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ABSTRACT
Data hiding is an important part of anti-forensic research since
the continuous development of operating systems, file systems and
other software may close some previously known vulnerabilities
but will often inadvertently create new ones. Many of the currently
used file systems such as FAT, NTFS or ext4 have been thoroughly
analysed. There are quite a few theoretical approaches and also
some practical tools that help us to hide data in the existing file sys-
tems in different ways. For the Apple File System (APFS), the new
standard file system for all Apple devices, only part of the previous
work is transferable. There are only a few published forensic analy-
ses of APFS so far and some forensic tools like the Sleuthkit have at
least partially adapted APFS functionality. However, anti-forensic
techniques specific to APFS have not yet been explored.

This paper aims to introduce APFS and some of its noncritical ar-
eas which can be exploited to hide data. A recently published modu-
lar anti-forensics framework called fishy allows the implementation
of modules containing a file system interface and corresponding
data hiding techniques. After a short theoretical introduction to the
framework, we present, as a practical part of this work, specific data
hiding techniques for APFS which are implemented in a separate
module for fishy. Finally, the newly found techniques are evaluated,
e.g., on the basis of their detectability, stability and capacity.
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• Applied computing → Computer forensics; Evidence col-
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1 INTRODUCTION
The rise of connectivity and digitisation of personal andwork spaces
brings with it an increased threat of cyber attacks. An important
part of understanding the growing threat is the early discovery of
vulnerabilities, attack methods as well as potential anti-forensic
techniques used to stop or slow down the forensic process. Of the
four elementary types of anti-forensics described by RyanHarris [9],
data hiding is of special interest as it does not destroy or create any
additional data [9] and simply exploits already existing weaknesses.
There are many forms of data hiding like abusing file formats,
encryption1 or hiding data within other files, like splitting audio
and video tracks to hide coded messages [14]. According to the
anti-forensic taxonomy of Conlan et al. [2], our paper focuses on
file system manipulation. This particular part of data hiding uses
specific data structures and potential vulnerabilities of a file system
to hide data. While there are some hiding places that are present
in almost every file system, such as the use of file slack which is
described by Stephen P. Larson [11] as well as Knut Eckstein and
Marko Jahnke [4], most of them are specific to a particular file
system.

With the help of the recently released modular open-source anti-
forensic framework fishy2, multiple data hiding techniques can be
applied, whether they are unique to one file system or not. The
file systems implemented so far (FAT12, FAT16, FAT32, ext4 and
NTFS) consist of several data hiding techniques and an interface to
interpret the respective file system. A new module developed for
fishy adds both compatibility with some existing techniques and
new techniques specific to the pooled-storage file system APFS.

1.1 Motivation
Themotivation for this paper and the newly developed fishymodule
is based on the following two points:

• Although they play an important role in forensic research,
many tools that allow in-depth investigation of data hiding
methods are either undocumented, meaning that both the
source code and the original author is unknown, or they
focus on a single file system, making adjustments and modi-
fications almost impossible.

• Apple products play an important role in private households
today and are also gaining in importance for work environ-
ments. Because Apple systems are not as open and accessible
to third parties as most alternatives, the specific risk of a

1Some researchers do not consider encryption as a form of data hiding as it does not
hide the existence of the data and simply tries to limit access to the data [12].
2https://github.com/dasec/fishy, last visited 24.04.2019
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targeted attack increases [1]. With the introduction of Ap-
ple’s new file system in mid-2017, which is used by both
MacOS and iOS operating systems, it is now possible to find
vulnerabilities before they are abused in malicious ways.

This paper therefore gives an overview of all methods found so
far to hide data within APFS. Additionally, it presents an open
and well documented module adding APFS capabilities including
the previously mentioned hiding techniques to the open source
framework fishy.

1.2 Contribution
This paper first gives a brief introduction to both the APFS file sys-
tem and the anti-forensic framework fishy. In order to understand
the hiding technique approaches it is important to first understand
the newAPFS-specific data structures, which is why our description
covers the most important data structures and functions of APFS.
Furthermore, we give a brief explanation of the modular structure
of fishy and the structure of the newly developed APFS module
itself. An in-depth explanation of the framework can be found on
the GitHub address mentioned above or in the corresponding paper
by Göbel and Baier [6].

