 during 2:00 and 5:40 UTC time (see table 3 
and figure 8).  The atmospheric corrections were computed by use of a nor- 
mal atmosphere.  The antenna heights were put equal to zero.  The baseline 
"Bauernheim - Hausberg" was computed by two different programs.  First the 
author applied the single difference program received from the National Geo- 
detic Survey.  Afterwards the same baseline was processed with the developed 
double difference program.  Another check was made by calculating a triangle 
and computing the vector closure.  The results will be given below. 
 
  Table 1 shows the results of single and double difference processing for a 
single baseline.  We can see that the differences in the baseline components 
are up to about 3 cm for the x-component, and the baseline length differs by 
only 4 mm.  The accuracy estimates are slightly smaller for the single dif- 
ference processing.  Nevertheless the results look very promising for both 
processing types.  (A detailed double difference processing output is given 
in the appendix.) 
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 SINGLE 
DIFFERENCES 

DOUBLE 
DIFFERENCES 

DIFF. 

 [m] [m] [cm] 

   ∆x 
   ∆y 
   ∆z 

  -4499.124 
 -15105.124 
   5993.447 

  -4499.092 
 -15105.124 
   5993.459 

-3.2 
 0.0 
-1.2 

Length   16862.037   16862.033  0.4 

m∆x�Qxy� 

m∆y(Qxz) 

m∆z�Qyz� 

±0.8 cm (-0.64) 

±0.3 cm (+0.23) 

±0.3 cm (+0.44) 

±2.0 cm (-0.41) 

±0.5 cm (+0.71) 

±0.6 cm (+0.14) 

 

 
      Table 1:  Results of processing baseline "Bauernheim - Hausberg" 

 
  In order to check the double difference program a triangle with 3 base- 
lines was processed and the vector closure was computed.  The results are 
given in table 2. 

 

 

Baseline 

 

∆x [m] 

∆y [m] 

∆z [m] 

m∆x [cm] 

m∆y [cm] 

m∆z [cm] 

Q∆x∆y 

Q∆x∆z 

Q∆y∆z 

Bauernheim – 
Hausberg 

 -4499.092 

-15105.124 

  5993.459 

±2.0 

±0.5 

±0.6 

-0.41 

 0.71 

 0.14 

Hausberg – 
Hupp 

-10730.816 

 24707.399 

  5380.541 

±4.5 

±1.4 

±1.4 

-0.54 

 0.67 

 0.09 

Hupp – 
Bauernheim 

 15229.888 

 -9602.285 

-11374.020 

±4.3 

±1.3 

±1.2 

-0.55 

 0.64 

 0.12 

Vector 
closure 

    -0.020 

    -0.010 

    -0.020 

  

 
 Table 2:  Results of double difference processing in triangle "Bauernheim- 
           Hausberg-Hupp" and vector closure 
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  It shows that the vector closure for the considered baseline is less 
than or equal to 2 cm.  The processing model and the software can therefore 
be assumed to be correct, since vector closures of that magnitude are be- 
low the baseline component standard errors. 
 
 
 

5.  SUMMARY AND PROSPECTS  
 

  The mathematical frame for the double-difference processing with a new 
program system has been given along with a detailed description of the 
software product itself.  The results of some test computations were pre- 
sented in order to show the efficiency of the programmed algorithm. 
 
Due to the lack of information, no direct comparison of our results with 
U.S. commercial firm's results was possible.  The author intends to do more 
research in processing the data as soon as more information about time syn- 
chronization, weather data and antenna heights is available.  The ability 
of processing single and triple differences will be incorporated into the 
program system. 
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APPENDIX  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 6:  Stations with GPS phase measurements 
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Fig. 7:  Satellite passes 
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Fig. 8:  Satellite visibility 
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VISIBILITY  OF  GPS  SPACECRAFT  ON  NOVEMBER  15,  1984 

STATION NAME : RONNEBURG 
LATITUDE     :      50.24 DEGREES 
LONGITUDE    :       9.07 DEGREES 
HEIGHT       :     236.95 METER 
 
 
 
