
Find my IoT Device – An Efficient and Effective
Approximate Matching Algorithm to Identify

IoT Traffic Flows

Thomas Göbel1, Frieder Uhlig2, and Harald Baier1

1 Research Institute CODE, Universität der Bundeswehr München, Munich,
Germany

2 Technical University Darmstadt, Darmstadt, Germany
{thomas.goebel,harald.baier}@unibw.de
frieder.uhlig@stud.tu-darmstadt.de

Abstract. Internet of Things (IoT) devices has become more and more
popular as they are limited in terms of resources, designed to serve only
one specific purpose, and hence cheap. However, their profitability comes
with the difficulty to patch them. Moreover, the IoT topology is often
not well documented, too. Thus IoT devices form a popular attack vector
in networks. Due to the widespread missing documentation vulnerable
IoT network components must be quickly identified and located during
an incident and a network forensic response. In this paper, we present a
novel approach to efficiently and effectively identify a specific IoT device
by using approximate matching applied to network traffic captures. Our
algorithm is called Cu-IoT and is publicly available. Cu-IoT is superior to
previous machine-learning approaches because it does not require feature
extraction and a learning phase. Furthermore, in the case of 2 out of 3
datasets, Cu-IoT outperforms a hash-based competitor, too. We present
an in-depth evaluation of Cu-IoT on different IoT datasets and achieve
nearly 100% classification performance in terms of accuracy, recall, and
precision, respectively, for the first dataset (Active Data), and almost
99% accuracy and 84% precision and recall, respectively, for the second
dataset (Setup Data), and almost 100% accuracy and 90% precision and
recall, respectively, for the third dataset (Idle Data).

Keywords: Internet of Things (IoT) · IoT Device · Device Classifica-
tion · Device Identification · Network Forensics · Network Traffic Finger-
printing · Approximate Matching · Multi Resolution Hashing (MRSH) ·
Cuckoo Filter

1 Introduction

Typically, Internet of Things (IoT) devices have limited security capabilities,
because their hardware is often too weak and their software is often too focused
on a specific use case. There have been many documented security flaws found
in the past on consumer IoT devices such as baby monitors, security cameras,

2 Göbel, Uhlig & Baier

doorbells or smart thermostats [31]. As patching is practically impossible, IoT
devices are a primary target for attackers, especially considering that many of
these devices have an extremely long lifetime (e.g., smart home devices such as
a coffee maker or washing machine). After a successful attack, compromised IoT
devices are often used as relays for further attacks. For instance, IoT devices
have been used in the past to build large-scale botnets such as Mirai or Bashlite
[21, 18]. The malware targets unprotected IoT devices and turn them into bots.
The attacker is then able to launch the actual attack (e.g., a distributed denial-
of-service (DDoS) attack) by commanding all bots through a central Command-
and-Control (C&C) server.

A well-known target of such an IoT-based DDoS attack was the website
Krebs on Security3. According to Akamai (the digital security service provider
of the website Krebs On Security), the DDoS attack was close to 620 Gbps
(Gigabits of traffic per second). A second prominent victim of such an attack
paradigm was the French WebHost and cloud service provider OHV4, where the
DDoS attack traffic peak using Mirai malware was 1.1 Tbps (Terabits of traffic
per second). These massive attacks highlight the risks resulting from inadequate
security mechanisms in IoT devices.

However, besides the missing patching ability and the ease with which the
security mechanisms of IoT devices typically can be circumvented, the topology
of networks comprising IoT network devices are often documented poorly [14].
Hence it is important to support the network forensic process to efficiently and
effectively identify IoT devices in a network on base of their network traffic
fingerprint. The findings of the survey [32] show that there is still a general lack
of IoT forensics tools. The authors state that further research should focus on
developing tools in IoT forensics to identify and acquire relevant IoT data.

In this paper, we show the efficiency and effectiveness of approximate match-
ing to identify common IoT devices using their network captures. We present
our algorithm Cu-IoT, which is an adapted version of the mrsh-cf algorithm [13]
(the name Cu reminds on both the use of Cuckoo filters to represent the approx-
imate hash and the task ”See you” to find an IoT device). We show that Cu-IoT
is superior to previous machine-learning approaches [1, 20], because it does not
require feature extraction and a learning phase. Furthermore, Cu-IoT outper-
forms its hash-based competitor LSIF [8] which is based on the Nilsimsa hash in
one out of three trials. We present an in-depth evaluation of Cu-IoT on three dif-
ferent datasets that include network traffic collected of a variety of different IoT
devices. The captures include data of three different device states, specifically in
their setup-phase [20], on an idle state [25], or on an active-state [9]. We achieve
between 83% and almost 100% classification performance in terms of accuracy,
recall, and precision, depending on the respective dataset. Our evaluation shows
that the classification performance of Cu-IoT is at least as good as related work

3 https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
4 https://arstechnica.com/information-technology/2016/09/botnet-of-145k-cameras-

reportedly-deliver-internets-biggest-ddos-ever/

Find my IoT Device 3

algorithms without the computational overhead for feature extraction and model
training typically associated with machine learning algorithms.

In detail the contributions of this paper are as follows:

1. Detailed presentation of our own approach Cu-IoT, an adapted version of
the approximate matching algorithm mrsh-cf, to efficiently and effectively
identify an IoT device based on the approximate hash of its network traffic
capture.

2. Full publication of Cu-IoT including its source code to the digital forensics
community via the website github.com/dasec/Cu-IoT.

3. Evaluation of Cu-IoT on three different IoT device traffic datasets containing
many different IoT devices in different device states, such as setup-, idle-,
and active-phase.

4. Comparison of Cu-IoT with its competitors from both the field of Locality-
Sensitive Hashing, i.e., LSIF and TLSH, as well as from feature-extraction
based approaches.

The remainder of this paper is organized as follows. Section 2 presents related
work focusing on IoT device identification. Section 3 provides background infor-
mation on approximate matching in general as well as information on the IoT
device datasets used for our evaluation. Section 4 describes our selection process
to find an appropriate classical approximate matching method for IoT device
identification. Section 5 then shows how Cu-IoT works in detail. Moreover, this
section presents the results of our experimental evaluation of Cu-IoT and pro-
vides a comparison with its competitors. Section 6 summarizes this paper and
points to tasks for future work.