Since this paper focuses on the discovery and presentation of
potential APFS-specific hiding techniques, the second part of the
paper describes in detail the vulnerabilities of APFS that these
techniques exploit. We thereby present the exact functionality of
the five hiding techniques already implemented. Finally, we evaluate
the functionality of the new hiding techniques by taking a closer
look at the following three evaluation metrics: (i) Detectability, (ii)
Stability, and (iii) Capacity.

1.3 Outline
The rest of the paper is organised as follows: Section 2 outlines
known forensic analyses of APFS as well as forensic tools that
support the new file system. Section 3 gives a brief overview of
APFS as well as an introduction to its relevant data structures and
functions. Section 4 describes in detail the newly found hiding
techniques. This Section also gives a short description of fishy, the
framework used to implement these techniques. In Section 5, we
then evaluate the implemented hiding techniques and rate them
based on the evaluation metricsDetectability, Capacity and Stability.
Section 6 and Section 7 conclude the paper and discuss potential
future work.

2 RELATEDWORK
The general idea of how this paper is approaching anti-forensic
research is based on knowledge gained by other researchers such as
Grugq [7] or Ryan Harris [9] who have already started to collect and
evaluate anti-forensic methods and principles for different systems
in 2002 and 2006 respectively.

To the best of our knowledge, no current research on APFS-
specific data hiding techniques has yet been published. However,
there are a few in-depth forensic analyses as well as a forensic
tool used to recover data from an APFS partition. The first of them
comes from Kurt Hansen and Fergus Toolan [8], who published
their analysis of APFS in September 2017. Their analysis is based on

the sparse information Apple published about APFS at this time3
as well as a manual examination of the file system.

Building on the aforementioned paper, Jonas Plum and Andreas
Dewald published a further analysis of the Apple file system [3].
Unlike their predecessors Hansen and Toolan, they generally use
the nomenclature defined by Apple.

An additional, independent forensic analysis was done in 2017 by
Laura Pfeiffer [15], achieving results similar to Hansen and Toolan.

Plum and Dewald added another paper to their previous work
describing different ways to recover data from an APFS image [17].
This paper focuses on the process of parsing the Apple file system,
which is needed to recover as many current and deleted files as
possible, and compared it to more universal approaches like file
carving. They also developed an open source tool called afro (APFS
File Recovery Options)4.

In September 2018 Apple released the first version5 of their
official APFS reference [10], confirming many of the previously
mentioned papers’ findings and also adding previously unknown
information.

The support and creation of forensic tools besides the already
mentioned afro tool has also grown regarding drivers like fuse6
and Paragon7, making APFS disk images mountable in Linux and
Windows environments, respectively. There are also some forensic
tools freely available yet, like the iBored8 hex editor that have at
least partial APFS support. The popular Sleuthkit framework falls
into the same category, having recently published a development
branch [18], which provides updated APFS-compatible versions of
some of its core features, such as the fsstat command.

In addition to the forensic tools, the already mentioned modular
anti-forensic framework called fishy exists, that enables implemen-
tation and testing of data hiding techniques on multiple file systems
[6]. For the purpose of this paper, the framework is expanded by
a module containing an APFS interface and the hiding techniques
mentioned in Section 4.

3 INTRODUCTION TO APPLE FILE SYSTEM
The structure of APFS is a mix of known ideas and functionalities.
Unlike its predecessor HFS+ it is not a journaling file system. To
ensure secure file system transactions, APFS employs both atomic
operations and a checkpoint system [8]. Additionally, APFS is a
double layered file system. The external layer, the Container, is a
managing entity, responsible for the entire file system. Volumes are
the internal layer and manage files and directories with the help
of B-trees [10]. While an implementation of APFS only has one
container, the amount of possible volumes depends on the size of
the container9. An interesting note is the role of the volumes. While
they act similar to traditional partitions in some ways, they are
completely different in others. The most glaring difference being

3https://developer.apple.com/library/archive/documentation/FileManagement/
Conceptual/APFS_Guide/Introduction/Introduction.html, last visited 29.04.2019.
4https://github.com/cugu/afro. Last visited 2019-04-05.
5There have been multiple updates as of April of 2019.
6https://github.com/sgan81/apfs-fuse. Last visited 16.04.2019.
7https://www.paragon-software.com/home/apfs-windows/. Last visited 16.04.2019.
8http://files.tempel.org/iBored/ by Thomas Tempelmann. Last visited 16.04.2019.
9The upper limit is 100 volumes.

https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/APFS_Guide/Introduction/Introduction.html
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https://github.com/cugu/afro
https://github.com/sgan81/apfs-fuse
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http://files.tempel.org/iBored/
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Figure 1: Simplified structure of an APFS container, adapted
from Plum [17].
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Figure 2: Simplified structure of an APFS node.

that, barring potential reserved blocks or quotas, they have a dy-
namic size they share with all other volumes as blocks are allocated
on a container level [3]. This feature is called Space Sharing.