SV NO     4        6        8        9       11       13 
HH MM  EL  AZ   EL  AZ   EL  AZ   EL  AZ   EL  AZ   EL  AZ 
 
 0:10           57  229 
 0:20           62  234 
 0:30           66  241            6  231 
 0:40           71  250           10  234 
 0:50           75  264           14  236 
 1:00           78  283           18  240 
 1:10           79  310           22  243 
 1:20           78  338   6   98  26  246 
 1:30           76    0  10   95  30  250 
 1:40           73   15  13   91  34  254 
 1:50           69   26  17   88  38  258 
 2:00           65   34  20   84  41  263   5  122 
 2:10           61   40  22   80  45  268   9  120 
 2:20           57   46  25   75  49  273  13  118 
 2:30           52   51  27   70  53  279  17  115 
 2:40           48   56  28   65  57  286  21  112 
 2:50           45   60  29   60  60  294  25  109 
 3:00           41   64  30   54  63  302  29  105   6  147 
 3:10           37   69  29   49  66  313  32  101  10  145 
 3:20           33   72  28   44  69  325  35   96  14  143 
 3:30           29   76  27   39  71  340  38   91  19  141 
 3:40           26   80  25   34  72  356  40   86  24  139 
 3:50   6  160  22   84  22   31  72   13  42   79  28  137 
 4:00  11  159  19   87  19   27  70   30  42   73  33  134 
 4:10  15  159  15   91  16   24  69   44  42   66  37  131 
 4:20  20  158  12   94  13   22  66   56  42   60  42  127 
 4:30  25  157   8   98   9   20  63   66  40   54  46  123 
 4:40  30  155   5  101   5   18  60   75  38   48  50  117 
 4:50  35  154                    56   82  35   44  53  110 
 5:00  40  152                    52   89  32   40  55  102 
 5:10  45  150                    48   94  29   37  57   93 
 5:20  50  148                    45  100  25   34  57   83 
 5:30  55  144                    41  104  21   32  57   74 
 5:40  59  138                    37  109  17   31  55   65 
 5:50  63  131                    33  113  13   30  52   58 
 6:00  67  121                    29  116   9   29  49   52 
 6:10  69  106                    25  120   5   29  45   48 
 6:20  69   93                    21  123           41   44 
 6:30  68   78                    17  126           37   42 
 6:40  66   66                    13  129           33   41 
 6:50  63   58                     9  132           28   40 
 7:00  59   52                     5  134           24   39 
 7:10  54   48                                      20   39 
 7:20  50   45                                      16   40 
 7:30  45   44                                      11   40 
 7:40  40   43                                       7   41 
 7:50  36   43 
 8:00  31   43 
 8:10  27   44 
 8:20  23   45 
 8:30  18   47 
 8:40  14   48 
 8:50  10   50 
 9:00   6   52 
 9:10 
 9:20 
 9:30 
 9:40 
 9:50 
10:00 
10:10 
10:20 
10:30 
10:40 
10:50 
11:00 
11:10 

 
Table 3:  Visibility table 
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SV NO     4        6        8        9       11       13 
HH MM  EL  AZ   EL  AZ   EL  AZ   EL  AZ   EL  AZ   EL  AZ 
 
11:20 
11:30 
11:40 
11:50 
12:00 
12:10 
12:20 
12:30 
12:40 
12:50 
13:00 
13:10 
13:20            5    2 
13:30            7  359 
13:40            9  355 
13:50           11  351 
14:00           12  347 
14:10           13  342 
14:20           13  338 
14:30           13  334   8  309 
14:40           12  329  12  311 
14:50           11  325  16  312   5   20 
15:00            9  321  20  314   7   16 
15:10            7  317  25  315   8   12 
15:20            5  313  29  316   9    8 
15:30                    34  316  10    4 
15:40                    38  316  10  359 
15:50                    43  316   9  355 
16:00                    47  315   8  351   5  322 
16:10                    52  312   7  347   9  323 
16:20                    56  309   5  343  13  323 
16:30                    60  304           17  323 
16:40                    64  296           22  323 
16:50                    67  286           26  322 
17:00                    68  272           30  321 
17:10                    68  258           34  319 
17:20                    67  244           38  316 
17:30                    64  233           42  313 
17:40                    60  225           45  308   7  333 
17:50                    56  219           48  302  11  332 
18:00                    51  214           50  296  15  331 
18:10                    46  211           52  288  19  329 
18:20                    41  209           52  280  22  327 
18:30                    36  207           52  271  26  324 
18:40                    31  205           50  263  29  321 
18:50   7  340           26  204           48  256  32  317 
19:00  11  339           21  203           45  249  34  312 
19:10  14  336           17  202           41  244  36  307 
19:20  18  334           12  201           37  239  37  301 
19:30  21  330            7  200           33  236  37  295 
19:40  23  327                             29  232  37  289 
19:50  25  322                             24  229  36  283 
20:00  27  318                             20  227  34  277 
20:10  28  313                             15  225  32  272 
20:20  29  307                             11  223  30  267 
20:30  29  302                              7  220  27  263 
20:40  28  297                                      23  259 
20:50  27  291                                      20  256 
21:00  25  286                                      16  252 
21:10  23  282                                      12  249 
21:20  20  277                                       8  247 
21:30  17  274                                       5  244 
21:40  14  270 
21:50  10  266 
22:00   7  263 
22:10 
22:20            7  201 
22:30           12  202 
22:40           16  204 
22:50           24  206 
23:00           26  208 
23:10           30  210 
23:20           35  212 
23:30           40  215 
23:40           45  218 
23:50           49  222 
24:00           54  226 

 

Visibility table (Continued) 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

INPUT DATA : 
------------ 

POSITION FILE NAME..................... : L0519D320.POS 

SINGLE DIFFERENCE DATA FILE NAME....... : L0519D320.SNG 

EPHEMERIS DATA FILE NAME............... : HES.EPH 

 

STATION 1 :   BAUERNHEIM 

LATITUDE  (D,M,S) :  50 19 49.9001 
LONGITUDE (D,M,S) :   8 48 54.3778 
ELL. HEIGHT (M)   :       218.138 
ANT. HEIGHT (M)   :         0.000 
MSL  HEIGHT (M)   :       218.138 