2 Related Work

In this section, we present related work to identify an IoT device based on
its network capture. Identifying IoT devices based only on their MAC address
and DHCP negotiation is an unreliable solution on a large scale, as stated
by Sivanathan et al. [29], since these can be faked, spoofed, or changed eas-
ily. Therefore, many different approaches in natural language processing, multi-
class machine learning classifiers, one-class classifiers, and neural networks have
been published recently. We first turn to the class of machine learning-based
approaches and then discuss an approximate hash-based method.

We first turn to machine learning approaches. Aksoy proposes in his Ph.D.
thesis an IoT identification method called SysID [2], which was later published
jointly with Gunes [1]. SysID can classify an IoT device using machine learning
and genetic algorithms. SysID extracts features of submitted TCP/IP packet
headers based on genetic algorithms and then applies machine learning algo-
rithms (e.g., Decision Trees) to classify the device based on the protocol features
selected by the genetic algorithm. Miettinen et al. published IoT Sentinel [20].
IoT Sentinel follows a similar approach to SysID, i.e. it uses packet headers for

4 Göbel, Uhlig & Baier

identification and subsequent security measures of IoT devices. It identifies de-
vice types by its device signature using a machine learning-based classification
model. Another interesting approach was published by Bezerra et al., who pro-
posed the Internet of Things Detection System (IoTDS) [4], which generates a
device signature by extracting features from the device’s CPU utilization and
temperature, memory consumption, and the number of running tasks, meaning
that it does not make use of network traffic data. This approach was evaluated
using four different one-class classification algorithms (Elliptic Envelope (EE),
Isolation Forest, Local Outlier Factor, and One-class Support Vector Machine
(OSVM)). Other approaches, like that of Dong et al. [10] and Bai et al. [3], use
neural networks for IoT traffic fingerprinting. Unlike these supervised machine
learning algorithms, our approach Cu-IoT does not require feature extraction,
training, and multiple adjustments of a machine learning model, which typically
requires expert knowledge and high computational power.

On the other hand, an algorithm similar to established approximate match-
ing methods was used to identify IoT devices. Charyyev and Gunes introduced
Locality-Sensitive IoT Fingerprinting (LSIF) [9], which is described as a frame-
work and makes use of the Nilsimsa algorithm [30] for the detection of devices in
networks. Nilsimsa is a Locality-Sensitive Hashing algorithm originally proposed
for spam detection. In contrast to our algorithm Cu-IoT, LSIF is not publicly
available. Nevertheless, based on the datasets used in [9] and public implementa-
tion of Nilsimsa, we can show that our approach is superior to LSIF concerning
run time efficiency and detection performance, respectively. Furthermore, our
algorithm comes with a publicly available implementation.

3 Approximate Matching and IoT Device Datasets

This section introduces approximate matching algorithms and then turns to IoT
device datasets, which we will use for our evaluation.

3.1 Approximate Matching Algorithms

Approximate matching is called fuzzy hashing or similarity hashing, too. It has
already been used in a variety of contexts, its baseline, however, is to identify
a known digital artefact from a given dataset automatically. A typical use case
is the matching of binary data, such as documents, executables, memory dumps
and network traffic, against the filter of the approximate matching algorithm.
For example, approximate matching has been used for file recognition [5], for
malware detection [24] [16] and as a data loss prevention solution [12].

Compared to cryptographic hashes, fuzzy hashes are robust to changes in the
input. While cryptographic hashes change entirely when a single bit is flipped
(so-called avalanche effect), fuzzy hashes account for this change with a hash
similar to the unchanged original.

Multi Resolution Similarity Hashing (MRSH) is a well-established ’classical’
approximate matching algorithm. It comprises three steps: (i) selecting features

Find my IoT Device 5

from the input, (ii) generating a digest, and (iii) comparing that digest with
another. During the comparison in the third step MRSH, as well as other approx-
imate matching algorithms, rely on a specific filter to look up familiar hashes.
Several iterations of the original MRSH algorithm [26] have been published in the
past, such as mrsh-v2 [6], mrsh-net [7], and mrsh-hbft [17], all using different
filters and the most efficient ones at the time of their release. The latest version
of the MRSH algorithms is known as mrsh-cf [13]. It is equipped with a Cuckoo
filter which is considered the fastest lookup filter and is superior to the Bloom fil-
ter of previous versions of the algorithm [11]. While other approximate matching
algorithms are built to compare a specific file or data types, MRSH can compare
data regardless of its context, but only based on its content at the byte-level,
making it universally applicable.

Further, besides the previously mentioned MRSH family, other well-known
approximate matching algorithms exist, such as the sdhash [27] algorithm and
the de-facto standard algorithm ssdeep [15] which is known to be used on
Google’s VirusTotal platform. Trendmicro’s TLSH [19] algorithm is also one of
the Locality-Sensitive Hashing (LSH) algorithms, along with the LSIF algorithm
mentioned above.

3.2 IoT Device Datasets

We evaluate our algorithm Cu-IoT on three different publicly available datasets
containing 22 IoT devices that are on an active state [9], 31 IoT devices that are
being set up [20], and 81 IoT devices that are on an idle state [25], respectively.
All three IoT datasets originate from the network activities of various illumina-
tion devices, smart plugs, doorbells, cameras, coffeemakers, radios, TVs, smart
speakers (e.g., Amazon Echo, or Google Home), and other smart home appli-
ances. The same devices from all three datasets that we used for our research
are shown in Table 1.

The traffic flow data of the first IoT dataset [9] was collected over 20 days, i.e.,
it contains measurements for each of the 22 devices over a period of 20 days. The
data within this dataset represents network traffic collected when users actively
interacted with the IoT devices. Charyyev and Gunes assembled this dataset
for testing their IoT traffic flow identification approach using Locality-Sensitive
Hashes.