An interesting challenge to overcome for data hiding purposes
is the way APFS references different structures. APFS distinguishes
between three different object types: (i) Ephemeral, (ii) Virtual, and
(iii) Physical. While virtual objects are always stored on disk and
ephemeral objects are generally stored in memory and only written
to disk as part of a checkpoint [10], they are referenced in the
same way. Their object ID, which is stored in a universally used
object header, is usually determined by the container superblock
field nx_next_oid. B-trees are used to map these object IDs to block
addresses. Physical objects are always written to disk and their
object IDs are their block addresses.

Figure 1 is a simple representation of the structure of an APFS
container. The data structures relevant to the hiding techniques
shown in Section 4 are the container and volume superblocks as
well as their respective object maps and the nodes contained in the

volume B-trees. Furthermore, the checkpoint areas, specifically the
Container Superblock Metadata, are of interest as well.

Another important fact of APFS is that all file system structures,
with the exception of the allocation bitmap, are stored as objects
and given object headers. These 32 byte sized headers contain
a checksum among other information. The checksum is a 64-bit
version of Fletcher’s checksum with the input being the entire block
without the checksum field [3].

There are two different versions of superblocks, one for each
layer. A copy of the current version of the container superblock is
usually found at block 0 of the container. It contains much of the
overarching information about the container, such as references to
its object map, a list of volumes and elementary information like
the system’s block size. The volume superblock acts as a similar
managing instance for its respective volume, containing informa-
tion about the size, name and contents of the volume as well as
references to extent trees and the volume object map.

Nodes are some of the most important data structures in APFS,
as they contain most of the information needed to interpret the
file system. The node structure can be seen in Figure 2. In addition
to general information about the node, such as its position in a
B-tree, it contains a table of contents that specifies the location of
the nodes’ entries [10]. A node’s entries vary drastically depending
on the node’s application within the file system. The entries are
split in key and value pairs, with the key determining the entry type.
The key and value areas are usually separated by free space, so new
entry keys and values can be added. Among the most important
entry types for this paper is type 3, which represents the inode and
whose structure can be seen in Table 1.

Checkpoints are a core feature of APFS. They represent past
states of the container by saving important structures and data. The
container superblock, memory states at the time of the checkpoint
and allocation structures, such as the space manager, are stored
in the Checkpoint Areas depicted in Figure 1. Object maps and
volume superblocks are stored in different places in the container
and referenced by the corresponding structures. This function has
positive impacts upon data hiding, like potentially bigger capacities
for techniques that use these structures. There also is a negative
impact since some crucial information about the processes the
checkpoint system uses are still unknown. It is not known how
many checkpoints a container can have10 or when exactly a new
checkpoint is created. More importantly, it is not known how old
structures are overwritten. If entire blocks are erased before a new
checkpoint is created, techniques, that use the slack space of these
structures, suffer from significant stability deficits.

4 HIDING TECHNIQUES
All presented hiding techniques, unless otherwise mentioned, are
developed and integrated into the anti-forensic data hiding frame-
work fishy, which therefore gets an additional APFS interface.

fishy is a python-based modular framework developed to be an
open solution for data hiding research. So far, four major file system
modules (NTFS, FAT, ext4, APFS) are available in the framework.

10Initial research using images of different sizes indicate that it is tied to the size of
the container.
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The modules contain specific hiding techniques as well as file sys-
tem interfaces. These interfaces use self-programmed parsers or
other open source tools such as Construct11 to interpret file sys-
tem images. The framework already provides multiple wrappers
for its hiding techniques as well as a command line interface for
interaction with the user. In particular, all techniques are not only
able to write data, they can also read and erase12 the data that was
previously written into the file system. In order to find the hidden
data later on, every write method provides metadata relevant to the
technique, such as the size or offset of the hidden data, which is then
turned into an encrypted JSON file. If needed, the techniques also
calculate the structure’s checksum after data is written or erased.
To calculate the checksum after modifying an APFS structure the
algorithm developed by Jonas Plum [16] is used.