 

STATION 2 :   HAUSBERG 

LATITUDE  (D,M,S) :  50 24 41.5027 
LONGITUDE (D,M,S) :   8 36 53.3882 
ELL. HEIGHT (M)   :       537.491 
ANT. HEIGHT (M)   :         0.000 
MSL  HEIGHT (M)   :       537.491 

 

APPROXIMATE BASELINE VECTOR : 

DX =   -4499.543 DY =  -15105.0412 DZ =    5993.137 L =   16861.965 (M) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Output of double difference processing program 



 

182 

 

UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

CHOSEN DRIVING PARAMETERS : 
--------------------------- 

SOLVE FOR STATION 2 
TROPOSPHERIC CORRECTION GIVEN IN [CYCLES] 
USE COMPUTED BIASES 
MULTIPLE OF RMS........................ :  0.30000000D+10 cycles 
ELEVATION CUTOFF ANGLE...... .......... : 15 degrees 
BIAS RECOVERY BY PROGRAMMED ALGORITHM 
L1-BAND PROCESSING 
WORKING WITH THE HALF WAVELENGTH 
TIME DIFFERENCE MEASUREMENT DATA – ORBIT DATA : 0 SECONDS 

 

NUMBER OF OBSERVATIONS : 

SATELLITE     SD-OBSERVATIONS 

     4              13 
     6              28 
     8              21 
     9              59 
    11              44 
    13              25 

CHOSEN REFERENCE SATELLITE :  9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output of double difference processing program (Continued) 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

PROCESSING RESULTS OF  1. ITERATION : 
------------------------------------- 
 

ROOT MEAN SQUARE ERROR                  0.163 

 

UNKNOWN PARAMETER   UNITS     CORRECTION       ESTIM. VALUE    STD.ERR. 

DELTA-X             METER         0.4523          -4499.0908     0.0199 
DELTA-Y             METER        -0.0829         -15105.1243     0.0052 
DELTA-Z             METER         0.3231           5993.4600     0.0063 
AMBIGUITY  4        CYCLES   -226853.673         -226853.673      0.111 
AMBIGUITY  6        CYCLES    -79030.960          -79030.960      0.117 
AMBIGUITY  8        CYCLES   -194827.679         -194827.679      0.195 
AMBIGUITY 11        CYCLES   -243270.922         -243270.922      0.083 
AMBIGUITY 13        CYCLES   -242183.051         -242183.051      0.072 
 
LENGTH OF BASELINE :      16862.0331 METER 
 

CORRELATION COEFFICIENTS : 

      QXY: -0.4137      QXZ:  0.7058      QYZ:  0.1423 
 
 
 
                                 LATITUDE          LONGITUDE       ELL. HEIGHT 
 
  BAUERNHEIM                   50 19 49.9001      8 48 54.3778       218.138 
  HAUSBERG                     50 24 41.4985      8 36 53.3806       538.017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output of double difference processing program 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

                Satellite pair:    11 – 9 
 
              I          1 
              I 
  -243266.    I            3 
              I             4 
              I              5 
              I               6 
              I                78 
  -243267.    I                  90 
              I                    1 
              I                     2 
              I                      34 
              I                        56 
  -243269.    I                          789 
              I                             0 
              I                              123 
              I                                 456 8 
              I                                    7 90123456789012345 
  -243270.    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 
 
 
                Satellite pair:     6 – 9 
 
              I                          7 
              I                           8 
  -79027.3    I                        56 
              I                       4 
              I                    123 
              I                   0 
              I                789 
  -79027.8    I               6 
              I             45 
              I            3 
              I         012 
              I       89 
  -79028.4    I      7 
              I     67 
              I   45 
              I 
              I 23 
  -79029.0    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 

 

Output of double difference processing program 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

                Satellite pair:    13 – 9 
 
              I                                  5 
              I                                   6 
  -242182.    I                                    7 
              I                                     8 
              I                                      9 
              I                                       0 
              I                                        12 
  -242184.    I                                          3 
              I                                           45 
              I                                             6 
              I                                              7 
              I                                               89 
  -242185.    I                                                 0 
              I                                                  123 
              I                                                     45 
              I                                                       678 
              I                                                          9 
  -242186.    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 
 
 
                Satellite pair:     8 – 9 
 
              I       8 
              I 
  -194822.    I 
              I        9 
              I 
              I 
              I          1 
  -194823.    I         0 
              I   4        3 
              I           2 
              I             4 
              I 
  -194823.    I    5         56 
              I     6          7 9 
              I      7          8 0 
              I                    1 3 
              I      7              2 
  -194823.    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 

 

Output of double difference processing program 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

                Satellite pair:     4 – 9 
 
              I                                              7 
              I 
  -226855.    I                                               8 
              I                                                9 
              I 
              I                                                 0 
              I 
  -226855.    I                                                  1 
              I                                                   2 
              I                                                    3 
              I                                                     4 
              I                                                      5 
  -226856.    I 
              I                                                       6 
              I                                                        78 
              I 
              I                                                          9 
  -226857.    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Output of double difference processing program 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