The second IoT dataset [20] represents the traffic emitted during the initial
setup phase of 31 smart home IoT devices in a network of 27 different device
types (4 types are represented by two devices each) and different vendors (e.g., D-
Link, Edimax Plug, Hue, TP-Link Plug, etc.). However, only 23 of these devices
have at least 20 recorded traces from their setup phase available. Therefore, we
used precisely these 23 devices in our research.

The third IoT dataset [25] consists of 81 smart home IoT devices that are
in an idle state, i.e., when there is no interaction with the device. These IoT
devices are deployed in two testbeds, one at the Northeastern University, US,
and in the Imperial College London, UK. The dataset consists of traces for 55
devices each. For 26 devices, these traces are available twice. However, we use

6 Göbel, Uhlig & Baier

Table 1. List of IoT devices in the three datasets used in our evaluation

First Dataset [9]
(Active Data)

Second Dataset [20]
(Setup Data)

Third Dataset [25]
(Idle Data)

1 Chime Doorbell D-Link WiFi Day Camera DCS-930L Allure Speaker with Alexa

2 D-Link Cam936L D-Link Door & Window sensor Amazon Cloud Cam

3 Gosuna LightBulb D-Link Connected Home Hub DCH-G020 Amcrest Cam

4 Gosuna Socket D-Link HD IP Camera DCH-935L Anova Sousvide

5 Goumia Coffemaker D-Link Smart plug DSP-W215 Apple TV

6 LaCrosse AlarmClock D-Link Water sensor DCH-S160 Behmor Brewer

7 Lumiman Bulb600 D-Link Siren DCH-S220 Blink Cam

8 Lumiman Bulb900 D-Link WiFi Motion sensor DCH-S150 Blink Hub

9 Lumiman SmartPlug Philips Hue Bridge model 3241312018 Bosiwo Cam

10 Minger LightStrip Philips Hue Light Switch PTM 215Z D-Link Cam

11 Ocean Radio SmarterCoffee coffee machine SMC10-EU D-Link Mov Sensor

12 Renpho SmartPlug Smarter iKettle 2.0 water kettle SMK20-EU Echo Dot

13 Ring Doorbell TP-Link WiFi Smart plug HS110 Echo Plus

14 Smart Lamp TP-Link WiFi Smart plug HS100 Echo Spot

15 Smart LightStrip Edimax SP-1101W Smart Plug Switch Fire TV

16 Tenvis Cam Edimax SP-2101W Smart Plug Switch Flux Bulb

17 Wans Cam Fitbit Aria WiFi-enabled scale GE Microwave

18 Wemo SmartPlug Homematic pluggable switch HMIP-PS Google Home

19 itTiot Cam Osram Lightify Gateway Google Home Mini

20 oossxx SmartPlug Ednet.living Starter kit power Gateway Honeywell T-stat

21 tp-link LightBulb MAX! Cube LAN Gateway for MAX! Home
automation sensors

Insteon Smart Hub

22 tp-link SmartPlug WeMo Link Lighting Bridge model F7C031vf Invoke Speaker with Cortana

23 Withings Wireless Scale WS-30 Lefun Cam

24 LG TV

25 Lightify Smart Hub

26 Luohe Cam

27 Magichome Strip

28 Microseven Cam

29 Nest T-stat

30 Netatmo Weather

31 Philips Bulb

32 Philips Hue Smart Hub

33 Ring Doorbell

34 Roku TV

35 Samsung Dryer

36 Samsung Fridge

37 Samsung TV

38 Samsung Washer

39 Sengled Smart Hub

40 Smarter Brewer

41 Smarter iKettle

42 Smartthings Smart Hub

43 TP-Link Bulb

44 TP-Link Plug

45 TP-Link Plug 2

46 Wansview Cam

47 WeMo Plug

48 WiMaker Spy Camera

49 Wink 2 Smart Hub

50 Xiaomi Cam

51 Xiaomi Cleaner

52 Xiaomi Smart Hub

53 Xiaomi Rice Cooker

54 Xiaomi Strip

55 Yi Cam

56 ZModo Doorbell

Find my IoT Device 7

them only once because using both capture sets would bias the results in favor
of the 26 duplicate devices. The captures of the devices on idle state cover an
average of 8 hours per night for one week for both labs, i.e., 112 hours in total
of idle experiments.

4 Suitable Approximate Matching Algorithms

This section shows our selection process to find the best suitable classical ap-
proximate matching method for IoT device identification. We compare the mrsh

approximate matching algorithm using three different representations of the ap-
proximate hashes (Bloom filter, Cuckoo filter, Hierarchical Bloom filter), ssdeep,
and TLSH.

As a first general test, which approximate matching algorithm shows a promis-
ing performance, we used the so-called All-vs-All test, which sets a baseline for
the algorithm’s performance with data-at-rest. Every examined algorithm gen-
erates its filter of the well-known t5-corpus [28] in a first step. In a second step,
the algorithm with this filter is given the complete t5-corpus (1.8 GB). The time
it takes for every algorithm to generate the filter and to apply it onto every file
in the corpus is shown in Table 2.

We assume that speed is a key indicator of the suitability of an algorithm for
the quick identification of a specific IoT device in a large network. This is why
we tested five of the prevalent algorithms for their performance when matching
the t5-corpus with itself. Due to its good performance, we chose mrsh-cf for our
further evaluation steps. Another candidate that performed well in our All-vs-All
test is ssdeep. However, it was already shown that this approximate matching
algorithm does not perform good with small fragments, i.e., it only performs
well when fragments contain at least 25% - 50% of the original file [22], which
is why we did not consider ssdeep further. To analyze not only an algorithm
of the MRSH family but also a maintained, efficient and optimized algorithm of
the LSH family, we also consider the TLSH algorithm in our further evaluation.
Further, to be able to compare the performance of these algorithms with the
results of our competitor LSIF, which is based on Nilsimsa, we also use the
Nilsimsa algorithm in our evaluation.