Most of the hiding techniques presented in the following Section
use free, reserved or otherwise unimportant space found in the file
systems’ inodes. These areas are highlighted by the bold text in
Table 1. The only exception is the Superblock Slack technique which
uses both types of superblocks and their respective object maps.

Table 1: Contents of an inode. Bold fields indicate the use of
a particular field for one of the hiding techniques.

Position Size Name

0 8 parent_id
8 8 private_id
16 8 create_time
24 8 mod_time
32 8 change_time
40 8 access_time
48 8 internal_flags
56 4 nchildren_or_nlink
60 4 def_protection_class
64 4 write_gen_counter
68 4 bsd_flags
72 4 owner
76 4 group
80 2 mode
82 2 pad1
84 8 pad2
92 variable extended_fields

4.1 Superblock Slack
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Figure 3: Visual representation of superblock slack target
choice.

Although this technique is not only usable in APFS13, the im-
plementation for APFS is somewhat unique due to its usage of two
11https://construct.readthedocs.io/en/latest/, Last visited 24.04.2019.
12The hidden data is overwritten with zeroes.
13For example, the ext4module implemented in fishy already has a technique exploiting
the slack created by superblock data structures [6].
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different superblock types and the adjacent object maps as well as
the effects of the checkpoint feature discussed in Section 3.

The block addresses of all relevant structures need to be collected
before any data can be hidden. For that purpose an external class
called Checkpoints gathers all four used structures in separate lists.
This happens in four steps. First, the container superblock is added
to the respective list. Second, the address of the attached object map
is extracted and stored in a separate list. Third, using the object map,
all current volume superblocks are found and added to a another
list. Finally, the object maps attached to each volume superblock
are stored in a fourth list. To expand the capacity of this technique,
older versions of these structures are used as well by following the
previously mentioned steps after locating all previous container su-
perblocks in the Checkpoint Areas seen in Figure 1. The information
to locate the Checkpoint Areas is found in a dedicated section in the
container superblock. All lists are sorted by the objects’ transaction
IDs, with the newest object located at the beginning of each list.

The hiding technique itself requests all four lists before starting
the hiding process. The write method itself calls four submethods,
one for each used structure type. The main method transmits the
corresponding address as well as the stream containing the data it
is supposed to hide to each submethod which in turn writes to the
respective structure’s slack space and returns the size of the written
data. After successful completion of a submethod, the checksum
for the used structure is recalculated. This process is visualised in
Figure 3 and Figure 4.

To recover or erase the hidden data, the method creates a meta-
data file containing four lists, one for each structure type filled
with the offsets of all used structures of that type as well as a field
containing the full size of the hidden data.

Due to the unknown nature of the checkpoint write system14

during development, a method that only uses older versions of the
structures when a higher capacity is needed was chosen. As seen in
Figure 3, the technique writes into the first entry of each list before
choosing an older and potentially less stable hiding space.

4.2 Write-Gen-Counter
Besides the nodes’ version numbers in the universal object headers,
every inode entry in these nodes has its own versioning method.

14It is unknown when exactly new checkpoints are created and how old checkpoints
are overwritten.

https://construct.readthedocs.io/en/latest/
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The inode versioning is beingmanaged bywrite_generation_counter,
a 4 byte counter that is increased whenever the inode or its data is
modified. When reaching its limit the counter restarts from 0 [10],
making it a possibly undetectable hiding space since there are no
disallowed values within the fields 4 byte range.

Similar to the Superblock Slack technique described before, the
first step this and all subsequent techniques must perform is parsing
the target image and extracting the addresses of all nodes containing
inode entries as well as the exact offset of each inode entry. This is
done by an auxiliary class called InodeTable. This class gathers all
volume object maps and parses the referenced B-tree and its nodes
for inode entries. Before returning a tuple list containing the node
and inode addresses, the root nodes are removed since they only
contain references to inodes.

The process of hiding the data itself is quite simple and can be
seen in Figure 5. First, the stream of data that is supposed to be
hidden is split into chunks of 4 byte. An inode address is extracted
from the list received from InodeTable and given to a submethod
alongside one of the 4 byte chunks. The submethod then calculates
the exact offset of the hiding space and writes the contents of the
chunk to this address. After every written chunk, the respective
node’s checksum is newly calculated.

The metadata saved to access the hidden data at a later time
consists of lists of the used inode addresses and node addresses.