CHOSEN DRIVING PARAMETERS : 
--------------------------- 

SOLVE FOR STATION 2 
TROPOSPHERIC CORRECTION GIVEN IN [CYCLES] 
USE COMPUTED BIASES 
MULTIPLE OF RMS........................ :  0.30000000D+10 cycles 
ELEVATION CUTOFF ANGLE...... .......... : 15 degrees 
BIAS RECOVERY BY PROGRAMMED ALGORITHM 
L1-BAND PROCESSING 
WORKING WITH THE HALF WAVELENGTH 
TIME DIFFERENCE MEASUREMENT DATA – ORBIT DATA : 0 SECONDS 

 

NUMBER OF OBSERVATIONS : 

SATELLITE     SD-OBSERVATIONS 

     4              13 
     6              28 
     8              21 
     9              59 
    11              44 
    13              25 

CHOSEN REFERENCE SATELLITE :  9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output of double difference processing program (Continued) 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

PROCESSING RESULTS OF  1. ITERATION : 
------------------------------------- 
 

ROOT MEAN SQUARE ERROR                  0.163 

 

UNKNOWN PARAMETER   UNITS     CORRECTION       ESTIM. VALUE    STD.ERR. 

DELTA-X             METER         0.0000          -4499.0908     0.0199 
DELTA-Y             METER        -0.0000         -15105.1243     0.0052 
DELTA-Z             METER         0.0000           5993.4600     0.0063 
AMBIGUITY  4        CYCLES         0.000         -226853.673      0.111 
AMBIGUITY  6        CYCLES         0.000          -79030.960      0.117 
AMBIGUITY  8        CYCLES         0.000         -194827.679      0.195 
AMBIGUITY 11        CYCLES         0.000         -243270.922      0.083 
AMBIGUITY 13        CYCLES         0.000         -242183.051      0.072 
 
LENGTH OF BASELINE :      16862.0331 METER 
 

CORRELATION COEFFICIENTS : 

      QXY: -0.4137      QXZ:  0.7058      QYZ:  0.1423 
 
 
 
                                 LATITUDE          LONGITUDE       ELL. HEIGHT 
 
  BAUERNHEIM                   50 19 49.9001      8 48 54.3778       218.138 
  HAUSBERG                     50 24 41.4985      8 36 53.3806       538.017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output of double difference processing program 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

                Satellite pair:    11 – 9 
 
              I          1 
              I 
  0.368596    I 
              I 
              I 
              I 
              I            3 
  0.195165    I 
              I             4 
              I 
              I                   0 
              I              5                             7 
  0.217336E-01I               6789                        6 890 
              I                                   89 1  45     12  5 
              I                     2 4 67 9        0 23          4 
              I                    1      8 0  34 6 
              I                      3 5     12  5 7 
 -0.151697    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 
 
 
                Satellite pair:     6 – 9 
 
              I 2 
              I   4 
  0.218313    I  3 
              I    56 
              I 
              I       8 
              I      7                   7 
  0.649654E-01I 
              I 
              I                           8 
              I        90 
              I          1 
 -0.883826E-01I                    1   56 
              I             4 6 8   2 4 
              I           23   7  0 
              I              5 
              I                  9   3 
 -0.241731    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 

 

Output of double difference processing program 
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UNIVERSITY  OF  THE  FEDERAL  ARMED  FORCES  IN  MUNICH 
INSTITUTE  OF  ASTRONOMICAL  AND  PHYSICAL  GEODESY 

 
GPS  PHASE  DIFFERENCE  ADJUSTMENT  PROGRAM 
DOUBLE  DIFFERENCE  PROCESSING 

 
PROJECT : MACROMETER MEASUREMENTS IN HESSEN (FRG) NOV. 1984 
DATE    : 20-DEC-85 

                Satellite pair:    13 – 9 
 
              I                                          4 
              I                                           5 
  0.473720E-01I                                                        8 
              I                                  6           8       6 
              I                                         3  6        5 7 
              I                                 5  89       7    23 
              I 
 -0.130217E-01I                                                0 
              I                                      0 
              I                                   7   12      9 
              I                                                    4 
              I 
 -0.734155E-01I 
              I 
              I                                                          9 
              I 
              I                                                  1 
 -0.133809    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 
 
 
                Satellite pair:     8 – 9 
 
              I       8 
              I 
  0.238752    I        9             3 
              I          1 3     9 
              I         0   4 67  012 
              I           2  5  8 
              I 
 -0.817064E-01I 
              I 
              I 
              I 
              I 
 -0.402164    I 
              I   4 
              I 
              I    567 
              I      7 
 -0.722622    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 

 

Output of double difference processing program 
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                Satellite pair:     4 – 9 
 
              I                                                         8 
              I 
  0.936412E-01I 
              I 
              I 
              I 
              I                                                      5 
  0.287323E-01I                                                    3   7 
              I                                                       6  9 
              I 
              I                                                 0 
              I                                                9 
 -0.361765E-01I                                                     4 
              I                                                   2 
              I                                              78 
              I 
              I                                                  1 
 -0.101085    +--------------+--------------+--------------+--------------+ 
              0             15             30             45             60 
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ABSTRACT.   For precise baseline determination using 
carrier phase measurements to GPS satellites a high- 
precise orbit is necessary.  To achieve a positioning 
accuracy of 0.1 ppm (± 1 cm for a 100 km baseline) we 
need an orbit accuracy of 2 m.  The paper describes 
the necessary force-modelling for an orbit integra- 
tion up to 6 days.  The different gravitational forces 
caused by earth, moon, sun and planets together with 
the non-gravitational forces like solar radiation 
pressure and air drag are discussed in detail. 
 
