
SPRING 2025, April 28–29, 2025, Nuremberg, Germany

Quality of Inconsistencies in (Windows) Memory Dumps

Lisa Rzepka

Universität der Bundeswehr München

FI CODE

lisa.rzepka@unibw.de

Harald Baier

Universität der Bundeswehr München

FI CODE

harald.baier@unibw.de

Abstract. Acquiringmainmemory is common during foren-

sic investigations, as it typically contains valuable infor-

mation which is hardly available by other methods, e.g.,

information about executed processes, running network

connections or encryption keys. In practice the main mem-

ory is mostly obtained using kernel-level software tools

which run concurrently to the system. This introduces a phe-

nomenon called page smearing, i.e., content mismatches or

inconsistencies, which may influence the subsequent foren-

sic analysis of the acquired memory dumps. In order to

measure the impact of inconsistencies on the analysis, suit-

able indicators and quality assessments are needed. This

work presents the state of the art regarding inconsistency

considerations and points to future directions.

1 Introduction

Random-access memory (RAM) might contain information

which is not obtainable from other sources, for example,

encryption keys or running network connections. Therefore,

it is common practice to acquire the content of RAM in a

file which is called a memory dump. This copy of memory

is typically retrieved on a running system, as RAM content

disappears after powering it off. The concurrency of the

running system and the kernel-level memory acquisition

tool causes inconsistencies in the obtained memory dumps,

i.e. content mismatches or page smearing [1], as the main

memory is acquired sequentially and the memory pages

may change during this process.

The occurrence of such inconsistencies appears to be

normal in Linux and Windows operating systems [3, 7]. For

this reason, the impact of inconsistencies on the subsequent

analysis of memory dumps, i.e., their quality, needs to be

researched. In this work we present the state of the art of

inconsistency-induced quality considerations of RAM and

point to further research directions.

2 Inconsistencies: The Story so far

In this section we present two of our research papers which

address the quantification of inconsistencies and a first at-

tempt to measure the quality of memory dumps using two

inconsistency indicators.

2.1 Quantitative Assessment of Inconsisten-
cies in Windows

Rzepka et al. [7] conduct a quantitative assessment of in-

consistencies present in Windows memory dumps by us-

ing two inconsistency indicators: 1) causal inconsistencies

within self-injected memory data structures as introduced

by Ottmann et al. [3] and 2) inconsistencies in memory man-

agement kernel data structures, namely the virtual address

descriptor (VAD) tree.

Causal consistency is defined by Ottmann et al. [3] as

follows: In two memory regions r1 and r2 the two events

e1 and e2 are happening, respectively. The event e1 is

the cause of event e2. If both events, and in particular the

cause of event e2, are in the memory snapshot generated by

the memory acquisition tool, the snapshot is called causally
consistent. This notion of consistency is measured in [3] by

using a dedicated software called pivot program.

Rzepka et al. [7] propose and implement a Volatility3
1
[2]

plugin to measure VAD inconsistencies. Their plugin counts

all nodes in the VAD tree while traversing it and compares

this number to a variable found in the kernel symbol table

called VadCount. If the two numbers differ, an inconsis-

tency is found.

In order to apply both approaches, a dataset is needed.

During their evaluation Rzepka et al. [7] investigate the

impact of different influencing factors on the number of

inconsistencies, in particular, system workload (defined by

an activity level), execution time of the memory acquisition

toolWinPmem
2
and number of threads of the pivot program.

The analysis is based on more than 180 memory dumps,

which Rzepka et al. [7] generate in an automated approach.

As a result, the system workload seems to have a stronger

impact on the execution time than the number of threads.

This supports the assumption that a higher workload results

in a lower CPU share of WinPmem per time frame, which

leads to a longer acquisition execution time. Additionally,

both activity level and execution time influence the number

of VAD inconsistencies. Most of the inconsistencies are

found in background processes of the Windows operating

system (e.g. services). Regarding causal inconsistencies, the

influence of the higher number of threads is only visible

when using at least 8 threads for the pivot program. This

1
https://github.com/volatilityfoundation/volatility3

2
https://github.com/Velocidex/WinPmem

mailto:lisa.rzepka@unibw.de
mailto:harald.baier@unibw.de


supports the assumption that the pages of the pivot pro-

gram change more frequently due to the higher amount of

threads which in turn leads to a higher amount of causal

inconsistencies.

2.2 TowardsQuality

As a step towards a reliable metric for assessing the quality

of memory dumps, Rzepka et al. [6] present a scenario-

based evaluation method to test memory acquisition tools

regarding their ability to retrieve certain forensic artifacts.

In their work, Rzepka et al. [6] generate a dataset consisting

of 1600 Windows memory dumps in an automated way us-

ing ForTrace++
3
[9]. The authors focus on four forensically

relevant scenarios, in particular, the ability of the analysis

tool Volatility to retrieve artifacts of a running process (sce-

nario 1), an opened network connection (scenario 2), an

encryption key of a VeraCrypt container (scenario 3) and an

opened image file (scenario 4). For each scenario 100 mem-

ory dumps are generated which are afterwards analyzed

regarding the number of causal and VAD inconsistencies

and the ability to retrieve the corresponding artifact with

either a structured or unstructured analysis approach. The

structured analysis methods rely on kernel data structures

which are parsed during the analysis. In contrast, unstruc-

tured analysis methods scan the whole memory dump using

a technique called pool tag scanning [8].