Table 2. Time for filter generation and application

mrsh-cf mrsh-net mrsh-hbft ssdeep TLSH

Filter Gen. (in sec) 12.51 32.90 274 14.90 17.18

All-vs-All (in sec) 12.94 67.84 300 27.37 78.29

It is important to understand that TLSH is one of the best performing algo-
rithms for similarity hashing out-of-the-box, but it has a certain limitation in
the input of data to be compared. As far as we know, the algorithm can only
compare ”1 to n” but not ”n to n” efficiently. A ”1 to n” test with TLSH has

8 Göbel, Uhlig & Baier

to be through comparing the ”1” consecutively with every ”n,” which means a
slight loss in performance compared to the other algorithms. This is why the
All-vs-All test in Table 2 is slightly slower for TLSH. In detail, this means you
can give the algorithm the hashes of several files to compare them with one file.
Also, reverse order works, i.e., compare the hash of one file vs. multiple files.
Furthermore, it is possible to compare all files of a folder, each with each, by the
algorithm. However, it is not intuitively possible to give the algorithm the hash
values of several files and compare them with several other files unless you do
this outside the algorithm code in a script (as was done in our All-vs-All test
in Table 2) and compares each file with the algorithm’s filter. However, as we
will see in our further evaluations, TLSH is still a valid option for hashing IoT
traces.

For a rough estimation of the performance of the most promising algorithms
(mrsh-cf, TLSH, and Nilsimsa) with IoT device data, we performed a trivial test.
We tested the algorithms’ performance for the simple task of hashing a pcap-file
and comparing it to itself. Note that Charyyev and Gunes [8] evaluated their
LSIF method against TLSH in greater detail, but since LSIF is not open source
we relied on a well documented Java version of the Nilsimsa algorithm for our
initial performance tests5. The size of the input trace file used in our first test
was 307.4 KB.

Table 3. Naive benchmark for IoT device network capture

Hashing (in ms) Comparison (in ms)

mrsh-cf 43 22

Nilsimsa 7150 2380

TLSH 14 3

Table 3 shows that TLSH performs best in this limited scenario. The algo-
rithm’s codebase is well maintained due to its use in commercial products, such
as Google’s VirusTotal, which accounts for its fast execution. mrsh-cf is posi-
tioned in the midfield, whereas Nilsimsa takes a comparatively long time to
hash and compare. It is important to note that Nilsimsa examines strings for
their similarity, and input must first be converted into string form, whereas the
other two algorithms can perform direct-byte-wise comparisons. This overhead
is, of course, not included in our test. Given the possible use of the algorithm in
a highly automated network scenario, this point should be considered.

For further understanding, it is essential to know that Cu-IoT is fundamen-
tally different from the other two algorithms in terms of its recognition of the
difference between input and filter. Compared to other similarity hashing algo-
rithms, both the mrsh-cf and the Cu-IoT algorithm based on it do not have a
static similarity score. The result of a hash comparison performed by mrsh-cf

is a comparison of the total chunks, that the input item has, and the number of

5 https://github.com/weblyzard/nilsimsa

Find my IoT Device 9

chunks that where detected. This means that the results have to be interpreted
as relational matching results. The file that was recognized for the most part
also matches the previously unidentified input file with the utmost certainty.

Table 4. Performance metrics of mrsh-cf compared to Nilsimsa and TLSH

Model Size Feature Size Response Time Processing Speed

mrsh-cf 16.8 MB 8.4 KB 94 ms 7.467 x 108 bits/s

Nilsimsa 8.24 MB 4.12 KB 112.0 ms 5.886 x 108 bits/s

TLSH 258 KB 0.129 KB 57 ms 0.3621 x 108 bits/s

The results of a second, more reliable test, are summarized in Table 4, where
the processing costs for mrsh-cf compared to Nilsimsa (on which LSIF is based)
are shown with regards to the model size (size of the signature database), feature
size (size of the one hash generated from flow), the response time (the time re-
quired to identify the flow), and processing speed (speed of generating the digest
of the flow). In this test, we assume that the filter consists of 20 devices with
100 x 10-minute traces per device. Table 4 shows that mrsh-cf works more effi-
ciently than its competitors. Crucial for the efficiency of any matching process is
the underlying lookup mechanism. Assuming that LSIF works with a database
that is not particularly designed for lookup-efficiency, the time efficiency will
be linear (O(n)), while Cuckoo filters have a time efficiency for this operation
of O(1). TLSH is very space-efficient, so its model size is only a fraction of that
of its competitors. TLSH’s response time might be faster, but in terms of pro-
cessing speed, mrsh-cf takes the lead. Based on mrsh-cf’s good performance
and its flexibility, we chose to use it as the basis of our approach to IoT device
fingerprinting, namely Cu-IoT.

5 Evaluation

In this section, we present our evaluation methodology as well as our evaluation
setup for the three different datasets and show how Cu-IoT works in detail on
our setup and the datasets. Moreover, this section presents the results of our ex-
perimental evaluation of Cu-IoT and provides a comparison with its competitors
TLSH and LSIF.

5.1 Evaluation Setup of the First and Third Dataset

The first (Active Data) and third (Idle Data) dataset consist of relatively large
device records that vary in size but were all collected over a more extended
period compared to the second (Setup Data) dataset. As already mentioned in
section 3.2, the first dataset represents 20 days, and the third dataset represents
approximately 2.33 days overall. However, the second dataset represents only a

10 Göbel, Uhlig & Baier

shorter time interval, namely the setup phase of each device, so the filter for the
second dataset must be different, as shown in section 5.2.

For the first and third datasets, we divide all traces into 10-minute segments.
One hundred of these segments are randomly selected and form the filter for a
device, which is used to find the remaining traces of the device among all the
others. The traces are ranked according to their detected proportion. For the
first dataset, the apparatus for which a higher relative proportion was detected
are ranked higher. This behavior is shown in Figure 1. For the third dataset,
the highest-ranking is given to those files from which the most ”chunks” were
found regardless of how much of the total trace this represents. The different
approaches yield better results with the respective data (operational data - re-
lational ranking; idle data - non-relational ranking).

Fig. 1. Evaluation setup of the first and third dataset: Testrun with Ring Doorbell as
filter device. For the third dataset the calculation (chunks detected / chunks total)

is ignored and results are ranked according to how much of their chunks were recognized
overall.