 
 
 
 
 

1.  INTRODUCTION 
 

  Geodetic positioning is more and more influenced by the NAVSTAR / GPS 
satellite system.  Although the system is still in a setup state, accuracies 
of 1 ppm were achieved already using carrier phase measurements.  Precise 
ephemeris data were an essential assumption for receiving such excellent re- 
sults.  The accuracies of 1 ppm were obtained by use of precise orbit data 
computed by the U.S. Defense Mapping Agency or an U.S. commercial firm.  An 
error of ± 50 m can be assumed for this data (REMONDI 1984).  This data can 
only be accessed by "authorized" users.  The U.S. army even plans to dete- 
riorate the quality of broadcast messages which give information about or- 
bital elements of satellites.  Furthermore the tracking network currently 
in use by the U.S. institutions is not very profitable for precise posi- 
tioning in Europe.  Several institutions intend to determine satellite or- 
bits representative for the area they are interested in (NAKIBOGLU et al. 
(1985) for Canada, STOLZ et al. (1984) for Australia, LARDEN and BENDER (DMA) 
for the whole world) in order to get the highest obtainable accuracy. 
Studying the literature we find estimates varying between ± 20 cm and 20 m 
for the highest obtainable orbit accuracy. 
 
  Our institute works on the field of modelling and processing for a com- 
bined determination of station locations and satellite positions using GPS 
measurements (HEIN and EISSFELLER 1985).  In preparation of that work we 
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analyzed the different forces acting on a GPS satellite with respect to the 
required accuracy. 
 
 
 

2.  ACCURACY REQUIREMENTS AND LIMITATIONS 
 

  The accuracy which can be obtained from GPS-carrier phase difference pro- 
cessing essentially depends on the accuracy of the satellite orbit.  The 
following rule-of-thumb is a useful tool for describing the influence of 
the satellite orbit error on the baseline length. 

 
 db 
b

   =   
 dr 

ρ
                                                                                                                                                       (2-1) 

 
where     b    is the baseline length, 

          ρ    is the receiver satellite distance, 

          dr   is the orbit error, 

     and  db   is the error of the baseline length b. 
 
With  ρ = 20 000 km  we get 
 
 

 db 
b

  [ppm] dr [m] 

5 100 

1  20 

0.5  10 

0.1   2 

 
Table 1:  Baseline accuracy 

 
 
Note that for an orbit error of 20 m and a baseline length of 100 km the 
baseline can be estimated with an accuracy of 10 cm.  To achieve a baseline 
accuracy of 0.1 ppm an orbit accuracy of 2 m is necessary. 
 
  Other limiting factors concerning positioning accuracy are the atmospher- 
ic effects on the propagation of the GPS signals.  In the present paper we 
want to restrict ourselves to the force model analysis, but it should be 
mentioned that atmospheric propagation delays can cause errors of up to 
60 m in the measured receiver-satellite range.  In differential positioning 
the error depends mainly on the baseline length.  Concerning that field of 
work we want to refer to LANDAU and EISSFELLER (1985). 
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3.  PRELIMINARY CONSIDERATIONS 
 
3.1  The reference system 
 
  The following considerations about the motion of the satellite and per- 
turbing forces are only valid in an inertial reference frame.  Therefore we 
will describe all effects in the instantaneous system at epoch  t0 .  We 
use the 1950.0 reference date for locating spacecrafts and planets.  The 
origin of the system lies in the geocenter and the x-axis points to the 
true equinox at  t  =  t0 .  The z-axis is parallel to the true rotation axis 
at  t  =  t0  and the y-axis is perpendicular to both. 
 
 
3.2  The Kepler ellipse 
 
  In the case that no perturbing forces act on the satellite it flies on 
a perfect Kepler ellipse.  The position of the satellite can then be de- 
scribed by Kepler's six orbital elements  a , e , ω , i , Ω , M , 

where    a     is the semimajor axis of the ellipse 

         e     is the eccentricity 

         ω     is the argument of the perigee 

         i     is the inclination angle 

         Ω     is the right ascension of the ascending node 

         v     is the true anomaly. 
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The relations between the true anomaly  v , the mean anomaly  M  and the 
eccentric anomaly  E  are described by the equations 
 

cosv    =   
cosE  - e

 1 - e  cosE 
                                                                                                                                   (3-1) 

 
and 
 

M   =   E – e sinE . (3-2) 
 
  Those different types of anomalies will be used in the following 
 
 
 

4.  THE FORCES ACTING ON THE SPACECRAFT 
 
  In reality a lot of forces act on the satellite causing perturbations of 
the perfect elliptical orbit.  Together they form the acceleration vector 
r̈
s
 . 