In summary, four memory acquisition tools were tested:

Belkasoft’s RAM Capturer
4
, FTK Imager

5
and Magnet RAM

Capture
6
, which are closed-source but free, and WinPmem,

which is open-source. As a result, each scenario shows a

correlation between the execution time and the number

of inconsistencies, confirming the results of Ottmann, Bre-

itinger, and Freiling [3] and Rzepka et al. [7]. Moreover,

there seems to be a relationship between the number of

VAD and causal inconsistencies and how often the process

can be found with structured analysis methods in scenario

1. This supports the assumption that with more inconsis-

tencies more relevant data structures are affected which

leads to a less found artifact. There were, however, no nega-

tive effects when using an unstructured analysis approach

regarding the ability to find the artifact. A similar result

is found in scenarios 2 and 3: the unstructured analysis

method seems to be more robust against inconsistencies,

whereas the structured analysis method is less effective.

However, inconsistencies seem to have less influence on

network connections in general, as the connection is found

in 90% of the generated memory dumps.

As scenario 4 also uses an unstructured analysis approach,

we would expect to either find the opened image file reli-

ably in all memory dumps or to find the image file less

frequently with a higher amount of inconsistencies. Sur-

prisingly, neither is the case – the acquisition tool with

3
https://gitlab.com/DW0lf/fortrace

4
https://belkasoft.com/ram-capturer

5
https://www.exterro.com/digital-forensics-software/ftk-imager

6
https://www.magnetforensics.com/resources/magnet-ram-capture/

the highest amount of inconsistencies generates memory

dumps which contains the image file in almost all cases (see

Table 1). In contrast, the memory dumps generated by the

other three tools contain the image file in less than 50% of

the dumps. In conclusion, tool 3 seems to acquire the pages

in a different way compared with the other acquisition tools.

In summary, unstructured analysis approaches seem to

be more robust against inconsistencies. However, unstruc-

tured analysis methods do not give any context where the

information was found which can be misleading during

an investigation. Moreover, the number of inconsistencies

seems to influence structured analysis methods which rely

on kernel data structures and are therefore more vulnerable

to changes during the acquisition process.

3 Conclusion and Future Work
Section 2 summarized state of the art to measure the qual-

ity of inconsistencies typically found in Windows memory

dumps. However, the proposedmethod does not consider in-

consistencies in other kernel data structures and how these

inconsistencies relate to each other. Therefore, more re-

search in redundant information in kernel data structures is

needed to find other inconsistency indicators. There is an on-

going work to investigate different paths to data structures

and whether they hold information which can be used as

inconsistency indicators in Linux operating systems using

a kernel object graph, as proposed by Pagani and Balzarotti

[5]. Moreover, the relationship between inconsistencies in

other data structures and the presented VAD inconsistencies

should be analyzed in order to expand on the VAD being a

suitable indicator, and therefore be regarded as a reliable

metric, for representing the consistency of the operating

system.

The concurrency of the operating system is an important

factor in generating consistent memory dumps. A straight-

forward method to acquire a consistent memory dump is

therefore to halt the whole system and dump the memory

which is called instantaneous consistency by Ottmann, Bre-

itinger, and Freiling [4]. However, this is nearly impossible

to achieve when the system in question is not virtualized.

Hence, we suggest to research the ability of the operating

system to prioritize processes and how prioritizing the mem-

ory acquisition process may influence the consistency of

the generated memory dump. In particular, we currently

measure the impact of adapting the process priority of the

acquisition program to the quantity of inconsistencies using

the open source acquisition tool WinPmem.

Additionally, research regarding the ability of memory

analysis tools to extract certain artifacts is needed. We sug-

gest to do experiments on a dataset consisting of instanta-
neous snapshots and analyze thememory dumps concerning

our proposed inconsistency indicators, as well as whether

other inconsistencies are present in the memory snapshots.

We point out that the ability to retrieve certain artifacts

from memory, e.g. artifacts of opened image files, needs

to be further researched. In particular, we need to investi-



Tool 1 Tool 2 Tool 3 Tool 4 Ideal Snapshot

Mean acquisition time in min. 2.37 3.18 8.59 3.21 –

Found picture (unstructured) 49/100 49/100 99/100 45/100 10/10

No. analyzable memory dumps 92/100 56/100 78/100 90/100 10/10

No. VAD inconsistent memory dumps 92 56 78 90 0

Total VAD inconsistencies 46092 59686 119946 67146 0

Mean VAD inconsistencies 501 1066 1538 746 0

No. analyzable memory dumps 95/100 97/100 86/100 93/100 10/10

No. causally inconsistent memory dumps 71 73 74 72 0

Total causal inconsistencies 1569 1077 3628 1385 0

Mean causal inconsistencies 16 11 41 15 0

Table 1: Overview of the results of scenario 4, including in how many memory dumps the picture could be found, the

number of VAD and causal inconsistencies, as well as in how many memory dumps those inconsistencies were found.[6]

gate the consequences of inconsistencies present in memory

dumps and their impact on analysis tools in retrieving foren-

sic artifacts. To do so, we need to identify the exact changes

made to the pages of the relevant data structures during

the memory acquisition process. We suggest to generate

a series of memory snapshots, e.g. a snapshot after each x

seconds, during the memory acquisition, and to compare

the snapshots with each other to find any changes in the

corresponding data structures.