5.2 Evaluation Setup of the Second Dataset

In contrast to the first (Active Data) and the third (Idle Data) dataset, the
second dataset (Setup Data) consists of comparatively little data from the actual
lifecycle of IoT devices. Since we are working with network captures of relatively
similar but short duration, namely those of the setup phase, the tests with the
algorithms on these data must also be handled differently than on the first and
third datasets. For each device, 20 setup phases were recorded. One of them
(i.e., 5% of the total data) serves as a filter to identify the other 19 among the
traces of other devices. The results are ranked according to the devices from
which the most chunks were found, and thus the same evaluation methodology
is used for the third dataset. The top 19 traces are considered positives (either

Find my IoT Device 11

true positives or false positives), and the rest are considered negatives (either
true negatives or false negatives).

5.3 Evaluation Methodology

In the following, we discuss the results of the devices traffic matching using
Cu-IoT on three different datasets. We compare the results of Cu-IoT with the
results of LSIF and TLSH for each of the three IoT datasets in Table 5, 6, 7, re-
spectively. It is important to mention that based only on the information given
in the paper by Charyyev and Gunes [8], it is not clear which exact implemen-
tation of the Nilsimsa algorithm was used for their LSIF approach. However
we were in close contact with the original authors of LSIF and were able to re-
build Charyyev’s algorithms in the Go programming language. Therefore, with
the only exception of the TLSH values in Table 76, we were able to do our own
measurements using our own implementation of LSIF using Nilsimsa and our
own TLSH implementation. These measurements helped us to conduct fair com-
parisons with our new algorithm Cu-IoT. The exact classification performance
measurements can be found in Table 5, 6, 7. In addition, the source code can be
found and verified in the previously mentioned GitHub repository.

For every dataset we measured the classification performance in terms of Pre-
cision, Recall, F1-score, Accuracy, Specificity, AUC, True-Positive Rate (TPR),
False-Positive Rate (FPR), True-Negative Rate (TNR), and False-Negative Rate
(FNR). The exact meaning of these metrics in relation to our evaluation setup,
as well as those of a True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN), are explained as follows:

– Precision: TP
TP+FP

– Recall: TP
TP+FN

– F1-score: 2
1

Precision+ 1
Recall

– Accuracy: TP+TN
TP+FP+TN+FN

– Specificity: TN
FP+TN

– AUC: 1
2 · (TP

TP+FN + TN
TN+FP)

– True Positive (TP): Is a trace in the top 20 ranked traces that belongs to
the same device that is used for the filter.

– False Positive (FP): Is a trace in the top 20 ranked traces that does not
belong to the same device that is used for the filter.

– True Negative (TN): Is a trace that is not ranked in the top 20 traces
that does not belong to the same device that is used for the filter.

– False Negative (FN): Is a trace that is not ranked in the top 20 traces
that belongs to the same device that is used for the filter

– TPR: TP
TP+FN

– FPR: FP
FP+TN

– TNR: TN
TN+FP

– FNR: FN
FN+FP

6 Since in the case of TLSH on Idle Data without the original source code, we were not
able to rebuild the data preprocessing and had to rely on the existing measurements.

12 Göbel, Uhlig & Baier

5.4 Evaluation Results on Active Data

For the first dataset, i.e., based on the active data, in Table 5 we can see the
slightly better performance of Cu-IoT compared to LSIF in almost all metrics.
How much of a device’s traces were matched on average given a filter from a
device (a) or (b) (while (a) stands for the same device, or (b) stands for a different
one) are presented in Figure 2. Overall Cu-IoT matches the correct traces given a
filter of the same device very accurately. However, it is noteworthy that devices,
that emit little data during their active phase (e.g., Goumia Coffeemaker or
tpLink LightBulb), still are well detected by Cu-IoT. This clearly distinguishes
it from its competitor LSIF, where the authors claim that simple traffic flows
may hurt the classification performance of LSIF [9]. Figure 2 represents the
average recognition of a specific device given a filter from the same or another
device. As we can see, the traces from the devices Goumia Coffeemaker and
tpLink LightBulb are usually only detected to a small extent, but on average still
identified correctly. The traces of these two devices are probably never completely
recognized, as is the case with other devices with a low similarity score, too.
Meaning that a trace of these two devices is never fully recognized in its entirety.
Nevertheless, it is always correctly identified as belonging to the correct device.
What we try to illustrate with this example is that Cu-IoT does not need to
recognize a trace in its entirety to connect it to the correct device.

While the first dataset is quite heterogeneous and we achieve overall an aver-
age precision, recall, and accuracy of 97.5%, 98.4%, and 99.8% on Active Data,
respectively, it remains to be validated how well the identification works on a
more homogeneous dataset. However, in a larger dataset with more devices from
the same vendor (as it is the case in the second dataset), which might also rely
on similar transmission protocols, these devices might become indistinguishable
for Cu-IoT. We will examine the algorithm’s behaviour on such a homogeneous
dataset in section 5.5.

Table 5. Average evaluation results of Cu-IoT and TLSH compared to LSIF for the first
dataset (Active Data)

Precision Recall F1-Score Accuracy Specificity AUC TPR FPR TNR FNR

Cu-IoT 97.5% 98.4% 97.9% 99.8% 99.9% 95.5% 98.4% 0.16% 99.8% 1.5%

LSIF 92.4% 90.8% 92.1% 99.8% 98.5% 95.2% 90.0% 0.03% 99.6% 0.1%

TLSH 90.1% 85.3% 85.2% 99.0% 99.2% 92.1% 84.8% 0.03% 99.6% 1.5%

5.5 Evaluation Results on Setup Data

We now evaluate the algorithms behavior in case of the setup data, i.e., on traffic
captures of IoT devices performing their setup phase. For each device, we have 20

8 Relational similarity score on a scale from 0 to 100 (0 means that nothing was found
and 100 means that the entire trace was found).