4.3 Timestamp Hiding
Similar to other modern file systems (e.g., btrfs, ext4, NTFS), APFS
offers 64-bit nanosecond timestamps. Exemplary techniques ex-
ploiting the nanoseconds part of timestamp fields already exist for
ext4 [5] and NTFS [13], which are used as a basis for the APFS
implementation. Although the currently implemented version of
this technique only uses the highlighted timestamps in Table 1, it
should be mentioned that APFS also has other structures, such as
volume superblocks, which contain usable timestamps.

Again, the address is extracted from the list returned by the In-
odeTable class. This address, the data stream and a number ranging
from 0 to 3 is given to a submethod that calculates the exact offset
and writes data to the first 4 bytes of the timestamp. The number
transmitted is an indicator of what timestamp the data is written to.
If the number exceeds 3, it is set to 0 and a new inode is targeted.
This means that the current implementation of this technique writes
to all four timestamps present in an inode. By default, our imple-
mentation not only ensures that all timestamps are written to, but
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Figure 6: Visual representation of timestamp hiding write
algorithm.

also makes it possible to write to a specific timestamp with minimal
change. The complete hiding process is visualised in Figure 6.

In order to recover hidden data, the metadata file of this tech-
nique contains used node and inode addresses as well as the size of
the hidden data.

4.4 Extended Field Padding
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Figure 7: Visual representation of extended field padding
generation.

The inode and directory record entry types have a unique feature
called Extended Fields that follow the regular entry contents. Usually,
these fields’ sizes are a multiple of 8 bytes. However, some of these
fields have variable sizes based on their content. If a field is not the
right size, it is enlarged to the next possible multiple of 8 bytes by
adding a padding field as seen in Figure 7. The programmed version
of this technique only writes to extended fields found in inodes
since extended fields seem to be more consistent there. Directory
records rarely use this feature in all tested images.

Like the previous hiding techniques, this method also extracts
the inode addresses from InodeTable. The difference here is that the
addresses of the hiding spaces are not always at a fixed offset inside
the inode. Instead, there are three additional steps. First, the table
of contents for the extended field of an inode, as seen in Table 2,
has to be interpreted and the number of extended fields has to
be extracted. Second, the sizes of the extended fields have to be
extracted from the list of extended field headers as seen in Table 3
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following xf_blob15. Third, the sizes have to be used to determine if
there is any padding among this set of extended fields and if so, the
size of the padding has to be calculated16. Once all paddings are
calculated, the data stream and a tuple list containing the padding
addresses, the padding sizes as well as the inode addresses are given
to a submethod. The submethod writes to the different padding
locations and returns a similar list with used addresses, the size
of the padding at each used address and the corresponding node
addresses. In a final step, the correct checksums are calculated.

In this case, the created metadata contains lists of padding offsets,
padding sizes and node addresses.

Table 2: The table of contents for extended fields.

Position Size Name

0 2 number_of_xfields
2 2 size_of_xfields
4 number_of_xfields*4 xfield headers

Table 3: The structure of extended field headers.

Position Size Name

0 1 xfield_type
1 1 xfield_flags
2 2 xfield_size

4.5 Inode Padding
Each inode entry of a node has two padding fields of 2 and 8 bytes
each, which separate the entry value contents from the dynamic
extended fields17. This technique aims to exploit the pad2 padding
field18.

Just like other techniques, which hide data in inodes, this tech-
nique refers to the InodeTable class to get a list of all inode addresses.
The data stream is then split into chunks of 8 byte each, which in
turn is given to a submethod alongside an inode address. This sub-
method calculates the exact offset of the padding field and writes
the content of the chunk to it. After the submethod is finished, the
inode flags are adjusted19 and the corresponding node’s checksum
is recalculated. This technique works almost exactly like the Write-
Gen-Counter technique described above, with the only differences
in the calculated offsets and the size of the chunks and the adjusting
of the inode flags.

The metadata generated by this technique contains two lists, one
with the used inode addresses and the other with the corresponding
node addresses.
15xf_blob is the official name of the table of contents managing the extended fields as
seen in Table 2
16(xfield_size + (8 - xfield_size % 8 ))-xfield_size is the formula used to calculate the
padding space.
17pad1 and pad2 in Table 1.
18Reverse engineering the file system check has revealed that pad1 can not be any
value other than zero.
19To write in pad2, the has_uncompressed_size flag has to be set. The value of this flag
is 0x40000. This flag is not yet referenced in the official APFS reference and has been
determined by reverse engineering the fsck_apfs binary.