 
  Its components are: 

      r̈
cb
      the central body acceleration 

      r̈
ns
      acceleration caused by the non-sphericity of the body 

      r̈
p
       gravitational attraction by moon, sun and other planets 

      r̈
d
       acceleration due to air drag 

      r̈
sr
      acceleration due to solar radiation pressure 

      r̈
te
      acceleration due to earth tides (indirect effect) 

and   r̈
oc
      acceleration due to ocean tides 

 
  The satellite's equation of motion can be described by the relation 
 

r̈   =   f � r , ṙ , p � (4-1) 
 
where  r       is the position vector of the satellite 

       ṙ       is the velocity vector 

and    p       is the vector of dynamical parameters. 
 
  The vector    is given by the relation 
 

p   =   p � r(t0) , ṙ(t0) , p'� (4-2) 
 
where  r(t0)  and  ṙ(t0)  define position and velocity at starting epoch. 
The vector  p'  consists of constant parameters for modelling air drag, 
spherical harmonic coefficients etc. 
 
  The prediction of the orbit was carried out by applying a predictor-cor- 
rector multistep algorithm for the numerical integration of the equation of 
motion (CAPELLARI et al. 1976). 
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  The influence of different accelerations on the satellite position was 
estimated by the following procedure: 
 
  We first computed the orbit under consideration of all possible forces 
over a period of 6 days and used these data as "correct" values.  Then we 
neglected the various accelerations one after the other and compared the 
positions with the "correct" ones.  The coordinate errors were transformed 
into an orbital plane system splitting the difference in an along-track 
component pointing into the direction of satellite motion, a radial compo- 
nent and a cross-component perpendicular to both.  These transformed dif- 
ferences are given in the figures in the appendix. 
 
 

 
 
       Fig. 2:  Magnitudes of forces acting on a satellite 
 
 
4.1  The gravity field of the earth 
 
  In the earth's exterior the Laplace differential equation is valid.  Thus, 
the gravity potential can be represented by a spherical harmonic expansion 
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V   =   
 G m 
r

 � 1 + � �
 aE 
r

�
n∞

n=2

 �(Cnm  cos mλ   +  Snm  sinmλ)  Pnm (sinφ)
n

m=0

 �                                  (4-3) 

 
where  aE  is the semimajor axis of the earth,  r  is the satellite-geo- 
center distance and  φ , λ  are latitude and longitude.  Gm  is the gravi- 
tational constant multiplied by the earth mass. 
 
  Consideration of the centrifugal potential leads to the definition of the 
gravitational potential  W, 
 

W   =   V + ϕ   =   V + 
 1 
2

 ωR
2 � x2 + y2 �                                                                                                           (4-4) 

 
where  ωR  is the angular velocity of the earth. 
 
  The gravity acceleration is given by the gradient of the spherical har- 
monic expansion.  The central body acceleration is defined by the main part 
of equation (4-3) 
 

V   =   
 G m 
r

  .                                                                                                                                                         (4-5) 
 
  Additional gravitational forces due to the non-sphericity are acting on 
the satellite 
 

∂
 ∂x 

 � V - V �   ,   
∂

 ∂y 
 � V - V �   ,   

∂
 ∂z 

 � V - V �   .                                                                               (4-6) 

 
  They cause perturbations of the perfect elliptical orbit. 
 
  According to ARNOLD (1970) the influence of the gravity disturbing poten- 
tial can be described by Lagrange perturbation equations  �R  =  � V - V �� . 
 

ȧ   =   
2

 µ a 
 ∙ 

∂R
 ∂M 

                                                                                                                                              (4-7a) 

 

ė   =   
1 - e2

 µ a2 e 
 ∙ 

∂R
 ∂M 

 - 
 � 1 - e2  

µ a2 e
 ∙ 

∂R
 ∂ω 

                                                                                                (4-7b) 

 

ω̇   =   -
cosi

 µ a2 � 1 - e2  sini 
 ∙ 

 ∂R 
∂i

 + 
 � 1 - e2  

µ a2 e
 ∙ 

∂R
 ∂e 

                                                                 (4-7c) 

 
.
i   =   

cosi

 µ a2 � 1 - e2  sini 
 ∙ 

∂R
 ∂ω 

 - 
1

 µ a2 � 1 - e2  sini 
 ∙ 

∂R
 ∂Ω 

                                             (4-7d) 

 

Ω̇   =   
1

 µ a2 � 1 - e2  sini 
 ∙ 

 ∂R 
∂i

                                                                                                           (4-7e) 

 

Ṁ   =   µ - 
1-e2

 µ a2 e 
 ∙ 

 ∂R 
∂e

 - 
2

 µ a 
 ∙ 

 ∂R 
∂a

                                                                                                     (4-7f) 
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with       µ   =   � 
 G m 
a3

                                                                                                                                        (4-8) 

 
For numerical perturbation computations the equations have to be integrated 
with respect to time. 
 
  The different coefficients of the spherical harmonic expansion cause secu- 
lar, long- and shortperiodic effects. 
 