Find my IoT Device 13

Fig. 2. Average similarity scores calculated by Cu-IoT for the 22 IoT devices of the
first dataset (Active Data)8

14 Göbel, Uhlig & Baier

traces that represent the devices setup phase. The evaluation was done by using
one measurement as the filter for the device and the other 19 traces together
with all the traces from all the other devices form the test data so that the filter
represents only 5% of the overall data from a respective device, and we have no
bias with respect to a specific device. Our measurements for Cu-IoT are shown
in Table 6 together with the corresponding measurements for LSIF by Charyyev
and Gunes. However, it should be mentioned that according to [8], the filter
for their LSIF algorithm consists of 14 traces instead of 1 (as in our case) for
each device. Therefore, their filter represents 70% of the overall data for a single
device, which is a huge difference from our approach. The reason we still chose
to built the filter from a single trace rather than from 14 traces is that we can
compare our results to those of feature extraction-based methods in terms of
accuracy, as is depicted in Figure 5. However, despite these serious differences
in the structure of the filter, our measurements for Cu-IoT and TLSH still hold
up very well against LSIF. Overall the average precision, recall, and accuracy of
Cu-IoT on Setup Data is 83.3%, 83.9%, and 98.6%, respectively.

Table 6. Average evaluation results of Cu-IoT compared to LSIF for the second dataset
(Setup Data)

Precision Recall F1-Score Accuracy Specificity AUC TPR FPR TNR FNR

Cu-IoT 83.3% 83.9% 83.6% 98.6% 99.2% 91.6% 81.5% 0.8% 99.0% 18.5%

LSIF 80.2% 79.9% 80.5% 97.6% 99.1% 89.3% 87.9% 0.1% 98.0% 20.1%

TLSH 80.8% 80.8% 80.8% 98.5% 99.2% 89.9% 80.8% 0.9% 99.4% 19.3%

Figure 3 shows the average similarity score assigned by Cu-IoT to all devices,
i.e. we can see the average matching results of the device traces given a certain
filter. Figure 4 represents the confusions between filter-device and input-device.
Especially the high confusion rate for devices from the vendor D-Link is striking.
This is due to the number of similarities in the setup protocols of those devices.
While for some devices, the setup phase might accumulate only a few kilobytes,
for others (especially those from the vendor D-Link) the setup phase might pro-
duce a few hundred kilobytes of traces. However, suppose we pay attention to the
highest similarity scores per device. In that case, almost all of them are correctly
identified on average, with the only exception of the D-LinkSwitch, which was
confused with the devices D-LinkSiren and D-LinkWaterSensor, which have a
higher similarity score.

Please note, that the results in Figure 3 cannot be derived directly from the
values in Table 6. The table shows how many traces of the devices were detected
correctly on average, while the graph shows how much of them was detected on
average.

10 Relational similarity score on a scale from 0 to 100 (0 means that nothing was found
and 100 means that the entire trace was found).

12 See footnote 10.

Find my IoT Device 15

Fig. 3. Average similarity scores calculated by Cu-IoT for the 23 IoT devices of the
second dataset (Setup Data)10

16 Göbel, Uhlig & Baier

Fig. 4. Average Cu-IoT similarity scores for IoT devices in the second dataset (Setup
Data) that were most often misidentified12

Figure 5 shows the relation of Cu-IoT’s device matching results compared
to the average comparison results that were achieved using the machine learn-
ing approaches Elliptic Envelope (EE) and One-class Support Vector Machine
(OSVM) [4], SysID [1], IoT Sentinel [20], as well as LSIF [9]. The bars each repre-
sent the accuracy of the different algorithms. Cu-IoT revealed itself to have much
better accuracy on several occasions than feature extraction-based approaches.
Most notably is that Cu-IoT performed very well at classifying devices such as
SmarterCoffee and Smarter iKettle2. These devices have very short setup phases
and therefore are harder to classify for most feature extraction-based approaches
except SysID [1], as previous research on the same dataset already made clear
[9]. Cu-IoT seems to be a preferable solution in scenarios with minimal inputs.
All setup phases of devices of the vendor D-Link are notably long, which is why
the traces of these devices are also the largest ones in the dataset. As Figure 4
already showed, these are the devices that were most often misidentified by the
Cu-IoT algorithm. So we conclude that the increased search space compensates
for the detection advantage the Cu-IoT algorithm has at smaller traces. Larger
traces seem to be easier to match using feature extraction-based approaches.

Find my IoT Device 17

Fig. 5. Accuracy achieved per device on the second dataset (Setup Data). The metrics
for EE, OSVM and SYSID in this chart are taken from the work of Charyyev et al. [9]. All
other metrics are based on the measurements of our own algorithms.

18 Göbel, Uhlig & Baier

5.6 Evaluation Results on Idle Data

The third dataset consists only of devices in an idle state and thus is isolated from
human interactions. This test was performed similarly to our first test. For each
device, there exist about 56 hours of recorded traffic. Of these, 100 x 10 minutes
were taken for the respective filter of an algorithm, and then the remaining
capture, together with all captures of the other devices, were evaluated as a
test environment. We will now look into the peculiarities of this particular test.
Again, Table 7 shows the classification performance of Cu-IoT in comparison
with TLSH and LSIF on this dataset.

Important for the understanding of the results is that the cited results from
Charyyev and Gunes [8] is based on the data of 55 unique devices, but 56 device
results were evaluated. In fact, for the TP-Link Plug there exist two different
recordings. To be able to compare our results again with those of Charyyev and
Gunes, these two different recordings were also included in our evaluation of
Cu-IoT. The special thing about the data that IoT devices produce in their idle
state is that they can be very different in size. For example, on the one hand, a
device like D-Link Camera (a surveillance camera) produces only a few bytes of
network data within 56 hours. On the other hand, a device like the Wansview
Webcam produces several Megabytes of network data at the same time. The
transmission contents during the idle stage mostly consist of simple heartbeats or
update checks that are managed with the same protocols. Compared to the first
two datasets, the test data is even more homogeneous, which also increases the
chance of confusion. In this dataset, there is much confusion between devices from
the same manufacturer (remember, in the second dataset, devices from D-Link
were difficult to distinguish) and between devices from different manufacturers
and for different purposes. As can be seen in Table 7, Cu-IoT performs slightly
worse than LSIF but still better than TLSH. Overall the average precision, recall,
and accuracy of Cu-IoT on Idle Data is 90.1%, 90.0%, and 99.8%, respectively.