4.6 Further Potential Hiding Techniques
In addition to the techniques already mentioned, some additional
potential hiding places were found during this research. Some of
them require further information about structures not discussed in
this paper.

Twomore general hiding techniques, that can be applied to many
file systems and which could potentially be applied here as well,
are the use of file slack and the allocation of additional blocks to an
existing file. A file slack technique would require parsing the extent
trees in volumes and a way to calculate the free space in a block.
To implement a block allocation technique, the module would first
have to be expanded by the Space Manager and the rest of the
Bitmap structures. Both of these techniques would potentially have
a high capacity but low stability due to the changing nature of a
file’s content and its size.

Furthermore, there are two fieldswithin theContainer Superblock20
(4 and 8 bytes in size, respectively) that could be used to hide data.
These fields are reserved for testing and debugging purposes and
are set to 0 by default. Although this does not provide much ca-
pacity by itself, combining this method with another technique to
potentially hide more sensible data may prove effective. In addition
to the low capacity, the stability of this technique would also be
low since the container superblocks are regularly overwritten on a
running Apple system.

Figure 8: Hex view of the empty spaces in the list of volume
object IDs.

Another potential Container Superblock-based hiding technique
could be the exploitation of the list of volume superblock object
IDs. This list is present in every Container Superblock. Its size is
not determined by how many volumes the container has, but how
many it can potentially have21. Since most commercially available
macOS-based systems would easily reach the upper limit of 100
volumes and there usually being 4 volumes already set up, this
technique would allow for up to 768 bytes of hiding space per
container superblock22. A visual representation of that space can
be seen in Figure 8. However, the stability of this technique would
theoretically be low since users can create new volumes at will,
which would overwrite hidden data.

Figure 9 shows the unmount logs that are present in every vol-
ume superblock. These logs can have up to 8 entries logging the
modification of the volume with a fixed ninth entry displaying in-
formation about the creation of the volume. The timestamps could
be manipulated similar to the technique described in Subsection
4.3 and the strings chronicling the entity responsible for creating
or modifying the volume could be overwritten completely, offering
up to 36 bytes of space from the timestamps and up to 288 bytes
20nx_test_type and nx_test_oid.
21512 Megabyte of size are needed for one volume.
2296 empty spaces multiplied with the fields size of 8 bytes.
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Figure 9: Partial output of the Sleuthkit command fsstat con-
cerning unmount logs.

from the string23 for each volume superblock. The stability of this
technique would be rather low since most of the entries can be over-
written in a running system. An additional stability concern would
be that the volume superblocks might be completely overwritten
due to the checkpoint system.

5 EVALUATION OF PRESENTED HIDING
TECHNIQUES

In this Section we evaluate the implemented hiding techniques
based on the following three evaluation metrics. As a first metric,
we consider the Detectability of hidden data. Besides the use of
fsck_apfs, the grade of detectability is being determined by compar-
ing them to the detectability of similar techniques used on other
file systems as well as on the possibility of a manual detection. Our
second metric, Stability, is influenced by how likely the hidden
data can be completely or partially overwritten on a running sys-
tem. Our third metric, Capacity, is determined by the size of the
potential hiding space in relation to the size of the used file system
image.

For the evaluation process various APFS images of different
sizes were used. The specific images can be found and downloaded
via a link provided by Plum and Dewald within their paper [17]
mentioned above. These images have been modified using mmcat
so that any non-APFS specific data is no longer included.

5.1 Evaluation of Superblock Slack

Figure 10: Hex editor view of an occupied container su-
perblock slack.

While this technique works as intended, what can be seen in
Figure 10, a potential improvement would be a different, more re-
fined way for the write method to choose targets, specifically how
239*4 for the timestamps, 9*32 for the strings.

Figure 11: fsck_apfs output when checking an image with
data hidden using the Superblock Slack technique.

it chooses the volume superblocks. The current implementation
sorts the volume superblock list simply by version, which means
multiple versions of the same volume superblock could be written
to before a different volume superblock is used. To avoid this, the
technique could remember the object IDs of all used volume su-
perblocks and skip list entries with known object IDs until every
unique volume superblock has been accessed once.

(1) Detectability -Medium: While Apple’s file system check
fsck_apfs does not find the hidden data as we can see in
Figure 11, a manual investigation using the hexdump should
be quite easy. The usage of different types of structures may
not help in hiding the data itself, but could help to obfuscate
the content of the actual hidden data.