  The zonal coefficients (m = 0) cause secular effects.  The largest effect 
is caused by the  C20  term.  It leads to a rotation of the apside line 
(ω,M)  and the ascending node  (Ω) .  From the perturbation equations we 
get the following variations (ARNOLD 1970) 
 

δω   =   C20  
3µ aE2

 4 ( 1 - e2 )2 a2 
 � 1 - 5 cos2i � ∙ t                                                                                     (4-9) 

 

δΩ   =   C20  
3µ aE2

 2 ( 1 - e2 )2 a2 
  cosi∙ t                                                                                                     (4-10) 

 

δM   =   C20  
3µ aE2

 4 ( 1 - e2 )
3
2�  a2 

 � 1 – 3 cos2i � ∙ t                                                                                (4-11) 

 
where  µ  is the angular velocity of the satellite's motion around the 
earth. 
 
  The acceleration due to the C20 term acting on the GPS satellite is 

about  5∙10-5 m/s2  (see figure 2). 
 
  The orbital elements  a , e  and  i  are not affected by secular pertur- 
bations.  A neglection of the C20 term causes an error of up to 10 000 m 
in the along-track component after an integration of 2 days.  A considera- 
tion of coefficients up to degree and order 8 seems to be sufficient for 
integration spans of a few days.  The error of neglecting higher order in- 
fluences during a period of 6 days causes errors smaller than 10 cm (see 
figure 3). 
 
 
4.2  Attraction by additional bodies 
 
  The gravitational central body force acting on a satellite can be easily 
modelled by the relation 
 

r̈
p

   =   -G mp ∙ � 
x - x

p

 � x - x
p

 �
3

 
  +  

x
p

 � x
p

 �
3

 
 �                                                                                                  (4-12) 

 
where   G   is the gravitational constant 
        mp  is the mass of the body 
        x

p
  is the position vector of the celestial body 

            in the inertial reference frame 
        x   is the position vector of the satellite 
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  The mass of satellite is very small, so that we can assume that the sat- 
ellite does not have any significant acceleration on the earth or other 
planets. 
 
  The gravitational accelerations of sun and moon cause secular variations 
of the argument of perigee  (ω)  and the right ascension of the ascending 
node  (Ω) . 
 
  KOZAI (1959) gives the following relations for the variations caused by 
the moon 
 

 dω 
dt

   =   
 3 
4

 
 ωM

2 
µ

 mM  
1

 � 1 - e2  
 �2 – 

 5 
2
sin2i + 

 1 
2
e2�  �1 – 

 3 
2
sin2iM�                                (4-13) 

 
 dΩ 
dt

   =   
 3 
4

 
 ωM

2 
µ

 mM  
 cosi

 � 1 - e2  
 �1 + 

 3 
2
e2�  �1 – 

 3 
2
sin2iM�                                                        (4-14) 

 
where    ωM is the angular velocity of the moon's motion 
 around the earth 

         mM is the mass of the moon in units of the 
 earth mass. 
 
  The equations for the sun's perturbation are very similar.  We only have 
to insert the corresponding values for  mM , ωM  and  iM .  The influence 
of the moon is described in figure 4 and the influence of the sun in 
figure 5.  Note that the influence in radial direction is very small in 
comparison to the secular variation in the along-track and the periodic 
variation in the cross-track component. 
 
  The influence of the gravitational forces of the planets Mercury, Venus, 
Mars, Jupiter, Saturn, Uranus, Neptune and Pluto causes orbit perturbations 
which are described in figure 6.  After an integration period of 6 days the 
influence is smaller than 30 cm in all three components. 
 
 
4.3  Acceleration due to earth tides 
 
The attraction by third bodies causes a deformation of the earth's sur- 
face.  This deformation leads to a variation of the potential.  According 
to MELCHIOR (1983) the tidal potential is given in first-order approxima- 
tion by the relation 
 

W2   =   
 G mp 

d3
 RE
2 P2 (cosz)                                                                                                                           (4-15) 

 
where   mp is the mass of the disturbing body 

        d is the distance from the geocenter to the planet 

        RE is the mean earth radius 

        P2 is the Legendre polynomial of order 2 

and     z is the geocentric zenith distance of the spacecraft. 
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  The potential caused by the non-rigidity of the earth is defined as 
 

Vte   =   � 
 RE 
r

 �
3

∙ k2∙ W2                                                                                                                               (4-16) 

 
where  r  is the distance between the geocenter and the satellite and  k2 
is the Love number of second degree.  The indirect effect of sun and moon 

on the earth's gravity potential causes an acceleration of about 10-9 m/s2 
on a GPS-spacecraft (see fig. 2).  The effect on satellite positions is 
described in figure 7. 
 
  The acceleration due to ocean tides is a quarter of magnitude smaller 
than the earth tide effects.  The modelling of that acceleration is rather 
complex, because it is influenced by coastline geometry etc.  We used a 
Schwiderski model for computing the influence of ocean tide on GPS-space- 
craft positioning.  The perturbations due to these effects are given in 
figure 8. 
 