Table 7. Average evaluation results of Cu-IoT compared to LSIF for the third dataset
(Idle Data)

Precision Recall F1-Score Accuracy Specificity AUC TPR FPR TNR FNR

Cu-IoT 90.1% 90.0% 97.2% 99.8% 99.9% 98.3% 89.9% 0.1% 99.0% 9.7%

LSIF 91.5% 92.0% 91.1% 99.8% 99.2% 97.4% 95.3% 0.9% 99.0% 4.1%

TLSH13 83% 78% 75% 99% 100% 89% - - - -

6 Conclusion and Future Work

In this paper, we introduced a novel IoT device identification method using
a re-engineered mrsh-cf algorithm – called Cu-IoT – that can be applied on

13 In contrast to the other datasets, in the case of Idle Data the TLSH results are taken
from [8] and must be considered unverified.

Find my IoT Device 19

arbitrary IoT devices network captures. Unlike other existing approaches, our
approach uses approximate matching and therefore does not require multiple
iterations of feature extraction from traffic, tuning of model parameters, and re-
training of the model. To the best of our knowledge, during the time of writing,
Cu-IoT shares these benefits with only two other algorithms, which both rely
on Locality-Sensitive Hashing instead of Multi-Resolution Similarity Hashing.
Our evaluations have shown that Cu-IoT performs significantly better than its
competitors on active data with a precision and recall of 97.5% and 98.4%, re-
spectively (as shown in section 5.4), and reaches slightly better precision (83.3%)
and higher recall (83.9 %) on setup data (as shown in section 5.5). However, on
idle data (as shown in section 5.6), Cu-IoT performs slightly worse than LSIF

in terms of precision (89.7% vs. 94%) and recall (89.5% vs. 93%), and slightly
better in terms of accuracy (99.8% vs. 99%). All in all, Cu-IoT can keep up
well with LSIF, while the latter - and thus also Cu-IoT - is competitive with
typical machine learning approaches. Our work showed for the first time that a
well-established ’classical’ approximate matching algorithm applies to the task
of IoT device identification. This was validated using three different data sets
consisting of many different IoT devices. Therefore, the publicly available Cu-IoT
algorithm is capable of supporting the network forensics process to efficiently and
effectively identify IoT devices in a network during an incident. Since IoT devices
pose a poor degree of security, tools like Cu-IoT, that focus on IoT forensics, in
particular, will become increasingly important in the future.

As future work, on the one hand, we are optimistic that we can still improve
our results in our finished work, and on the other hand, we still need to verify
what and how exactly the results were obtained with LSIF. Until the final ver-
sion of our paper is due, we will verify the results obtained with LSIF when the
algorithm is made available to us. Furthermore, separate measurements for TLSH
are performed in case of active data and idle data. We will further elaborate on
how the composition of network traffic in different device states affects the iden-
tification process. In addition to the classification metrics of the three algorithms
presented so far, we will also provide similar data based on our measurements
for the feature extraction based approaches, such as SySID and IoT Sentinel,
on all three datasets to allow a direct comparison of the feature extraction al-
gorithms with our approximate matching approach on all datasets - not only in
the case of the setup data.

We will further look into things like cross-testbed identification, since there
are standard devices in the datasets used, and the issue of device confusion in
case of the same vendor, as it is manifested in Subsection 5.2, through the means
of common block elimination. This technique could potentially benefit the pre-
cision and recall of the Cu-IoT with significant homogeneous traces originating
from devices with very similar protocols. As was shown in section 5, Cu-IoT

performs well with small heterogeneous device traces but struggles with larger,
more homogeneous ones. Through most common-block elimination, the larger
traces can be reduced to smaller ones that could be easier to recognize.

20 Göbel, Uhlig & Baier

In the future, we would like to perform the analysis using Cu-IoT on further,
preferably larger, IoT datasets and examine the applicability of other prominent
approximate matching algorithms for network device identification. Additionally,
we want to analyze how to approximate matching can be used to detect anomalies
in the behavior of IoT devices and thus prevent prevalent attacks such as botnets
or DDoS. It is feasible to extend Cu-IoT to reliably detect such anomalies since
the signature generated by an anomalous traffic flow significantly differs from
the signature of the benign traffic stored in its filter.

References

1. A. Aksoy and M. H. Gunes, “Automated IoT device identification using network
traffic,” in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China, 2019, pp. 1–7.

2. A. Aksoy, “Network Traffic Fingerprinting using Machine Learning and Evolution-
ary Computing Automated IoT device identification using network traffic,” PhD
thesis, University of Nevada, 2019.

3. Bai, L., Yao, L., Kanhere, S. S., Wang, X., Yang, Z. (2018, October). Automatic
device classification from network traffic streams of internet of things. In 2018 IEEE
43rd conference on local computer networks (LCN) (pp. 1-9). IEEE.

4. Bezerra, V.H.; da Costa, V.G.T.; Barbon Junior, S.; Miani, R.S.; Zarpelão, B.B.
IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things
Devices. Sensors 2019, 19, 3188. https://doi.org/10.3390/s19143188

5. P. Bjelland, K. Franke and A. Arnes, Practical use of approximate hash-based
matching in digital investigations, Digital Investigation, vol. 11(S1), pp. 18—26,
2014.

6. F. Breitinger and H. Baier, Similarity Preserving Hashing: Eligible Properties and
a New Algorithm MRSH-v2, in Digital Forensics and Cyber Crime, M. Rogers and
K. C. Seigfried-Spellar (Eds.), Springer Berlin Heidelberg, pp. 167–182, 2013.

7. F. Breitinger, I. Baggili, File Detection on Network Traffic Using Approximate
Matching, Journal of Digital Forensics, Security and Law, vol. 9(2), pp. 23–36,
2014.