(2) Stability - Low-High: The stability of this technique de-
pends mostly on the unknown impact of the checkpoint
write and overwrite systems mentioned in Subsection 4.1.
If the system only overwrites the structure without touch-
ing the rest of the block, this technique’s stability is high.
However if the entire block is cleared before writing a new
checkpoint, the stability is low.

(3) Capacity - High: The capacity of this technique is propor-
tional to the size of the container. Larger containers allow
for more checkpoints, with a standard checkpoint allowing
up to 34776 bytes24 of hiding space. Since there is no clear
indicator on how the size of the container affects the size
of the checkpoint areas, no definite statement on maximum
capacity can be made25. An optimal checkpoint would en-
compass one container superblock, one container object map,
four volume superblocks and four volume object maps. How-
ever, not every checkpoint is structured in this way. Some
checkpoints reference older volume superblocks if their con-
tent has not changed since the last checkpoint. This can be
demonstrated by comparing the theoretical and actual hid-
ing space in an image. In one of the test images with a size
of 5 GB, the theoretical hiding space is 904176 bytes because
the image has 26 checkpoints. When removing all duplicates
from the four lists introduced in Subsection 4.1, only 506016
bytes remain. In an image with a larger size, there are more
checkpoints available26 resulting in enough space to hide
pictures and perhaps even small video or audio files.

24(5*3984)+(4*3060)+2616 being the formula.
25Determining the correlation between the size of a container and the size of the
checkpoint area could be achieved by using multiple containers of various sizes and
comparing the size of their checkpoint areas after performing the same large amount
of data operations on all of them.
26A tested 100 GB image had 139 checkpoints in total.
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5.2 Evaluation of Write-Gen-Counter

Figure 12: Hex editor view of an inode after hiding data with
the Write-Gen-Counter technique.

(1) Detectability - Low: The file system check does not detect
any foul play and there seems to be no disallowed value
within the 4 byte parameter. This makes a manual investiga-
tion incredibly hard, if not impossible. Due to inodes being
stored out of order, the reconstruction of hidden data is chal-
lenging, as can be seen in Figure 12. Here, the technique was
used to hide the string ’WRITEGENTEST’ several times. The
inode excerpt shows that the data is split and hidden out of
sequence.

(2) Stability - Medium: Since the field is a counter that is in-
creased every time the inode or its corresponding data are
modified, it is possible that hidden data can get corrupted.
This risk increases proportionally to the size of the hidden
data, as more inodes will be needed.

(3) Capacity - Low: Each inode offers only exactly 4 bytes of
hiding space27 which limits the capacity of this technique
severely. The capacity however scales with the amount of
files and directories in a container and therefore also depends
on the size of a container.

5.3 Evaluation of Timestamp Hiding

Figure 13: Output of the Sleuthkit command istat before hid-
ing data in the timestamps.

Figure 14: Output of the Sleuthkit command istat after hid-
ing data in the timestamps.

27This means there is 4 * number of inodes bytes of space present. The tested 5 GB
image has 397 inode entries in the list generated by InodeTable, meaning there is 1588
bytes of potential space.

(1) Detectability - Low: The file system check does not detect
modified timestamps at all. However, as can be seen in Fig-
ure 13 and Figure 14, a minimal change to the seconds part
of the timestamp is possible, depending on the last bits of
the chunk of the data hidden in the respective timestamp.
While this may not have much impact when used against
average users, it could attract the attention of a professional
investigator. It is also possible to avoid manipulating the
seconds by writing slightly smaller chunks28.

(2) Stability -Medium: The current version of this technique
uses all four inode timestamps, which increases the capacity
but decreases the stability, since three of the timestamps
(mod_time, change_time and access_time) have the possibil-
ity to change while the system is in use. As explained in
Subsection 4.3, this technique can easily be changed to write
to a specific set of timestamps.

(3) Capacity - Low: Although this technique writes to all four
timestamps, the capacity remains low, as there are still only
16 bytes of space29 available in each inode. Just like the pre-
vious technique, the capacity of this technique rises propor-
tionally to the number of files in the container. Another way
to increase the capacity of this technique would be to add
timestamps of other structures, such as the directory records
(one timestamp per record) or the volume superblocks (be-
tween 1 and 9 timestamps per superblock).

5.4 Evaluation of Extended Field Padding

Figure 15: Hex editor view of occupied extended field
padding.