 
4.4  Solar radiation pressure 
 
  The acceleration due to solar radiation pressure is the most difficult 
one to model.  Usually the force can be described in a first approximation 
by the relation 
 

r̈
sr

   =   ν ∙ Ps ∙ Cr ∙ 
 A 
m

 ∙ as2 ∙ 
� x - x

s
 �

 � x - x
s

 �
3

 
                                                                                            (4-17) 

 
where    ν is the eclipse factor (0 or 1), depending on whether 
 the satellite is in the earth's shadow or not 

         Ps is the solar pressure in N m2⁄  

         Cr is the reflectivity constant 

         A is the effective cross-sectional surface of 
 the satellite 

         m is the mass 

         as is the semimajor axis of the earth's orbit around 
 the sun 

         x is the position vector of the satellite 

and      x
s
 is the position vector of the sun. 

 
  The equation describes the direct effect of the solar radiation pressure 
only in direction of the sun-satellite connection line.  The magnitude of 

the acceleration for a GPS-spacecraft is about  1∙10-7m/s2  (see fig. 2). 
Neglection of this force causes errors of up to 400 m after two day inte- 
gration and of 1000 m after six day integration intervals (see fig. 9). 
The reflection of the sunbeams on the clouds and the earth itself causes a 
second radiation pressure term which is only 1% of the direct effect for 

GPS satellites (1∙10-9m/s2) (RIZOS and STOLZ 1985). 
 
  There are many uncertainties in the modelling of solar radiation forces 
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due to changes in the solar constant, the different reflectivity constants 
of the different materials, the determination of the effective area A, etc. 
 
  Refinements of the solar radiation force models lead to the consideration 
of a y-biased acceleration along the solar panel beam (FLIEGEL et al. 1985). 
Several effects can cause such an acceleration, like misalignments in the 
solar panels (they are not perfectly perpendicular to the line between sun 
and satellite) and thermal radiation due to ventilation of the spacecraft. 
The effect of structural misalignments is given by FLIEGEL et al. (1985) 
 

y   =   r ∙ Ps ∙ 
 A 
m

 ∙ ( 2d1 + d2 + d3 )                                                                                                         (4-18) 
 
where  r is the reflectivity of the solar panel 

       d1 is the misalignment angle of the solar sensor 

       d2 is the angle of one solar panel with respect 
 to the other 

       d3 is the yaw altitude control bias. 
 

  The magnitude of the y-bias acceleration is about 0.5∙10-9m/s2. 
Neglection may cause an error of 2500 m after 14 day integration period. 
 
  The motion of the satellite and therefore the variation of the effec- 
tive area A can be neglected since the solar panels are oriented by 
stepping motors for presenting the maximum surface to the sun. 
 
  Due to difficulties in modelling the solar radiation pressure causes the 
largest orbit errors.  It might be difficult to model the effect with an ac- 
curacy better than 1 m for an integration period of several days. 
 
 
 

5.  CONCLUSIONS 
 
  We analyzed the behaviour and the magnitude of forces acting on a GPS 
satellite and found that 

   -  an approximation of the earth's gravity field up to degree and 
      order 8 is sufficient for modelling the perturbations due to the 
      non-sphericity of the earth.  Neglection of higher degree har- 
      monics causes an error smaller than 5 cm. 

   -  a consideration of gravitational forces due to third bodies is 
      necessary for sun and moon.  The influence of planets can be 
      neglected when extrapolating over periods of a few days. 

   -  solar radiation pressure plays a major role in the force model 
      analysis.  It causes orbit errors of hundred of meters after few 
      revolutions.  More than any other force the radiation pressure 
      influences the radial component of the satellite's orbit (see 
      fig. 9).  An exact determination of this influence is absolute 
      necessary for the computation of high precise orbits. 

   -  the forces due to the indirect tidal effect of the solid earth 
      causes after few revolutions an orbit error of more than 1 m and 
      needs to be considered. 
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   -  ocean tides, gravitational forces of planets, albedo pressure and 
      polar motion cause maximum orbital errors of 20 cm.  Considering 
      these influences by themselves they seem to be negligible.  But 
      note that the sum of them can cause orbit errors of about 1 m. 
      Therefore we must consider these influences if we intend to deter- 
      mine satellite orbits with an accuracy below 1 m. 

   -  the influence of air drag on GPS satellites can be neglected due 
      to the high altitude of the satellites. 
 
Because uncertainties in the modelling of the solar radiation pressure, we 
believe that an orbit determination with an accuracy of better than 1 m is 
at the moment hypothetical. 
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A P P E N D I X 
 
 

 
 
       Fig. 3:  Influence of spherical harmonics of degree and order 
                greater than 8 on satellite's position 
 
 
 
 

 
 
       Fig. 4:  Influence of the gravitational force by the moon 
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       Fig. 5:  Influence of the sun's gravitational force on 
                satellite's position 
 
 
 
 

 
 
       Fig. 6:  Influence of the planets 



 

207 

 
 
 

 
 
       Fig. 7:  Influence of solid earth tides 
 
 
 
 
 

 
 
       Fig. 8:  Influence of ocean tides 
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       Fig. 9:  Influence of solar radiation pressure 
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