8. B. Charyyev and M. H. Gunes, ”Locality-Sensitive IoT Network Traffic Fingerprint-
ing for Device Identification,” in IEEE Internet of Things Journal, vol. 8, no. 3, pp.
1272-1281, 1 Feb.1, 2021, doi: 10.1109/JIOT.2020.3035087.

9. B. Charyyev and M. H. Gunes, ”IoT Traffic Flow Identification using Locality Sen-
sitive Hashes,” ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9148743.

10. Dong, S., Li, Z., Tang, D., Chen, J., Sun, M., Zhang, K. (2019). Your smart home
can’t keep a secret: towards automated fingerprinting of IoT traffic with neural
networks. arXiv preprint arXiv:1909.00104.

11. Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
2014. Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments and Tech-
nologies (CoNEXT ’14). Association for Computing Machinery, New York, NY,
USA, 75–88. DOI:https://doi.org/10.1145/2674005.2674994

12. T. Göbel, F. Uhlig, H. Baier. ”Empirical Evaluation of Network Traffic Analysis
using Approximate Matching Algorithms”. In Advances in Digital Forensics XVII,
Springer, Cham, 2021.

Find my IoT Device 21

13. V. Gupta and F. Breitinger, How Cuckoo Filter Can Improve Existing Approxi-
mate Matching Techniques, in Digital Forensics and Cyber Crime, J. I. James, F.
Breitinger (Eds.), Springer International Publishing, Cham, pp. 39–52, 2015.

14. M. M. Hossain, M. Fotouhi and R. Hasan, ”Towards an Analysis of Security Is-
sues, Challenges, and Open Problems in the Internet of Things,” 2015 IEEE World
Congress on Services, 2015, pp. 21-28, doi: 10.1109/SERVICES.2015.12.

15. J. Kornblum, Identifying almost identical files using context triggered piecewise
hashing, Proceedings of the Sixth Annual Digital Forensic Research Workshop, vol.
3, pp. 91–97, 2006

16. L. Liebler, H. Baier. ”Towards exact and inexact approximate matching of exe-
cutable binaries.” Digital Investigation, vol. 28, pp. 12–21, 2019.

17. D. Lillis, F. Breitinger and M. Scanlon, Expediting MRSH-v2 Approximate Match-
ing with Hierarchical Bloom Filter Trees, in Digital Forensics and Cyber Crime, P.
Matoušek, M. Schmiedecker (Eds.), Springer International Publishing, Cham, pp.
144–157, 2018.

18. A. Marzano et al., ”The Evolution of Bashlite and Mirai IoT Botnets,” 2018 IEEE
Symposium on Computers and Communications (ISCC), 2018, pp. 00813-00818,
doi: 10.1109/ISCC.2018.8538636.

19. J. Oliver, C. Cheng and Y. Chen, TLSH – A Locality Sensitive Hash, Proceedings
of the Fourth Cybercrime and Trustworthy Computing Workshop, pp. 7–13, 2013.

20. M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi and S. Tarkoma, ”IoT
SENTINEL: Automated device-type identification for security enforcement in IoT”,
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. Workshops (ICDCS), pp. 2177-
2184, 2017.

21. C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, ”DDoS in the IoT: Mirai and
other botnets”, Computer, vol. 50, no. 7, pp. 80-84, 2017.

22. A. Lee and T. Atkison, A Comparison of Fuzzy Hashes: Evaluation, Guidelines,
and Future Suggestions, Proceedings of the SouthEast Conference, pp. 18–25, 2017.

23. Meidan, Yair, et al. ”N-baiot—network-based detection of iot botnet attacks us-
ing deep autoencoders”. IEEE Pervasive Computing 17.3 (2018), pp. 12-22, doi:
10.1109/MPRV.2018.03367731

24. F. Pagani, M. Dell’Amico, D. Balzarotti. ”Beyond precision and recall: understand-
ing uses (and misuses) of similarity hashes in binary analysis”. Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy, ACM, pp.
354-365, 2018.

25. Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari,
Roman Kolcun, and Hamed Haddadi. 2019. Information Exposure From
Consumer IoT Devices: A Multidimensional, Network-Informed Measurement
Approach. In Proceedings of the Internet Measurement Conference (IMC
’19). Association for Computing Machinery, New York, NY, USA, 267–279.
DOI:https://doi.org/10.1145/3355369.3355577

26. V. Roussev, G. G. Richard and L. Marziale, Multi-resolution similarity hashing,
Digital Investigation, vol. 4, pp. 105–113, 2007.

27. V. Roussev, Data fingerprinting with similarity digest, in Advances in Digital
Forensics VI, K.-P. Chow, S. Shenoi (Eds.), Springer Berlin Heidelberg, Germany,
pp. 207–226, 2010.

28. V. Roussev, An evaluation of forensic similarity hashes, Digital Investigation, vol.
8, pp. 34–41, 2011.

29. Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A., Wijenayake, C., Vish-
wanath, A., Sivaraman, V. (2018). Classifying IoT devices in smart environments us-

22 Göbel, Uhlig & Baier

ing network traffic characteristics. IEEE Transactions on Mobile Computing, 18(8),
1745-1759.

30. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi , P. Samarati, An Open
Digest-based Technique for Spam Detection, Proceedings of the Seventeenth Inter-
national Conference on Parallel and Distributed Computing Systems, pp. 559–564,
2004.

31. Shwartz, O., Mathov, Y., Bohadana, M., Elovici, Y., Oren, Y. (2017, November).
Opening Pandora’s box: effective techniques for reverse engineering IoT devices. In
International Conference on Smart Card Research and Advanced Applications (pp.
1-21). Springer, Cham.

32. Tina Wu, Frank Breitinger, and Ibrahim Baggili. 2019. IoT Ignorance is Dig-
ital Forensics Research Bliss: A Survey to Understand IoT Forensics Defini-
tions, Challenges and Future Research Directions. In Proceedings of the 14th
International Conference on Availability, Reliability and Security (ARES ’19).
Association for Computing Machinery, New York, NY, USA, Article 46, 1–15.
DOI:https://doi.org/10.1145/3339252.3340504