(1) Detectability -Low: The file system check does not find any
inconsistencies and a manual investigation would be difficult
due to the dynamic and irregular nature of the extended
fields and their padding. An example of that can be seen in
Figure 15. The reconstruction of already found hidden data
would be somewhat easier since the size of each extended
field is known through its header (see Table 3).

(2) Stability - Medium: While the dynamic and irregular na-
ture of the extended fields is beneficial to the detectability
of this technique, it is detrimental to its stability. Not all
dynamic extended fields are known, but one of them is the
file name. If the file name is changed, the size of the field
may also change and could overwrite the hidden data in this

28It seems like the nanoseconds part is only 30-bits large with the last 2 bits affecting
the seconds. There is a similar behaviour in ext4.
29(4 * used timestamps) * number of inodes is the formula to calculate the bytes of
available space. For example, in the 5 GB test image, there would be 6352 bytes available.
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extended field padding, possibly corrupting the entire set of
hidden data.

(3) Capacity - Low: Although the capacity of this technique
is rather low, it is not possible to make a general statement
about how capable this technique will be. Besides depend-
ing on the amount of created files and the total size of a
file system, there is also a reliance on the size of some ex-
tended fields’ content, such as file names. However, it can
be assumed that the capacity is in the same range as for the
two previous techniques Write-Gen-Counter and Timestamp
Hiding.

5.5 Evaluation of Inode Padding

Figure 16: fsck_apfs output when checking an image with
data hidden using the Inode Padding technique.

Figure 17: Hex view of the inode padding after data is hid-
den.

(1) Detectability - Medium: As seen in Figure 16, fsck_apfs
recognises no errors related to this hiding technique30. Since
this padding field does not contain data in most cases and the
corresponding flag mentioned in subsection 4.5 is not usually
set, a manual investigation or an APFS-specific forensic tool
could reveal this data.

(2) Stability - High: Since this field is supposed to be empty
and is not used by the file system, it will most likely not be
overwritten and will only be affected by deleting the inode
or the respective file.

(3) Capacity - Low: While the capacity of this technique grows
with the amount of files in a system, it remains comparatively
low with only 8 bytes31 available per inode. Similar to the
Write-Gen-Counter technique, this technique would only
allow small amounts of text, as can be seen in Figure 17.

30The mount_apfs related errors seen in this screenshot and Figure 11 are not related
to the hiding of data but rather to the nature of the used (raw) test images.
318*number of inodes is the formula to calculate the space. In the previously used
example with 397 inodes, this would amount to 3970 available bytes.

6 CONCLUSION
This paper described several data hiding techniques for APFS. Some
of them have been applied in practice, others were treated theoret-
ically. As a proof of concept and as an expansion of the existing
anti-forensic framework fishy, an APFS module was developed
including the APFS interface as well as five different hiding tech-
niques. Furthermore, we gave insight into the functionality of each
hiding technique and highlighted the used data structures and vul-
nerabilities. The evaluation showed that all of the found techniques
are able to successfully hide a varying amount of data. With the
exception of the Superblock Slack, all of these techniques abuse non-
critical areas that are primarily present within the inode structure.
This means that the capacity of these techniques is solely depen-
dent on the amount of files and directories existing in the container.
While there are still some open questions concerning the stability
of some of these techniques, this paper proves exploitable areas in
Apple’s new file system APFS.

7 OUTLOOK AND FUTUREWORK
Besides general improvements to the existing techniques mentioned
in Section 5, further additions to the fishy APFS module can be
made. With the additional vulnerabilities mentioned in Section
4.6, further hiding techniques can be implemented. On the one
hand, there are more universal exploits, like the use of File Slack
or the potential allocation of additional blocks. On the other hand,
there are a few additional APFS-specific exploits. Among those are
techniques which (i) use empty spaces in the list of volumes present
in the container superblock, (ii) use test fields in the container
superblock, or (iii) modify the volume mount logs found in every
volume superblock. There are also more general enhancements,
such as implementing a method to compress or encrypt data before
using a hiding technique. Besides, a more dynamic interface that
allows the combination of multiple hiding techniques to enhance
the overall capacity would be useful.

In addition to improving the framework’s ability to hide data,
there would be real added value in identifying potentially hidden
data. Using the knowledge gained from implementing and test-
ing the hiding techniques, a new set of tools for data recognition,
extraction and interpretation could be added. Many of the exist-
ing structures and functions could be modified to facilitate this
extension.
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