References
[1] Andrew Case and Golden G Richard III. “Memory

forensics: The path forward”. In: Digital Investigation
20 (2017), pp. 23–33. issn: 1742-2876. url: https://doi.

org/10.1016/j.diin.2016.12.004.

[2] Michael Hale Ligh et al.The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linux, and
Mac Memory. Wiley, 2014.

[3] Jenny Ottmann, Frank Breitinger, and Felix Freiling.

“An Experimental Assessment of Inconsistencies in

Memory Forensics”. In: ACM Trans. Priv. Secur. 27.1
(Dec. 2023). issn: 2471-2566. doi: 10.1145/3628600. url:

https://doi.org/10.1145/3628600.

[4] Jenny Ottmann, Frank Breitinger, and Felix Freiling.

“Defining Atomicity (and Integrity) for Snapshots of

Storage in Forensic Computing”. In: Proceedings of the
Digital Forensics Research Conference Europe (DFRWS
EU) 2022 (Oxford). Mar. 29–Apr. 1, 2022. url: https:

//dfrws.org/presentation/defining- atomicity- and-

integrity - for - snapshots - of - storage - in - forensic -

computing/.

[5] Fabio Pagani and Davide Balzarotti. “Back to the

Whiteboard: a Principled Approach for the Assess-

ment and Design of Memory Forensic Techniques”.

In: 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019,

pp. 1751–1768. isbn: 978-1-939133-06-9. url: https :

/ /www.usenix . org / conference / usenixsecurity19 /

presentation/pagani.

[6] Lisa Rzepka et al. “A Scenario-BasedQuality Assess-

ment of Memory Acquisition Tools and its Inves-

tigative Implications”. In: Proceedings of the Digital
Forensics Research Conference Europe (DFRWS EU) 2025
(Brno). Apr. 1–4, 2025. url: tbd.

[7] Lisa Rzepka et al. “Causal Inconsistencies Are Normal

in Windows Memory Dumps (Too)”. In: Digital Threats
5.3 (Oct. 2024). doi: 10.1145/3680293. url: https://doi.

org/10.1145/3680293.

[8] Andreas Schuster. “Pool Allocations as an Informa-

tion Source in Windows Memory Forensics”. In: IT-
Incident Management & IT-Forensics - IMF 2006. Bonn:
Gesellschaft für Informatik e. V., 2006, pp. 104–115.

isbn: 978-3-88579-191-1.

[9] Dennis Wolf, Thomas Göbel, and Harald Baier.

“Hypervisor-based data synthesis: On its potential to

tackle the curse of client-side agent remnants in foren-

sic image generation”. In: Forensic Sci. Int. Digit. In-
vestig. 48 (2024), p. 301690. doi: 10.1016/J.FSIDI.2023.
301690. url: https : / /doi .org/10 .1016/ j . fsidi .2023 .

301690.

https://doi.org/10.1016/j.diin.2016.12.004
https://doi.org/10.1016/j.diin.2016.12.004
https://doi.org/10.1145/3628600
https://doi.org/10.1145/3628600
https://dfrws.org/presentation/defining-atomicity-and-integrity-for-snapshots-of-storage-in-forensic-computing/
https://dfrws.org/presentation/defining-atomicity-and-integrity-for-snapshots-of-storage-in-forensic-computing/
https://dfrws.org/presentation/defining-atomicity-and-integrity-for-snapshots-of-storage-in-forensic-computing/
https://dfrws.org/presentation/defining-atomicity-and-integrity-for-snapshots-of-storage-in-forensic-computing/
https://www.usenix.org/conference/usenixsecurity19/presentation/pagani
https://www.usenix.org/conference/usenixsecurity19/presentation/pagani
https://www.usenix.org/conference/usenixsecurity19/presentation/pagani
tbd
https://doi.org/10.1145/3680293
https://doi.org/10.1145/3680293
https://doi.org/10.1145/3680293
https://doi.org/10.1016/J.FSIDI.2023.301690
https://doi.org/10.1016/J.FSIDI.2023.301690
https://doi.org/10.1016/j.fsidi.2023.301690
https://doi.org/10.1016/j.fsidi.2023.301690

	Introduction
	Inconsistencies: The Story so far
	Quantitative Assessment of Inconsistencies in Windows
	Towards Quality

	Conclusion and Future Work

